Ecological Risk Assessment for the Effects of Fishing

Report for the Southern and Eastern Scalefish and Shark Fishery, Great Australian Bight
Sector: Otter trawl sub-fishery 2012-2016

M. Sporcic, C.M. Bulman, M. Fuller

June 2021

Report for the Australian Fisheries Management Authority

CSIRO Oceans and Atmosphere
Castray Esplanade Hobart 7001
Citation
Sporcic, M., Bulman, C.M., Fuller, M. (2021). Ecological Risk Assessment for the Effects of Fishing. Report for Southern and Eastern Scalefish and Shark Fishery, Great Australian Bight Sector: Otter trawl sub-fishery 2012-2016. Report for the Australian Fisheries Management Authority. 174 p.

Copyright

© Commonwealth Scientific and Industrial Research Organisation 2018. To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of CSIRO.

Important disclaimer

CSIRO advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, CSIRO (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it.
CSIRO is committed to providing web accessible content wherever possible. If you are having difficulties with accessing this document please contact csiroenquiries@csiro.au. This work is copyright. Except as permitted under the Copyright Act 1968 (Commonwealth), no part of this publication may be reproduced by any process, electronic or otherwise, without prior written permission from either CSIRO Marine and Atmospheric Research or AFMA. Neither may information be stored electronically in any form whatsoever without such permission.

Notes to this document:

This fishery ERA Report document contains figures and tables with numbers that correspond to the full methodology document for the ERAEF method:

Hobday, A. J., A. Smith, H. Webb, R. Daley, S. Wayte, C. Bulman, J. Dowdney, A. Williams, M. Sporcic, J. Dambacher, M. Fuller, T. Walker (2007). Ecological Risk Assessment for the Effects of Fishing:
Methodology. Report R04/1072 for the Australian Fisheries Management Authority, Canberra

Thus, table and figure numbers within the fishery ERA Report document are not sequential as not all are relevant to the fishery ERA Report results.

Additional details on the rationale and the background to the methods development are contained in the ERAEF Final Report:

Smith, A., A. Hobday, H. Webb, R. Daley, S. Wayte, C. Bulman, J. Dowdney, A. Williams, M. Sporcic, J. Dambacher, M. Fuller, D. Furlani, T. Walker (2007). Ecological Risk Assessment for the Effects of Fishing: Final Report R04/1072 for the Australian Fisheries Management Authority, Canberra.

This document also reflects some changes in methods that are detailed in AFMA's ERA guide (2017).
Australian Fisheries Management Authority (2017). Guide to AFMA's Ecological Risk Management. 130 p. (Commonwealth of Australia, Canberra).

Contents

Figures V
Tables V
Acknowledgments vii
Executive summary viii
1 Overview 1
1.1 Ecological Risk Assessment for the Effects of Fishing (ERAEF) Framework 1
1.1.1 The Hierarchical Approach 1
1.1.2 ERAEF stakeholder engagement process 4
1.1.3 Scoping 4
1.1.4 Level 1. SICA (Scale, Intensity, Consequence Analysis) 4
1.1.5 Level 2. PSA and SAFE (semi-quantitative and quantitative methods) 5
1.1.6 Level 3 9
1.1.7 Conclusion and final risk assessment report 9
1.1.8 Subsequent risk assessment iterations for a fishery 9
2 Results 12
2.1 Stakeholder Engagement 12
2.2 Scoping 13
2.2.1 General Fishery Characteristics (Step 1) 13
2.2.2 Unit of Analysis Lists (Step 2) 24
2.2.3 Identification of objectives for components and sub-components (Step 3) 43
2.2.4 Hazard Identification (Step 4) 50
2.2.5 Bibliography (Step 5) 56
2.2.6 Decision rules to move to Level 1 (Step 6) 56
2.3 Level 1 Scale, Intensity and Consequence Analysis (SICA) 57
2.3.1 Record the hazard identification score (absence (0) presence (1) scores) identified at stepin the scoping level onto the SICA Document (Step 1)58
2.3.2 Score spatial scale of activity (Step 2) 58
2.3.3 Score temporal scale of activity (Step 3) 58
2.3.4 Choose the sub-component most likely to be affected by activity (Step 4) 59
2.3.5 Choose the unit of analysis most likely to be affected by activity and to have highest consequence score (Step 5) 59
2.3.6 Select the most appropriate operational objective (Step 6) 59
2.3.7 Score the intensity of the activity for the component (Step 7) 59
2.3.8 Score the consequence of intensity for that component (Step 8) 60
2.3.9 Record confidence/uncertainty for the consequence scores (Step 9) 61
2.3.10 Document rationale for each of the above steps (Step 10) 61
2.3.11 Summary of SICA results 95
2.3.12 Evaluation/discussion of Level 1 98
2.3.13 Components to be examined at Level 2 99
2.4 Level 2 Productivity and Susceptibility Analysis (PSA) 100
2.4.1 Units excluded from analysis (Step 1) 103
2.4.2 Level 2 PSA (Steps 2 and 3) 111
2.4.3 PSA results for individual units of analysis (Step 4-6) 112
2.4.4 Uncertainty analysis ranking of overall risk (Step 5) 113
2.4.5 PSA results and discussion 113
2.5 bSAFE results and discussion 124
2.5.1 bSAFE - Key/secondary commercial species 124
2.5.2 bSAFE - Commercial bait species 124
2.5.3 bSAFE - Byproduct species 124
2.5.4 bSAFE - Bycatch species 129
2.5.5 bSAFE - Protected species 137
2.6 Habitat Component 137
2.7 Community Component 137
2.8 Decision rules to move from Level 2 to Level 3 (Step 7) 137
2.9 Extreme and high risk categorisation (Step 8) Update with Residual Risk information 138
3 General discussion and research implications 139
3.1 Level 1 139
3.2 Level 2 139
3.2.1 Species at risk 139
References 141
Appendix A. Commercial species and stock status 146
Appendix B. TAC and percent caught 150
Appendix C. Commonwealth Trawl Closures 151
Appendix D. Incidental catch limits for state managed species 158
Glossary of Terms 160

Figures

Figure 1.1. Structure of the 3 level hierarchical ERAEF methodology 2
Figure 1.2. Generic conceptual model used in ERAEF 3
Figure 2.1. Map of the SESSF GAB region showing 13 assemblages derived by Pitcher et al. (2016) 36
Figure 2.2 (a) Demersal communities around mainland Australia based on bioregionalisation schema. (b) Australian pelagic provinces. 42
Figure 2.3. Key/secondary commercial species: Frequency of consequence score by high and low confidence. . 96Figure 2.4. Byproduct and bycatch species: Frequency of consequence score by high and low confidence.96
Figure 2.5. Protected species: Frequency of consequence score by high and low confidence. 97
Figure 2.6. Habitat: Frequency of consequence score by high and low confidence. 97
Figure 2.7. Communities: Frequency of consequence score by high and low confidence 98
Figure 2.8. PSA plot for byproduct species in the SESSF GAB Otter trawl sub-fishery for a) robust [left] and (b) data deficient [right] species 114
Figure 2.9. PSA plot for bycatch species in the SESSF GAB Otter trawl sub-fishery for a) robust [left] and (b) data deficient [right] species 117
Figure 2.10. SAFE plot for Byproduct species in the SESSF GAB Otter trawl sub-fishery for (a) SAFE-MSM reference point [left] and (b) SAFE limit (LIM) reference point [right] 125
Figure 2.11. SAFE plot for Bycatch species in the SESSF GABT sub-fishery for (a) SAFE-MSM reference point [left]and (b) SAFE limit (LIM) reference point [right]129
Figure 2.12. Schematic of the Ecological risk management cycle 138

Tables

Table ES1.1. Ecological units assessed in 2018 and 2006 ix
Table ES1.2. Outcomes of assessments for ecological components conducted in 2018 and 2006 x
Table ES1.3. Key/secondary commercial species stock status, assessment and tier status, and ERA classification for SESSF GAB Otter trawl sub-fishery xi
Table ES1.4. Extreme or high risk PSA or bSAFE species following a residual risk (RR) analysis in the SESSF GAB Otter trawl sub-fishery xii
Table 2.1. Summary Document SD1. Summary of stakeholder involvement for sub-fishery 12
Table 2.2. General fishery characteristics 13
Table 2.3. Key commercial (C1) and secondary commercial (C2) species list for the SESSF GAB Otter trawl sub- fishery. 25
Table 2.4. Byproduct (BP) species list for the SESSF GAB Otter trawl sub-fishery 26
Table 2.5. Bycatch ($B C$) species list for the SESSF GAB Otter trawl sub-fishery. 28
Table 2.6. Protected species (PS) list for the SESSF GAB Otter trawl sub-fishery. 33
Table 2.7. Benthic habitats that occur within the jurisdictional boundary of the GAB Otter trawl sub-fishery. 37
Table 2.8. Pelagic habitats for the SESSF GAB otter trawl sub-fishery which overlay the demersal communities in which fishing occurs 38
Table 2.9. Demersal communities in which fishing activity occurred in the GAB Otter trawl sub-fishery (x) 39
Table 2.10. Pelagic communities overlaying demersal communities in which fishing activity occurs in the SESSFGAB Otter trawl sub-fishery (x)41
Table 2.11. Components and sub-components identification of operational objectives and rationale. 44
Table 2.12. Hazard identification, score and rationale(s) for the SESSF GABT sub-fishery 50
Table 2.13. Examples of fishing activities (Modified from Fletcher et al. 2002) 53
Table 2.14. Spatial scale score of activity. 58
Table 2.15. Temporal scale score of activity. 58
Table 2.16. Intensity score of activity (Modified from Fletcher et al. 2002). 60
Table 2.17. Consequence score for ERAEF activities (Modified from Fletcher et al. 2002) 60
Table 2.18. Description of Confidence scores for Consequences. 61
Table 2.19. Level 1 (SICA) Document L1.6. 95
Table 2.20. Attributes that measure productivity and suscepability. 100
Table 2.21. Description of susceptibility attributes for habitats. 102
Table 2.22. Species/species groups/taxa excluded from the PSA and SAFE because they were either not identified at the species level, not interacted in the fishery or outside the fishery's jurisdictional boundary. 103
Table 2.23. Summary of the PSA scores on the set of productivity and susceptibility attributes for byproduct species and residual risk (RR) for high risk species 115
Table 2.24. Summary of the PSA scores on the set of productivity and susceptibility attributes for bycatch species and residual risk (RR) for high risk species 118
Table 2.25. Productivity attribute names and cutoff scores for the ERAF L2 PSA method 122
Table 2.26. Susceptibility attribute names and cutoff scores for the ERAF L2 PSA method. 122
Table 2.27. Post capture mortality attribute risk score for the GAB Otter trawl sub-fishery for the ERAEF L2 PSA and bSAFE methods. 123
Table 2.28 Overall risk summary against each of the three reference point measures. 124
Table 2.29. bSAFE risk categories for byproduct species ecological component for F_MSM, F_Lim and F_Crash. Aresidual risk (RR) analysis conducted for extreme and high risk species.126
Table 2.30. bSAFE risk categories for bycatch species ecological component for F_MSM, F_Lim and F_Crash. Aresidual risk (RR) analysis conducted for extreme and high risk species.130

Acknowledgments

Thanks goes to Dan Corrie (AFMA) and Giverny Rodgers (AFMA) for providing initial species lists and useful discussions pertaining to fishery operations and management used for this report. Thanks also to Eric Woehler (BirdLife Tasmania) for his discussion on marine birds that were used in the species list, and to Nick Mammides (AFMA) for his useful insights in the GAB Trawl Observer Program. Jemery Day (CSIRO) kindly provided useful discussions pertaining to stock assessments, while Jason Hartog (CSIRO) is acknowledged for his discussions on different aspects of Level 2 analyses.

Executive summary

The "Ecological Risk Assessment for Effect of Fishing" ERAEF was developed jointly by CSIRO Marine and Atmospheric Research and the Australian Fisheries Management Authority (Hobday et al. 2007, 2011b). This assessment of the ecological impacts of the Southern and Eastern Scalefish and Shark (SESSF), Great Australian Bight (GAB) Trawl Sector: Otter trawl subfishery (herein referred to as the GAB Otter trawl sub-fishery) was undertaken using the ERAEF method version 9.2, with some additional modifications currently in final stages of development with AFMA (Australian Fisheries Management Authority 2017). This revised ERAEF provides a hierarchical framework for a comprehensive assessment of the ecological risks arising from fishing, with impacts assessed against five new ecological components -key commercial and secondary commercial species; byproduct and bycatch species; protected species; habitats; and (ecological) communities (ERM Guide; AFMA, 2017).

ERAEF proceeds through four stages of analysis: scoping; an expert judgement-based Level 1 analysis (SICA - Scale Intensity Consequence Analysis); an empirically based Level 2 analysis (PSA - Productivity Susceptibility Analysis); and a model-based Level 3 analysis. This hierarchical approach provides a cost-efficient way of screening hazards, with increasing time and attention paid only to those hazards that are not eliminated at lower levels in the analysis. Risk management responses may be identified at any level in the analysis.

Application of the ERAEF methods to a fishery represents a set of screening or prioritization steps that work towards a full quantitative ecological risk assessment. At the start of the process, all components are assumed to be at risk. Each step, or Level, potentially screens out issues that are of low concern. The Scoping stage screens out activities that do not occur in the specific fishery. Level 1 screens out activities that are judged to have low impact, and potentially screens out components with all low impact scores. Level 2 is a screening or prioritization process for individual species, habitats, and communities at risk from direct impacts of fishing, using either PSA or SAFE. The Level 2 methods do not provide absolute measures of risk. Instead, they combine information on productivity and exposure to fishing to assess potential risk - the term used at Level 2 is risk. Because of the precautionary approach to uncertainty, there will be more false positives than false negatives at Level 2, and the list of high-risk species or habitats should not be interpreted as all being at high risk from fishing. Level 2 is a screening process to identify species or habitats that require further investigation. Some of these may require only a little further investigation to identify them as a false positive; for some of them managers and industry may decide to implement a management response; others will require further analysis using Level 3 methods, which do assess absolute levels of risk.

This 2012-2016 assessment of the SESSF Great Australian Bight Trawl Sector: Otter trawl subfishery (GAB Otter trawl sub-fishery) consists of the following:

- Scoping
- Level 1 results for all components
- Level 2 results for one component (byproduct/bycatch)
- Residual risk analysis for high-risk PSA and extreme/high risk bSAFE species

Fishery Description

Gear:	Otter trawl
Area:	GAB Otter Trawl Sector of the Southern and Eastern Scalefish and Shark Fishery (Cape Jervis, SA to Cape Leeuwin, WA)
Depth range:	14-958 m (mean: 156 m ; median: 140 m ; 95\% of shots < 235 m ; 99\% of shots < 600 m)
Fleet size:	3 to 7 vessels. of 10 vessels in 2005
Effort:	12262-18758 hours trawled per year
Landings:	1497-1866 t per year
Discard rate:	0.2\% (deepwater flathead in 2016); 1.3\% (bight redfish in 2016)
Commercial species (ERA classification):	Deepwater flathead (Platycephalus conatus) and bight redfish (Centroberyx gerrardi)
Management:	Quota management system across species/stocks; see also Table ES1.3
Observer program:	AFMA Observer program: 1-4\% per year

Ecological Units Assessed

Table ES1.1. Ecological units assessed in 2018 and 2006.

ECOLOGICAL COMPONENT	$2018^{\#}$	2006
Key/secondary commercial species	2	3^{\wedge}
Byproduct and bycatch species	37 byproduct; 122 bycatch	108 byproduct; 61 bycatch
Protected species	34	135
Habitats	7 demersal, 2 pelagic	77 demersal
Communities	6 demersal, 3 pelagic	6 demersal, 3 pelagic

* these habitats are not comparable with current assessment
\# based on assessment period: 2012-2016
${ }^{\wedge}$ corresponds to target species

A total of 195 species across the three ecological components were assessed in this ERAEF compared to 307 species in 2006 (Table ES1.1). The difference in the number of protected species between assessments is mainly due to the inclusion of species that interacted in this sub-fishery (apart from any expansion of species groups identified from AFMA logbook, Observer data or Electronic Monitoring data). The reduction in the number of habitats between assessments is due to the change in habitat analyses as a result of the studies by Pitcher et al. 2016 as outlined in the Habitat Scoping section.

Level 1 Results and Summary

Two ecological components were eliminated at Level 1 (i.e. no components with risk scores of 3 - moderate - or above): key/commercial and protected species.

A number of hazards (fishing activities) were eliminated at Level 1 (i.e. no components with risk scores of 3 - moderate - or above). Those remaining included:

- Fishing (direct capture impacts on three components)
- Fishing (without capture impacts on one component)
- Disturbance of physical processes (on one component)

As a result of direct capture by fishing, the most vulnerable byproduct/bycatch species, latchets and a variety of chondrichthyans that are mostly discarded (AFMA logbooks) were assessed at moderate risk largely due to unknown population size within this assessment period. Also, latchets were mostly discarded within this assessment period (~ 375 t retained; ~809 t discarded; AFMA Logbooks).

Shy albatross was considered to be most at risk from capture although only two birds were fatally injured during the assessment period and therefore were not considered at high enough risk for further assessment. Longnosed fur seals are currently stable or increasing and were not considered at risk.

The impact of fishing represented a significant risk to habitats largely due to the relatively large footprint that the otter trawl has on the seafloor and the concentration within the assemblage in which the most vulnerable habitat types are known to exist (Pitcher et al. 2016).

Significant external hazards included other fisheries in the region on key commercial, and byproduct/bycatch species.

As a result of the SICA analysis, the components that are to be examined at Level 2 are those with any consequence scores of 3 or above. These components are:

- Byproduct/bycatch

Therefore, a Level 2 examination was required for the byproduct/bycatch component.
The habitats and community's components will not be examined at Level 2 (Table ES1.2).

Table ES1.2. Outcomes of assessments for ecological components conducted in 2018 and 2006.

ECOLOGICAL COMPONENT	2018 (CURRENT)	2006 (PREVIOUS)
Key/secondary commercial species	Level 1	Level 2
Byproduct and bycatch species	Level 2	Level 2^
Protected species	Level 1	Level 2
Habitats	Level 2*	Level 2
Communities	Level 2*	Level 2*

[^0]Table ES1.3. Key/secondary commercial species stock status, assessment and tier status, and ERA classification for SESSF GAB Otter trawl sub-fishery. NSTOF: Not subject to overfishing; NOF: Not overfished; OF: Overfished; UNC: uncertain. Primary: C1; Secondary: C2. ^: based on ABARES classification. \wedge^{\wedge} based on stock assessment.

COMMON NAME	SPECIES NAME	$\begin{gathered} \text { ERA } \\ \text { CLASSIFICA } \\ \text {-TION } \end{gathered}$	FISHING MORTALITY^	BIOMASS^	STATUS^^	REFERENCE	YEAR LAST ASSESSED	TIER	COMMENTS
Deepwater flathead	Platycephalus conatus	C1	NSTOF	NOF	Above limit reference	Haddon 2016a	2016	1	-
Bight redfish	Centroberyx gerrardi	C1	NSTOF	NOF	Above limit reference	Haddon 2015b	2015	1	-

Level 2 Results and Summary

PSA

Byproduct

The only teleost assessed in the PSA was the common gurnard perch Neosebastes scorpaenoides because it was unassessable in bSAFE resulted in a medium risk score. Of the two invertebrate species assessed, the Gould's squid Nototodarus gouldi was high risk and the southern calamari Sepioteuthis australis was low risk. The Gould's squid remained at high risk following a residual risk analysis (Table ES1.4).

Bycatch

There were 16 species analysed comprising 11 teleosts which were unassessable in bSAFE and five invertebrate species. Of these 16 species, three were high risk, 10 were medium risk and three were low risk. The two teleosts assessed at high risk were three-spined cardinal fish Verilus anomalus and thetis fish Neosebastes thetidis which were both subsequently reduced to low risk following a residual risk analysis due to low capture within the assessment period.

Of the invertebrates, only one species was assessed at high risk: champagne crab Hypothalassia armata, three at medium risk: giant crab Pseudocarcinus gigas, southern rock lobster Jasus edwardsii and false bailer shell Livonia mammilla and one at low risk: blue swimmer crab Portunus armatus. The high risk champagne crab was reduced to low risk following a residual risk analysis due to low capture within the assessment period.
bSAFE
Byproduct
All 34 species were assessed at low risk.
Bycatch
There were 117 bycatch species analysed, of which 11 were unassessable. Of the 106 remaining species, one was medium and 105 were low risk.

Summary

One invertebrate, Gould's squid Nototodarus gouldi, remained at high risk following a residual risk analysis (Table ES1.4). It has no tiered or formal assessment in this fishery or the Southern Squid Jig (SSJ) fishery, but the SSJ assessment group consider this species to be sustainable i.e. not overfished and not subject to overfishing. Also, it is mainly managed by effort controls in the Southern Squid Jig Fishery (SSJF), and a combined trigger limit (2000 t) exists in the GAB and SESSF Otter trawl sub-fisheries. Therefore, this species should be further considered.

