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Executive summary 

A management strategy evaluation was performed with a generic orange roughy stock to 

determine an appropriate limit reference point, target biomass range, and harvest control rule 

(HCR) for use in managing orange roughy stocks. The proposed management strategy was 

designed to be consistent with New Zealand’s Harvest Strategy Standard (MFish, 2008), and  

the Marine Stewardship Council’s certification requirements (MSC, 2013). 

 

The first step in the work was to estimate stock recruitment steepness (the percentage of 

virgin recruitment, on average, when at 20% of virgin biomass, B0) by performing extra stock 

assessment runs for the Mid-East Coast stock. Of the four stocks assessed in 2014, this was 

the only stock which had adequate age data on cohorts spawned at low stock size (and hence 

information on how average recruitment changes at low stock size). Assessment runs were 

done for a Beverton-Holt and a Ricker stock-recruitment relationship. The results were 

similar for both relationships with median steepness (for the combined posterior) equal to 

60% with a 95% CI of 31-95%. 

 

The large level of uncertainty in steepness, as well as the form of the stock-recruitment 

relationship, created a high degree of uncertainty in the estimates of BMSY. For Beverton-Holt, 

the median estimate and 95% CI of BMSY were 26% B0 and 12–39% B0; and for Ricker they 

were 42% B0 and 37-47% B0. As there was no basis for choosing between the Beverton-Holt 

and Ricker stock-recruitment relationships, it was concluded that the mid-point of the target 

range needed to be at about 40% B0, as a trade-off between the BMSY estimates from the two 

relationships.  

 

The limit reference point was defined to be the greater of 20% B0 and 50% BMSY. Under this 

definition, the Bayesian estimate of the limit reference point was 20% B0 with a very high 

level of certainty.  

 

Experimentation with various HCRs showed that (orange roughy) mature biomass, even 

when managed with a (perfectly) constant F, was prone to large long-term fluctuations 

(because of the low natural mortality and gradual recruitment). A fairly wide target range was 

needed to accommodate these long-term fluctuations and a breadth of 20% B0 was proposed. 

Taken with the mid-point of 40% B0, this gave a target biomass range of 30-50% B0 (with a 

limit reference point of 20% B0). With narrower biomass target ranges, the natural variability 

in the stock made it difficult to keep the stock within the range for a sufficiently high 

proportion of the time. 

 

HCRs, based on the above range and limit reference point, were tested in long-term 

simulations (generally run over 16,000 years and with the first 1000 years ignored) to check 

that they performed adequately with regard to maintaining the biomass within the target 

range with little possibility of ever being below the limit reference point. The proposed rule 

was found to be robust to the uncertainty in steepness and natural mortality as well as one-off 

and multiple violations in major assumptions. The rule should perform well unless there is a 
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severe violation of the assumptions made in the evaluation and steepness and/or natural 

mortality are low. 

 

The proposed rule was also used in projections from the 2014 stock assessment results. The 

projections showed an increasing level of total allowable commercial catch (TACC) for each 

stock and a flat or increasing stock-status trajectory. For the North West Chatham Rise and 

ORH 7A stocks, the stock-status trajectory was within the target biomass range (30–50% B0) 

throughout the five year projection period. The East and South Chatham Rise stock had an 

estimated stock status of just 30% B0 in 2014. However, the projected stock-status, under the 

proposed HCR, was firmly within the target biomass range within 3–4 years (and under a 

“worst case” scenario, the median projected stock status reached 30% B0 within 10–11 years). 

 

The proposed rule should be re-evaluated about every five years as new data become 

available on stock-recruitment steepness and natural mortality in particular.  
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Introduction 

 

This document describes a management strategy evaluation (MSE) for orange roughy. The 

objective of the work was to determine a limit reference point, a biomass target range, and a 

harvest control rule (HCR) which are compatible with both the New Zealand’s Harvest 

Strategy Standard (MFish, 2008) and the Marine Stewardship Council’s certification 

requirements (MSC, 2013). In particular, the reference points and HCR developed in this 

document aim to be consistent with: PI 1.1.2 Reference Points, PI 1.2.1 Harvest Strategy, and 

PI 1.2.2 Harvest Control Rules and Tools. 

 

A single generic orange roughy stock was modelled in the MSE. It was based on the three 

fisheries which are being evaluated against the MSC Standard in 2014: East and South 

Chatham Rise (ESCR), North West Chatham Rise (NWCR), and ORH7A (Challenger 

Plateau). The greatest uncertainties with regard to orange roughy population parameters are 

the stock-recruitment (SR) relationship and the value of natural mortality (M). The MSE 

focused on ensuring that the proposed harvest strategy is robust to these uncertainties. In 

terms of BMSY, the SR relationship is critical, with both the form of the relationship 

(Beverton-Holt and Ricker were considered) and the level of steepness (h, being the 

proportion of virgin recruitment at 20% B0) being important. The fourth orange roughy stock 

assessed in 2014, Mid-East Coast (MEC), which is not currently being evaluated against the 

MSC Standard because of its low stock status (< 20% B0), is a crucial source of information 

on SR steepness.  New MEC assessment runs were performed to estimate h for use in the 

MSE. Uncertainty in M was quantified using the four existing assessments (MPI 2014). 

 

A HCR with excellent long-term performance was determined by simulation using the 

generic orange roughy stock. The final step was checking that it also provided good short-

term performance for the specific stocks under consideration. This was done by applying the 

HCR to projections from the 2014 stock assessment results. 

 

Methods 

 

An MSE requires a number of components. There must be a population model which keeps 

track of the true state of the population and incorporates an appropriate level of “reality”. In 

this MSE the model was an age-structured model that was very similar to those used in the 

2014 stock assessments. However, the MSE model had some extra features which allow for 

the specification of some parameters that are not usually estimated during a stock assessment 

(e.g., correlation between annual year class strengths). 

 

The other major component of an MSE is a method whereby the total allowable catch (TAC) 

is updated. In reality, for orange roughy, this will be by Bayesian stock assessment from time 

to time in conjunction with a HCR (and projections). It is not possible to model such 

assessments realistically as the calculation of estimates can take several days for a single 

assessment (therefore doing thousands of simulated Bayesian assessments is not possible in a 
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reasonable timeframe). In this MSE, the stock assessment approach was approximated by 

using estimators based on the true values from the operating model. Two types of estimates 

were made: current stock status (current mid-season mature biomass divided by virgin mid-

season mature biomass) and current vulnerable biomass (the beginning of year biomass 

available to the fishery). The two estimators are highly correlated to reflect that, in reality, 

they are products of the same stock assessment. Also, the estimators across years are highly 

correlated to reflect that, in reality, data sets used in successive assessments are cumulative 

(i.e., new data are added to an existing data set each year). 

 

The population model and the method of updating TACs are part of what can be termed the 

“operating model”. It represents “reality” at any time during a simulation. The testing of 

various HCRs requires that the properties of each HCR are determined by very long-term 

simulations. The question that needs addressing is, how well does a control rule perform on 

“average” and, for orange roughy in particular? This requires that thousands of years are 

simulated to accurately calculate the average performance.  

 

The objective of the MSE is to find a HCR that maintains the mid-season mature biomass 

within a biomass range that is consistent with BMSY and allows little possibility of recruitment 

overfishing. The HCR must perform well over a wide range of assumptions; it should 

perform very well when the operating model is consistent with the assumptions under which 

the HCR was defined, but it must also be robust to errors in a wide range of assumptions 

(e.g., the form of the SR relationship, different values of natural mortality (M) and SR 

steepness). 

 

The MSE was performed using purpose written code in the statistical package R. 

 

The operating model 

Full details of the operating model equations are given in Appendix A. A summary is given 

below. 

 

The population model keeps track of fish in a single stock according to age (1-200 years with 

no plus group) and maturity (i.e., mature or immature). Therefore, the model is single-sex, 

single-area, and age-structured. The annual cycle was: ageing, recruitment (into age class 1), 

maturation, and then a full-year of mortality using the Baranov catch equation. The SR 

relationship was either Beverton-Holt or Ricker and average recruitment is calculated 

according to mid-season (i.e., after half the mortality) stock status. Year class strengths 

(YCS) were log-normally distributed with a specified recruitment variability (sigmaR = s.d. 

of log YCS) and correlation (rho = 1-year lag correlation of log YCS). 

 

Maturation was constant from year-to-year and was logistic producing (i.e., the proportion 

mature at age in the virgin population was logistic). Fishing was either logistic by age (i.e., 

independent of maturity state) or only on mature fish (i.e., no fishing mortality on immature 

fish and full selection, independent of age, on mature fish). 
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The population was initialised in deterministic equilibrium and virgin mid-season mature 

biomass is denoted as B0. The average unfished mid-season mature biomass was calculated 

from a long-term simulation with no fishing. If this was not equal to B0 then a correction 

factor was applied (this was generally very small except when SR steepness was low and 

sigmaR and/or rho were high; see Cordue, 2001).  