The finding of one species deemed to be high risk in this assessment is not directly comparable with those of Zhou et al. (2012), due to differences in (i) methodology, (ii) species assessed and (iii) species categorizations (i.e., inclusion of byproduct species). There have also been updates to underlying species distribution information used to calculate species overlaps, along with improved (higher) resolution bathymetry used to refine species ranges since the 2012 eSAFE assessment.

Table ES1.4. Extreme or high-risk PSA or bSAFE species following a residual risk (RR) analysis in the SESSF GAB Otter trawl sub-fishery. x: risk score following RR analysis. \#: unassessable in bSAFE. CH: chondrichthyan; TEL: teleost; INV: invertebrate; MM: marine mammal; MB: marine bird. No. Missing: Number of missing attributes in PSA analysis. Grey shading: expanded species from group code. BC: bycatch; BP: byproduct; PS: Protected.

LEVEL 2 ANALYSIS	ERA		
CLASSIFICATION		TAXA	No. SCIENTIFIC NAME
:---:			
MISSING	COMMON NAME	EXTREME RISK	
:---:	HIGH RISK		

1 Overview

1.1 Ecological Risk Assessment for the Effects of Fishing (ERAEF) Framework

1.1.1 The Hierarchical Approach

The Ecological Risk Assessment for the Effects of Fishing (ERAEF) framework involves a hierarchical approach that moves from a comprehensive but largely qualitative analysis of risk at Level 1, through a more focused and semi-quantitative approach at Level 2 , to a highly focused and fully quantitative "model-based" approach at Level 3 (Figure 1.1). This approach is efficient because many potential risks are screened out at Level 1, so that the more intensive and quantitative analyses at Level 2 (and ultimately at Level 3) are limited to a subset of the higher risk activities associated with fishing. It also leads to rapid identification of high-risk activities, which in turn can lead to immediate remedial action (risk management response). The ERAEF approach is also precautionary, in the sense that risks will be scored high in the absence of information, evidence or logical argument to the contrary.

Figure 1.1. Structure of the 3 level hierarchical ERAEF methodology. SICA - Scale Intensity Consequence Analysis; PSA - Productivity Susceptibility Analysis; SAFE - Sustainability Assessment for Fishing Effects; RRA - Residual Risk Analysis. T1 - Tier 1. eSAFE may be used for species classified as high risk by bSAFE.

Conceptual Model

The approach makes use of a general conceptual model of how fishing impacts on ecological systems, which is used as the basis for the risk assessment evaluations at each level of analysis (Levels 1-3). For the ERAEF approach, five general ecological components are evaluated, corresponding to five areas of focus in evaluating impacts of fishing for strategic assessment under EPBC legislation. The five revised components are:

- Key commercial species and secondary commercial species
- Byproduct and bycatch species
- protected ${ }^{1}$ species (formerly referred to as threatened, endangered and Protected ${ }^{2}$ species or TEPs)
- Habitats
- Ecological communities

This conceptual model (Figure 1.2) progresses from fishery characteristics of the fishery or subfishery, \rightarrow fishing activities associated with fishing and external activities, which may impact the five ecological components (target, byproduct and bycatch species, protected species, habitats, and communities); \rightarrow effects of fishing and external activities which are the direct impacts of fishing and external activities; \rightarrow natural processes and resources that are affected by the impacts of fishing and external activities; \rightarrow sub-components which are affected by impacts to natural processes and resources; \rightarrow components, which are affected by impacts to the sub-components. Impacts to the sub-components and components in turn affect achievement of management objectives.

Figure 1.2. Generic conceptual model used in ERAEF.
The external activities that may impact the fishery objectives are also identified at the Scoping stage and evaluated at Level 1. This provides information on the additional impacts on the ecological components being evaluated, even though management of the external activities is outside the scope of management for that fishery.
The assessment of risk at each level considers current management strategies and arrangements. A crucial process in the risk assessment framework is to document the rationale behind assessments and decisions at each step in the analysis. The decision to proceed to subsequent levels depends on

[^1]- Estimated risk at the previous level
- Availability of data to proceed to the next level
- Management response (e.g. if the risk is high but immediate changes to management regulations or fishing practices will reduce the risk, then analysis at the next level may be unnecessary).

1.1.2 ERAEF stakeholder engagement process

A recognized part of conventional risk assessment is the involvement of stakeholders involved in the activities being assessed. Stakeholders can make an important contribution by providing expert judgment, fishery-specific and ecological knowledge, and process and outcome ownership. The ERAEF method also relies on stakeholder involvement at each stage in the process, as outlined below. Stakeholder interactions are recorded.

1.1.3 Scoping

In the first instance, scoping is based on review of existing documents and information, with much of it collected and completed to a draft stage prior to full stakeholder involvement. This provides all the stakeholders with information on the relevant background issues. Three key outputs are required from the scoping, each requiring stakeholder input.

1. Identification of units of analysis (species, habitats, and communities) potentially impacted by fishery activities (Section 2.2.2; Scoping Documents S2A, S2B1, S2B2 and S2C1, S2C2).
2. Selection of objectives (Section 2.2.3; Scoping Document S3). The primary objective to be pursued for species assessed under ERAEF is that of ensuring populations are maintained at biomass levels above which recruitment failure is likely, as stated in Chapter 2 (ERM Guide; AFMA 2017). This is consistent with current legislation and fisheries policies and represents a change from when the ERAEF was first developed and there was less policy or legislation-based guidance on sustainability objectives, with stakeholders able to choose from a range of "sustainability" objectives (e.g.: tables 5A-C in Hobday et al. 2007).
3. Selection of activities (hazards) (Section 2.2.4; Scoping Document S4) that occur in the sub-fishery is made using a checklist of potential activities provided. The checklist was developed following extensive review and allows repeatability between fisheries. Additional activities raised by the stakeholders can be included in this checklist (and would feed back into the original checklist). The background information and consultation with the stakeholders is used to finalize the set of activities. Many activities will be self-evident (e.g. fishing, which obviously occurs), but for others, expert or anecdotal evidence may be required.

1.1.4 Level 1. SICA (Scale, Intensity, Consequence Analysis)

The SICA analysis evaluates the risk to ecological components resulting from the stakeholderagreed set of activities. Evaluation of the temporal and spatial scale, intensity, sub-component, unit of analysis, and credible scenario (consequence for a sub-component) should be prepared by the draft fishery ERAEF report author and reviewed at an appropriate stakeholder meeting
(e.g. Resource Assessment Group meeting). Due to the number of activities (up to 24) in each of five components (resulting in up to 120 SICA elements), preparation before involving the full set of stakeholders may allow time and attention to be focused on the uncertain or controversial or high-risk elements. Documenting the rationale for each SICA element ahead of time for the straw-man scenarios is crucial to allow the workshop debate to focus on the right portions of the logical progression that resulted in the consequence score.

SICA elements are scored on a scale of 1 to 6 (negligible to extreme) using a "plausible worst case" approach (see ERAEF Methods Document for details; Smith et al. 2007). Level 1 analysis potentially result in the elimination of activities (hazards) and in some cases whole components. Any SICA element that scores 2 or less is documented, but not considered further for analysis or management response.

1.1.5 Level 2. PSA and SAFE (semi-quantitative and quantitative methods)

When the risk of an activity at Level 1 (SICA) on a species component is moderate or higher and no planned management interventions that would remove this risk are identified, an assessment is required at Level 2 (to determine if the risk is real and provide further information on the risk). The tools used to assess risk at Level 2 allow units (e.g. all individual species) within any of the ecological species components (e.g. key/secondary commercial, byproduct/bycatch, and protected species) to be effectively and comprehensively screened for risk. The analysis units are identified at the scoping stage. To date, Level 2 tools have been designed to measure risk from direct impacts of fishing only (i.e. risk of overfishing, leading to an overfished fishery), which in all assessments to date has been the hazard with the greatest risks identified at Level 1^{3}.
In the period since the first ERAEF was implemented across Commonwealth fisheries, much of the management focus has been on the assessment results associated with Level 2 and Level 2.5 or 3 risk assessment methods, which comprise semi-quantitative or rapid simple quantitative methods (e.g. PSA and SAFE). This level has been subject to the greatest level of change and improvement which are discussed in the following sections. Additional improvements are being developed for implementation in the near future (see Chapter 4.13 of AFMA ERM Guide, AFMA 2017).
Level 2 was originally designed to rely on a single risk assessment methodology, the Productivity-Susceptibility Analysis (PSA) (see Chapter 4.8.3 of AFMA ERM Guide, AFMA (2017)), however a more quantitative method called the Sustainability Assessment for Fishing Effects (SAFE) (see Chapter 4.8.4 of AFMA ERM Guide, AFMA 2017) was developed early in the implementation of the ERAEF and classed as a Level 2.5 or Level 3 tool.
Under the revised ERAEF:

- bSAFE has now been reclassified as the preferred Level 2 method (over PSA) where sufficient spatial and biological data (to support bSAFE) are available. Typically, this has been used for teleost and chondrichthyan species.

[^2]- Species estimated to be at high risk under bSAFE may then be assessed under eSAFE which may provide reduced estimates of uncertainty pertaining to the actual risk.
- Where either the data or species biological characteristics are insufficient to support bSAFE analyses, it is recommended that PSA be applied instead. This will be the case for many protected species, invertebrate bycatch species and some other species.
- At Level 2, either PSA or SAFE methods should be applied to any given species, not both.
- For high-risk species it is a management choice whether to progress to eSAFE, pursue a Level 3 fully quantitative stock assessment, or to take more immediate management action to reduce the risk. The types of considerations required in making that choice (i.e.: moving up the ERAEF assessment hierarchy or taking direct management action) are outlined in Chapter 5.5 of the AFMA ERM Guide (AFMA (2017)).
It is also recognised that several additional tools, including some of the "data poor" assessment tools that are used to inform harvest strategies, could potentially be included within the Level 2 toolkit. They are distinguished from Level 3 quantitative tools (i.e. stock assessment models) that are more data rich and able to more precisely quantify uncertainty.

PSA (Productivity Susceptibility Analysis)

Details of the PSA method are described in the accompanying ERAEF Methods Document and summarised in Section 4.8 .3 of the AFMA ERM Guide (AFMA (2017)). Stakeholders can provide input and suggestions on appropriate attributes, including novel ones, for evaluating risk in the specific fishery. Attribute values for many of the units (e.g. age at maturity, depth range, mean trophic level) can be obtained from published literature and other resources (e.g. scientific experts) without initial stakeholder involvement. Stakeholder input is required after preliminary attribute values are obtained. In particular, where information is missing, expert opinion can be used to derive the most "reasonable" conservative estimate. For example, if species attribute values for annual fecundity have been categorized as low, medium, or high on the set ($<5,5-500,>500$), estimates for species with no data can still be made. Also, estimated fecundity of a broadcast-spawning fish species with unknown fecundity is still likely to be greater than the high fecundity category (>500). Susceptibility attribute estimates, such as "fraction alive when landed", can also be made based on input from experts such as scientific observers. Feedback to stakeholders regarding comments received during the preliminary PSA consultations is considered crucial. The final PSA is completed by scientists and results are presented to the relevant stakeholder group (e.g. RAG and/or MAC) before decisions regarding Level 3 analysis are considered. The stakeholder group may also decide on priorities for analysis at Level 3.

Residual Risk Analysis

There were several limitations due to the semi-quantitative nature of a Level 2 PSA assessment. For example, certain management arrangements which mitigate the risks posed by a fishery, as well as additional information concerning levels of direct mortality, may not be easily taken into account in assessments. To overcome this, Residual risk analyses (RRA) are used to consider additional information, particularly mitigating effects of management arrangements that were not explicitly included in the ERAs or introduced after the ERA process commenced. Priority for this process has typically been focused on those species attributed a
high-risk rating (those likely to be most at risk from fishing activities). It could in theory be used to also determine if some species have been incorrectly classified as low risk.

Recently revised Residual risk guidelines have been developed (see below) to assist in making accurate judgments of residual risk consistently across all fisheries. At the moment, they are applied to species and not applicable to habitats or communities.
These guidelines are not seen as a definitive guide on the determination of residual risk, and it is expected they may not apply in a small number of cases. Care must also be taken when applying them to ensure residual risk results are appropriate in a practical sense. There are several conditions which underpin the residual risk guidelines and should be understood before the guidelines are applied:

- All assessments and management measures used within the residual risk assessment must be implemented prior to the assessment with sufficient data to demonstrate the effect. Any planned or proposed measures can be referred to in the assessment but cannot be used to revise the risk score.
- When applied, the guidelines generally result in changes to particular "attribute" scores for a particular species. Only after all guidelines have been applied to a particular species, should the overall risk category be re-calculated. This will ensure consistency, as well as facilitating the application of multiple guidelines.
- Unless there is clear and substantiated information to support applying an individual guideline, then the attribute and residual risk score should remain unchanged. All supporting information considered in applying these Guidelines must be clearly documented and referenced where applicable. This is consistent with the precautionary approach applied in ERAs, with residual risk remaining high unless there is evidence to the contrary ensuring a transparent process is applied.
The results (including supporting information and justifications) from residual risk analyses must be documented in "Residual Risk Reports" for each fishery (or can be integrated into the Level 2 risk assessment report). These will be publically available documents.

SAFE (Sustainability Assessment for Fishing Effects)

The SAFE method developed is split into two categories: base SAFE (bSAFE) and an enhanced SAFE (eSAFE). eSAFE has greater data processing requirements and is recommended to only be used to assess species estimated to be at high risk via the bSAFE. It is also able to more appropriately model spatial availability aspects when sufficient data are available.

bSAFE

Relative to the PSA approach, the bSAFE approach (Zhou and Griffiths, 2008; Zhou et al. 2011):

- is a more quantitative approach (analogous to stock assessment) that can provide absolute measures of risk by estimating fishing mortality rates relative to fishing mortality rate reference points (based on life history parameters),
- requires less productivity data than the PSA,
- can account for cumulative risk and
- potentially outperforms PSA in several areas, including strength of relationship to Tier 1 assessment classifications (Zhou et al. 2016).
Like PSA, the bSAFE method is a transparent, relatively rapid and cost-effective process for screening large numbers of species for risk and is far less demanding of data and much simpler to apply than a typical quantitative stock assessment.

As such it is recommended that bSAFE be used as the preferred Level 2 assessment tool for all fish species and some invertebrates and reptiles (e.g. some sea snakes) with sufficient data In estimating fishing mortality, bSAFE utilises much of the same information as the PSA, to estimate:

- Spatial overlap between species distribution and fishing effort distribution,
- Catchability resulting from the probability of encountering the gear and sizedependent selectivity and
- Post-capture mortality.

The fishing mortality is essentially the fraction of overlap between fished area and the species distribution area within the jurisdiction, adjusted by catchability and post-capture mortality. Uncertainty around the estimated fishing mortality is estimated by including variances in encounterability, selectivity, survival rate and fishing effort between years.
The three biological reference points are based on a simple surplus production model:

- $\mathrm{F}_{\mathrm{msy}}$ - instantaneous fishing mortality rate that corresponds to the maximum number of fish in the population that can be killed by fishing in the long term. The latter is the maximum sustainable fishing mortality (MSM) at $\mathrm{B}_{\text {MSM }}$, similar to target species MSY.
- $\mathrm{F}_{\text {LIM }}$ - instantaneous fishing mortality rate that corresponds to the limit biomass $\mathrm{B}_{\text {LIM }}$ where $\mathrm{B}_{\text {Lim }}$ is a assumed to be half of the biomass that supports a maximum sustainable fishing mortality ($0.5 \mathrm{~B}_{\mathrm{MSM}}$)
- $\mathrm{F}_{\text {CRASH }}$ - minimum unsustainable instantaneous fishing mortality rate that, in theory, will lead to population extinction in the long term.
This methodology produces quantified indicators of performance against fishing mortalitybased reference points and as such does allow calibration with other stock assessment and risk assessment tools that measure fishing mortality. It allows the risk of overfishing to be determined, via the score relative to the reference line. Uncertainty (error bars) are related to the variation in the estimation of the scores for each axis.
It is recommended that species assessed as being potentially at high risk under bSAFE are then progressed to analysis by eSAFE which can narrow uncertainties around the risk (but is more time and resource intensive than bSAFE).
Assumptions and issues to be aware of:
- Comparisons of PSA and SAFE analyses for the same fisheries and species support the claim that the PSA method generally avoids false negatives but can result in many false positives. Limited testing of SAFE results against full quantitative stock assessments suggests that there is less "bias" in the method, but that both false negatives and false positives can arise.
- SAFE analyses retain some of the key precautionary elements of the PSA method, including assumptions that fisheries are impacting local stocks (within the jurisdictional area of the fishery).
- Although the bSAFE analyses provide direct estimates of uncertainty in both the exploitation rate and associated reference points, they are less explicit about uncertainties arising from key assumptions in the method, including spatial distribution and movement of stocks.
- The method assumes there would be no local depletion effects from repeat trawls at the same location (i.e. populations rapidly mix between fished and unfished areas).

The fishing mortality will likely be overestimated if this assumption is not satisfied (ERA TWG 2015) ${ }^{4}$.

- The method also assumes that the mean fish density does not vary between fished area and non-fished area within their distributional range. Hence, the level of risk would be over-estimated for species found primarily in non-fished habitat, while risk would be under-estimated for species that prefer fished habitat (ERA TWG 2015).
- The SAFE methodology makes greater assumptions than Tier 1 stock assessments in coming to its F estimates (due to a lack of the data relative to that used in a Tier 1 assessment) and it is not capable of measuring risk of a stock being already overfished (so the type of risk it measures relates only to overfishing, which may then lead to future overfished state). The limitations of SAFE with respect to measuring overfished risks are the same essentially as for PSA.

eSAFE

Enhanced SAFE (eSAFE) appears, based on calibration with Level 3 assessments, to provide improved estimates of fishing mortality relative to the base SAFE (bSAFE) method. The eSAFE requires more spatially explicit data and takes more analysis time than bSAFE, and so might only be used to further assess species that were identified as at high risk using bSAFE (and which have not had further direct management action taken). The eSAFE enhances the bSAFE method by estimating varying fish density across their distribution range as well as speciesand gear-specific catch efficiency for each species.

1.1.6 Level 3

This stage of the risk assessment is fully quantitative and relies on in-depth scientific studies on the units identified as at medium or greater risk in the Level 2 . It will be both time and data intensive. Individual stakeholders are engaged as required in a more intensive and directed fashion. Results are presented to the stakeholder group and feedback incorporated, but live modification is not considered likely.

1.1.7 Conclusion and final risk assessment report

The conclusion of the stakeholder consultation process has resulted in a final risk assessment report for the individual fishery according to the ERAEF methods. It is envisaged that the completed assessment will be adopted by the fishery management group and used by AFMA for a range of management purposes, including to address the requirements of the EPBC Act as evaluated by Department of the Environment and Energy.

1.1.8 Subsequent risk assessment iterations for a fishery

The frequency at which each fishery must revise and update the risk assessment is not fully prescribed. As new information arises or management changes occur, the risks can be re-
evaluated, and documented as before. The fishery management group or AFMA may take ownership of this process, or scientific consultants may be engaged. In any case the ERAEF should again be based on the input of the full set of stakeholders and reviewed by independent experts familiar with the process.

Fishery re-assessments for byproduct and bycatch species under the ERAEF will be undertaken every five years ${ }^{5}$ or sooner if triggered by re-assessment triggers. The five-year timeframe is based on several factors including:

- The time it takes to implement risk management measures; for populations to respond to those measures to a degree detectable by monitoring processes; and to collect sufficient data to determine the effectiveness of those measures.
- Alignment with other management and accreditation processes.
- The cost of re-assessments.
- The review period for Fisheries Management Strategy (FMS).

For byproduct and bycatch species, in the periods between scheduled five-year ERA reviews ${ }^{6}$, AFMA will develop and monitor a set of fishery indicators and triggers, on an annual basis, to detect any changes (increase or decrease) in the level of risk posed by the fishery to any species. Where indicators exceed specified trigger levels, AFMA will investigate the causes and provide opportunity for RAG comment/advice during that process. Pending outcomes of that review, and RAG advice, AFMA can, if necessary, request a species specific or full fishery reassessment (i.e. prior to the scheduled re-assessment dates).

The ERA TWG (September 2015) identified five key indicators upon which such triggers could be based, these being changes in:

- Gear type/use
- Mitigation measures (use or type)
- \quad Area fished
- Catch or interaction rate
- Fishing effort

Where possible, the triggers should look to consider additional sources of risk from interacting non-Commonwealth fisheries. In addition, if a major management change is planned for a fishery, such as a move from input to output controls, the fishery will need to be reassessed prior to that management change coming into effect. In considering each indicator and trigger level, the RAG should consider the following:

[^3]- The data upon which the indicator is based must be sufficiently representative of actual changes in catch, effort, area, gear, or mitigation methods. Consideration should be given to the level of uncertainty associated with the data underpinning any prospective indicator.
- The trigger level chosen should not be overly sensitive to the normal interannual variance that is typical of the indicator and independent of fishing pressure, assuming such variance is unlikely to relate to a significant change in the risk posed by the fishery to any or all species.
- \quad The trigger level should equate to the minimum level of change that the RAG (by its expert opinion) considers might potentially represent a significant change in the risk posed by the fishery.
- The trigger level could represent an absolute change (number/level) in an indicator or a percentage change in an indicator.
- The RAG should consider whether a "temporal" condition should be placed on the trigger (i.e. the trigger is breached 2 years in a row) to further reduce the likelihood of natural population variance or data errors triggering a reassessment unnecessarily.
The final set of indicators and triggers will be developed for each fishery by AFMA in consultation with its fishery RAG (or for fisheries lacking a RAG, the ERA TWG), in association with the next planned re-assessment (see Table 8 in AFMA ERM Guide, AFMA (2017)). A RAG may choose a subset of these indicators and triggers or include an additional indicator/trigger(s), based on consideration of the availability and reliability of data upon which to base any of the above indicators/triggers, however justification of this must be provided.
Research is currently underway to develop specific guidance for RAG to aid in the selection of appropriate triggers, which will in the meantime be determined using RAG expert opinion. In the longer term it may be possible to refine indicators and triggers using the existing PSA and SAFE methods to test which attributes the end risk scores are most sensitive to (ERA TWG 2015) ${ }^{7}$. The RAG will record both the final set of indicators and triggers chosen, and a justification for those, in the RAG minutes. Once the final set of indicators and triggers is determined for a fishery, they will require implementation within the FMS and a monitoring and review process.

[^4]
2 Results

The focus of analysis is the fishery as identified by the responsible management authority. The assessment area is defined by the fishery management jurisdiction within the Australian Fisheries Zone (AFZ). The fishery may also be divided into sub-fisheries based on fishing method and/or spatial coverage. These sub-fisheries should be clearly identified and described during the scoping stage. Portions of the scoping and analysis at Level 1 and beyond are specific to a particular sub-fishery. The fishery is a group of people carrying out certain activities as defined under a management plan. Depending on the jurisdiction, the fishery/subfishery may include any combination of commercial, recreational, and/or indigenous fishers.

The results presented below are for the SESSF GAB Otter trawl sub-fishery of the Southern and Eastern Scalefish and Shark Fishery (SESSF) Commonwealth Trawl Sector (CTS). A full description of the ERAEF method is provided in the methodology document (Hobday et al. 2007, 2011b). This fishery report contains figures and tables with numbers that correspond to this methodology document. Thus, table and figure numbers within this fishery ERAEF report are not sequential, as not all figures and tables are relevant to the fishery risk assessment results.

2.1 Stakeholder Engagement

Table 2.1. Summary Document SD1. Summary of stakeholder involvement for sub-fishery: SESSF GAB Otter trawl sub-fishery.

FISHERY ERA REPORT STAGE	TYPE OF STAKEHOLDER INTERACTION	DATE OF STAKEHOLDER INTERACTION	COMPOSITION OF STAKEHOLDER GROUP (NAMES OR ROLES)	SUMMARY OF OUTCOME

2.2 Scoping

The aim in the Scoping stage is to develop a profile of the fishery being assessed. This provides information needed at stakeholder meetings and to complete Levels 1 and 2. The focus of analysis is the fishery, which may be divided into sub-fisheries based on fishing method and/or spatial coverage. Scoping involves six steps:

Step 1. Document the general fishery characteristics
Step 2. Generating "unit of analysis" lists (species, habitat types, communities)
Step 3. Selection of objectives
Step 4. Hazard identification
Step 5. Bibliography
Step 6. Decision rules to move to Level 1

2.2.1 General Fishery Characteristics (Step 1).

The information used to complete this step came from a range of documents such as the Fishery's Management Plan, Assessment Reports, Bycatch Action Plans, and any other relevant background documents.

Scoping Document S1 General Fishery Characteristics
Fishery Name: Southern and Eastern Scalefish and Shark Fishery GAB Trawl (GABT) Sector: Otter trawl subfishery

Assessment date: May 2018
Assessor: AFMA and authors of this report (CSIRO)
Table 2.2. General fishery characteristics

GENERAL FISHERY CHA	STICS
Fishery Name	Southern and Eastern Scalefish and Shark Fishery
Sub-fisheries	In 2003 four Commonwealth fisheries in the southern region were amalgamated into the Southern and Eastern Scalefish and Shark Fishery (SESSF) under a common set of management objectives. The component sectors of the SESSF are: - Commonwealth Trawl Sector (previously South East Trawl Fishery (SETF) comprised of: Otter trawl - Danish seine - Gillnet Hook and Trap Sector - Scalefish Hook - demersal longline - Scalefish Hook - auto-longline - Scalefish Hook - dropline - Scalefish trap - Shark gillnet - Shark Hook - demersal longline - Great Australian Bight Trawl Sector - East Coast Deepwater Trawl Sector
Sub-fisheries assessed	This report covers the otter board trawl method in the Great Australian Bight Trawl Sector (GABTS) of the Southern and Eastern Scalefish and Shark Fishery (SESSF).
Start date/ history	Demersal trawling in the area of the GABT fishery first occurred in 1912, with the exploratory work of the government Fisheries Research Vessel Endeavour. Over the next 70 years there was some sporadic commercial

Current and recent TACs, quota trends by method	Quota exist for the main species and Total Allowable Catches (TACs) apply to all fishing methods in the SESSF. Research quota are included in these figures. See also Appendix B for additional TAC related information. In the GABT fishery certain species are managed under statutory fishing rights (SRFs). These are: - Bight Redfish - Deepwater Flathead - Orange Roughy, Albany/Esperance zone - School Shark - Gummy Shark - Saw Shark - Elephantfish Concession holders must have uncaught quota prior to the commencement of a fishing trip. It is important to monitor catch against quota holdings at all times. Agreed Total Allowable Catch (t) for main shark quota species in the SESSF for assessment period (2012-16 inclusive) and current. Fishing season-01 May to 30 April.											
	AGREED TAC											
		QUOTA SPECIES	08/09	$09 / 10$	10/11	11/12	12/13	13/14	24/15	15/16	16/17	17/18
		Bight Redfish	2000	2000	1653	1556	2334	2358	2358	2358	800	800
		Deepwater Flathead	1400	1400	1100	1650	1560	1150	1150	1150	1150	1128
		Elephant Fish	94	94	65	89	89	109	109	163	92	114
		Gummy Shark	1717.2	1717.2	1717	1717	1714	1836	1836	1836	1836	1774
		Orange Roughy (Albany/ Esperance)		50			50	50	50	50	50	50
		Saw Shark	312	312	255	226	226	339	459	482	433	442
		School Shark	240	240	216	176	150	215	215	215	215	215
	Source: AFMA GABT fishery slope species development strategy											
	SPECIES		TRIGGER TO COLLECT BIOLOGICAL DATA				```TRIGGER FOR DATA COLLECTION AND DEVELOPMEN T OF ASSESSMENT PLAN```		SE FISHI THAT SPE	$\begin{aligned} & \text { G FOR } \\ & \text { IES } \end{aligned}$	COMMENCE STOCK ASSESSMENT	
		Gemfish		Currently collected (if> 300 kg in a shot or $>3 \mathrm{t}$ in any trip)			400t	500t/year			1000t/3 years	
		Blue Grenadier		Currently collected (if> 300 kg in a shot or $>3 \mathrm{t}$ in any trip)			400t	500t/year cease fishing. If a spawning aggregation is found, trigger an acoustic survey (500t) and operator collects 100 whole fish.			1000t/3 years	
		Ling		Currently collected (if> 50 kg in a shot or $>200 \mathrm{~kg}$ in any trip)			100t	250 t			250 t	
	Blue-eye Trevalla			Currently collected (if> 50 kg in a shot or $>200 \mathrm{k}$ in any trip)			100t	250 t			-	
		Ribaldo		Currently collected (if> 50 kg in a shot or $>200 \mathrm{k}$ in any trip)			100t	250t			-	

Current and recent fishery catch trends by method	Total catch (kg) of the main species caught by otter trawl.										
	COMMON NAME	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
	Deepwater Flathead	786,641	826,985	935,657	838,196	841,445	657,555	572,622	484,368	547,814	402,475
	Bight Redfish	644,106	475,094	282,246	333,110	271,195	182,992	249,532	176,474	277,657	359,139
	Other	776,340	884,383	724,827	766,749	753,315	865,481	878,970	657,285	671,409	720,657
	Source: AFMA										
Current and recent value of fishery (\$)	The current and recent value for this sub-fishery is confidential and withheld in this report. See ABARES Fishery Status Report 2017 (Patterson et al. 2017).										
Relationship with other fisheries	The following fisheries operate in the area coved by this fishery, either under Commonwealth jurisdiction or Joint jurisdiction between the Commonwealth and States: - Southern Bluefin Tuna Fishery - Southern Squid Jig Fishery - Western Tuna and Billfish Fishery - Small Pelagic Fishery - Scalefish Hook - autolongline, demersal, dropline - Shark Gillnet - Shark Hook - demersal longline - Western Skipjack Tuna fishery (not currently operating) and the State managed: - South Australian Pilchard Fishery - South Australian Marine Scale Fishery - South Australian Rock Lobster Fishery - Western Australian South Coast Purse Seine Fishery										
GEAR											
,	Demersal tra ocean floor i long wires, c spread horiz bottom of th bottom. The move across series of floats. Otter trawlin board to the away from th end of the n in the size and A trawl shot towed along The fish are	wling is th depths of alled warp ontally by e net open footrope is the substr ts. g relies on headline a e otter bo t where th d shape of involves th the bottom ontained	term us water ra which a he outwa ing is call is often ri ate witho the princip nd footro ards, swe e fish are fish whic e net bei , usually in the cod	d to descri ging from attached d force act d the foot ed with rub t becomin ple of herd e) toward ps and net caught. Th are caugh deployed at around 3 nd, which D	ribe the fis a few me d to an otte cting on th trope and rubber roll ing snagged ding fish in ds the mouth et wings and he size of the ght and tho from the 3 knots fo is fastene Demersal	hing meth tres to 1,3 er board eit e otter bo is heavier ers to mini d. The top ward from uth of the nd fall back the mesh in se that es stern of a period d with a r (Botto	od where 00 m . A tr ither side ards as the than the h mise the of the mout the otter trawl net. wards, to in the code cape. the vessel of time be ope to rele m) Traw	a net is to rawl net is of the net. y are tow eadline and amage to uth (headli boards and Fish have a wards the nd is one of by way of fore being ase the ca	ved along ttached The net o d through normally he seaflo e) is lifte dhe swe natural t codend. T f the mos inches. hauled up ch on the	or just abo the vesse ening (mo the water in contact r and allow vertically p (wire from ndency to e codend is important e net is th toward th vessel deck	ve, the by two th) is The with the it to by a m otter swim is the factors n vessel.

$\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { Source: http://www.afma.gov.au/portfolio-item/trawling/ } \\ \text { Fishing gear restrictions } \\ \end{array} \\ \hline\end{array} \begin{array}{l}\text { SESSF operators are only permitted to fish using the gear/methods specified on their boat statutory fishing right } \\ \text { and/or fishing permit. } \\ \text { Mesh requirements - Must not be less than } 90 \text { mm at any part of net. } \\ \text { The holder must ensure that when fishing in waters shallower than 200 m, a T90 gear extension and/or codend } \\ \text { configuration is fitted. }\end{array}\right\}$

The management plan incorporates under a single umbrella seven sectors;

- Shark Gillnet sector;
- Scalefish hook sector;
- Shark hook sector;
- Commonwealth South East Trawl sector CTS (Danish seine and otter trawl);
- Great Australian Bight Trawl sector GABTS;
- Trap sector and
- East Coast Deepwater Trawl sector (ECDWTS),
with overlapping fishing entitlements, gear types and capture species. Managing the fisheries under a single management plan provides the opportunity to manage the combined effects of the fishery on the ecosystem, including target species, bycatch and the broader environment.

Boat Operating Procedures Manual Great Australian Bight Trawl Fishery
https://www.afma.gov.au/sites/default/files/uploads/2014/02/boat-operating-procedures-great-australian-bight-apri-2011.pdf?acsf_files_redirect

Bycatch Action Plans contain a list of actions designed to minimise the impact of fisheries interactions with bycatch species and the marine environment. The Plans are updated every two years to ensure that they are kept current. These Plans outline some actions that have been incorporated in management arrangements. The GABT fishery Bycatch and Discard Workplan is available at
https://www.afma.gov.au/sites/default/files/uploads/2014/11/GAB-2014-16-Bycatch-and-DiscardingWorkplan.pdf?acsf_files_redirect

A GABT fishery Seabird Management Plan has been specifically tailored for each boat in the GABT fishery outlining in responsibility of crew with regard to mitigation measures and is regulated through the fishing permit conditions,
https://www.afma.gov.au/sites/default/files/uploads/2014/11/GAB-2014-16-Bycatch-and-DiscardingWorkplan.pdf?acsf_files_redirect

Other relevant management plans are:
AFMA 2016 Southern and Eastern Scalefish and Shark Fishery Five Year Strategic Research Plan 2016-2020:
https://www.afma.gov.au/sites/default/files/uploads/2017/06/SESSF-Five-Year-Strategic-Research-Plan-20162020.pdf?acsf_files_redirect

AFMA 2017 Southern and Eastern Scalefish and Shark Fishery Management Arrangements Booklet:
www.afma.gov.au/wp-content/uploads/2014/08/SESSF-Management-Arrangements-Booklet-2017.pdf GAB Bycatch and Discard Workplan:
https://www.afma.gov.au/sites/default/files/uploads/2014/11/GAB-2014-16-Bycatch-and-DiscardingWorkplan.pdf?acsf_files_redirect
Guide to AFMA's Ecological Risk Management 2017:
https://www.afma.gov.au/sites/default/files/uploads/2017/08/Final-ERM-Guide_June-2017.pdf
Southern and Eastern Scalefish and Shark Fishery Management Plan 2003 (updated 4 May 2016):
www.legislation.gov.au/Series/F2005B02463

Stock rebuilding strategies for conservation dependent species:
a. School shark rebuilding strategy
b. Upper Slope dogfish Management Strategy
www.afma.gov.au/sustainability-environment/protected-species-management-strategies/
There is a limit of 10 vessels permitted to operate in the area. A vessel must have a boat Statutory Fishing Right (SFR) allowing a vessel to trawl. This SFR will entitle a vessel to use trawl gear in a specific area of water.

Other input controls include minimum mesh size in the codend (mandatory use of T-90 extension) to prevent the capture of juvenile fish and closures. Gear requirements are detailed earlier in this report.
Closures are legislated under the Southern and Eastern Scalefish and Shark Fishery and Small Pelagic Fishery (Closures) Direction 2016, Southern and Eastern Scalefish and Shark Fishery (Closures) Direction No. 11 2013, Southern and Eastern Scalefish and Shark Fishery (Closures) Direction No. 6 2013, Southern and Eastern Scalefish and Shark Fishery (Closures) Direction No. 22015 and under SFR conditions (Appendix C).
Australia's South-west Commonwealth Marine Reserves Network extends offshore from the eastern end of Kangaroo Island in South Australia to Shark Bay in Western Australia - adjacent to the longest coastline in the world facing the Southern Ocean and Antarctica. The reserves cover an area of 1.3 million km^{2} of both temperate and subtropical waters. The network includes 14 marine parks. Zoning and maps for each of the 14 marine parks are available from the Department of Environment and Energy website:
http://www.environment.gov.au/topics/marine/marine-reserves/south-west.

Output controls	All major target and byproduct species in the CTS of the SESSF are managed under quota. Quota is issued in the form of 'quota' SFRs and an operator must hold both the appropriate boat SFR and Quota SFRs to fish for quota species. Quota SFRs are tradable among sectors. There are also trip limits in place for some byproduct species (Appendix D).
Technical measures	A holder must not take flathead less than 280 millimetres in length when measured from the point of the snout to the tip of the tail. Additional technical measures are discussed in other sections.
Regulations	The Fisheries Management Regulations 1992 prescribes detail on the management arrangements implemented in Commonwealth fisheries. Specifically, they cover; bans on vessels over 130 m , administration of and standard conditions for fishing concessions including VMS operation, carrying observers, processing fish, marine environment impacts, payments and fees, registers and administration and allocation of SFRs, discarding offal at sea (not attributed to this fishery). Additional regulations were introduced regarding navigation in closures. Additional rules are contained in the Management Plan and SFR conditions. Under the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act 1999), interactions with a protected species must be reported within seven days of the incident occurring to the Department of the Environment and Energy. A Memorandum of Understanding between AFMA and the Department for the Reporting of Fisheries Interactions with Protected Species streamlines those reporting requirements (2005 Reporting MOU). AFMA reports its protected species interactions to the Department of the Environment and Energy on a quarterly basis. Amendments to the International Maritime Organisation's International Convention for the Prevention of Pollution from Ships (MARPOL) Annex V which came into force on 1 January 2013 prohibit the discharge of all garbage, from all ships, into the sea (except as provided otherwise, under specific circumstances). Australian fishing vessels are subject to these regulations particularly regarding oil and garbage discharge including fishing gear applied through Commonwealth, state and territory legislation. The main Commonwealth legislation is the Protection of the Sea (Prevention of Pollution from Ships) Act 1983.Australian MARPOL regulations apply to Australian fishing vessels wherever they are operating. AMSA website; accessed 23 April 2018: https://www.amsa.gov.au/marine-environment/marine-pollution/pollution-fishing-vessels
Initiatives, strategies and incentives	The SESSF Management Arrangements Booklet 2017 documents all management requirements. Bycatch and Discarding Workplans document planned actions to minimize the risk of interactions with bycatch and protected species. Industry codes of conduct include: - Industry Code of Practice for Responsible Fishing 2006 - Industry Code of Practice for Responsible Fishing reducing seal interactions 2007 - Industry Code of Practice for minimising catches of snapper in waters adjacent to Victoria
Enabling processes	AFMA is responsible for data collection and monitoring in this fishery. Commonwealth scientific logbooks have been compulsory in the south east trawl sector since 1985, and electronic logbooks will be compulsory for all full time trawl operators as of 1 May 2018. Prior to 1997, shark and non-trawl operators completed State logbooks. This data has been collated and is used in assessments. Landings are also recorded through the quota monitoring system by catch disposal records. The collection of agelength data for scalefish was conducted by State agencies and often sporadic or duplicated prior to 1991. The Central Aging Facility (CAF) was established in 1991 to conduct age estimation for these fisheries. Fish Ageing Services now provides ageing services for the main quota species in the SESSF. The Integrated Scientific Monitoring Program (ISMP) was implemented in 1997 to replace the Scientific Monitoring Program in the South East Trawl Fishery. It provides statistically rigorous port-based and at sea monitoring in the south-east trawl, south east non-trawl and Great Australian Bight trawl sectors of this fishery. ISMP provides important information on discards, non-commercial and non-quota commercial species. Fishery independent trawl surveys (FIS) have been carried out since 2006. They were original planned as a yearly summer and winter survey. However, these are now carried during the winter of every second year in the Great Australian Bight Trawl and Commonwealth Trawl Sector. These surveys provide an independent abundance index, as well as other important biological and environmental data, some of which are used in current stock assessments. The assessment group structure comprises: - SESSF Resource Assessment Group (SESSFRAG - an assessment group for the whole SESSF) - South East Resource Assessment Group (formerly Shelf and Slope RAG) - Shark Resource Assessment Group (SharkRAG) - Great Australian Bight Assessment Group (GABRAG) SERAG, SharkRAG and GABRAG are responsible for undertaking stock assessments for a suite of key species, and for reporting on the status of those species to SESSFAG. SERAG is responsible for the assessment of scalefish species and SharkRAG is responsible for assessments of shark species taken by all sectors of the SESSF. GABRAG is responsible for assessment of a suite of species taken in the GAB trawl sector of the SESSF.