 

Two estimates were produced for each year of a simulation: stock status and vulnerable 

biomass. As already described, the estimators were highly correlated within year and across 

years. The estimate of stock status was available to be used in a HCR to calculate the F to be 

applied to the estimate of current vulnerable biomass:  TACC = ����	
. A HCR need not 

update the TACC each year, but the estimates are available to be used if needed. In the base 

model the control rule updates the TACC every third year. (Note, for orange roughy, the TAC 

is equal to the TACC plus 5% to allow for incidental catch). 

 

Ground-truthing of the operating model 

The results from four stock assessments in 2014 were used for specifying parameter values 

and/or ranges used in the operating model. The only missing piece from the assessments was 

guidance for SR steepness as this was specified to equal 0.75 in a Beverton-Holt SR 

relationship in each assessment. For the MSE, steepness was estimated for the MEC 

assessment as it had the most data from year classes that were spawned from low stock status 

(see Appendix B and a summary in the next section). 

 

The four 2014 stock assessments all included MCMC runs where M was estimated: 

 

Stock M (median) 95% CI 

NWCR 0.041 0.033–0.051 

ESCR 0.037 0.027–0.048 

MEC 0.032 0.028–0.037 

ORH7A 0.038 0.031–0.047 

Combined 0.037 0.029–0.049 

 

To represent the uncertainty in M, the four posterior distributions were combined (with equal 

weight) and a random sample of 5000 was taken from the combined distribution for use in the 

MSE.  

 

Logistic-producing maturation had also been estimated in each of the assessments (posterior 

medians): 

 

Stock a50 (years) ato95 (years) 

NWCR 37 13 

ESCR 41 12 

MEC 35 10 

ORH7A 32 10 
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For the operating model the median of the median estimates (above) was used: a50 = 36 years, 

ato95 = 11 years.  These were fixed in the operating model in all simulations as it was similar 

across all four stocks and was reasonably well determined in each assessment. The more 

important issue was where the fishing selectivity was relative to maturity. For example, if 

fishing was on an older-age subset of the mature fish, then very high Fs are sustainable 

because a part of the mature biomass would never be threatened; alternatively, if full 

selection was at an age well below maturity, then high Fs would be very detrimental to stock 

status. 

 

In the stock assessments, fishing was assumed to be on mature/spawning fish for ORH7A and 

NWCR. Also, for ESCR, the fishing selectivities (of the multiple fisheries) were centered at 

about the age of maturity. It is only for MEC that the fishing selectivity was at a much lower 

age than maturation. Since MEC is not being considered for MSC certification the fishing 

selectivity was based on the other three stocks. Within the operating model, fishing 

selectivity was assumed to be logistic with s50 = a50 and sto95 = ato95. This was the base 

assumption and, as an alternative, fishing was assumed to be just on the mature fish. 

Uncertainty in fishing selection relative to the age of maturity was not considered (except in 

one robustness run) as current fishing selectivity (relative to maturity) was well determined in 

the stock assessments (i.e., we know whether the fishery is currently on mature/spawning fish 

or not).  

 

The East and Northwest Chatham Rise growth parameters and length-weight parameters from 

the 2014 Plenary report were used in the operating model (MPI, 2014). 

 

Estimates of recruitment variability (sigmaR) and (1-year lag) correlation (rho) were 

available from the base model MCMC results: 

 

  SigmaR  Rho 

Stock  median 95% CI median 95% CI 

NWCR 0.94 0.80–1.07 –0.04 –0.29 to 0.28 

ESCR 0.92 0.73–1.11 –0.01 –0.22 to 0.24 

MEC 0.93 0.41–1.18 0.17 –0.05 to 0.35 

ORH7A 0.94 0.68–1.11 0.09 –0.15 to 0.35 

 

The consistency of the median sigmaR estimates is because the assessments contained very 

little information on sigmaR and the medians have moved little from the medians of the 

implied priors (from the Haist parameterisation and the nearly uniform prior on YCS: prior 

medians ≈ 0.96 and 95% CI ≈ 0.7–1.3). The major change from the priors is the elimination 

of the right-hand tail (i.e., values above approximately 1.1). In the base model, sigmaR = 0.9 

was assumed and a robustness test was done for sigmaR = 1.1 (which is the usual value 

assumed for orange roughy but which appears to be a bit high given the stock assessment 

results). For the base model, rho = 0 was assumed and a robustness test was done at rho = 0.4. 
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The stock assessments produced fairly precise estimates of current mature biomass and stock 

status: 

 

Stock CV(B2014)(%) CV(B2014/B0)(%) 

NWCR 17 11 

ESCR 9 8 

MEC 23 20 

ORH7A 12 9 

 

For the MSE base model, a CV of 15% was assumed for the vulnerable biomass estimator 

and the stock status estimator. A robustness test was done with CVs of 25%. The within-year 

correlation between the vulnerable biomass and stock status estimators was close to 1 as the 

same random errors were used in their construction. The 1-year lag correlation for each 

estimator was also close to 1 (see Appendix A). 

 

Estimation of steepness 

The MEC stock assessment model provided information on steepness because there were age 

frequency data for a number of cohorts that were spawned when stock status was low. The 

MEC base stock assessment model was re-run with h and M estimated. Informed priors were 

used for both parameters and the runs were taken through to full MCMC estimation 

(Appendix B). Estimation of steepness was made for both the Beverton-Holt and Ricker SR 

relationships. A random sample of 5000 was taken from the posterior distributions of each 

run for use in the MSE. For the MSE simulations, the base model assumed Beverton-Holt and 

in a robustness test the Ricker relationship was used in the operating model. Both forms were 

given equal weight when considering BMSY and the limit reference point (LRP). 

 

Estimation of BMSY and the LRP 

Bayesian estimation of BMSY and the LRP was performed to account for uncertainty in h and 

M. This was achieved by calculating BMSY and the LRP as a function of h and M over a two-

dimensional grid of values and then obtaining a posterior distribution by using the given 

posterior samples of h and M (see above). For each pair of posterior samples (h, M) the value 

of BMSY or the LRP was calculated by interpolation using the corresponding “grid function”. 

The “spline” and “splinefun” functions in R were used to provide the interpolated values 

(these are cubic splines).  Hence, the 5000 samples from the joint posterior of h and M 

provided 5000 samples from the posteriors of BMSY and the LRP. 

 

For given values of h and M, BMSY was calculated by running the base model (or the Ricker 

model) with deterministic recruitment and constant F over a range of F values to determine 

the yield curve. The model was run for 3000 years at each value of F (to ensure deterministic 

equilibrium was reached) and FMSY was determined to two significant figures. The LRP was 

defined to be the greater of 20% B0 or 50% BMSY. 
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Estimation of performance indicators for harvest control rules 

Four performance indicators (for a given HCR) were estimated in each run: mean annual 

mid-season mature biomass; mean annual yield; the probability of the mid-season mature 

biomass being above the LRP (denoted LRPp); and the probability of the mid-season mature 

biomass being above the lower bound of the biomass target range (denoted LBp).  

 

Bayesian estimation was used to account for the uncertainty in h and M. This was achieved in 

the same fashion as for BMSY and the LRP, using interpolation via cubic splines over the grid 

of calculated values for fixed h and M. For each fixed pair (h, M) the HCR was applied for 

16,000 years. The first 1000 years were ignored and the statistics were calculated from the 

remaining 15,000 years. As a check on stochastic equilibrium, the median biomass was 

calculated for each 5000 year segment after the initial 1000 years were discarded. The CV of 

the three medians was required to be less than 5% otherwise a warning was issued. Warnings 

were rare except for the run where sigmaR = 1.1 and rho = 0.4. For this run, the 15,000 year 

period was doubled to 30,000 years (which eliminated warnings except for one or two (h, M) 

pairs with very low values). 

 

The Bayesian posteriors of LRPp and LBp were used to derive two summary measures: 

 

• LRP risk: the probability that the HCR will allow mid-season mature biomass to 

be below the LRP more than 5% of the time 

• depletion risk: the probability that the HCR will allow mid-season mature 

biomass to be below the lower bound of the biomass target range, LB, more than 

30% of the time 

 

The probabilities are the proportion of h, M pairs where the HCR allows the poor 

performance with respect to the LRP or LB. The choices of 5% and 30% were not arbitrary.  

 

The mid-season mature biomass should rarely go below the LRP in the long-term; the choice 

is perhaps between 1% and 5%. The rarer the event the harder it is to estimate the actual 

probability so 5% was chosen rather than 1% (if 1% had been chosen, the simulation period 

of 15,000 years would probably had to have been increased). 

 

The 30% level for the LB was chosen to reflect the MSC definition of a depleted stock which 

is one which is “consistently” below the LB of the target biomass range. Certainly if a stock 

was below the LB only 10-20% of the time it could not reasonably be argued that it was 

“consistently” below. At 30% the argument is somewhat moot, but this level was chosen to 

be conservative. 

 

Robustness testing of control rules 

The main robustness testing focused on the proposed control rule but the approach was the 

same for any rule. The main focus of the testing was robustness to uncertainty in h and M but 

in addition to this, various assumption violations were laid on top of the uncertainty testing. 