	Summary of SESSF Harvest Strategy including assessments and harvest control rules				
	TIER LEVEL	REFER ENCE POINT	REFERENC E POINT FUNCTION	INFORMATION REQUIREMENTS	CONTROL RULE
	Tier 1	B_{20}	Limit	Catch, effort, discards, age, length, relative abundance, biomass information from: - Logbooks - ISMP - FIS	$<\mathrm{B}_{20}$: No targeted fishing, rebuild strategy required
		B_{35}	HCR inflection	As above	$<\mathrm{B}_{35}$: TACs are set at levels that allow stock to rebuild to target
		B_{48}	Target	As above	<B48: Rebuild towards B_{48} $>$ B48 $_{4}$: Fish at F_{48}
	Tier 3	F_{20}	Limit	Catch, discards, age, length, information from: - Logbooks and CDRs - ISMP	$<\mathrm{F}_{20}$: No targeted fishing, rebuild strategy required
		F_{40}	MSY Proxy	As above	$<F_{40}$: TACs are set at levels that allow stock to rebuild to target
		F_{48}	Target	As above	$<F_{48}$: Rebuild towards F_{48} $>\mathrm{F}_{48}$: Fish at F_{48}
	Tier 4	CPUE_{20}	Limit	Catch, effort, discards information from: - Logbooks - ISMP	$<$ CPUE $_{20}$: No targeted fishing, rebuild strategy required
		CPUE_{40}	MSY Proxy	As above	<CPUE 40 : TACs are set at levels that allow stock to rebuild to target
		CPUE_{48}	Target	As above	$<$ CPUE $_{48}$: Rebuild towards CPUE_{48} $>$ CPUE $_{48}$: Fish at F_{48}
Other initiatives or agreements	Relevant to the GABT fishery, Offshore Constitutional Settlements (OCS) are in place between the Commonwealth and the State of South Australia. These OCS agreements define who has jurisdiction for which species stock and puts trip limits in place where necessary. In addition, there are several national and international initiatives in place which impact management of the fishery. These include: - Oceans Policy 1998 - National Plan of Action for the Conservation and Management of Sharks 2012 http://www.daff.gov.au/sharkplan2/. - United Nations Convention Law of the Sea. http://www.un.org/depts/los/convention_agreements/texts/unclos/unclos_e.pdf. - United Nations Fish Stocks Agreement. http://www.un.org/Depts/los/convention_agreements/texts/fish_stocks_agreement/CONF164_37.ht mFAO Code of Conduct for Responsible Fisheries www.fao.org/docrep/005/v9878e/v9878e00.htm - Declaration of the Harvest Operations of the Southern and Eastern Scalefish and shark Fishery as an approved wildlife trade operation, February 2016 www.environment.gov.au/biodiversity/wildlife-trade/trading/commercial/operations				
DATA					
Logbook data	Catch and effort data and all interactions with protected species are recorded on a shot-by-shot basis in Daily Logbooks. Data has been compiled into a centralised database by AFMA and is updated annually to CSIRO. Electronic logbooks (e-logs) are an electronic alternative to submitting traditional paper logbooks. E-logs allow data to be received by AFMA in near real time, closer to actual fishing events. From 1 May 2018 it will be compulsory for all trawl vessels that have fished more than 50 days in the current or previous fishing season to have transitioned to e-logs.				
Observer data	The purpose of the Observer Program is to "provide fisheries managers, research organizations, environmental agencies, the fishing industry and the wider community with independent, reliable, verified and accurate				

2.2.2 Unit of Analysis Lists (Step 2)

The units of analysis for the sub-fishery are listed by component:

- Species Components: key commercial and secondary commercial; byproduct/bycatch and protected species components. [Scoping document S2A Species]
- Habitat Component: habitat types. [Scoping document S2B1 and S2B2 Habitats]
- Community Component: community types. [Scoping document S2C1 and S2C2 Communities]

Ecological Units Assessed

Key commercial and secondary species: 2
Byproduct and bycatch species:
37 (BP); 122 (BC)
Protected species:
34
Habitats: 7 demersal, 2 pelagic
Communities:
6 demersal, 3 pelagic

Scoping Document S2A. Species

Each species identified during the scoping is added to the ERAEF database used to run the Level 2 analyses. A CAAB code (Code for Australian Aquatic Biota) is required to input the information. The CAAB codes for each species may be found at http://www.marine.csiro.au/caab/

Key commercial/secondary commercial species

- Key commercial species - defined in the Harvest Strategy Policy (HSP) Guidelines as a species that is, or has been, specifically targeted and is, or has been, a significant component of a fishery.
- Secondary commercial species - commercial species that, while not specifically targeted, are commonly caught and generally retained, and comprise a significant component of a fishery's catch and economic return. These can include quota species in some fisheries.

Table 2.3. Key commercial (C1) and secondary commercial (C2) species list for the SESSF GAB Otter trawl sub-fishery. AFMA: refers to AFMA Logbook, Observer and/or Electronic Monitoring data.

| ROLE IN
 FISHERY | TAXA NAME | FAMILY NAME | CAAB CODE | SCIENTIFIC NAME | COMMON NAME |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C1 | Teleost | Berycidae | 37258004 | Centroberyx gerrardi | Bight redfish |
| C1 | Teleost | Platycephalidae | 37296002 | Platycephalus conatus | Deepwater flathead |

Byproduct species

List the byproduct species of the sub-fishery. Byproduct species refers to any species that are retained for sale but comprise a minor component of the fishery catch and economic return. Byproduct are considered to be commercial species under the CPFB 2000. This list is obtained by reviewing all available fishery literature, including logbooks, observer reports and discussions with stakeholders.

Table 2.4. Byproduct (BP) species list for the SESSF GAB Otter trawl sub-fishery. AFMA: refers to AFMA Logbook, Observer and/or Electronic Monitoring data.

ROLE IN FISHERY	TAXA NAME	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE
BP	Chondrichthyan	Carcharhinidae	37018001	Carcharhinus brachyurus	Bronze whaler	AFMA
BP	Chondrichthyan	Myliobatidae	37039001	Myliobatis tenuicaudatus	New Zealand eagle ray; Southern eagle ray	AFMA
BP	Chondrichthyan	Orectolobidae	37013003	Orectolobus maculatus	Spotted wobbegong	AFMA
BP	Chondrichthyan	Pristiophoridae	37023002	Pristiophorus cirratus	Common sawshark	AFMA
BP	Chondrichthyan	Squatinidae	37024001	Squatina australis	Australian angel shark	AFMA
BP	Chondrichthyan	Squatinidae	37024002	Squatina tergocellata	Ornate angelshark	AFMA
BP	Chondrichthyan	Triakidae	37017001	Mustelus antarcticus	Gummy shark	AFMA
BP	Invertebrate	Loliginidae	23617005	Sepioteuthis australis	southern calamari	AFMA
BP	Invertebrate	Ommastrephidae	23636004	Nototodarus gouldi	Gould's squid	AFMA
BP	Teleost	Carangidae	37337062	Pseudocaranx georgianus	Silver trevally	AFMA
BP	Teleost	Cheilodactylidae	37377003	Nemadactylus macropterus	Jackass morwong	AFMA
BP	Teleost	Cheilodactylidae	37377004	Nemadactylus valenciennesi	Blue morwong	AFMA
BP	Teleost	Cyttidae	37264001	Cyttus traversi	King dory	AFMA
BP	Teleost	Gempylidae	37439002	Rexea solandri	Gemfish	AFMA
BP	Teleost	Labridae	37384014	Xiphocheilus typus	Bluetooth tuskfish	AFMA
BP	Teleost	Macruronidae	37227001	Macruronus novaezelandiae	Blue grenadier	AFMA
BP	Teleost	Monacanthidae	37465006	Nelusetta ayraud	Ocean jacket	AFMA
BP	Teleost	Moridae	37224002	Mora moro	Ribaldo	AFMA
BP	Teleost	Neosebastidae	37287005	Neosebastes scorpaenoides	Common gurnard perch	AFMA
BP	Teleost	Ophidiidae	37228001	Dannevigia tusca	Tusk	AFMA
BP	Teleost	Ophidiidae	37228002	Genypterus blacodes	Pink ling	AFMA

ROLE IN FISHERY	TAXA NAME	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE
BP	Teleost	Oplegnathidae	37369002	Oplegnathus woodwardi	Knifejaw	AFMA
BP	Teleost	Pentacerotidae	37367005	Zanclistius elevatus	Blackspot boarfish	AFMA
BP	Teleost	Pentacerotidae	37367001	Paristiopterus gallipavo	Yellowspotted boarfish	AFMA
BP	Teleost	Pentacerotidae	37367004	Pentaceros decacanthus	Bigspine boarfish	AFMA
BP	Teleost	Polyprionidae	37311006	Polyprion oxygeneios	Hapuku	AFMA
BP	Teleost	Sebastidae	37287001	Helicolenus percoides	Reef ocean perch	AFMA
BP	Teleost	Sebastidae	37287093	Helicolenus barathri	Bigeye ocean perch	AFMA
BP	Teleost	Sparidae	37353001	Chrysophrys auratus	Snapper	AFMA
BP	Teleost	Trachichthyidae	37255009	Hoplostethus atlanticus	Orange roughy	AFMA
BP	Teleost	Triglidae	37288001	Chelidonichthys kumu	Red gurnard	AFMA
BP	Teleost	Triglidae	37288006	Pterygotrigla polyommata	Latchet	AFMA
BP	Teleost	Uranoscopidae	37400002	Ichthyscopus barbatus	Fringe stargazer	AFMA
BP	Teleost	Uranoscopidae	37400003	Kathetostoma laeve	Common stargazer	AFMA
BP	Teleost	Uranoscopidae	37400005	Pleuroscopus pseudodorsalis	Scaled stargazer	AFMA
BP	Teleost	Veliferidae	37269001	Metavelifer multiradiatus	Common veilfin	AFMA
BP	Teleost	Zeidae	37264004	Zeus faber	John dory	AFMA

Bycatch (discard) species

Bycatch species are species that are not retained (i.e. are discarded, and includes catch that does not reach the deck of the vessel but which nonetheless is killed (or effected) as a result of the interaction with the fishing gear) and as such make no contribution to the value of the fishery. The term bycatch does not include discards of commercial species. Bycatch species are divided, for management purposes, into:

- General bycatch species (i.e. species of fish, sharks, invertebrates, etc. that are never retained for sale).

Table 2.5. Bycatch (BC) species list for the SESSF GAB Otter trawl sub-fishery. AFMA: refers to AFMA Logbook, Observer and/or Electronic Monitoring data.

ROLE IN FISHERY	TAXA NAME	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE
BC	Chondrichthyan	Acropomatidae	37311053	Verilus anomalus	Three-spined cardinalfish	AFMA
BC	Chondrichthyan	Arhynchobatidae	37031001	Irolita waitii	Southern round skate	AFMA
BC	Chondrichthyan	Callorhinchidae	37043001	Callorhinchus milii	Elephantfish	AFMA
BC	Chondrichthyan	Centrophoridae	37020003	Deania calceus	Brier shark	AFMA
BC	Chondrichthyan	Centrophoridae	37020004	Deania quadrispinosa	Longsnout dogfish	AFMA
BC	Chondrichthyan	Centrophoridae	37020011	Centrophorus zeehaani	Southern dogfish	AFMA
BC	Chondrichthyan	Chimaeridae	37042001	Chimaera ogilbyi	Ogilby's ghostshark	AFMA
BC	Chondrichthyan	Dalatiidae	37020002	Dalatias licha	Black shark	AFMA
BC	Chondrichthyan	Dasyatidae	37035001	Bathytoshia brevicaudata	Short-tail stingray	AFMA
BC	Chondrichthyan	Dasyatidae	37035002	Bathytoshia lata	Brown stingray / Black stingray	AFMA
BC	Chondrichthyan	Etmopteridae	37020005	Etmopterus lucifer	Blackbelly lanternshark	AFMA
BC	Chondrichthyan	Etmopteridae	37020022	Etmopterus unicolor	Bristled lanternshark	AFMA
BC	Chondrichthyan	Heterodontidae	37007001	Heterodontus portusjacksoni	Port Jackson shark	AFMA
BC	Chondrichthyan	Hexanchidae	37005002	Notorynchus cepedianus	Broadnose shark	AFMA
BC	Chondrichthyan	Hexanchidae	37005001	Heptranchias perlo	Sharpnose sevengill shark	AFMA
BC	Chondrichthyan	Hypnidae	37028001	Hypnos monopterygius	Coffin ray	AFMA
BC	Chondrichthyan	Orectolobidae	37013001	Orectolobus ornatus	Banded wobbegong	AFMA
BC	Chondrichthyan	Parascylliidae	37013005	Parascyllium ferrugineum	Rusty carpetshark	AFMA
BC	Chondrichthyan	Pristiophoridae	37023001	Pristiophorus nudipinnis	Southern sawshark	AFMA

ROLE IN FISHERY	TAXA NAME	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE
BC	Chondrichthyan	Rajidae	37031003	Dentiraja cerva	Whitespotted skate	AFMA
BC	Chondrichthyan	Rajidae	37031006	Spiniraja whitleyi	Melbourne skate	AFMA
BC	Chondrichthyan	Rajidae	37031010	Dipturus gudgeri	Bight skate	AFMA
BC	Chondrichthyan	Rajidae	37031028	Dipturus canutus	Grey skate	AFMA
BC	Chondrichthyan	Rajidae	37031035	Dipturus acrobelus	Deepwater skate	AFMA
BC	Chondrichthyan	BC	Chondrichthyan	Scyliorhinidae	37015020	Apristurus australis
BC	Chondrichthyan	Scyliorhinidae	37015013	Cephaloscyllium albipinnum	Whitefin swellhark	AFMA
BC	Chondrichthyan	Scyliorhinidae	37015024	Asymbolus occiduus	Western spotted catshark	AFMA
BC	Chondrichthyan	Somniosidae	37020019	Centroscymnus owstonii	Owston's dogfish	AFMA
BC	Chondrichthyan	Sphyrnidae	37019004	Sphyrna zygaena	Smooth hammerhead shark	AFMA
BC	Chondrichthyan	Squalidae	37020006	Squalus megalops	Piked spurdog; Spikey dogfish	AFMA
BC	Chondrichthyan	Squalidae	37020048	Squalus cholorculus	Greeneye spurdog	AFMA
BC	Chondrichthyan	Torpedinidae	37028003	Torpedo macneilli	Short-tail torpedo ray	AFMA
BC	Chondrichthyan	Triakidae	37017003	Furgaleus macki	Whiskery shark	AFMA
BC	Chondrichthyan	Triakidae	37017008	Galeorhinus galeus	School shark	AFMA
BC	Chondrichthyan	Trygonorrhinidae	37027001	Aptychotrema vincentiana	Western shovelnose ray	AFMA
BC	Chondrichthyan	Trygonorrhinidae	37027006	Trygonorrhina fasciata	Eastern fiddler ray	AFMA
BC	Chondrichthyan	Trygonorrhinidae	37027011	Trygonorrhina dumerilii	Southern fiddler ray	AFMA
BC	Chondrichthyan	Urolophidae	37038008	Urolophus expansus	Wide stingaree	AFMA
BC	Invertebrate	Hypothalassiidae	28916002	Hypothalassia armata	Champagne crab	AFMA
BC	Invertebrate	Menippidae	28915002	Pseudocarcinus gigas	Giant crab	AFMA
BC	Invertebrate	Palinuridae	28820001	Jasus edwardsii	Southern rock lobster	AFMA
BC	Invertebrate	Portunidae	28911005	Portunus armatus	Blue swimmer crab	AFMA
BC	Invertebrate	Volutidae	24207001	Livonia mammilla	False Bailer shell	AFMA
BC	Teleost	Argentinidae	37097001	Argentina australiae	Silverside	AFMA
BC	Teleost	Aulopidae	37117001	Latropiscis purpurissatus	Sergeant baker	AFMA
BC	Teleost	Berycidae	37258002	Beryx splendens	Alfonsino	AFMA
BC	Teleost	Berycidae	37258005	Centroberyx lineatus	Swallowtail	AFMA
BC	Teleost	Berycidae	37258006	Centroberyx australis	Yelloweye redfish	AFMA

ROLE IN FISHERY	TAXA NAME	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE
BC	Teleost	Callanthiidae	37311055	Callanthias australis	Splendid perch	AFMA
BC	Teleost	Carangidae	37337002	Trachurus declivis	Common jack mackerel	AFMA
BC	Teleost	Carangidae	37337007	Seriola hippos	Samsonfish	AFMA
BC	Teleost	Carangidae	37337003	Trachurus novaezelandiae	Yellowtail scad	AFMA
BC	Teleost	Centrolophidae	37445001	Hyperoglyphe antarctica	Blue-eye trevalla	AFMA
BC	Teleost	Centrolophidae	37445005	Seriolella brama	Blue warehou	AFMA
BC	Teleost	Centrolophidae	37445006	Seriolella punctata	Silver warehou	AFMA
BC	Teleost	Chauliodontidae	37111001	Chauliodus sloani	Sloane's viperfish	AFMA
BC	Teleost	Clupeidae	37085002	Sardinops sagax	Australian sardine	AFMA
BC	Teleost	Congridae	37067002	Gnathophis longicaudus	Little conger	AFMA
BC	Teleost	Congridae	37067007	Conger verreauxi	Southern conger	AFMA
BC	Teleost	Cyttidae	37264002	Cyttus australis	Silver dory	AFMA
BC	Teleost	Diodontidae	37469002	Allomycterus pilatus	Australian burrfish	AFMA
BC	Teleost	Emmelichthyidae	37345001	Emmelichthys nitidus	Redbait	AFMA
BC	Teleost	Emmelichthyidae	37345002	Plagiogeneion macrolepis	Bigscale rubyfish	AFMA
BC	Teleost	Emmelichthyidae	37345003	Plagiogeneion rubiginosum	Cosmopolitan rubyfish	AFMA
BC	Teleost	Engraulidae	37086001	Engraulis australis	Australian anchovy	AFMA
BC	Teleost	Gempylidae	37439001	Thyrsites atun	Barracouta	AFMA
BC	Teleost	Gempylidae	37439003	Ruvettus pretiosus	Oilfish	AFMA
BC	Teleost	Gerreidae	37349001	Parequula melbournensis	Silverbelly	AFMA
BC	Teleost	Hoplichthyidae	37297001	Hoplichthys haswelli	Deepsea flathead	AFMA
BC	Teleost	Macroramphosidae	37279001	Centriscops humerosus	Banded bellowsfish	AFMA
BC	Teleost	Macroramphosidae	37279002	Macroramphosus scolopax	Common bellowsfish	AFMA
BC	Teleost	Macrouridae	37232001	Coelorinchus australis	Southern whiptail	AFMA
BC	Teleost	Macrouridae	37232002	Coelorinchus fasciatus	Banded whiptail	AFMA
BC	Teleost	Macrouridae	37232003	Coelorinchus mirus	Gargoyle fish	AFMA
BC	Teleost	Macrouridae	37232004	Lepidorhynchus denticulatus	Toothed whiptail	AFMA

ROLE IN FISHERY	TAXA NAME	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE
BC	Teleost	Molidae	37470001	Mola ramsayi	Short sunfish	AFMA
BC	Teleost	Monacanthidae	37465003	Eubalichthys mosaicus	Mosaic leatherjacket	AFMA
BC	Teleost	Monacanthidae	37465005	Meuschenia scaber	Velvet leatherjacket	AFMA
BC	Teleost	Monacanthidae	37465032	Eubalichthys quadrispinis	Fourspine leatherjacket	AFMA
BC	Teleost	Monacanthidae	37465039	Eubalichthys bucephalus	Black reef leatherjacket	AFMA
BC	Teleost	Moridae	37224003	Pseudophycis barbata	Bearded rock cod	AFMA
BC	Teleost	Moridae	37224006	Pseudophycis bachus	Red cod	AFMA
BC	Teleost	Moridae	37224010	Lepidion microcephalus	Smallhead cod	AFMA
BC	Teleost	Mullidae	37355029	Upeneichthys vlamingii	Bluespotted goatfish	AFMA
BC	Teleost	Neosebastidae	37287002	Neosebastes nigropunctatus	Blackspotted gurnard perch	AFMA
BC	Teleost	Neosebastidae	37287003	Neosebastes pandus	Bighead gurnard perch	AFMA
BC	Teleost	Neosebastidae	37287004	Neosebastes bougainvillii	Gulf gurnard perch	AFMA
BC	Teleost	Neosebastidae	37287006	Neosebastes thetidis	Thetis fish	AFMA
BC	Teleost	Ophidiidae	37228008	Genypterus tigerinus	Rock ling	AFMA
BC	Teleost	Orectolobidae	37013020	Orectolobus halei	Gulf wobbegong	AFMA
BC	Teleost	Oreosomatidae	37266001	Neocyttus rhomboidalis	Spikey oreodory	AFMA
BC	Teleost	Oreosomatidae	37266003	Pseudocyttus maculatus	Smooth oreodory	AFMA
BC	Teleost	Ostraciidae	37466010	Anoplocapros lenticularis	Whitebarred boxfish	AFMA
BC	Teleost	Ostraciidae	37466011	Capropygia unistriata	Spiny boxfish	AFMA
BC	Teleost	Ostraciidae	37466014	Caprichthys gymnura	Rigid boxfish	AFMA
BC	Teleost	Paraulopidae	37120001	Paraulopus nigripinnis	Blacktip cucumberfish	AFMA
BC	Teleost	Pentacerotidae	37367003	Pentaceropsis recurvirostris	Longsnout boarfish	AFMA
BC	Teleost	Pinguipedidae	37390023	Parapercis naevosa	Western barred grubfish	AFMA
BC	Teleost	Platycephalidae	37296001	Platycephalus richardsoni	Tiger flathead	AFMA
BC	Teleost	Platycephalidae	37296035	Platycephalus aurimaculatus	Toothy flathead	AFMA
BC	Teleost	Priacanthidae	37326001	Priacanthus macracanthus	Spotted bigeye	AFMA

ROLE IN FISHERY	TAXA NAME	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE
BC	Teleost	Sciaenidae	37354001	Argyrosomus japonicus	Mulloway	AFMA
BC	Teleost	Scombridae	37441001	Scomber australasicus	Blue mackerel	AFMA
BC	Teleost	Scombridae	37441005	Thunnus alalunga	Albacore	AFMA
BC	Teleost	Scorpididae	37361002	Neatypus obliquus	Footballer sweep	AFMA
BC	Teleost	Scorpididae	37361003	Tilodon sexfasciatus	Moonlighter	AFMA
BC	Teleost	Sebastidae	37287046	Trachyscorpia eschmeyeri	Deepsea ocean perch	AFMA
BC	Teleost	Sebastidae	37287103	Trachyscorpia carnomagula	Deepsea scorpionfish	AFMA
BC	Teleost	Serranidae	37311052	Lepidoperca occidentalis	Slender orange perch	AFMA
BC	Teleost	Serranidae	37311175	Lepidoperca filamenta	Western orange perch	AFMA
BC	Teleost	Sillaginidae	37330001	Sillaginodes punctatus	King George whiting	AFMA
BC	Teleost	Synaphobranchidae	37070001	Diastobranchus capensis	Basketwork eel	AFMA
BC	Teleost	Tetraodontidae	37467002	Omegophora armilla	Ringed toadfish	AFMA
BC	Teleost	Trachichthyidae	37255001	Hoplostethus intermedius	Blacktip sawbelly	AFMA
BC	Teleost	Trachichthyidae	37255003	Paratrachichthys macleayi	Sandpaper fish	AFMA
BC	Teleost	Trachichthyidae	37255004	Gephyroberyx darwinii	Darwin's roughy	AFMA
BC	Teleost	Trichiuridae	37440002	Lepidopus caudatus	Southern frostfish; frostfish	AFMA
BC	Teleost	Triglidae	37288003	Lepidotrigla vanessa	Butterfly gurnard	AFMA
BC	Teleost	Triglidae	37288007	Lepidotrigla modesta	Cocky gurnard	AFMA
BC	Teleost	Uranoscopidae	37400004	Kathetostoma nigrofasciatum	Deepwater stargazer	AFMA
BC	Teleost	Zeidae	37264003	Zenopsis nebulosa	Mirror dory	AFMA

Protected species

A protected species ${ }^{[2]}$ refers to all species listed/covered under the EPBC Act 1999, which include Protected ${ }^{[3]}$ species (listed threatened species i.e. vulnerable, endangered or critically endangered), cetaceans, listed migratory species and listed marine species.

Protected species that occur in the area of the sub-fishery. Protected species are often poorly listed by fisheries due to low frequency of direct interaction. Both direct (capture) and indirect (e.g. food source captured) interaction are considered in the ERAEF approach. A list of protected species has been generated for this sub-fishery and included in the PSA and SAFE (chondrichthyans) species list. This list was initially provided by AFMA which was further validated and reviewed using information on EPBC Act List of Threatened Fauna website; http://www.environment.gov.au/cgibin/sprat/public/publicthreatenedlist.pl and available literature on protected species occurrence and distribution such as Expert Panel on a Declared Commercial Fishing Activity (2014); marine birds: Menkhorst et al. (2017), Reid et al. (2002); marine mammals: Woinarski et al. (2014), Jefferson et al. (2015); teleosts: Atlas of Living Australia Fishmap http://fish.ala.org.au/, CAAB http://www.marine.csiro.au/caab/index.html, Fishes of Australia http://fishesofaustralia.net.au/). Species from higher order family categories that were considered to have potential to interact with fishery (based on geographic range and proven/perceived susceptibility to the fishing gear/methods and examples from other similar fisheries across the globe) were also included.

Table 2.6. Protected species (PS) list for the SESSF GAB Otter trawl sub-fishery. AFMA: refers to AFMA Logbook, Observer and/or Electronic Monitoring data.

ROLE IN FISHERY	TAXA	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE(S)	
PS	Teleost	Syngnathidae	37282001	Phycodurus eques	Leafy seadragon	AFMA - expanded from Syngnathidae	
PS	Teleost	Syngnathidae	37282002	Phyllopteryx taeniolatus	Weedy seadragon, Common seadragon	AFMA -expanded from Syngnathidae	AFMA
PS	Teleost	Syngnathidae	37282004	Solegnathus robustus	Robust pipehorse	AFMA - expanded from Syngnathidae	AFMA - expanded from Syngnathidae
PS	Teleost	Syngnathidae	37282008	Urocampus carinirostris	Hairy pipefish	AFMA - expanded from Syngnathidae	Javelin pipefish
PS	Teleost	Syngnathidae	37282009	Lissocampus runa	Pot bellied seahorse		
PS	Teleost	Syngnathidae	37282010	Hippocampus bleekeri			

[^5]| ROLE IN FISHERY | TAXA | FAMILY NAME | CAAB CODE | SCIENTIFIC NAME | COMMON NAME | SOURCE(S) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PS | Teleost | Syngnathidae | 37282011 | Histiogamphelus briggsii | Briggs' crested pipefish, Briggs' pipefish | AFMA - expanded from Syngnathidae |
| PS | Teleost | Syngnathidae | 37282012 | Hypselognathus rostratus | Knife-snouted pipefish | AFMA - expanded from Syngnathidae |
| PS | Teleost | Syngnathidae | 37282013 | Leptoichthys fistularius | Brushtail pipefish | AFMA - expanded from Syngnathidae |
| PS | Teleost | Syngnathidae | 37282014 | Kaupus costatus | Deep-bodied pipefish | AFMA - expanded from Syngnathidae |
| PS | Teleost | Syngnathidae | 37282016 | Lissocampus caudalis | Australian smooth pipefish, Smooth pipefish | AFMA - expanded from Syngnathidae |
| PS | Teleost | Syngnathidae | 37282017 | Stigmatopora argus | Spotted pipefish | AFMA - expanded from Syngnathidae |
| PS | Teleost | Syngnathidae | 37282018 | Stigmatopora nigra | Wide-bodied pipefish, Black pipefish | AFMA - expanded from Syngnathidae |
| PS | Teleost | Syngnathidae | 37282019 | Stipecampus cristatus | Ring-backed pipefish | AFMA - expanded from Syngnathidae |
| PS | Teleost | Syngnathidae | 37282021 | Pugnaso curtirostris | Pug-nosed pipefish | AFMA - expanded from Syngnathidae |
| PS | Teleost | Syngnathidae | 37282023 | Vanacampus phillipi | Port Phillip pipefish | AFMA - expanded from Syngnathidae |
| PS | Teleost | Syngnathidae | 37282024 | Vanacampus poecilolaemus | Australian Long-snout pipefish, Longsnouted pipefish | AFMA - expanded from Syngnathidae |
| PS | Teleost | Syngnathidae | 37282026 | Hippocampus breviceps | Short-head seahorse, Short-snouted seahorse | AFMA -expanded from Syngnathidae |
| PS | Teleost | Syngnathidae | 37282064 | Filicampus tigris | Tiger pipefish | AFMA - expanded from Syngnathidae |
| PS | Teleost | Syngnathidae | 37282071 | Heraldia nocturna | Upside-down pipefish | AFMA - expanded from Syngnathidae |
| PS | Teleost | Syngnathidae | 37282083 | Kimblaeus bassensis | Trawl pipefish, Kimbla pipefish | AFMA - expanded from Syngnathidae |
| PS | Teleost | Syngnathidae | 37282085 | Maroubra perserrata | Sawtooth pipefish | AFMA - expanded from Syngnathidae |
| PS | Teleost | Syngnathidae | 37282095 | Notiocampus ruber | Red pipefish | AFMA - expanded from Syngnathidae |
| PS | Teleost | Syngnathidae | 37282100 | Syngnathoides biaculeatus | Double-ended pipehorse, Alligator pipefish | AFMA - expanded from Syngnathidae |
| PS | Teleost | Syngnathidae | 37282102 | Vanacampus margaritifer | Mother-of-pearl pipefish | AFMA - expanded from Syngnathidae |
| PS | Teleost | Syngnathidae | 37282130 | Heraldia sp. 1 [in Kuiter, 2000] | Western upsidedown pipefish | AFMA - expanded from Syngnathidae |
| PS | Teleost | Clinidae | 37416013 | Heteroclinus perspicillatus | Common weedfish | AFMA - expanded from Syngnathidae |
| PS | Marine mammal | Otariidae | 41131001 | Arctocephalus forsteri | Longnosed fur seal | AFMA |
| PS | Marine bird | Procellariidae | 40041038 | Puffinus carneipes | Flesh-footed shearwater | AFMA - expanded from Procellaridae; Menkhorst et al. 2017 |
| PS | Marine bird | Procellariidae | 40041040 | Puffinus gavia | Fluttering shearwater | AFMA - expanded from Procellaridae; Menkhorst et al. 2017 |
| PS | Marine bird | Procellariidae | 40041042 | Puffinus griseus | Sooty shearwater | AFMA - expanded from Procellaridae; Menkhorst et al. 2017 |
| PS | Marine bird | Procellariidae | 40041043 | Puffinus huttoni | Hutton's shearwater | AFMA expanded from Procellaridae; Menkhorst et al. 2017 |

ROLE IN FISHERY	TAXA	FAMILY NAME	CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SOURCE(S)
PS	Marine bird	Procellariidae	40041047	Puffinus tenuirostris	Short-tailed shearwater	AFMA - expanded from Procellaridae; Menkhorst et al. 2017
PS	Marine bird	Diomedeidae	40040002	Thalassarche cauta	Shy albatross	AFMA

Scoping Document S2B1. Benthic Habitats

Since the previous assessments over a decade ago, there has been considerable research and habitat identification and modelling of demersal habitats around Australia and specifically in the SESSF region (Hobday et al. 2011a; Pitcher et al. 2015, 2016; Williams et al. 2009, 2010a, b, c, 2011). This has culminated in Pitcher et al. (2016), redefining much of the Australian seafloor based on meso-scale surrogates collated from data from biological surveys, environmental data, protected area/fishery closure data. The temporal range of the fishery effort data of Pitcher et al. (2016) was from 1985-2012 which is immediately prior to this current assessment period and was considered relevant. The new data and methodology are not directly mappable to the original analyses, but these assessments are more comprehensive than the previous ones and will therefore be used in preference to the original scoping of habitats.

Although the new assessment was conducted for the trawl fisheries, the identification of vulnerable habitats within assemblages is also relevant when assessing other fishing methods in the region. By overlaying the fishery footprint over the assemblage distribution maps of Pitcher et al. (2016), we identified those containing vulnerable habitats that might be at particular risk. For this assessment of the GAB trawl, we used the region identified from Pitcher et al. (2016) (Figure 2.1). The GAB area is protected from trawling by CMR and fishery closures reducing avaialble area by nearly 22%. The actual footprint of the fishery is less than 4% and less than 5% compiled over several years.

The most vulnerable type of habitat was identified in Williams et al. (2011) and Pitcher et al. (2016) as:

- Habitat - forming benthos (GAB assemblage 8).

This habitat was the most exposed habitat type with over 34% being swept annually and nearly 60% swept overall (Pitcher et al. 2016).

The lack of evidence to prove direct impact from trawling impedes further analysis. Furthermore, using the more recent assessments by Pitcher et al. (2016) ideally need to be incorporated into the ERAEF protocol. Consequently, the SICA is preliminary and further assessment at Level 2 is not possible at this time.

Figure 2.1. Map of the SESSF GAB region showing 13 assemblages derived by Pitcher et al. (2016). Excerpt from Pitcher et al. 2016.

The previous ERAEF assessment of the GAB trawl (Daley et al. 2007) found that "of the highrisk habitats identified during the last assessment, none were found on the inner shelf (0 100 m), eight were on the outer shelf (100-200 m), five were on the upper slope (200-700 m), and eight were on the mid slope (700-1500 m)." Their high-risk habitats on the outer shelf were soft sediment seabed types characteristically dominated by large sponges and mixed epifauna, with bryozoan communities at the shelf break; and sedimentary, sub-cropping rock with communities of large sponges. These habitat types now comprise the habitat-forming benthos of assemblage eight that was rated the third highest risk by its exposure to trawling in Pitcher et al. (2016).

Upper slope habitats included types of low-relief hard bottom dominated by large sponges; soft bottom habitats characterized by octocorals and sedentary animals, and one based on bryozoan communities restricted to a narrow shelf break zone; and canyons (Daley et al. 2007). Mid slope habitats included hard and soft bottom types with large, erect, or delicate epifauna such as octocorals, and sedentary animals; and seamount habitats (Daley et al. 2007). But combined these habitats had very low exposure to trawling ($\sim 4 \%$ in total) and considered low risk by Pitcher et al. (2016).

Table 2.7. Benthic habitats that occur within the jurisdictional boundary of the GAB Otter trawl subfishery. Shaded cells are those in which fishing occurs. The details of these assemblages were not available at the time of assessment.

$\sum_{\underline{0}}^{\text {O}}$		HABITAT TYPE
GAB	1	
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		

Scoping Document S2B2. Pelagic Habitats

Table 2.8. Pelagic habitats for the SESSF GAB otter trawl sub-fishery which overlay the demersal communities in which fishing occurs.

ERAEF PELAGIC HABITAT	PELAGIC HABITAT TYPE	DEPTH (M)	COMMENTS	SOURCE
NO.		$0-200$	this is a compilation of the range covered by Coastal pelagic Tas and GAB	ERA pelagic habitat database based on pelagic communities definitions
P7	Southern Pelagic Province - Coastal	this is a compilation of the range covered by Oceanic Communities (1, 2 2and 3)	ERA pelagic habitat database based on pelagic communities definitions	
P8	Southern Pelagic Province - Oceanic	$0->600$		

Scoping Document S2C1. Demersal Communities

In ERAEF, communities are defined as the set of species assemblages that occupy the large scale provinces and biomes identified from national bioregionalisation studies. The biota includes mobile fauna, both vertebrate and invertebrate, but excludes sessile organisms such as corals that are largely structural and are used to identify benthic habitats. The same community lists are used for all fisheries, with those selected as relevant for a particular fishery being identified on the basis of spatial overlap with effort in the fishery. The spatial boundaries for demersal communities are based on IMCRA boundaries for the shelf, and on slope bioregionalisations for the slope (IMCRA 1998; Last et al. 2005). The spatial boundaries for the pelagic communities are based on pelagic bioregionalisations and on oceanography (Condie et al. 2003; Lyne and Hayes 2004). Fishery and region specific modifications to these boundaries are described in detail in Hobday et al. (2007) and briefly outlined in the footnotes to the community Tables below.
The data used to determine the communities came from the AFMA logbook data but contained obviously erroneous records of fishing in northwest of Australia in this fishery (possibly a mis-reporting of latitude) and so were deemed to be in the Southern community in this assessment.

Table 2.9. Demersal communities in which fishing activity occurred in the GAB Otter trawl sub-fishery (x).Shaded cells indicate all communities within the province.

DEMERSAL COMMUNITY	$\begin{aligned} & \text { u } \\ & \stackrel{\rightharpoonup}{\mathbf{\alpha}} \end{aligned}$							2 2 2 2 i k		z 票 \vdots \vdots 0 0						$\sum_{\underset{i}{\circ}}^{\substack{O}}$			
Inner Shelf 0-110m ${ }^{1,2}$										X									
Outer Shelf 110-250m ${ }^{1,2}$										X									
Upper Slope 250-565m ${ }^{3}$										X									
Mid-Upper Slope 565-820m ${ }^{3}$										X									
Mid Slope 820-1100m ${ }^{3}$										X									
Lower slope/ Abyssal > 1100m ${ }^{6}$										X									
Reef $0-110 \mathrm{~m}^{7,8}$																			
Reef 110-250m ${ }^{8}$																			
Seamount 0-110m																			
Seamount 110-250m																			
Seamount 250-565m																			

DEMERSAL COMMUNITY	$\begin{aligned} & \text { 山 } \\ & \stackrel{\rightharpoonup}{\mathbf{d}} \end{aligned}$							$\sum_{\substack{2 \\ i \\ i}}^{2}$								\sum_{i}^{0}			
Seamount 565-820m																			
Seamount 820-1100m																			
Seamount 1100-3000m																			
Plateau 0-110m																			
Plateau 110-250m4																			
Plateau 250-565m ${ }^{4}$																			
Plateau 565-820m ${ }^{5}$																			
Plateau 820-1100m ${ }^{5}$																			

${ }^{1}$ Four inner shelf communities occur in the Timor Transition (Arafura, Groote, Cape York and Gulf of Carpentaria) and three inner shelf communities occur in the Southern (Eyre, Eucla and South West Coast). At Macquarie Is: ${ }^{2}$ inner and outer shelves ($0-250 \mathrm{~m}$), and ${ }^{3}$ upper and midslope communities combined ($250-1100 \mathrm{~m}$). At Heard/ McDonald Is: ${ }^{4}$ outer and upper slope plateau communities combined to form four communities: Shell Bank, inner and outer Heard Plateau ($100-500 \mathrm{~m}$) and Western Banks ($200-500 \mathrm{~m}$), 5 mid and upper plateau communities combined into 3 trough (Western, North Eastern and South Eastern), southern slope and North Eastern plateau communities ($500-1000 \mathrm{~m}$), and ${ }^{6} 3$ groups at Heard Is: Deep Shell Bank ($>1000 \mathrm{~m}$), Southern and North East Lower slope/abyssal, ${ }^{7}$ Great Barrier Reef in the North Eastern Province and Transition and ${ }^{8}$ Rowley Shoals in North Western Transition.

Scoping Document S2C2. Pelagic Communities

Table 2.10. Pelagic communities overlaying demersal communities in which fishing activity occurs in the SESSF GAB Otter trawl sub-fishery (x). Shaded cells indicate all communities that exist in the province.

PELAGIC COMMUNITY					$\begin{aligned} & \text { z } \\ & \text { 采 } \\ & \stackrel{4}{3} \\ & 3 \end{aligned}$				
Coastal pelagic $0-200 \mathrm{~m}^{1,2}$				X					
Oceanic (1) 0-600m				x					
Oceanic (2) $\mathbf{7 6 0 0 m}$				X					
Seamount oceanic (1) 0-600m									
Seamount oceanic (2) 600-3000m									
Oceanic (1) 0-200m									
Oceanic (2) $200-600 \mathrm{~m}$									
Oceanic (3) $\mathbf{7 6 0 0 m}$									
Seamount oceanic (1) 0-200m									
Seamount oceanic (2) 200-600m									
Seamount oceanic (3) 600-3000m									
Oceanic (1) 0-400m									
Oceanic (2) >400m									
Oceanic (1) 0-800m									
Oceanic (2) >800m									
Plateau (1) 0-600m									
Plateau (2) >600m									
Heard Plateau 0-1000m ${ }^{3}$									
Oceanic (1) 0-1000m									
Oceanic (2) $>1000 \mathrm{~m}$									
Oceanic (1) $0-1600 \mathrm{~m}$									
Oceanic (2) >1600m									

${ }^{1}$ Northern Province has five coastal pelagic zones (NWS, Bonaparte, Arafura, Gulf and East Cape York) and Southern Province has two zones (Tas, GAB). ${ }^{2}$ At Macquarie Is: coastal pelagic zone to $250 \mathrm{~m} .{ }^{3}$ At Heard and McDonald Is: coastal pelagic zone broadened to cover entire plateau to maximum of 1000 m .
(a)

(b)

Figure 2.2 (a) Demersal communities around mainland Australia based on bioregionalisation schema. Some inshore ($0-110 \mathrm{~m}$) communities comprise more than one community e.g. Timor Transition comprises 4 distinct communities. (b) Australian pelagic provinces. Hatched areas indicate coastal epipelagic zones overlying the shelf. Offshore (oceanic) provinces comprise two or more overlaying pelagic zones as indicated in Table 2.10. Seamounts (black) and plateaux (light green) are illustrated in their demersal or pelagic provinces.

2.2.3 Identification of objectives for components and sub-components (Step 3)

Objectives are identified for each sub-fishery for the five ecological components (target, bycatch/byproduct, protected species, habitats, and communities) and sub-components, and are clearly documented. It is important to identify objectives that managers, the fishing industry, and other stakeholders can agree on, and that scientists can quantify and assess. The criteria for selecting ecological operational objectives for risk assessment are that they:

- be biologically relevant;
- have an unambiguous operational definition;
- be accessible to prediction and measurement; and
- that the quantities they relate to be exposed to the hazards.