For example, the proposed HCR was tested over the whole plausible range of h and M with a 
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Beverton-Holt SR relationship and alternatively with a Ricker SR relationship. Also, the base 

model assumed unbiased estimators of stock status and vulnerable biomass. As this is 

unlikely to be the case, the robustness of the proposed HCR was tested against a 20% positive 

bias in one or other or both of the estimators. A higher assumed CV for the stock assessment 

estimators was also tested; as were higher values of sigmaR and rho. 

 

Results 

 

Bayesian estimates of steepness and natural mortality 

The MEC assessment runs in which h was estimated gave similar results for Beverton-Holt 

and Ricker stock-recruitment relationships (Table 1, Appendix B). The combined results 

(giving both runs equal weight) gave a median steepness of 60% (i.e., an average of 60% of 

virgin recruitment when at 20% B0) with a 95% CI of about 30-90% (Table 1). The combined 

posterior distribution had a single mode with a very broad range (Figure 1 – note, values 

above 100% are from the Ricker posterior). For both runs the estimated median correlation 

between h and M was close to zero. 

 

Table 1: Bayesian estimates of steepness for the MEC assessment models that assumed a Beverton-Holt 

or a Ricker stock-recruitment relationship. The median and 95% CIs are given as a percentage of virgin 

recruitment (R0). 

 Steepness (h) (%R0) 

 Median  95% CI 

Beverton-Holt 68 39–93 

Ricker 53 28–99 

Combined (equal weight) 60 31–95 

 

The posterior distribution for M was calculated as the (equal-weight) combined posterior 

distribution of the four assessed stocks in 2014 (see “Ground truthing” above). The 

distribution had a median of 0.037 with a 95% CI: 0.029–0.049 (Figure 2).   

 

Bayesian estimates of BMSY 

For the base model, estimates of BMSY were highly dependent on the form of the SR 

relationship and the level of h (Tables 2 & 3). For both SR relationships, increasing M 

reduces BMSY slightly when h is high. Also, in both cases, increasing h reduced BMSY, but the 

reduction was far less for the Ricker relationship than the Beverton-Holt relationship (Tables 

2 & 3).  
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Table 2: BMSY (%B0) as a function of h and M when a Beverton-Holt stock recruitment relationship was 

assumed for the base model. “–“ denotes that BMSY was not defined (i.e., the yield curve did not have a 

maximum). 

 Natural mortality (M) 

Steepness (h) 0.02 0.025 0.03 0.035 0.045 0.05 0.06 

0.25 45 45 45 45 45 45 45 

0.30 45 44 44 44 43 43 43 

0.35 42 42 41 41 41 41 40 

0.40 40 40 39 39 39 38 38 

0.50 35 34 34 34 34 34 33 

0.60 31 30 30 30 29 29 29 

0.75 25 24 24 23 23 22 22 

0.90 17 17 16 16 15 14 13 

1.00 6 4 3 – – – – 

 

Table 3: BMSY (%B0) as a function of h and M when a Ricker stock-recruitment relationship was assumed 

for the base model. 

 Natural mortality (M) 

Steepness (h) 0.02 0.025 0.03 0.035 0.045 0.05 0.06 

0.25 48 48 48 48 48 48 48 

0.30 48 47 47 47 47 47 47 

0.35 46 46 46 46 46 46 46 

0.40 45 45 45 45 44 44 44 

0.50 43 43 43 42 42 42 42 

0.60 42 42 41 41 41 41 40 

0.75 40 40 39 39 39 39 38 

0.90 38 38 38 38 37 37 36 

1.00 37 37 37 37 36 36 35 

1.20 36 36 36 35 34 34 34 

 

The Bayesian estimates of BMSY were obtained from the implicit functions in Tables 2 and 3 

weighted by the h and M posterior distributions. The steepness estimates for Beverton-Holt 

were much lower than from Ricker with the 95% CIs barely overlapping (Table 4). The 

combined posterior covers a very broad range with the median just below the commonly used 

BMSY proxy of 40% B0 (Table 4). 

 

Table 4: Bayesian estimates of BMSY for the base model assuming a Beverton-Holt or a Ricker stock-

recruitment relationship. The median and 95% CIs are given as a percentage of virgin mid-season 

mature biomass (B0). 

                 BMSY (%B0) 

 Median  95% CI 

Beverton-Holt 26 12–39 

Ricker 42 37–47 

Combined (equal weight) 38 15–47 

 

 

Bayesian estimates of the limit reference point 

The limit reference point was defined to be the greater of 20% B0 or 50% BMSY. The rationale 

for this definition is that the stock should not be too far below BMSY and ideally never be 

below 20% B0. Allowing the stock to be below 20% B0 could impair recruitment, alter the role 

of the fish in the ecosystem and possibly result in a regime shift to a much lower carrying 

capacity (i.e., niche replacement).  
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The estimates of the limit reference point (LRP) for the two SR relationships were very 

similar and the median of the combined posterior distribution was 20% B0 (Table 5). 

 

Table 5: Bayesian estimates of the LRP for the base model assuming a Beverton-Holt or a Ricker stock-

recruitment relationship. The median and 95% CIs are given as a percentage of virgin mid-season 

mature biomass (B0). 

                   LRP (%B0) 

 Median  95% CI 

Beverton-Holt 20 20–20 

Ricker 21 20–24 

Combined (equal weight) 20 20–23 

 

The current knowledge of steepness for orange roughy suggests that 20% B0 is appropriate as 

a LRP irrespective of whether a Beverton-Holt or Ricker relationship is assumed. When the 

two relationships are given equal weight, the median estimate of the percentage of virgin 

recruitment at 20% B0 is 60% (i.e., the median steepness as given in Table 1). This seems 

appropriate for a LRP; less than 60% (on average) of virgin recruitment does constitute some 

impairment of recruitment that should be avoided to ensure long-term sustainability of the 

stock and dependent fishery. 

 

Determination of a suitable target range 

A suitable biomass target range has to ensure that biomass will be maintained well above the 

LRP for the majority of the time and that it is consistent with BMSY.  

 

The existing target range of 30–40% B0 would be suitable in the first regard if biomass could 

be maintained within the range (or at least generally above 30% B0). However, if the mid-

point of the range (35% B0) is targeted, it is unlikely that biomass can generally be 

maintained above 30% B0. For example, if the base-model stock is fished at a constant fishing 

mortality of F35%B0, then 95% of the time the stock status is in the range 24–48% B0  (Table 6, 

Figure 3). If a “bent” control rule is applied where F reduces linearly from F35%B0 at 30% B0 

down to 0 at 20% B0 the “95%-range” is still too broad (27–48% B0) with a 19% probability 

of being below 30% B0 (Table 6). This all assumes that stock status and current vulnerable 

biomass are known exactly every year; if more realistic assumptions are made (with the same 

HCRs) then stock status will be more variable (and therefore will more often be at less than 

30% B0). 

 

In terms of BMSY, the mid-point of the target range at 35% B0 seems low, as the median 

estimate of BMSY is 38% B0 and the 95% CI on the Ricker BMSY  is 37–47% B0 (Table 4). As a 

compromise between potentially very low BMSY from Beverton-Holt (95% CI: 12–39 % B0) 

and the higher Ricker range, it is appropriate to set a mid-point for the biomass target range at 

about the median of the combined posterior distribution (38% B0). Since the commonly used 

BMSY proxy of 40% B0 is slightly above the median estimate it is convenient to use 40% as the 

mid-point of the target range.  
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Table 6: Stock status statistics for the base model when fishing at constant F35%B0 or with a harvest 

control rule that declines linearly from F35%B0 at 30% B0 down to 0 at 20% B0. These results assume no 

error in stock status or fishing mortality. 

 

 Stock status (% B0)   

 Median 95% CI P(B < 20% B0) P(B < 30% B0) 

F35%B0 34 24–48 0.00 0.24 

F35%B0 + bend 34 27–48 0.00 0.19 

 

The target range should be broad enough to accommodate the sustained trends in stock status 

that can occur due to good or poor recruitment (e.g., see Figure 3). It is clear from the base-

model results, when fishing at a constant F (or using the bent rule), that allowing only 10% 

B0 for the breadth of the range is inadequate (e.g., the 95% CI for the bent rule spans 21% 

B0).  A breadth of 20% B0 is the obvious candidate. Combined with the mid-point of 40% B0 

this gives a target range of 30–50% B0. 

 

The lower bound of the target range at 30% B0 is well above the LRP (20% B0) and the target 

range, in terms of the median estimates, is expected to provide 75–90% of virgin recruitment 

(Table 7). 

 

Table 7: Bayesian estimates of average recruitment at 30% B0 and 50% B0 for the base model assuming a 

Beverton-Holt or a Ricker stock-recruitment relationship. The median and 95% CIs are given as a 

percentage of virgin recruitment (R0). 

 

 Average recruitment at 

30% B0 (%R0) 

 Average recruitment at  

50% B0 (%R0) 

 Median 95% CI Median 95% CI 

Beverton-Holt 78 52–96 89 72–98 

Ricker 69 41–122 91 62–136 

Combined (equal weight) 75 44–110 90 66–127 

 

 

The proposed harvest control rule (HCR) 

The proposed HCR is based on the existing HCR which has F ramping up from 0 at 10% B0  

to 0.045 at 30% B0 and remaining constant thereafter (M = 0.045 is the assumed value for 

stock assessments, so the existing HCR is an “F = M” strategy) .  However, the proposed 

HCR is “dynamic” and additionally has F ramping up within the target biomass range (Figure 

4). The dynamic aspect of the HCR  (which is explained below) is crucial in enabling long-

term performance which is robust to uncertainty in parameter estimates (e.g., h and M, 

recruitment variability and correlation) and errors in assumptions (e.g., the form of the SR 

relationship, bias in the estimators of stock status and/or current biomass). 

 

A “static” HCR primarily consists of a functional relationship between estimated stock status 

and F. That is, there is a function g, which for a given estimated stock status s, will return F = 

g(s) which is the fishing mortality to be applied to the estimate of vulnerable biomass to 

obtain the recommended catch. In a static HCR, the functional relationship g does not change 

over time. 
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In a dynamic HCR, there is an initial functional relationship and a rule by which that 

relationship can change over time. For the proposed rule, the initial functional relationship is 

essentially the existing HCR except that it has F ramping up within the target biomass range 

of 30–50% B0 (Figure 4). There are two ways in which g can change. If estimated stock status 

is below the lower bound of the target biomass range (LB) then g is scaled down by a 

proportion p < 1 (i.e., the new relationship is such that the Fs are equal to the old Fs 

multiplied by p). The scaling down of the relationship g occurs every time that an assessment 

estimates stock status below the LB (although the proportion p also changes as a function of 

stock status, and the cumulative scaling down cannot exceed a specified limit – see Appendix 

1). If estimated stock status is found to be greater than 60% B0 and g is less than the initial g 

then it is rescaled upwards (i.e., the new Fs are equal to the old Fs divided by a proportion p 

< 1). The p values are determined as a function of stock status but they are always between 

0.9 and 1 (see Appendix 1, the recommended HCR has l = LB = 30% B0, r = 60% B0, k = 0.9, 

m = 10, and plimit = 0.3). 

 

The rescaling of the functional relationship essentially allows the HCR to “learn” over time 

about the average production of the stock. If estimated stock status is below the LB, then the 

HCR becomes progressively more conservative. Similarly, if the stock status becomes very 

large (after scaling down of the functional relationship) then the HCR becomes progressively 

more aggressive. If the HCR is properly designed, stock status should remain with the target 

biomass range most of the time (when measured over the long term). 

 

The full specification of the proposed HCR, which we will denote as “dynamic HCR10”, is: 

LRP = 20% B0, target biomass range = 30–50% B0, initial Fmid = 0.045, slope within the 

target range: p = 25%; ramps down to zero at 10% B0; rescaling limit points: l = 30% B0, r = 

60% B0; k = 0.9, m = 10, plimit = 0.3. Assessments were specified to occur every 3 years in 

line with MPI’s draft 10-year deepwater plan for orange roughy. 

 

Performance of the harvest control rule 

Four performance indicators were evaluated: mean annual mid-season mature biomass; mean 

annual yield; the probability of the mid-season mature biomass being above the LRP (20% 

B0); and the probability of the mid-season mature biomass being above the lower bound of 

the target range (30% B0). Also, two risks were estimated from the Bayesian posteriors: LRP 

risk and depletion risk (see above). 

 

The average mid-season mature biomass maintained by dynamic HCR10 (for the base model) 

depends strongly on h and M  with higher values of these parameters giving higher biomass 

(Figure 5). The same is true for average yield with higher yield obtained for higher values of 

h and M (Figure 6). There is little chance of the biomass falling below the LRP except when 

h and M are very low (Figure 7). The probability of the rule maintaining biomass above the 

LB also depends strongly on h and M (Figure 8). For very low values of h and M there is little 

chance of being above the LB. 
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When we look at how the functional relationship (between stock status and F) has been 

cumulatively rescaled over the full simulated time period (16,000 years) we see that the HCR 

“learnt” much about the mean production of the stock (Figure 9). For the lowest values of h 

and M the functional relationship was scaled down as much as possible to plimit = 0.3 (Figure 

9). For the grid of h and M values there is progressively less rescaling as h and M increase. 

For the three highest values of M, the cumulative rescaling value is somewhat “bumpy” as h 

increases (Figure 9). This is because it is a matter of luck as to how much the relationship is 

rescaled after estimated stock status dips below 30% B0 (because of a sequence of poor YCS) 

and then ultimately increases above 60% B0 (because the rescaled functional relationship 

removes less than the average stock production). 

 

Application of the h and M posteriors to the grid functions provides Bayesian posteriors for 

each of the four performance indicators.  The spread in the posterior for each indicator is 

caused by the variation in h and M across the respective distributions. The mean biomass 

under dynamic HCR10 has a mode at about 42% B0 and very little weight anywhere else; the 

mean yield has a mode at about 1.5% B0; the probability of being above the LRP is very 

tightly distributed at or just below 1; as is the probability of being above the LB (Figure 10). 

That is to say, there are very few combinations of h and M for which the rule does not have 

excellent long-term performance (see Table 8). For the base model, dynamic HCR10 has zero 

LRP and depletion risk (see Table 12). 

 

Table 8: Base model: Bayesian estimates of the four performance indicators for the proposed harvest 

control rule: dynamic HCR10. 

 

 Mean B(%B0)  Mean yield (%B0)  P(B > 20% (B0)(%)  P(B > 30% B0)(%) 

Median 95% CI Median 95% CI Median 95% CI Median 95% CI 

        

42 41–43 1.4 0.8–2.1 100 100–100 97 96–98 

 

A careful interpretation of the median estimate of mean yield is needed. The median mean 

yield is the “best” estimate available given the current knowledge with regard to h and M. 

However, in practice, the mean long-term yield will depend strongly on the actual values of h 

and M; depending on what they are, mean yield could be less than 1% B0 or as high as 2% B0 

(see the 95% CIs in Table 8). 

 

Each HCR contains a specification for the frequency of TAC updates. The base assumption is 

for updates every 3 years. For orange roughy, low natural mortality implies that a large 

number of cohorts are in the mature biomass when it is maintained in a range of 30-50% B0. 

The mature biomass changes little from year to year and the frequency of TAC updates is not 

important in terms of the theoretical performance of the control rules (see Table 9). However, 

regular monitoring of biomass and age composition and continued research on generic issues 

(e.g., acoustic target strength) are important to improve the stock assessments.  
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Table 9: Base model: Bayesian estimates of the four performance indicators for the proposed HCR 

(dynamic HCR10, update every 3 years, results in bold) and the same HCR with more frequent or less 

frequent TAC updates. 

 

  Mean B (%B0)  Mean yield (%B0)  P(B > 20% B0)(%)  P(B > 30% B0)(%) 

Years Median 95% CI Median 95% CI Median 95% CI Median 95% CI 

         

n = 1 42 41–43 1.4 0.8–2.1 100 100–100 96 94–98 

n = 3 42 41–43 1.4 0.8–2.1 100 100–100 97 96–98 

n = 5 42 41–43 1.4 0.8–2.1 100 100–100 97 97–98 

 

 

Robustness of the proposed HCR 

Many assumptions are made in the base model and the robustness of the proposed HCR to 

most of these assumptions was tested. If the Ricker SR relationship and the associated 

posterior distribution are used then the mean biomass and yield have similar median values as 

for the base model but they have wider 95% CIs (Table 10). There is still very low LRP and 

depletion risk with the estimated values respectively 2% and 3%. This was the only 

sensitivity where LRP risk was greater than 0 and depletion risk was greater than 1% (see 

Table 12). 

 

Additional recruitment variability (sigmaR = 1.1 instead of 0.9) does not compromise the 

HCR, nor does the presence of moderate correlation in recruitment strengths (rho = 0.4 

instead of 0; see Table 10). Even when there is increased variability and moderate correlation, 

the HCR still has excellent long-term performance as it does when there is a major error in 

the selectivity (6 years younger than assumed in the F calculations) (Table 10).  

 

 

Table 10: Bayesian estimates of the four performance indicators for dynamic HCR10 with the base model 

(results in bold), and variations of the base model: Ricker SR relationship; fishing only on mature fish 

(Mature); sigmaR = 1.1 (instead of 0.9); rho = 0.4 (instead of 0); sigmaR = 1.1 & rho =0.4 (1.1 & 0.4); s50 = 

30 years (instead of 36 years). 