For fisheries that have completed Ecological Sustainable Development (ESD) reports, use can be made of the operational objectives stated in those reports.

Each 'operational objective' is matched to example indicators. Scoping Document S3 provides suggested examples of operational objectives and indicators. Where operational objectives are already agreed for a fishery (Existing Management Objectives; EMOs), those should be used (e.g. Strategic Assessment Reports). The objectives need not be exactly specified, regarding numbers or fractions of removal/impact but should indicate that an impact in the subcomponent is of concern/interest to the sub-fishery. The rationale for including or discarding an operational objective is a crucial part of the table and must explain why the particular objective has or has not been selected for in the (sub) fishery. Only the operational objectives selected for inclusion in the (sub) fishery are used for Level 1 analysis (Level 1 SICA Document L1.1).

Scoping Document S3. Components and sub-components identification of objectives

Table 2.11. Components and sub-components identification of operational objectives and rationale. Operational objectives that are eliminated are shaded out. EMO: Existing Management Objective; AMO: Existing AFMA Objective.

COMPONENT	CORE OBJECTIVE	SUBCOMPONENT	EXAMPLE OPERATIONAL OBJECTIVES	EXAMPLE INDICATORS	RATIONALE
Key Commercial and secondary commercial species	Avoid recruitment failure of the key/secondary commercial species Avoid negative consequences for species or population subcomponents	1. Population size	1.1 No trend in biomass 1.2 Maintain biomass above a specified level 1.3 Maintain catch at specified level 1.4 Species do not approach extinction or become extinct	Biomass, numbers, density, CPUE, yield	1.1 Increases in biomass of the key/secondary commerical species would be acceptable. 1.2. To ensure that population at acceptable level by the assessment. 1.3. TAC levels are specified. 1.4. This is a general objective for all AFMA fisheries as per Fisheries Management Act 1991 (objective (b)). In general these objectives underlie the sustainable management of the Fishery, for both target bait and target species.
		2. Geographic range	2.1 Geographic range of the population, in terms of size and continuity does not change outside acceptable bounds	Presence of population across the known distribution range	2.1 Not currently monitored. No specific management objective based on the geographic range of key/secondary commercial species.
		3. Genetic structure	3.1 Genetic diversity does not change outside acceptable bounds	Frequency of genotypes in the population, effective population size (N_{e}), number of spawning units	3.1 Genetic studies not currently monitored.
		4. Age/size/ sex structure	4.1 Age/size/ sex structure does not change outside acceptable bounds (e.g. more than X\% from reference structure)	Biomass, numbers or relative proportion in age/size/sex classes Biomass of spawners Mean size, sex ratio	4.1 Covered in general by 1.2 EMO and AMO. The size range of Patagonian toothfish suggests that the fishery is not targeting recruitment or spawning grounds.
		5. Reproductive capacity	5.1 Fecundity of the population does not change outside acceptable bounds (e.g. more than X\% of reference population fecundity) 2 Recruitment to the	Egg production of population Abundance of recruits	5.1 Covered by 1.2 EMO and AMO. Reproductive capacity in terms of egg production may be easier to monitor via changes in Age/size/sex structure. 5.2 Covered by 1.2 EMO and AMO. May be easier to monitor via changes in Age/size/sex structure in the fishery.

COMPONENT	CORE OBJECTIVE	SUBCOMPONENT	EXAMPLE OPERATIONAL OBJECTIVES	EXAMPLE INDICATORS	RATIONALE
			population does not change outside acceptable bounds		
		6. Behaviour /movement	6.1 Behaviour and movement patterns of the population do not change outside acceptable bounds	Presence of population across space, movement patterns within the population (e.g. attraction to bait, lights)	6.1. Changes behaviour that are deleterious to the species and populations are to be avoided. Covered by 1.2 EMO and AMO.
Byproduct and Bycatch	Avoid recruitment failure of the byproduct and bycatch species Avoid negative consequences for species or population subcomponents	1. Population size	1.1 No trend in biomass 1.2 Species do not approach extinction or become extinct 1.3 Maintain biomass above a specified level 1.4 Maintain catch at specified level	Biomass, numbers, density, CPUE, yield	1.1 Increases in biomass of the byproduct/bycatch species would be acceptable. 1.2. To ensure that population at acceptable level by the assessment. Covered by EMO and AMO that ensures the fishery does not threaten bycatch species. 1.3. TAC levels are specified. EMO/AMO annual reviews of all information on bycatch species with the aim of developing species specific bycatch limits. Use of 'move on provisions' to limit exploitation of bycatch stocks in localised areas. 1.4. This is a general objective for all AFMA fisheries as per Fisheries Management Act 1991 (objective (b)). Maintaining bycatch/byproduct levels not a specific objective. The protection of bycatch by TACs based on precautionary principles is the preferred method. "Move on provisions" are enforced if bycatch exceeds set limits.
		2. Geographic range	2.1 Geographic range of the population, in terms of size and continuity does not change outside acceptable bounds	Presence of population across space	2.1 Not currently monitored. No specific management objective based on the geographic range of byproduct/bycatch species. No specific management objective based on the geographic range of bycatch/byproduct species.
		3. Genetic structure	3.1 Genetic diversity does not change outside acceptable bounds	Frequency of genotypes in the population, effective population size $\left(\mathrm{N}_{\mathrm{e}}\right)$, number of spawning units	3.1 Not currently monitored. No reference levels established. No specific management objective based on the genetic structure of bycatch species.
		4. Age/size/ sex structure	4.1 Age/size/ sex structure does not change outside acceptable bounds (e.g. more than X\% from reference structure)	Biomass, numbers or relative proportion in age/size/sex classes Biomass of spawners	4.1 EMO - move on provisions require that if bycatch in any one haul exceeds set limits then the vessel must not use that fishing method within 5 nm of that site for at least 5 days.

COMPONENT	CORE OBJECTIVE	SUBCOMPONENT	EXAMPLE OPERATIONAL OBJECTIVES	EXAMPLE INDICATORS	RATIONALE
				Mean size, sex ratio	
		5 Reproductive capacity	5.1 Fecundity of the population does not change outside acceptable bounds (e.g. more than X\% of reference population fecundity) Recruitment to the population does not change outside acceptable bounds	Egg production of population Abundance of recruits	5.1 Beyond the generality of the EMO "Fishing is conducted in a manner that does not threaten stocks of byproduct / bycatch species", reproductive capacity is not currently measured for bycatch/byproduct species and is largely covered by other objectives.
		6. Behaviour /movement	6.1 Behaviour and movement patterns of the population do not change outside acceptable bounds	Presence of population across space, movement patterns within the population (e.g. attraction to bait, lights)	6.1 Trawling does not appear to attract bycatch species or alter their behaviour and movement patterns, resulting in the attraction of species to fishing grounds.
Protected species	Avoid negative consequences for protected species or population subcomponents	1. Population size	1.1 Species do not further approach extinction or become extinct 1.2 No trend in biomass 1.3 Maintain biomass above a specified level 1.4 Maintain catch at specified level	Biomass, numbers, density, CPUE, yield	1.1 EMO - The fishery is conducted in a manner that avoids mortality of, or injuries to, endangered, threatened or protected species. 1.2 A positive trend in biomass is desirable for protected species. 1.3 Maintenance of protected species biomass above specified levels not currently a fishery operational objective. 1.4 The above EMO states 'must avoid mortality/injury to protected species.
	Avoid negative impacts on the population from fishing	2. Geographic range	2.1 Geographic range of the population, in terms of size and continuity does not change outside acceptable bounds	Presence of population across space, i.e. the Southern Ocean	2.1 Change in geographic range of protected species may have serious consequences e.g. population fragmentation and/or forcing species into sub-optimal areas.
		3. Genetic structure	3.1 Genetic diversity does not change outside acceptable bounds	Frequency of genotypes in the population, effective population size (Ne), number of spawning units	3.1 Because population size of protected species is often small, protected species are sensitive to loss of genetic diversity. Genetic monitoring may be an effective approach to measure possible fishery impacts.
		4. Age/size/ sex structure	4.1 Age/size/ sex structure does not change outside	Biomass, numbers or relative proportion in	4.1 Monitoring the age/size/sex structure of protected species populations is a useful management tool allowing the identification

COMPONENT	CORE OBJECTIVE	SUBCOMPONENT	EXAMPLE OPERATIONAL OBJECTIVES	EXAMPLE INDICATORS	RATIONALE
			acceptable bounds (e.g. more than X\% from reference structure)	age/size/sex classes Biomass of spawners Mean size, sex ratio	of possible fishery impacts and that crosssection of the population most at risk.
		5. Reproductive capacity	5.1 Fecundity of the population does not change outside acceptable bounds (e.g. more than X\% of reference population fecundity) Recruitment to the population does not change outside acceptable bounds	Egg production of population Abundance of recruits	5.1 The reproductive capacity of protected species is of concern to this fishery because potential fishery induced changes in reproductive ability (e.g. reduction in prey items may critically affect seabird brooding success) may have immediate impact on the population size of protected species.
		6. Behaviour /movement	6.1 Behaviour and movement patterns of the population do not change outside acceptable bounds	Presence of population across space, movement patterns within the population (e.g. attraction to bait, lights)	6.1 Trawling operations may attract protected species and alter behaviour and movement patterns, resulting in the habituation of protected species to fishing vessels. The overall effect may be to prevent juveniles from learning to fend for themselves therefore increasing the animals' reliance on fishing vessels. Subsequently this could substantially increase the risk of injury/mortality by collision, entrapment or entanglement with a vessel or fishing gear.
		7. Interactions with fishery	7.1 Survival after interactions is maximised 7.2 Interactions do not affect the viability of the population or its ability to recover	Survival rate of species after interactions Number of interactions, biomass or numbers in population	7.1, 7.2, EMO - The fishery is conducted in a manner that avoids mortality of, or injuries to, endangered, threatened or protected species. Includes the prohibition on discarding offal (bycatch, fish processing waste, unwanted dead fish), gear restrictions and reduced lighting levels to minimise interactions and attraction of the vessel to protected species.
Habitats	Avoid negative impacts on quality of environment Avoid reduction in the amount and quality of habitat	1. Water quality	1.1 Water quality does not change outside acceptable bounds	Water chemistry, noise levels, debris levels, turbidity levels, pollutant concentrations, light pollution from artificial light	1.1 EMO control the discharge or discarding of waste (fish offal) and limit lighting on the vessels. MARPOL regulations prohibit discharge of oils, discarding of plastics.
		2. Air quality	2.1 Air quality does not change outside acceptable bounds	Air chemistry, noise levels, visual pollution, pollutant concentrations, light pollution	2.1 Not currently perceived as an important habitat sub-component, trawling operations not believed to strongly influence air quality.

COMPONENT	CORE OBJECTIVE	SUBCOMPONENT	EXAMPLE OPERATIONAL OBJECTIVES	EXAMPLE INDICATORS	RATIONALE
			acceptable bounds	number in each size class Mean trophic level Number of trophic levels	shifts in relative abundance of higher trophic level organisms.
		5. Bio- and geo-chemical cycles	5.1 Cycles do not vary outside acceptable bounds	Indicators of cycles, salinity, carbon, nitrogen, phosphorus flux	5.1 Trawling operations not perceived to have a detectable effect on bio and geochemical cycles but other activities might e.g. aquaculture.

2.2.4 Hazard Identification (Step 4)

Hazards are the activities undertaken in the process of fishing, and any external activities, which have the potential to lead to harm.

The effects of fishery/sub-fishery specific hazards are identified under the following categories:

- capture
- direct impact without capture
- addition/movement of biological material
- addition of non biological material
- disturbance of physical processes
- external hazards

These fishing and external activities are scored on a presence/absence basis for each fishery/sub-fishery. An activity is scored as a zero if it does not occur and as a one if it does occur. The rationale for the scoring is also documented in detail and must include if/how the activity occurs and how the hazard may impact on organisms/habitat.

Scoping Document S4. Hazard Identification Scoring Sheet

This table is completed once for each sub-fishery. See Table 2.13 provides a set of examples of fishing activities for the effects of fishing to be used as a guide to assist in scoring the hazards.

Fishery name: Southern Eastern Shark and Scalefish Fishery (CTS Sector)
Sub-fishery name: GAB Otter trawl (GABT)
Date completed: June 2018
Table 2.12. Hazard identification, score and rationale(s) for the SESSF GABT sub-fishery.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	$\begin{aligned} & \text { SCORE } \\ & (0 / 1) \end{aligned}$	DOCUMENTATION OF RATIONALE
Capture	Bait collection	0	Not required by this fishery method.
	Fishing	1	Actual fishing, i.e. capture of species resulting from deployment and retrieval of trawl including key commercial, bycatch, byproduct and protected species caught but not landed.
	Incidental behaviour	0	Activities such as recreational fishing do not occur
Direct impact without capture	Bait collection	0	Not required for this fishery method.
	Fishing	1	Fishing is most likely to impact benthic habitats and animals as the gear contacts seafloor. Unknown mortality on fish arising from net escapement. Birds, seals and dolphins may also interact with gear at times resulting in injury or mortality.
	Incidental behaviour	0	Activities such as recreational fishing are not permitted or occur rarely.
	Gear loss	1	Major gear loss reported rarely and no information on minor components but likely to occur.
	Anchoring/ mooring	0	None occurs

DIRECT IMPACT OF FISHING	FISHING ACTIVITY (0/1)		Navigation/steaming	1

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	$\begin{aligned} & \text { SCORE } \\ & (0 / 1) \end{aligned}$	DOCUMENTATION OF RATIONALE
	Coastal development	1	Sewage discharge, agricultural runoff, pollution from ports and coastal towns could impact shelf fisheries and may affect breeding grounds and nursery areas for some of the species in the fishery
	Other extractive activities	1	Potential development oil and gas exploration and extraction drilling indeepwater, and seismic surveys for further oil and gas exploration occurs across southern Australia.
	Other non-extractive activities	1	Major coastal shipping activity from Melbourne-Adelaide and to Perth.
	Other anthropogenic activities	1	Tourist activities and charter fishing occurs in the fishery.

Table 2.13. Examples of fishing activities (Modified from Fletcher et al. 2002).

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	EXAMPLES OF ACTIVITIES INCLUDE
Capture		Activities that result in the capture or removal of organisms. This includes cryptic mortality due to organisms being caught but dropping out prior to the gear's retrieval (i.e. they are caught but not landed)
	Bait collection	Capture of organisms due to bait gear deployment, retrieval and bait fishing. This includes organisms caught but not landed.
	Fishing	Capture of organisms due to gear deployment, retrieval and actual fishing. This includes organisms caught but not landed.
	Incidental behaviour	Capture of organisms due to crew behaviour incidental to primary fishing activities, possible in the crew's down time; e.g. crew may line or spear fish while anchored, or perform other harvesting activities, including any land-based harvesting that occurs when crew are camping in their down time.
Direct impact, without capture		This includes any activities that may result in direct impacts (damage or mortality) to organisms without actual capture.
	Bait collection	Direct impacts (damage or mortality) to organisms due to interactions (excluding capture) with bait gear during deployment, retrieval and bait fishing. This includes damage/mortality to organisms through contact with the gear that doesn't result in capture, e.g. damage/mortality to benthic species by gear moving over them, organisms that hit nets but aren't caught.
	Fishing	Direct impacts (damage or mortality) to organisms due to interactions (excluding capture) with fishing gear during deployment, retrieval and fishing. This includes damage/mortality to organisms through contact with the gear that doesn't result in capture, e.g. damage/mortality to benthic species by gear moving over them, organisms that hit nets but are not caught.
	Incidental behaviour	Direct impacts (damage or mortality) without capture, to organisms due to behaviour incidental to primary fishing activities, possibly in the crew's down time; e.g. the use of firearms on scavenging species, damage/mortality to organisms through contact with the gear that the crew use to fish during their down time. This does not include impacts on predator species of removing their prey through fishing.
	Gear loss	Direct impacts (damage or mortality), without capture on organisms due to gear that has been lost from the fishing boat. This includes damage/mortality to species when the lost gear contacts them or if species swallow the lost gear.
	Anchoring/mooring	Direct impact (damage or mortality) that occurs and when anchoring or mooring. This includes damage/mortality due to physical contact of the anchor, chain or rope with organisms, e.g. An anchor damaging live coral.
	Navigation/steaming	Direct impact (damage or mortality) without capture may occur while vessels are navigating or steaming. This includes collisions with marine organisms or birds.
Addition/ movement of biological material		Any activities that result in the addition or movement of biological material to the ecosystem of the fishery.
	Translocation of species (boat movements, reballasting)	The translocation and introduction of species to the area of the fishery, through transportation of any life stage. This transport can occur through movement on boat hulls or in ballast water as boats move throughout the fishery or from outside areas into the fishery.
	On board processing	The discarding of unwanted sections of target after on board processing introduces or moves biological material, e.g. heading and gutting, retaining fins but discarding trunks.

DIRECT IMPACT OF	FISHING ACTIVITY	EXAMPLES OF ACTIVITIES INCLUDE
	Discarding catch	The discarding of unwanted organisms from the catch can introduce or move biological material. This includes individuals of target and byproduct species due to damage (e.g. shark or marine mammal predation), size, high grading and catch limits. Also includes discarding of all non-retained bycatch species. This also includes discarding of catch resulting from incidental fishing by the crew. The discards could be alive or dead.
	Stock enhancement	The addition of larvae, juveniles or adults to the fishery or ecosystem to increase the stock or catches.
	Provisioning	The use of bait or berley in the fishery.
	Organic waste disposal	The disposal of organic wastes (e.g. food scraps, sewage) from the boats.
Addition of non-biological material		Any activities that result in non-biological material being added to the ecosystem of the fishery, this includes physical debris, chemicals (in the air and water), lost gear, noise, and visual stimuli.
	Debris	Non-biological material may be introduced in the form of debris from fishing vessels or mother ships. This includes debris from the fishing process: e.g. cardboard thrown over from bait boxes, straps and netting bags lost. Debris from non-fishing activities can also contribute to this e.g. crew rubbish - discarding plastics or other rubbish. Discarding at sea is regulated by MARPOL, which forbids the discarding of plastics.
	Chemical pollution	Chemicals can be introduced to water, sediment and atmosphere through: oil spills, detergents other cleaning agents, any chemicals used during processing or fishing activities.
	Exhaust	Exhaust can be introduced to the atmosphere and water through operation of fishing vessels
	Gear loss	The loss of gear will result in the addition of non-biological material, this includes hooks, line, sinkers, nets, otter boards, light sticks, buoys etc.
	Navigation/steaming	The navigation and steaming of vessels will introduce noise and visual stimuli into the environment. Boat collisions and/or sinking of vessels. Echo-sounding may introduce noise that may disrupt some species (e.g. whales, orange roughy)
	Activity/presence on water	The activity or presence of fishing vessels on the water will noise and visual stimuli into the environment.
Disturb physical processes		Any activities that will disturb physical processes, particularly processes related to water movement or sediment and hard substrate (e.g. boulders, rocky reef) processes.
	Bait collection	Bait collection may disturb physical processes if the gear contacts seafloor-disturbing sediment, or if the gear disrupts water flow patterns.
	Fishing	Fishing activities may disturb physical processes if the gear contacts seafloor-disturbing sediment, or if the gear disrupts water flow patterns.
	Boat launching	Boat launching may disturb physical processes, particularly in the intertidal regions, if dredging is required, or the boats are dragged across substrate. This would also include foreshore impacts where fishers drive along beaches to reach fishing locations and launch boats. Impacts of boat launching that occurs within established marinas are outside the scope of this assessment.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	
EXAMPLES OF ACTIVITIES INCLUDE		
	Anchoring/mooring	Anchoring/mooring may affect the physical processes in the area that anchors and anchor chains contact the seafloor.
	Navigation/steaming	Navigation/steaming may affect the physical processes on the benthos and the pelagic by turbulent action of propellers or wake formation.
		Any outside activities that will result in an impact on the component in the same location and period that the fishery operates. The particular activity as well as the mechanism for external hazards should be specified.
	Other capture fishery methods	Take or habitat impact by other commercial, indigenous, or recreational fisheries operating in the same region as the fishery under examination.
	Aquaculture	Capture of feed species for aquaculture. Impacts of cages on the benthos in the region.
	Coastal development	Sewage discharge, ocean dumping, agricultural runoff.
	Other extractive activities	Oil and gas pipelines, drilling, seismic activity.
	Other non-extractive activities	Defense, shipping lanes, dumping of munitions, submarine cables.
	Other anthropogenic activities	Recreational activities, such as scuba diving leading to coral damage, power boats colliding with whales, dugongs, turtles. Shipping, oil spills.

2.2.5 Bibliography (Step 5)

All references used in the scoping assessment are included in the References section.
Key documents can be found on the AFMA web page at www.afma.gov.au and include the following:

- Management Plan and Regulation Guidelines
- Bycatch Action Plans
- Data Summary Reports (logbook and observer)

Other publications that provided information include:

- ABARES Fishery Status Reports
- Strategic Plans

2.2.6 Decision rules to move to Level 1 (Step 6)

Any hazards that are identified at Step 4 Hazard Identification as occurring in the fishery are carried forward for analysis at Level 1.

In this case, 12 out of 26 possible internal activities were identified as occurring in this subfishery. All six external scenarios were also identified. Thus, a total of 18 activity-component scenarios will be considered at Level 1. This results in 89 (excluding the key commercial x direct impact by capture activity) total scenarios (of 160 possible) to be developed and evaluated using the unit lists (Key commercial/secondary, byproduct/bycatch, protected species, habitats, communities).

2.3 Level 1 Scale, Intensity and Consequence Analysis (SICA)

Level 1 aims to identify which hazards lead to a significant impact on any species, habitat, or community. Analysis at Level 1 is for whole components (key/secondary commercial; bycatch and byproduct; protected species; habitat; and communities), not individual sub-components. Since Level 1 is used mainly as a rapid screening tool, a "worst case" approach is used to ensure that elements screened out as low risk (either activities or components) are genuinely low risk. Analysis at Level 1 for each component is accomplished by considering the most vulnerable sub-component and the most vulnerable unit of analysis (e.g. most vulnerable species, habitat type or community). This is known as credible scenario evaluation (Richard Stocklosa e-systems Pty Ltd (March 2003) Review of CSIRO Risk Assessment Methodology: ecological risk assessment for the effects of fishing) in conventional risk assessment. In addition, where judgments about risk are uncertain, the highest level of risk that is still regarded as plausible is chosen. For this reason, the measures of risk produced at Level 1 cannot be regarded as absolute.

At Level 1 each fishery/sub-fishery is assessed using a scale, intensity, and consequence analysis (SICA). SICA is applied to the component as a whole by choosing the most vulnerable sub-component (linked to an operational objective) and most vulnerable unit of analysis. The rationale for these choices must be documented in detail. These steps are outlined below. Scale, intensity, and consequence analysis (SICA) consists of thirteen steps. The first ten steps are performed for each activity and component and correspond to the columns of the SICA table. The final three steps summarise the results for each component.

Step1. Record the hazard identification score (absence (0) presence (1) scores) identified at Step 3 at the scoping level (Scoping Document S3) onto the SICA table

Step 2. Score spatial scale of the activity
Step 3. Score temporal scale of the activity
Step 4. Choose the sub-component most likely to be affected by activity
Step 5. Choose the most vulnerable unit of analysis for the component e.g. species, habitat type or community assemblage

Step 6. Select the most appropriate operational objective
Step 7. Score the intensity of the activity for that sub-component
Step 8. Score the consequence resulting from the intensity for that sub component
Step 9. Record confidence/uncertainty for the consequence scores
Step 10. Document rationale for each of the above steps
Step 11. Summary of SICA results
Step 12. Evaluation/discussion of Level 1
Step 13. Components to be examined at Level 2

2.3.1 Record the hazard identification score (absence (0) presence (1) scores) identified at step 3 in the scoping level onto the SICA Document (Step 1)

Record the hazard identification score absence (0) presence (1) identified at Step 3 at the scoping level onto the SICA sheet. A separate sheet will be required for each component (key/secondary commercial, bycatch and byproduct, and protected species, habitat and communities). Only those activities that scored a 1 (presence) will be analysed at Level 1.

2.3.2 Score spatial scale of activity (Step 2)

The greatest spatial extent must be used for determining the spatial scale score for each identified hazard. For example, if fishing (e.g. capture by longline) takes place within an area of 200 nm by 300 nm , then the spatial scale is scored as 4 . The score is then recorded onto the SICA Document and the rationale documented.

Table 2.14. Spatial scale score of activity.

<1 NM	$1-10 ~ N M$	$10-100 ~ N M$	$100-500 ~ N M$	$500-1000 ~ N M$	$>1000 ~ N M$
1	2	3	4	5	6

Maps and graphs may be used to supplement the information (e.g. sketches of the distribution of the activity relative to the distribution of the component) and additional notes describing the nature of the activity should be provided. The spatial scale score at Step 2 is not used directly, but the analysis is used in making judgments about level of intensity at Step 7. Obviously, two activities can score the same with regard to spatial scale, but the intensity of each can differ vastly. The reasons for the score are recorded in the rationale column of the SICA spreadsheet.

2.3.3 Score temporal scale of activity (Step 3)

The highest frequency must be used for determining the temporal scale score for each identified hazard. If the fishing activity occurs daily, the temporal scale is scored as 6 . If oil spillage occurs about once per year, then the temporal scale of that hazard scores a 3. The score is then recorded onto the SICA Document and the rationale documented.

Table 2.15. Temporal scale score of activity.

DECADAL	EVERY SEVERAL	ANNUAL	QUARTERLY	WEEKLY	DAILY
(1 DAY EVERY 10	YEARS				
YEARS OR SO)	(1 DAY EVERY (1-100 DAYS PER (100-200 DAYS SEVERAL YEARS)	YEAR)	PER YEAR)	(200-300 DAYS PER YEAR)	(300-365 DAYS PER YEAR)
1	2	3	4	5	6

It may be more logical for some activities to consider the aggregate number of days that an activity occurs. For example, if the activity "fishing" was undertaken by 10 boats during the
same 150 days of the year, the score is 4 . If the same 10 boats each spend 30 non-overlapping days fishing, the temporal scale of the activity is a sum of 300 days, indicating that a score of 6 is appropriate. In the case where the activity occurs over many days, but only every 10 years, the number of days by the number of years in the cycle is used to determine the score. For example, 100 days of an activity every 10 years averages to 10 days every year, so that a score of 3 is appropriate.

The temporal scale score at Step 3 is not used directly, but the analysis is used in making judgments about level of intensity at Step 7. Obviously, two activities can score the same with regard to temporal scale, but the intensity of each can differ vastly. The reasons for the score are recorded in the rationale column.

2.3.4 Choose the sub-component most likely to be affected by activity (Step 4)

The most vulnerable sub-component must be used for analysis of each identified hazard. This selection must be made on the basis of expected highest potential risk for each 'direct impact of fishing' and 'fishing activity' combination and recorded in the 'sub-component' column of the SICA Document. The justification is recorded in the rationale column.

2.3.5 Choose the unit of analysis most likely to be affected by activity and to have highest consequence score (Step 5)

The most vulnerable 'unit of analysis' (i.e. most vulnerable species, habitat type or community) must be used for analysis of each identified hazard. The species, habitats, or communities (depending on which component is being analysed) are selected from Scoping Document S2 (A - C). This selection must be made on the basis of expected highest potential risk for each 'direct impact of fishing' and 'fishing activity' combination and recorded in the 'unit of analysis' column of the SICA Document. The justification is recorded in the rationale column.

2.3.6 Select the most appropriate operational objective (Step 6)

To provide linkage between the SICA consequence score and the management objectives, the most appropriate operational objective for each sub-component is chosen. The most relevant operational objective code from Scoping Document S3 is recorded in the 'operational objective' column in the SICA document. Note that SICA can only be performed on operational objectives agreed as important for the (sub) fishery during scoping and contained in Scoping Document S3. If the SICA process identifies reasons to include sub-components or operational objectives that were previously not included/eliminated, then these sub-components or operational objectives must be re-instated.

2.3.7 Score the intensity of the activity for the component (Step 7)

The score for intensity of an activity considers the direct impacts in line with the categories shown in the conceptual model (Figure 1.2) (capture, direct impact without capture, addition/movement of biological material, addition of non-biological material, disturbance to
physical processes, external hazards). The intensity of the activity is judged based on the scale of the activity, its nature and extent. Activities are scored as per intensity scores below.

Table 2.16. Intensity score of activity (Modified from Fletcher et al. 2002).

LEVEL	SCORE	
Negligible	1	remote likelihood of detection at any spatial or temporal scale
Minor	2	occurs rarely or in few restricted locations and detectability even at these scales is rare
Moderate	3	moderate at broader spatial scale, or severe but local
Major	4	severe and occurs reasonably often at broad spatial scale
Severe	5	occasional but very severe and localized or less severe but widespread and frequent
Catastrophic	6	local to regional severity or continual and widespread

This score is then recorded on the Level 1 (SICA) Document and the rationale documented.

2.3.8 Score the consequence of intensity for that component (Step 8)

The consequence of the activity is a measure of the likelihood of not achieving the operational objective for the selected sub-component and unit of analysis. It considers the flow on effects of the direct impacts from Step 7 for the relevant indicator (e.g. decline in biomass below the selected threshold due to direct capture). Activities are scored as per consequence scores defined below. A more detailed description of the consequences at each level for each component (key/secondary commercial, bycatch, and byproduct, protected species, habitats, and communities) is provided as a guide for scoring the consequences of the activities in the description of consequences table (Table 2.17).

Table 2.17. Consequence score for ERAEF activities (Modified from Fletcher et al. 2002).

LEVEL	SCORE	DESCRIPTION
Negligible	1	Impact unlikely to be detectable at the scale of the stock/habitat/community
Minor	2	Minimal impact on stock/habitat/community structure or dynamics Moderate
Major	4	Maximum impact that still meets an objective (e.g. sustainable level of impact such as full exploitation rate for a target species). Severe
Wider and longer term impacts (e.g. long-term decline in CPUE)		
Intolerable	6	Very serious impacts now occurring, with relatively long time period likely to be needed to restore to an acceptable level (e.g. serious decline in spawning biomass limiting population increase). Widespread and permanent/irreversible damage or loss will occur-unlikely to ever be fixed (e.g. extinction)

The score should be based on existing information and/or the expertise of the risk assessment group. The rationale for assigning each consequence score must be documented. The conceptual model may be used to link impact to consequence by showing the pathway that was considered. In the absence of agreement or information, the highest score (worst case scenario) considered plausible is applied to the activity.

2.3.9 Record confidence/uncertainty for the consequence scores (Step 9)

The information used at this level is qualitative and each step is based on expert (fishers, managers, conservationists, scientists) judgment. The confidence rating for the consequence score is rated as 1 (low confidence) or 2 (high confidence) for the activity/component. The score is recorded on the SICA Document and the rationale documented. The confidence will reflect the levels of uncertainty for each score at steps $2,3,7$ and 8 (see description; Table 2.18).

Table 2.18. Description of Confidence scores for Consequences. The confidence score appropriate to the rationale is used, and documented on the SICA Document.

CONFIDENCE	SCORE	RATIONALE FOR THE CONFIDENCE SCORE
Low	1	Data exists, but is considered poor or conflicting
	No data exists	
High	Disagreement between experts	
	Data exists and is considered sound 	Consensus between experts

2.3.10 Document rationale for each of the above steps (Step 10)

The rationale forms a logical pathway to the consequence score. It is provided for each choice at each step of the SICA analysis.

SICA steps 1-10. Tables of descriptions of consequences for each component and each sub component provide a guide for scoring the level of consequence (see Table above)

Level 1 (SICA) Document L1.1 Key commercial/secondary commercial species.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY			TEMPORAL SCALE OF HAZARD (1-6)	SUBCOMPONENT	UNIT OF ANALYSIS					RATIONALE
Capture	Bait collection	0									
	Fishing	1	4	6	Population size						There are no key or secondary commercial species that are not assessed. No further action required for this activity.
	Incidental behaviour	0									
Direct impact without capture	Bait collection	0									
	Fishing	1	4	6	Population size	Deepwater flathead	1.2	3	1	1	Population size is likely to be affected before the other sub-components. This species comprises the largest catch component within this assessment period mostly in the Central Zone over the outer shelf (110$250 \mathrm{~m})$. Intensity: moderate as small fish may be injured as they pass through the nets across a broad spatial scale. Consequence: negligible because fishing effectively targets spawning adults. Thus smaller fish will not be vulnerable and will have minimal impact on the stock. Confidence: low, due to lack of information on indirect mortality.
	Incidental behaviour	0									

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)	SPATIAL SCALE OF HAZARD (1-6)		SUBCOMPONENT	UNIT OF ANALYSIS					RATIONALE
	Gear loss	1	1	3	Population size	Bight redfish	1.2	2	1	2	Gear loss rarely occurs. Lost gear resulting in damage/mortality most likely to affect population size of this species, as lost gear may occur over areas where this species occurs (i.e. rocky reefs and muddy substrates). Intensity: minor, lost gear is considered to occur in a few restricted locations. Consequence: negligible as impact considered unlikely to be measurable at the scale of this stock. Confidence: high because it is known that very little gear is lost, and if so, most are retrieved.
	Anchoring/mooring	0									
	Navigation/steaming	1	4	6	Population size	Bight redfish	1.2	3	1	2	This activity is widespread within the GABT sector. Direct impact (damage or mortality) without capture due to navigation/steaming was considered to affect population size. Intensity: moderate, as this activity is a large component of fishing operations. Consequence: negligible, unlikley to be detectable at the scale of the stock. Confidence: high as it is considered unlikely for there to be strong interactions between navigation/steaming and damage or mortality to this species.
Addition/ movement of biological material	Translocation of species	0									
	On board processing	0									
	Discarding catch	1	4	6	Population size	Deepwater flathead	1.2	3	2	1	Discarding is common over the GABT and occurs frequently mostly likely along the outer shelf of the Central Zone. This activity will most likely affect behaviour/movement of this species if scavengers are attracted. These species is considered most likely that could scavenge and feed on discarded catch as they are piscivorous and vivacious. Intensity: moderate because these species are widespread. Consequence: minor as impact is likely to be minimal. Confidence: low due to lack of available data on movement behaviour of these species based on this activity.
	Stock enhancement	0									

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)		TEMPORAL SCALE OF HAZARD (1-6)	SUB- COMPONENT	UNIT OF ANALYSIS					RATIONALE
	Provisioning	0									
	Organic waste disposal	1	4	6	Population size	Deepwater flathead	1.2	1	1	2	If uncontaminated, food wastes may be discharged into the sea while the fishing vessel is in transit (MARPOL regulations). This is likely to occur daily. Disposal of organic waste occurs over small spatial scale. Intensity: negligible as impact area is only within metres of the vessel. Consequence: negligible, unlikely to affect the population size of this species. Confidence: high, logical consideration.
Addition of nonbiological material	Debris	0									
	Chemical pollution	0									
	Exhaust	1	4	6	Behaviour/ movement	Bight redfish	6.1	1	1	2	Fishing activity hence exhaust emissions occur over central zone of the GABT sector. Exhaust emission is expected to pose greatest potential risk for the behaviour/movement of this species due to repulsion. This species considered most vulnerable as juveniles may occur in estuaries and shallow coastal waters. Intensity: negligible because although the hazard occurs over a large range/scale, impact area is only within metres of the vessel. Consequence: negligible as most exhaust fumes enters the atmosphere, or immediately below the water from engines, dissolved gases and particulates not believed to greatly affect water and hence this demersal target species. Confidence: high due to localised exhaust unlikely to impact the behaviour/movement of this species.
	Gear loss	1	1	3	Population size	Deepwater flathead	1.2	2	1	2	Fishing occurs throughout the year over the Central zone of the GABT sector mostly over the outer shelf ($110-250 \mathrm{~m}$). Gear loss believed to occur rarely. Lost gear not resulting in damage/mortality most likely to affect population size of this species. Intensity: minor because lost gearspecies interactions (if they occur) are considered to be rare. Consequence: negligible, considered unlikely to be measurable at the

DIRECT IMPACT OF FISHING	FISHING ACTIVITY				SUBCOMPONENT	UNIT OF ANALYSIS					RATIONALE
											scale of this stock. Confidence: high because it is known that very little gear is lost, and interaction with species is considered unlikely.
	Navigation/steaming	1	4	6	Behaviour/ movement	Deepwater flathead	6.1	3	1	1	Navigation/steaming of fishing vessels was expected to pose greatest potential risk for the Behaviour/movement of target species resulting in disruption to feeding by introducing noise to the environment. Intensity: moderate, as activity occurs over a broad spatial scale. Consequence: negligible, as introduction of noise from navigation/steaming considered unlikely to impact bottom-dwelling species or be measurable for this species. Confidence: low because addition of non-biological material due to navigation/steaming to impact and have consequences for the behaviour/movement of this species is unlikely, but not known.
	Activity/presence on water	1	4	6	Behaviour/ movement	Bight redfish	6.1	3	2	1	Presence of vessels on water may change the behaviour, as vessels do attract or deter animals. Intensity: moderate as occurs over a broad spatial area. Consequence: minor, possible detectable change in behaviour/movement but minimal impact on population dynamics. Time to return to original behaviour/movement on the scale of days. Confidence: low because available data on acoustic disturbance from vessels on spawning on the behaviour/movement of this species is unknown.
Disturb physical processes	Bait collection	0									
	Fishing	1	4	6	Population size	Deepwater flathead	1.2	3	2	1	Deepwater flathead are bottom-dwellers and fishing may disturb sediments. Disturbance of physical processes due to fishing considered most likely to affect population size of this species. Intensity: moderate as disturbance of sediments may occur over broad spatial area. Consequence: minor as sediment disturbance not likely to affect population size of this species. Confidence: low because little information is available.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY	PRESENCE (1) ABSENCE (0)			SUBCOMPONENT	UNIT OF ANALYSIS					RATIONALE
	Boat launching	0									
	Anchoring/mooring	0									
	Navigation/steaming	1	4	6	Behaviour/ movement	Deepwater flathead	6.1	3	1	2	Disturbance to physical processes due to Navigation/steaming of fishing vessels was expected to pose greatest potential risk for the Behaviour/movement of this species resulting in disruption to feeding. Intensity: moderate as the hazard was considered over a large range/scale, but navigation/steaming considered to only impact a small area ($<1 \mathrm{~nm}$). Consequence: negligible with any impact of navigation/steaming unlikely to be measurable for this species. Confidence: high because navigation/steaming unlikely to impact and have consequences for the behaviour/movement of this species.
External impacts	Other fisheries: SESSF CTS otter, shark gillnet, shark hook, scalefish auto-longline; SPF, WTBF, SBT, SSJ; SA fisheries - sardine, marine scalefish, rock lobster, recreational; WA South Coast purse seine	1	6	6	Population size	Deepwater flathead	1.2	3	3	2	Commonwealth and State fisheries occur within or adjacent to the GABTF Central Zone outer shelf fishing grounds - not all with current effort or overlapping effort. This species was chosen as the most vulnerable because it is also caught by other fisheries and mostly caught in the SESSF-CTS: ~217 t retained (Commonwealth Logbooks) within this assessment period. Intensity: moderate, as it occurs over a broad spatial scale. Consequence: moderate, other fisheries may cause a reduction in recruitment dynamics or population size. Confidence: high, as information on catch of other Commonwealth fisheries is known.
	Aquaculture -abalone, oyster, mussels, SBT, Yellowtail kingfish	1	4	6	Behaviour/ movement	Bight redfish	6.1	2	2	1	Aquaculture occurs at sites on western Eyre Peninsula and Spencer Gulf (State waters) adjacent to inner shelf habitats. Nutrient depletion effects possible leading to alteration of behaviour/movement of this species locally but likely to be rapidly dispersed in inshore waters. This species selected as juveniles are known to occur in estuaries and coastal waters which could coincide with aquaculture sites. Intensity: minor as colocation of aquaculture sites and juveniles could occur rarely.

PIRECT IMPACT
OF FISHING
FISHING ACTIVITY

DIRECT IMPACT OF FISHING	FISHING ACTIVITY				SUBCOMPONENT	UNIT OF ANALYSIS					RATIONALE
											minor, as detectability is considered to be rare. Confidence: low, little information on potential effects.
	Other anthropogenic activities	1	4	6	Behaviour/ movement	Deepwater flathead	6.1	2	2	1	Tourism (e.g. whale watching, fishing tours, diving, charter trips), recreational boating are likely to have minor effects on the behaviour/movement of this species. These effects are considered to be localized and only impact a small proportion of the population. Intensity: minor, activities could impact a wide range. Consequence: minor, as restricted area rare event short term effects. Confidence: low, limited available information.