 

  Mean B (%B0)  Mean yield (%B0)  P(B > 20% B0)(%)  P(B > 30% B0)(%) 

 Median 95% CI Median 95% CI Median 95% CI Median 95% CI 

         

Base 42 41–43 1.4 0.8–2.1 100 100–100 97 96–98 

Ricker 42 32–50 1.4 0.4–2.9 100 97–100 96 61–100 

Mature 42 41–43 1.4 0.8–2.0 100 100–100 97 95–98 

Sig. 1.1 42 40–43 1.4 0.7–2.1 100 100–100 95 93–97 

Rho 0.4 43 41–45 1.4 0.7–2.1 100 100–100 93 89–96 

1.1 & 0.4 43 39–45 1.4 0.7–2.1 100 99–100 89 80–92 

s50 = 30 42 40–42 1.4 0.7–2.2 100 100–100 97 96–97 

 

 

The performance of the HCR is only slightly affected by a 20% positive bias in the estimation 

of stock status or current vulnerable biomass (Table 11). When both biases are present  there 

are some lower values of h and M that could lead to the biomass spending a significant 

amount of time below the LB (Table 11). Considerable care is taken during the stock 

assessment process to ensure that such systematic biases are eliminated (e.g., in the way 
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acoustic biomasses are developed from survey data and treated as relative indices). However, 

there is no LRP risk associated with both biases and only a 1% depletion risk (Table 12). The 

HCR is robust to a higher level of imprecision in the estimation of stock status and vulnerable 

biomass (CV = 25% instead of 15%)(see Table 11). 

 

 

Table 11: Bayesian estimates of the four performance indicators for dynamic HCR10 with the base model 

(results in bold) and base model variations: a 20% bias  in estimates of vulnerable biomass (Vul. 20%) or 

stock status (S.S. 20%) or both (Both 20%); and a CV for the estimates of 25% (instead of 15%). 

 

Mean B (% B0) Mean yield (% B0) P(B > 20% B0)(%) P(B > 30% B0)(%) 

 Median 95% CI Median 95% CI Median 95% CI Median 95% CI 

         

Base 42 41–43 1.4 0.8–2.1 100 100–100 97 96–98 

S.S. 20% 35 35–41 1.5 0.8–2.2 100 100–100 80 77–95 

Vul. 20% 42 41–42 1.4 0.8–2.2 100 100–100 97 96–97 

Both 20% 35 34–37 1.5 0.8–2.3 100 100–100 78 76–87 

CV 25% 42 41–44 1.4 0.7–2.1 100 99–100 92 92–95 

 

 

Table 12: Estimated LRP risk and depletion risk for dynamic HCR10 with the base model and all 

sensitivities tested. 

 
 LRP risk (%) Depletion risk (%) 

Base 0 0 

Ricker 2 3 

Mature 0 0 

Sig. 1.1 0 0 

Rho 0.4 0 0 

1.1 & 0.4 0 1 

s50 = 30 0 0 

S.S. 20% 0 1 

Vul. 20% 0 0 

Both 20% 0 1 

CV 25% 0 0 

 

 

Application of the proposed HCR to the 2014 stock assessments 

The proposed HCR (dynamic HCR10) is designed to maintain biomass, over the long term, 

within a target biomass range of 30–50% B0 for a wide range of values of h and M. The 2014 

stock assessment calculation of yields used U35%B0 based on h = 0.75 and M = 0.045 (Cordue, 

2014). A constant  U35%B0 HCR is a more aggressive rule than dynamic HCR10, as it targets a 

mid-point of 35% B0 rather than 40% B0. Also, the proposed HCR has a slope within the 

target biomass range which reduces F from its midpoint value when estimated stock status is 

less than 40% B0 (this affects ESCR as its estimated stock status was 30% B0; for NWCR and 

ORH7A there is little effect from the slope as they were estimated at 37% and 42% B0 

respectively). 

 

The yield estimates from dynamic HCR10 are less than the U35%B0 yields but similar to the 

highest options given by MPI in the discussion documents (IPPs) for the 2014-15 TAC 

review (Table 13). 
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Table 13: Yield estimates for the 2014-15 fishing year from the stock assessments, the MSE and MPI 

consulted options for catch limits. 

Stock U35%B0  yield (t) 

HCR10 yield 

(t) 

MPI TACC/catch-

limit options (t)  

NWCR 1414 1043 750, 900, 1250 

ORH7A 2128 1748 500, 900, 1600 

ESCR 6400 3772 3100 

 

Dynamic HCR10 was used in projections from the 2014 stock assessment results for NWCR, 

ESCR, and ORH7A (sampling from the last 10 estimated YCS as in the stock assessment – 

see Cordue, 2014). That is, the HCR was applied in 2014 (using the base model and the 

medians of the posterior distributions for stock status and vulnerable biomass) to set the 

TACC/catch-limit in 2015 and subsequent years, until the next scheduled assessment; then 

the HCR was again applied (to the medians of the projected distributions for stock status and 

vulnerable biomass) to set the TACC/catch-limit for the next set of years; and so on. The 

projections were first done for the base models (which determined the TACCs/catch-limits 

under the base models) and then repeated for the lowM-highq models (using the 

TACCs/catch-limits from the base models). Projections were done up to 2019 for NWCR and 

ORH7A but were extended to 2025 for ESCR (to check on whether the stock rebuilt to 30% 

B0 for the “worst-case” lowM-highq model). Also, for ESCR, projections for the base model 

and lowM-highq were repeated with h = 0.6 (which is 20% lower than the assumed value of 

0.75 in the stock assessments). 

 

The years in which to do future assessments were taken from the draft 10-Year Deepwater 

Fisheries Research and Monitoring Programme which has the assessments for ESCR, 

NWCR, and ORH7A scheduled respectively for 2018, 2018, and 2016; and then every 3 

years for each stock. The projected TACCs/catch-limits are shown in Table 14. 

 

Table 14: Projected catch limits for the three orange roughy fisheries from the MSE. 

 

 

ESCR catch 

limit (t) 

NWCR catch 

limit (t) 

ORH7A 

 (TACC) 
2015 3772 1043 1748 

2016 3772 1043 1748 

2017 3772 1043 1799 

2018 3772 1043 1799 

2019 4965 1332 1799 

2020 4965   

2021 4965   

2022 5768   

2023 5768   

2024 5768   

2025 6317   

 

For the NWCR, the HCR allowed the median stock status to increase each year for the base 

model (Figure 11) and for the “worst-case” lowM-highq model (Figure 12). The main 

difference between the two models was that the base started from a higher stock status than 

the lowM-highq model. Both models finish in 2019 with the median stock status within the 

target biomass range (Figures 11 and 12). 
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The results are similar for ORH7A in that the shape of the trajectory is flat showing a slight 

decline in the later years for both the base model and the lowM-highq model (Figures 13 and 

14). Also, in 2019 both models finish with the median stock status within the target biomass 

range. 

 

For the ESCR base model, which starts with a stock status of 30% B0 in 2014, a steady 

increase in stock status is shown with the 95% CIs wholly within the target biomass range 

from 2020 onwards (Figure 15). For the lowM-highq model, a steady rebuild is also shown 

but the median stock status does not get into the target biomass range until 2023 (Figure 16). 

The results are similar for the base and lowM-highq models when h = 0.75 is replaced with h 

= 0.6 when doing the projections (Figures 17 and 18). The results are only slightly more 

pessimistic since the spawning biomass, during much of the projection period, is receiving 

recruitment spawned from biomass that was not substantially depleted (i.e., which means that 

the average recruitment is very similar for h = 0.6 and h = 0.75). 

 

Discussion and conclusion 

 

The current target biomass range for orange roughy is 30–40% B0. The lower bound of this 

target range is from early work following the recommendations of Francis (1992) to use a 

default steepness of 0.75 and calculate BMAY (biomass that gives the Maximum Average Yield 

under a constant F) subject to the constraint that biomass should not be below 20% B0 more 

than 10% of the time. His methods, when applied to orange roughy stocks, gave BMAY = 30% 

B0 for all of the stocks that had been assessed (MPI 2014). This value is lower than that 

calculated, using the method of Francis (1992), for many other species because the low 

natural mortality of orange roughy ensures that there are many cohorts in the mature biomass 

(when it is not at a low level) and hence the biomass is more stable than for other species 

with higher natural mortality. 

 

The current target biomass range of 30–40% B0 appears to be too narrow to meet the criteria 

set in the Marine Stewardship Council Standard. It does not appear to be consistent with BMSY 

as the current best estimate has a 95% CI of 15–47% B0 with a median of 38% B0. If only a 

Beverton-Holt SR relationship is considered then 30–40% B0 would be consistent with BMSY 

which is then estimated with a median of 26% B0 and a 95% CI of 12–39% B0. However, in 

that case there is still the problem that biomass will often be below 30% B0 unless a higher 

mid-point is set within the target range (i.e., if biomass fluctuates around the mid-point of 

35% B0 it will often be below 30% B0). 

 

A wider biomass target range is needed to be consistent with BMSY and to ensure that biomass 

will almost always be above the lower bound of the target range. The proposed range of 30–

50% B0 allows for the relatively large long-term fluctuations which occur naturally in orange 

roughy stocks. The target biomass range recommended is consistent with the commonly used 

proxy for BMSY of 40% B0. It is also consistent with the finding from Punt et al. (2014) that a 
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target of 35–40% B0 will minimize the potential loss of yield relative to that which would be 

achieved when BMSY is known (Punt et al. considered Beverton-Holt and Ricker SR 

relationships). 

 

The proposed HCR (dynamic HCR10) will maintain the biomass within the target biomass 

range, in the long-term, under most circumstances. Because the rule is dynamic, and adjusts 

the functional relationship between stock status and F over time, the rule is robust to the large 

uncertainties in SR steepness and natural mortality. Further, it is robust to one-off and some 

multiple violations of the assumptions made in the study. It will take a severe violation of one 

or more assumptions before the rule will perform badly (and only then if steepness and/or 

natural mortality are low). 

 

In the short term, dynamic HCR10 was shown to be very safe for the three stocks being 

considered. In the base models, stock status was maintained (NWCR, ORH7A) or rebuilt 

(ESCR) into the target biomass range. In the “worst case” scenarios (lowM-highq), the 

TACCs under dynamic HCR10 from the base model created similar stock-status trajectories 

to those from the base model. That is, if dynamic HCR10 is applied under the base 

assumptions, but it happens that the stock status and productivity are lower than expected, the 

resultant stock status is still more than adequate.  

 

For the ESCR, dynamic HCR10 allows the stock to rebuild to be firmly within the target 

biomass range within 3–4 years. Under the lowM-highq model the rebuild takes longer but 

median projected stock status is within the target biomass range within 10–11 years. For both 

the base and lowM-highq models the increasing stock-status trajectory and rebuild times are 

not unduly affected  by an h which is 20% lower than assumed in the base model.  

 

The dynamic nature (i.e., rescaling of the functional relationship) of the recommended HCR 

is not relevant in the short-term for two of the three stocks under consideration because 

NWCR and ORH7A are at about 40% B0. The ESCR is rapidly rebuilding into the target 

biomass range (since the 2014-15 TACC will be set well below the current surplus 

production – assuming that h = 0.75 and M  = 0.045) but a change in stock status resulting 

from an updated stock assessment could result in the need to rescale. The HCR is not relevant 

to other orange roughy stocks, such as MEC, which are currently estimated to be below the 

target biomass range. The rule has been designed for stocks which are within or above the 

target biomass range. The purpose of the rescaling, below 30% B0, is to allow for low values 

of h and M which are a possibility if a stock, managed under the HCR, becomes depleted. It 

is not for stocks that have been depleted due to historical levels of exploitation. It can be 

applied to stocks, such as MEC, once they are rebuilt to within the target biomass range. 

 

The MSE should be repeated in 4 to 5 years from now when more information will be 

available on h and M from new stock assessments. 
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Figure 1: Combined posterior distribution for steepness from the two MEC assessment runs which 

assumed a Beverton-Holt or a Ricker stock-recruitment relationship. The two runs were given equal 

weight. 

 
Figure 2: Combined posterior distribution for natural mortality from the four assessed stocks in 2014. 

Each stock was given equal weight. 

 

  

Steepness (%R0)

D
e

n
s
it
y

20 40 60 80 100 120 140

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

Natural mortality

D
e

n
s
it
y

0.025 0.030 0.035 0.040 0.045 0.050 0.055

0
2

0
4

0
6

0



22 

 

 
Figure 3: An example time series of stock-status (mean mid-season spawning biomass as %B0) for the 

base model when fishing at a constant F35%B0. 

 
Figure 4: Proposed harvest control rule, dynamic HCR10: LRP = 20% B0, target biomass range = 30-

50% B0, initial Fmid = 0.045, slope within the target range: p = 25%; ramps down to zero at 10% B0; 

rescaling limit points: l = 30% B0, r = 60% B0; k = 0.9, m = 10, plimit = 0.3. 
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Figure 5: Base model: average mid-season mature biomass (% B0) maintained by dynamic HCR10 as a 

function of h and M. The cubic splines across h are plotted for each value of M in the grid over which 

mean biomass was calculated. 

 
Figure 6: Base model: average yield (% B0) achieved by dynamic HCR10 as a function of h and M. The 

cubic splines across h are plotted for each value of M in the grid over which mean yield was calculated. 
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Figure 7: Base model: the probability that mid-season mature biomass was maintained above the LRP 

(20% B0) by dynamic HCR10, as a function of h and M. The cubic splines across h are plotted for each 

value of M in the grid over which the probability was calculated. 

 
Figure 8: Base model: the probability that mid-season mature biomass was maintained above the lower 

bound of the target range (30% B0) by dynamic HCR10, as a function of h and M. The cubic splines 

across h are plotted for each value of M in the grid over which the probability was calculated. 
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Figure 9: Base model: the cumulative scaling of the functional relationship (between stock status and F) 

that occurs for dynamic HCR10, as a function of h and M. The cubic splines across h are plotted for each 

value of M in the grid over which the cumulative scaling was calculated. 

 

 

 
 

Figure 10: Base model, dynamic HCR10: Bayesian posteriors for mean mid-season mature biomass 

(% B0), mean yield (% B0), and the probabilities of mid-season mature biomass being above the LRP 

(20% B0) or the lower bound of the target range (30% B0). 
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Figure 11: NWCR, base model: projections under dynamic HCR10 (catch limit: 1043 t for 2015–2018 

inclusive; 1332 t in 2019, see Table 14). The box and whiskers plots are of projected mid-season spawning 

biomass. The medians are shown by the horizontal red lines; the boxes cover the middle 50%; and the 

whiskers extend to the 95% CI.

 
Figure 12: NWCR, “worst-case” lowM-highq model: projections under the catch limits from dynamic 

HCR10 applied to the base model (1043 t for 2015–2018 inclusive; 1332 t in 2019, see Table 14). The box 

and whiskers plots are for projected mid-season spawning biomass. The medians are shown by the 

horizontal red lines; the boxes cover the middle 50%; and the whiskers extend to the 95% CI. 
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Figure 13: ORH7A, base model: projections under dynamic HCR10 (catch limit: 1748 t for 2015–2016 

inclusive; 1799 t for 2017–2019 inclusive, see Table 14). The box and whiskers plots are of projected mid-

season spawning biomass. The medians are shown by the horizontal red lines; the boxes cover the middle 

50%; and the whiskers extend to the 95% CI. 

 
Figure 14: ORH7A, “worst-case” lowM-highq model: projections under the catch limits from dynamic 

HCR10 applied to the base model (1748 t for 2015–2016 inclusive; 1799 t for 2017–2019 inclusive, see 

Table 14). The box and whiskers plots are for projected mid-season spawning biomass. The medians are 

shown by the horizontal red lines; the boxes cover the middle 50%; and the whiskers extend to the 95% 

CI. 
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Figure 15: ESCR, base model: projections under dynamic HCR10 (catch limit: 3772 t for 2015–2018 

inclusive; 4965 t for 2019–2021 inclusive; 5768 t for 2022–2024 inclusive; 6317 t in 2025, see Table 14). 

The box and whiskers plots are of projected mid-season spawning biomass. The medians are shown by 

the horizontal red lines; the boxes cover the middle 50%; and the whiskers extend to the 95% CI. 

 
Figure 16: ESCR, “worst case” lowM-highq model: projections under the catch limits from dynamic 

HCR10 applied to the base model (3772 t for 2015–2018 inclusive; 4965 t for 2019–2021 inclusive; 5768 t 

for 2022–2024 inclusive; 6317 t in 2025, see Table 14). The box and whiskers plots are for projected mid-

season spawning biomass. The medians are shown by the horizontal red lines; the boxes cover the middle 

50%; and the whiskers extend to the 95% CI. 
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Figure 17: ESCR, base with h = 0.6: projections under the catch limits from dynamic HCR10 applied to 

the base model (3772 t for 2015–2018 inclusive; 4965 t for 2019–2021 inclusive; 5768 t for 2022–2024 

inclusive; 6317 t in 2025, see Table 14). The box and whiskers plots are for projected mid-season 

spawning biomass. The medians are shown by the horizontal red lines; the boxes cover the middle 50%; 

and the whiskers extend to the 95% CI. 

 
Figure 18: ESCR, lowM-highq with h = 0.6: projections under the catch limits from dynamic HCR10 

applied to the base model (3772 t for 2015–2018 inclusive; 4965 t for 2019–2021 inclusive; 5768 t for 2022–

2024 inclusive; 6317 t in 2025, see Table 14). The box and whiskers plots are for projected mid-season 

spawning biomass. The medians are shown by the horizontal red lines; the boxes cover the middle 50%; 

and the whiskers extend to the 95% CI. 
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Appendix A: Model equations 

 

Population dynamics 

 

A standard age-structured population dynamics model was used in the simulations: single 

sex, single area, Baranov catch equation, with fish numbers tracked by age and maturity state 

(mature: “mat”, or immature: “imm”). The model was started in deterministic equilibrium 

with the end-of-year total numbers at age a = 1, …, 200 years, N0,a: 

 ��,� = ������ 

 

where R0 is the number of recruits at age 1 in the virgin population (an arbitrary value of R0 = 

100 fish was used). The proportion mature at age a (in the virgin population) was defined to 

be logistic with given parameters a50 and ato95: 

 ����,� = 11 + 19(�����) �����⁄  

 

The above equation was modified slightly by specifying that all proportions were 0 below age 

10 years and 1 above age 60 years. 

 

The annual cycle consisted of ageing, recruitment, maturation, and mortality (a full year of 

natural and fishing mortality assuming the Baranov catch equation) in that order. The total 

number of fish in year y+1 at age a+1 were obtained from the previous end-of-year numbers: 

 

Ageing: a = 1,…,199 years �� !,� ! = ��,� 

 

The recruitment at age 1, in year y+1, was the product of virgin recruitment (R0), the response 

from the stock-recruitment relationship (pSR(By), where By is the mid-season mature biomass 

in year y (see below)) and the “year class strength” (Yy) of the cohort: 

 

Recruitment:   �� !,! = "��#$%��&��   

 

A fixed proportion of immature fish were matured at each age in each year. The fixed 

maturation ogive was calculated from the logistic proportions mature-at-age in the virgin 

population: 

 

Maturation: a = 10,…,60 years 

    �'(),���,� = *+,-.,-�+,-.,-/0!�+,-.,-/0 1�� !,2��,� 

    �� !,���,� = �� !,���,� + �'(),���,� 

    �� !,2��,� = �� !,2��,� − �'(),���,� 
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with no fish matured below 10 years of age and all fish matured above 60 years of age. This 

formulation ensures that the proportions mature-at-age are in deterministic equilibrium in the 

virgin population (i.e., do not change when there is no fishing and all YCS are equal to 1). 

 

Mortality was modelled with the Baranov catch equation with either a logistic fishing 

selectivity at age or a non-age-selective fishery on just the mature fish. 

 

Mortality:   ��,�,('4 = ��(� 5-67)��,�,8(92' 

 

where M is natural mortality (independent of age or maturity), Fy is the fishing mortality in 

year y, and sa is the selectivity at age a years. The “N” terms refer to mature or immature 

numbers at the beginning and end of the mortality period for a non-age-selective fishery (in 

which case each sa = 1 for mature fish and sa = 0 for immature fish) or to the total number of 

fish for an age-selective fishery. 

 

The catch was calculated in the usual way: 

 

Catch:    :�,� = 5-67� 5-67 %��,�,8(92' − ��,�,('4& 
    :� = ∑ <�:�,��  

 

where wa is the mean fish weight at age a years (calculated from given von Bertalanffy 

growth and length-weight relationships which are independent of maturity). 

 

Stock status or depletion in year y, Dy, is defined to be the mid-season mature biomass 

divided by the mid-season unfished mature biomass: =� = �� �	'>25?(4⁄ . Mid-season occurs 

when half of the total mortality has been applied. The unfished biomass is the average mid-

season mature biomass in the virgin population which is almost equal to the deterministic 

mid-season virgin mature biomass (B0): 

 �� =@<�� ����,�����(���.�)� 

    �	'>25?(4 = B��. 

 

c is a correction factor which depends on many of the parameters in the population model 

(particularly the variability and correlation driving the year class strengths, M, and steepness, 

h, in the stock-recruitment relationship). The correction factors were calculated, as needed, by 

running the virgin population over 50,000-150,000 years (depending on what was required to 

make the result independent of the random number seed). The correction factors for the base 

model ranged from 0.95–1 (over the grid of h and M values used)(Table A1). In the main 

text, “B0” is used to denote “Bunfished” as the distinction is obscure for the general reader. 
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Table A1: Correction factors required in the base model to scale deterministic mid-season virgin mature 

biomass to the average mid-season virgin mature biomass. 

 

 Natural mortality (M) 

Steepness (h) 0.02 0.025 0.03 0.035 0.045 0.05 0.06 

0.25 0.97 0.97 0.96 0.96 0.96 0.96 0.95 

0.30 0.98 0.98 0.98 0.98 0.98 0.98 0.97 

0.35 0.99 0.99 0.99 0.98 0.98 0.98 0.98 

0.40 0.99 0.99 0.98 0.98 0.98 0.98 0.98 

0.50 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

0.60 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

 

In the stock-recruitment relationship the uncorrected depletion level (By/B0) was used because 

that is what gives rise to Bunfished. In the base model the Beverton-Holt relationship was used: 

 �#$%��& = �� ��⁄C1 − (5ℎ − 1)4ℎ %1 − �� ��⁄ &G 
 

and in some sensitivities the Ricker relationship was used: 

 �#$%��& = H7HI (5ℎ)JK%!�H7 HI⁄ &
 . 

 

The year class strengths, Yy, were assumed to follow an AR(1) process in log space: 

 "�~LN(O, P$), "� = �Q7 where R� = S + TR��! + U�,			U�~N(0, PX), and	R� = 0. 

 

It follows that: O = S (1 − T)⁄  and P$ = P sqrt(1 − TX)⁄ .  The constant d is defined by the 

requirement that E(Yy) = 1. There appears to be no analytical solution for d but a good 

approximation can be found by solving the following equation iteratively: 

 

S = log c 1 − T1 − T + TS + TX2 * PX1 + T + SX1 − T1e −
PX2  

 

The above equation is derived by noting that  f%"�& = f(�Q7) = f(�4�gQ7/0�h7) = �4f(�gQ7/0)�ijX = 1 

 

and approximating E(�gQ7/0) with a second order Taylor approximation: 
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E(�gQ7/0) ≅ 1 + T * S1 − T1 + TX2 m PX1 + T + SX1 − Tn 

 

Note that T is the correlation coefficient for successive YCS and that when T = 0 we have P$ = 	P and the familiar S = −PX 2⁄ . 

 

Simulation of assessments 

 

To apply a HCR the current stock status and vulnerable biomass must be estimated. It is 

clear, in reality, that successive biomass estimates will be highly correlated as each new 

estimate uses only a small amount of extra data.  For each simulation run, time series of 

correlated and potentially biased biomass estimates were constructed for beginning-of-year 

vulnerable biomass and mid-season mature biomass. Estimates were available in every year 

but only those estimates that were needed by the control rule were used. The estimate of 

stock status was the estimate of mid-season mature biomass divided by Bunfished. 

 

Let B1, …, By be a sequence of true biomasses from the model (i.e., vulnerable or mature). 

The estimated biomass series ��!, … , ��� was formed: 

 ��! = p�!U!  
 ��� = �qp%�� − ���!& + ����!r + p(1 − �)��U�  

 

where p is a non-zero proportion (providing the correlation between estimates), q provides for 

a potential bias, and E%U�& = 1, Var%U�& = P�X. It is easy to prove, by induction, that E%���& = p��. Further, it was assumed that the U� were lognormal random variables and that 

the biomass estimators had a constant CV. It follows that: 

 

P! = B		and			P� = B t1 − �X *
���!�� 1Xu!/X1 − �  

 

where CV%���& = B. Also, U�~LNw�x7jX , y�z where y�X = log%P�X + 1&. A requirement for 

the constant CV is that � ���! ��⁄ < 1 (so that P� is defined). For some runs this condition 

was not always satisfied (especially early in the time series when the fish-down was 

occurring) in which case the previous P� was used (i.e., P� = P��!). Note, the correlation 

coefficient for successive biomass estimators is ����! ��⁄ . 

 

The same U� were applied to the stock status  and vulnerable biomass estimates (as they are 

both the product of the same stock assessment).  
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Application of harvest control rules (HCRs) 

 

Each HCR specified an assessment frequency n. In a simulation run, with a given HCR, an 

assessment was performed in the first year and then every n years after that. In a non-

assessment year, the TAC was unchanged. In an assessment year, the TAC and TACC were 

calculated from the HCR using the estimates of stock status and vulnerable biomass (see 

above) and the associated F from the HCR: TACC� = ����	
,�. The TAC was derived from 

the TACC by adding an allowance of 5% for incidental catch: TAC = 1.05 × TACC. The 

TAC, in each year, was removed from the stock by calculating the actual fishing mortality 

required to remove the TAC (i.e., Fy = TACy/Bvul,y; note this approximation is very accurate 

given the low total mortalities involved). 

 

Dynamic HCRs 

 

HCRs are normally “static” in the sense that for any given estimate of stock status a specific 

F is specified and this relationship never changes over time. A “dynamic” HCR is one where 

the functional relationship between estimated stock status and F can be changed over time as 

part of the HCR. A dynamic HCR consists of a rule for changing the functional relationship 

and an initial functional relationship.  

 

In this study, the dynamic HCRs used a mechanism for changing the functional relationship 

(g) over time based on two limit points (l, r) and a scaling value which also depended on the 

estimated stock status (p(s) < 1). At each assessment, if the estimated stock status (s) was 

below the limit point, l, then g was scaled down by p(s): 

 

If (s < l) then gnew = p(s) gold 

 

Similarly, if the estimated stock status was above the other (much higher) limit point, r, and 

the cumulative scaling on g was less than 1 , then g was scaled up: 

 

If (s > r and “cumulative scaling on g” < 1) then gnew = gold / p(s) 

 

The scaling up or down of the functional relationship means that each F is scaled up or down. 

For example, 

   gnew = p(s) gold 

 

means that for every stock status x,  

 

gnew(x) = p(s) gold(x).  

 

The maximum cumulative scaling down of the initial g was limited to plimit. 
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The scaling function p was piecewise defined: 

 �(|) = } + (1 − }) w|~z� 				for	0 ≤ | < ~ 
 �(|) = } + (1 − }) *� + ~ − |~ 1� 				for	� < | ≤ � + ~ 
 �(|) = }			for	s > � + ~. 
 

The function is complicated but, for large m, it is essentially equal to k between 0 and l and 

above r (e.g., see Figure A1 for the scaling function used in the recommended HCR). The 

purpose of having this complicated scaling function, rather than a simple step function, is to 

avoid the discontinuity at l (e.g., if l = 30% B0 and there is a step function then s = 29.9% B0 

would require a scaling down of the functional relationship; with the continuous scaling 

function it is still scaled down but by a factor very close to 1). 

 

 
 

Figure A1: The scaling function used in dynamic HCR10: l = 30% B0, r = 60% B0, k = 0.9, m = 10. There 

is no scaling when estimated stock status is from 30–60% B0; below 30% B0 the functional relationship is 

multiplied by the scaling value; above 60% B0 the functional relationship is divided by the scaling value 

(provided the current cumulative scaling is less than 1). 
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Appendix B: MEC MCMC runs to estimate stock recruitment steepness  

 

This appendix describes the two MEC assessment runs that were done to estimate steepness 

(h) in the stock-recruitment relationship. The runs differed in the assumed form of the 

relationship (Beverton-Holt or Ricker) and the informed prior on h (although the priors were 

equivalent in terms of the prior assumptions with regard to the slope at the origin of the 

stock-recruit relationship). Apart from those differences the two runs were the “estM” run of 

the 2014 MEC stock assessment (MPI, 2014) – that is the runs were the MEC base model 

except that h and M were estimated (with informed priors). 

 

The Beverton-Holt informed prior for h was taken from an update of a Canadian canary 

rockfish assessment (DFO, 2010) which used a prior developed from west coast USA 

rockfish assessment results (Forrest et al. 2010). This was the most conservative of three 

priors that were considered (Figure B1). Drawing on work for a group of rockfish species is 

appropriate because of the biological similarity between the rockfish and orange roughy, 

notably in relation to their longevity. 

 

The Ricker informed prior for h was constructed from the Beverton-Holt prior assuming that 

the distribution of the slopes at the origin were identical for the Beverton-Holt and Ricker 

relationships. This was achieved by transforming a large random sample from the Beverton-

Holt prior using the relationship: 

ℎ$ = 15 * 4ℎ1 − ℎ1
��
 

 

where h is the Beverton-Holt steepness and hR is the Ricker steepness (the relationship 

follows from differentiating the two relationships and equating the slopes at the origin). A 

random sample of 10,000 from the Beta(5,2) prior was truncated at 0.95 (to avoid very high 

values of hR) and transformed as above. This gave an approximately lognormal distribution 

with mean = 1.66 and CV = 0.69 (the parameterisation required by CASAL; or, for R: 

LN(0.27, 0.62)). 

 

For both runs, MCMC estimates were obtained by running 3 independent chains starting at a 

random jump from the MPD estimate. Chains were run out to 15,000,000 samples with every 

1000
th

 sample retained. A burn-in of 2000 samples was applied based on a plot of the 

objective function values from each of the three chains (e.g., Figure B2).  Convergence was 

judged to be adequate on the basis of two diagnostics: a plot comparing the posterior 

distributions of the three chains; and a plot examining the stability of the median across all 

three chains combined. For both runs, the three chains had very similar posteriors (Figures B3 

and B4) and, for the three chains combined, there was a high degree of stability in the 

estimated steepness (being the median of the posterior, see Figures B5 and B6).  

 

A formal procedure was developed to obtain a measure of the precision with which the 

median was determined for each run. For each run, the effective sample size for an auto-
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regressive (AR-1) sampling process, and a CV and 95% CI on the median were determined 

by bootstrapping. The results indicate that the CVs on the estimates of the posterior medians 

were about 2.5% and hence the 95% CIs were fairly tight (plus or minus about 5%)(Table 

B1). 

 

Table B1: To do with the precision with which the median of the posterior distribution for steepness was 

estimated. The estimate of median steepness and CVs and 95% CIs for median steepness from the 

Beverton-Holt and Ricker MCMC runs are given. See the text for a description of the correlation 

coefficient (p), the CV of the segment medians (CVsegments), and the effective sample size of the AR-1 

process (AR1-Neff). 

 

 Median steepness    

 CV (%) Estimate 95% CI p CVsegments (%) AR1-Neff 

Beverton-Holt 2.4 0.68 0.64-0.71 0.89 13 507 

Ricker 2.7 0.53 0.50-0.55 0.73 16 390 

 

 

The formal procedure is described below. 

 

A distribution D(µ,σ) can be “sampled” by an AR-1 process giving a time series of random 

variables X1, …, Xn: 

 R!~=(O, P)  R2 = �R2�! + (1 − �)U2  
where    U2 = �! +!�+�2 + *1 − �! +!�+1O   and   �2~=(O, P). 
 

It is easy to show by induction that, for every i, E(Xi) = µ  and Var(Xi) = σ
2
. Also, the 

correlation between consecutive samples is p. When p = 0, we have simple random sampling 

from the distribution. 

 

The MCMC samples from a single variable (or derived variable) are conceptually similar to 

the samples from AR-1 sampling of the marginal posterior of the variable. The MCMC 

sampling will not be exactly the same but a comparable AR-1 process can be used to estimate 

the likely precision that has been achieved after sampling by multiple chains up to some 

given length (after a suitable burn-in). The following procedure was used for both runs (each 

of which had 3 chains of 13,000 retained samples or 39,000 samples when the chains are 

concatenated). 

 

The samples (after burn-in) from the combined chains were used to represent the distribution 

D (i.e. in the AR-1 process, when random samples from D were needed, the concatenated 

MCMC samples were sampled at random with replacement). The correlation, p, of the AR-1 

process was taken to equal the 1-lag correlation coefficient for the concatenated samples and 

µ  was set equal to the sample mean. An effective sample size for the AR-1 process was 
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determined by equating variance between the AR-1 process and the concatenated samples. 

The concatenated samples were split into 39 segments each of 1000 samples and the CV of 

the segment medians was calculated. The effective n was then determined by bootstrapping 

(5000 simulations) at different values of n until the median CV of the 39 bootstrapped 

segments was equal to the observed CV of the segment medians. When equality was 

achieved, the CV of the distribution of the medians from the bootstrapped concatenated 

samples was calculated. Also, the spread of the bootstrap medians was applied to the median 

of the actual concatenated samples to give a 95% CI on the median. (See Table B1.) 

 

The posterior distribution for steepness in the Beverton-Holt run was slightly to the left and 

slightly tighter than the prior distribution (Figure B7). However, for the Ricker run the 

posterior distribution was well to the left of the prior (eliminating most values over 1) and 

had a much reduced spread (Figure B8).  
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Figure B1: Three alternative prior distributions for Beverton-Holt steepness from DFO (2010), Shertzer 

& Conn (2012) and Thorson (2013). The distributions are respectively: beta(5,2), beta(3.89, 1.52), and 

beta(2.65, 0.74) (reported as a distribution with mean = 0.782, sd = 0.197; the beta parameters were 

derived by equating the beta distribution mean and sd to those given; comparing the densities visually 

confirmed this was adequate). 

 
Figure B2: The moving median (length 500 samples) of the objective function for the three chains in the 

MCMC run estimating Beverton-Holt steepness. The vertical line is at sample 1500 corresponding to a 

burn-in of 2000 retained samples. (Note, the three chains have an increasing median objective function 

during the burn-in as they move away from the MPD before fluctuating over a range of higher values.) 
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Figure B3: The posterior distributions of steepness for the three chains in the Beverton-Holt MCMC run 

and the combined distribution across the chains. The medians are shown by the solid circles on the x-axis. 

 

 
Figure B4: The posterior distributions of steepness for the three chains in the Ricker MCMC run and the 

combined distribution across the chains. The medians are shown by the solid circles on the x-axis. 
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Figure B5: The median steepness for the three chains in the Beverton-Holt MCMC run and the median 

and 95% CI for the combined distribution across the chains (as a function of the cumulative number of 

retained samples after the burn-in of 2000).  

 
Figure B6: The median steepness for the three chains in the Ricker MCMC run and the median and 95% 

CI for the combined distribution across the chains (as a function of the cumulative number of retained 

samples after the burn-in of 2000).  
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Figure B7: The prior (red line) and posterior (histogram) for steepness from the Beverton-Holt MCMC 

run. 

 

 
Figure B8: The prior (red line) and posterior (histogram) for steepness from the Ricker MCMC run. 
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