Level 1 (SICA) Document L1.2-Byproduct and Bycatch Component.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY				SUBCOMPONENT	UNIT OF ANALYSIS					RATIONALE
Capture	Bait collection	0									
	Fishing	1	4	6	Population size	Latchet; skates and rays unspecified	1.2	3	3	1	Fishing occurs throughout the year in the Central Zone mostly over the outer shelf ($110-250 \mathrm{~m}$). Latchets and chondrichthyans comprising a combination of skates, rays, stingrays and stingarees recorded as generic groups were chosen because they were mostly discarded within this assessment period, i.e. latchet: ~809 t (Commonwealth Logbooks); chondrichthyans - combination of skates, rays, stingrays and stingarees: ~688 t discarded (Commonwealth Logbooks). In addition, there are no quota limits for latchet species or species of skates, rays, stingrays or stingarees. Intensity: moderate as fishing occurs over broad spatial scale. Consequence: moderate, as this activity may cause a reduction in recruitment dynamics or population size. Confidence: low, as stock status is unknown for latchet and these chondrichthyans.
	Incidental behaviour	0									
Direct impact without capture	Bait collection	0									
	Fishing	1	4	6	Population size	Latchet	1.2	3	2	1	Fishing occurs throughout the year in the Central Zone mostly over the outer shelf (110-250 m). Injury/mortality to this species as a result of passing through the net is expected to have highest potential risk for the population size sub-component. This species chosen as units of analysis because small ones are known to pass through nets (AFMA Observer, pers. comm). Intensity: moderate as small fish escape the net and activity occurs over a broader spatial scale. Consequence: minor as impact unlikely to affect long-term recruitment dynamics, but could affect population size. Confidence: low because of lack of data on mortality of these fish species after they have escaped net.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY				SUBCOMPONENT	UNIT OF ANALYSIS					RATIONALE
	Incidental behaviour	0									
	Gear loss	1	1	3	Population size	Latchet	1.2	2	1	2	Gear loss rarely occurs. This species was chosen as it is the most discarded and if gear is lost it is likely to occur nearby fishery operations. Lost gear resulting in damage/mortality most likely to affect population size of ths species. Intensity: minor as lost gear is considered rare and localized. Consequence: negligible as impact considered unlikely to be measurable at the scale of this stock. Confidence: high because it is known that very little gear is lost, and if so retrieved (AFMA Observer manager, pers. comm.) and interaction with this species is considered unlikely.
	Anchoring/mooring	0									
	Navigation/steaming	1	4	6	Population size	Latchet	1.2	3	1	2	Navigation/steaming occurs throughout the year in the Central Zone mostly over the outer shelf (110-250 m). Direct impact (damage or mortality) without capture due to navigation/steaming was considered most likely to affect population size of this species. Juveniles are more often found in shallow coastal waters, so may be close to surface. Intensity: moderate, navigation/steaming is a large component of the GABT fishery operations. Consequence: negligible as it is unlikely to be measurable. Confidence: high because it was considered unlikely for there to be strong interactions between navigation/steaming and damage or mortality of this species.
Addition/ movement of biological material	Translocation of species	0									
	On board processing	0									
	Discarding catch	1	4	6	Behaviour/ movement	Latchet	6.1	3	2	1	Discarding is common over GABT sector (within the Central Zone mostly over the outer shelf: $110-250 \mathrm{~m}$) and occurs frequently and is most likely to affect behaviour/movement of this species if scavengers

DIRECT IMPACT OF FISHING	FISHING ACTIVITY				SUBCOMPONENT	UNIT OF ANALYSIS					RATIONALE
											are attracted. This species considered most likely species that could be attracted to discards. Intensity: moderate because discarding occurs over broad spatial scale and this species is widespread. Consequence scored as minor as impact is likely to be minimal. Confidence: low due to lack of available data on movement behaviour of these species based on this activity.
	Stock enhancement	0									
	Provisioning	0									
	Organic waste disposal	1	4	6	Population size	Latchet	1.2	1	1	2	If uncontaminated, food wastes may be discharged into the sea while the fishing vessel is in transit (MARPOL regulations). This is likely to occur daily. This species was chosen since it was discarded the most. Disposal of organic waste occurs over small spatial scale. Intensity: negligible as impact area is only within metres of the vessel. Consequence: negligible, unlikely to affect the population size of this species. Confidence: high, logical consideration.
Addition of non-biological material	Debris	0									
	Chemical pollution	0									
	Exhaust	1	4	6	Behaviour/ movement	Latchet	6.1	1	1	2	Fishing activity hence exhaust emissions occur over GABT sector. Exhaust emission is expected to pose greatest potential risk for the behaviour/movement of this species due to repulsion. Most exhaust enters the atmosphere, or immediately below the water from engines, dissolved gases and particulates not believed to be of consequence to benthic species. However, this species considered most vulnerable as juveniles are more often found in shallow waters. Intensity: negligible because although the hazard occurs over a large range/scale, impact area is only within metres of the vessel. Consequence: negligible as any

DIRECT IMPACT OF FISHING	FISHING ACTIVITY				SUBCOMPONENT	UNIT OF ANALYSIS					RATIONALE
											consequence on this species unlikely to be measurable. Confidence: high because localised exhaust unlikely to impact on behaviour/movement of this species.
	Gear loss	1	1	3	Population size	Latchet	1.2	2	1	2	Fishing occurs throughout the year over the GABT sector. Gear loss believed to occur rarely. Lost gear not resulting in damage/mortality most likely to affect population size of this species. Intensity: minor because lost gear-species interactions (if they occur) are considered to be rare. Consequence: negligible, considered unlikely to be measurable at the scale of this stock. Confidence: high because it is known that very little gear is lost, and interaction with species is considered unlikely.
	Navigation/steaming	1	4	6	Behaviour/ movement	Latchet	6.1	3	1	1	Navigation/steaming of fishing vessels was expected to pose greatest potential risk for the Behaviour/movement of species resulting in disruption to feeding and/or movement. Introduction of noise from navigation/steaming considered unlikely to impact bottom-dwelling species. Intensity: moderate as this activity occurs over a broader spatial scale. Consequence: negligible as impact of Navigation/steaming unlikely to be measurable. Confidence: low because addition of nonbiological material due to navigation/steaming to impact and have consequences for the behaviour/movement of this species is unlikely, but not known.
	Activity/presence on water	1	4	6	Behaviour/ movement	Latchet	6.1	3	2	1	Activity/presence on water occurs over the GABT sector. Vessels in the area do attract (or avoid) animals. This species could have an avoidance reaction to acoustic signals, and could use echo-location. Intensity: moderate as presence of vessels occurs over broad spatial scale within the SESSF. Consequence: minor as any spawning aggregations could be disturbed. Confidence: low because available data on acoustic disturbance on a spawning on the behaviour/movement of this species is unknown.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY				SUBCOMPONENT	UNIT OF ANALYSIS					RATIONALE
Disturb physical processes	Bait collection	0									
	Fishing	1	4	6	Population size	Latchet; skates and rays unspecified	1.2	3	2	1	Fishing activity hence disturbance of physical processes occurs throughout the year over the GABT sector. Disturbance of physical processes due to fishing considered most likely to affect population size of this species. These species considered most likely to be affected as they are bottom-dwellers and fishing may disturb sediments. Intensity: moderate as disturbance of sediment may occur often over broad spatial scale. Consequence: minor as sediment disturbance not likely to affect population size or dynamics of this species. Confidence: low because little information is available.
	Boat launching	0									
	Anchoring/mooring	0									
	Navigation/steaming	1	4	6	Behaviour/ movement	Latchet	6.1	3	1	2	Navigation/steaming occurs throughout the year over the GABT sector. Disturbance to physical processes due to Navigation/steaming of fishing vessels was expected to pose greatest potential risk for the Behaviour/movement of this species resulting in disruption to feeding. This species considered most vulnerable as juveniles are pelagic. Intensity: moderate because the hazard was considered over a broad range/scale, navigation/steaming considered to only impact a small area ($<1 \mathrm{~nm}$). Consequence: negligible with any impact of navigation/steaming unlikely to be measurable for this species. Confidence: high because navigation/steaming unlikely to impact and have consequences for the behaviour/movement of this species.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY				SUBCOMPONENT	UNIT OF ANALYSIS					RATIONALE
External impacts	Other fisheries: SESSF CTS otter, shark gillnet, shark hook, scalefish auto-longline; SPF, WTBF, SBT, SSJ; SA fisheries - sardine, marine scalefish, rock lobster, recreational; WA South Coast purse seine	1	6	6	Population size	Latchet	1.2	3	3	2	Commonwealth and State fisheries occur within or adjacent to the GABT fishery Central Zone outer shelf fishing grounds - not all with current effort or overlapping effort. This species was chosen as the most vulnerable because it is also caught by other fisheries and mostly caught in the SESSF-CTS: $\sim 593 \mathrm{t}$ retained (Commonwealth Logbooks) within this assessment period. Intensity: moderate, as it occurs over a broad spatial scale. Consequence: moderate, other fisheries may cause a reduction in recruitment dynamics or population size. Confidence: high, as information on catch of other Commonwealth fisheries is known.
	Aquaculture - abalone, oyster, mussels, SBT, yellowtail kingfish	1	4	6	Behaviour/ movement	Latchet	6.1	2	2		Aquaculture occurs at sites on western Eyre Peninsula and Spencer Gulf (State waters) adjacent to inner shelf habitats. Nutrient depletion effects possible leading to alteration of behaviour/movement of this species locally but likely to be rapidly dispersed in inshore waters. This species selected as they are known to occur in estuaries and coastal waters which could coincide with aquaculture sites. Intensity: minor as co-location of aquaculture sites and latchet could occur rarely. Consequence: minor as impacts on behvaiour/movement of this species is minimal and variability unlikley to be detected against natural variability. Confidence: low as there is little data on the co-location of aquaculture sites and latchet.
	Coastal development	1	5	6	Behaviour/ movement	Latchet	6.1	3	2	1	Coastal development mostly localised within Gulfs and eastern GAB. Frequent, local impacts at small spatial scales should have most obvious impact on the behaviour/movement of this species. Intensity: moderate, both broad coastal development and localised centres. Consequence: minor as coastal development expected to have minimal impact on latchet behaviour/movement. Confidence: low as there is little data available.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY				SUBCOMPONENT	UNIT OF ANALYSIS			¢ \pm 4 0 0		RATIONALE
	Other extractive activities	1	4	6	Behaviour/ movement	Latchet	6.1	2	2	2	Ongoing development and expansion of oil and gas pipelines, oil and gas exploration and extraction drilling, and seismic surveys most likely to affect the behaviour/movement of this species. The auditory and lateral line sensory acuity of this species could be affected by seismic survey. Oil and gas extraction and exploration occurs at a variety of sites throughout the GABT fishery in central and eastern GAB. Extraction occurs on a daily basis throughout the year in a few locations. Two seismic surveys were conducted in 2015 and more are planned. Evidence that seismic surveys affect fish behaviour possibly causing them to migrate out of fishing grounds. Intensity: minor, local effects are potentially severe but confined to small areas, surveys infrequent. Consequence: minor, possible detectable change in behaviour/movement but minimal impact on behaviour/movement of species. Confidence: high, evidence for effects now being documented.
	Other non extractive activities	1	6	6	Behaviour/ movement	Latchet	6.1	3	2	1	Ongoing shipping, naval activities and ocean dumping is likely to have minor effects on the movement and behaviour of this species. Intensity: moderate, as activity occurs over a broad spatial scale. Consequence: minor, as detectability is considered to be rare. Confidence: low, little information on potential effects.
	Other anthropogenic activities	1	4	6	Behaviour/ movement	Latchet	6.1	2	2	1	Tourism (e.g. whale watching, fishing tours, diving, charter trips), recreational boating are likely to have minor effects on the behaviour/movement of this species. These effects are considered to be localized and only impact a small proportion of the population. Intensity: minor, activities could impact a wide range. Consequence: minor, as restricted area rare event short term effects. Confidence: low, limited available information.

Level 1 (SICA) Document L1.3-Protected Species Component.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY			TEMPORAL SCALE OF HAZARD (1-6)	SUBCOMPONENT	UNIT OF ANALYSIS					RATIONALE
Capture	Bait collection	0									
	Fishing	1	4	6	Population size	Shy albatross	1.2	3	1	2	Fishing occurs mostly on the Central Zone outer shelf of GABT fishery on a daily basis throughout the year. Shy Albatross most vulnerable to decline in population size from fishing, habitat loss and disease - population about 15000 pairs. Intensity: moderate fishing in localised area, although catch rate of birds reportedly rare ($\mathrm{F}=2 \times 10^{-5}$) Consequence: negligible, two mortalities in 5 years. Confidence: high, data are available.
	Incidental behaviour	0									
Direct impact without capture	Bait collection	0									
	Fishing	1	4	6	Population size	Longnosed fur seals	1.2	3	1	2	Fishing occurs mostly on the Central Zone outer shelf of GABT fishery on a daily basis throughout the year. Fur seals are known to scavenge around fishing vessels and do become entangled during trawling operations but only one reportedly caught and released alive during assessment period. Intensity: moderate. Consequence: negligible, no fatalities, no impact on population size. Confidence high: data on interactions mortality recorded.
	Incidental behaviour	0									
	Gear loss	1	1	3	Population size	Longnosed fur seals	1.2	2	1	2	Major gear loss is a rare event and lost gear can usually be recovered. Population size of longnosed fur seals might be affected if they become entangled in ropes or netting associated with the lost gear causing fatality. Intensity: minor, loss of gear is rare and potential incidents of entanglements would only occur in a few restricted locations offshore. Consequence: negligible, the impact of entanglement fatality unlikely to be detected on any spatial or temporal scale. Confidence: high, data exists on reported gear losses.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY				SUB－ COMPONENT	UNIT OF ANALYSIS			（9－т）ョyOכऽ ヨכNヨกOヨSNOכ		RATIONALE
Addition of non－ biological material	Chemical pollution	0									
	Exhaust	1	4	6	Behaviour／ movement	Shy albatross	6.1	1	1	2	Exhaust would occur daily throughout the year．Movement／behaviour of seabirds is likely to be affected in their effort to avoid exhaust fumes．Intensity： negligible，exhaust would be quickly dispersed．Conequence：negligible，birds can avoid immediate vicinity．Confidence：high，logical consideration．
	Gear loss	1	1	3	Population size	Shy albatross	1.2	2	1	1	Gear loss is a rare event and lost gear can usually be recovered．Population size of shy albatross most likely affected if fatal entanglement with small wuantities of lost gear such as ropes or small mesh pieces．Intensity：minor，major loss of gear is rare but unknown how small offcuts are lost，but even so potential incidents of entanglements would only occur in a few restricted locations． Consequence：negligible，fatal entanglements of albatross have occurred twice in 5 years，although mortality due to non－fatal entanglemnt not known． Confidence：low logical consideration and knowledge of low loss of gear
	Navigation／steaming	1	4	6	Behaviour／ movement	Longnosed fur seals	6.1	3	1	2	Navigation to and from fishing grounds introduces noise and visual stimuli into the environment．Depth sounders／acoustic net positioning systems have potential to disturb marine species particualry marine mammals such as longnosed fur seals．Intensity：moderate．Consequence：negligible，behavioural changes detectable only over course of ours or days．Confidence：high，observer data exists．
	Activity／presence on water	1	4	6	Behaviour／ movement	Shy albatross	6.1	3	1	2	Physical presence of vessel introduces noise and visual stimuli into the environment．Shy albatross movement／behaviour most likely to be affected． Intensity：moderate although catch rate of birds very low．Consequence： negligible，one mortality in 5 years very low mortality rate．Confidence：high， data exists．
	Bait collection	0									

DIRECT IMPACT OF FISHING	FISHING ACTIVITY			TEMPORAL SCALE OF HAZARD（1－6）	SUB－ COMPONENT	UNIT OF ANALYSIS			(9-ז) ヨצOכS ヨכNヨกOヨSNOכ		RATIONALE
Disturb physical processes	Fishing	1	4	6	Behaviour／ movement	Syngnathids	6.1	3	2	1	Fishing may disturb seabed sediments and structure and trawling has a higher impact on seafloor than many other methods．Syngnathids likely to be more affected than other species as they are more benthos associated although few species live in outer shelf depths．Intensity：moderate，demersal trawling may degrade small reef patches and impact associated small scale hydrodynamics across a broad spatial scale．Consequence：minor，may move away from the trawl impact zone but recovery of normal behaviour would occur within days． Confidence：low，little data exists．
	Boat launching	0									
	Anchoring／mooring	0									
	Navigation／steaming	1	4	6	Behaviour／ movement	Longnosed fur seals	6.1	3	1	2	Navigation／steaming may affect the physical processes on the benthos and the pelagic by turbulent action of propellers or wake formation．Seals potentially most vulnerable to effects of water turbulence．Intensity：moderate． Consequence：negligible，unlikley to detect variation．Confidence：high，observer data exists and logical．
External impacts	Other fisheries：SESSF－ CTS otter，shark gillnet， shark hook，scalefish auto－longline；SPF， WTBF，SBT，SSJ；SA fisheries－sardine， marine scalefish，rock lobster，recreational； WA South Coast purse seine	1	6	6	Population size	Shy albatross	1.2	3	2	2	Commonwealth and State Fisheries occur within or adjacent to the GABT fishery Central Zone outer shelf fishing grounds－not all with current effort or overlapping effort．Shy albatross most affected as they are olefactory sensing animals and known to scavenge around fishing vessels．Shy albatross most vulnerable to decline from capture from fishing，also habitat loss and disease， population about 15，000 pairs．Intensity：moderate fishing in localised area and more broadly．Consequence：minor，one mortality in 5 years very low mortality rate．Confidence：high，data exists．

DIRECT IMPACT OF FISHING	FISHING ACTIVITY				SUBCOMPONENT	UNIT OF ANALYSIS		$\stackrel{\text { I }}{ }$			RATIONALE
	Aquaculture - abalone, oyster, mussels, SBT, Yellowtail kingfish	1	4	6	Behaviour/ movement	Longnosed fur seals	6.1	2	2	2	Aquaculture occurs at sites on western Eyre Peninsula, Spencer Gulf (State waters), Port Lincoln (SBT), Kangaroo Is, coastal bays etc. and inlets (oysters). Operations may attract seals scavenging excess feed or escaped fish. Intensity: minor. Consequence: minor, possible habituation but these effects are coastal and not within GABT fishery. Confidence: high, logical.
	Coastal development	1	5	6	Behaviour/ movement	Longnosed fur seals	6.1	2	1	2	Coastal development mostly localised within Gulfs and eastern GAB. Modifications to beaches, rivers and other coastal land features may disturb physical habitat of the coastal environement and potentially haul out sites for seals altering their behaviour and movement. Intensity: minor, coastal development occurs at localized sites across a broad spatial extent. Consequence: negligible, restricted to a small proportion of the coastal area not overlapping with seal colonies. Confidence: high, data exists.
	Other extractive activities	1	4	6	Behaviour/ movement	Longnosed fur seals	6.1	2	2	2	Ongoing development and expansion of oil and gas pipelines, oil and gas exploration and extraction drilling, and seismic surveys most likely to affect movement and behaviour of marine mammals. Fur seals are known to forage around pipelines. Evidence that seismic surveys affect fish and invertebrate (scallop) behaviour possibly causing them to migrate out of fishing grounds. Intensity: minor, local effects of seismic surveys potentially severe but confined to small areas and currently infrequent. Consequence: minor, possible detectable change movement and behaviour but likely return to normal within days. Confidence: high, a few studies underway.
	Other non extractive activities	1	6	6	Behaviour/ movement	Shy albatross	6.1	3	1	2	Shipping occurs throughout the area daily - eastern and western routes to and from major South Australian ports. Movement and behaviour of shy albatross may be affected due to temporary attraction to vessels. Intensity: moderate. Consequence: negligible, interactions unlikely to be detectable against natural variation, normal behaviour resumes within hours. Confidence: high, logical.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY				SUBCOMPONENT	UNIT OF ANALYSIS					RATIONALE
	Other anthropogenic activities	1	4	6	Behaviour/ movement	Longnosed fur seals	6.1	2	1	2	Fur seals are attracted by fishing activities by charter boats associated with general recreational activities, and tourism in coastal areas (e.g. whale watching, fishing tours, anchoring, recreational diving etc.). Most activities occur commonly off GAB Southern inner and outer shelf. Intensity: minor, occurs in localised area. Consequence: negligible, interactions which affect the longnosed furseal behaviour and movement unlikely to be detectable against natural variation. Confidence: high, logical.

Level 1 (SICA) Document L1.4-Habitat Component (demersal)

				¢							
DIRECT IMPACT OF FISHING	FISHING ACTIVITY				SUB-COMPONENT	UNIT OF ANALYSIS					RATIONALE
Capture	Bait collection	0									
	Fishing	1	4	6	Habitat structure and function	Habitat forming benthos (GAB assemblage 8)	5.1	3	4	1	Greatest effort is spent in outer shelf depths where habitat types in GAB assemblage 8 most vulnerable to impact Pitcher et al. (2016). Demersal trawl gears have a relatively large footprint and contact the bottom heavily, which can remove and damage large erect inflexible faunas. Sponge habitat on coarse sediments is considered most at risk in this region, replaced by the fragile bryozoan (lace coral) matrix dominant at the shelf edge/upper slope depths. Function within this habitat type will be altered, both by removal and damage of fauna, attraction of mobile scavenging invertebrate species, and disturbance of substratum and substratum processes. Intensity: moderate, effects may be concentrated. Consequence: major, but despite large footprint in this asemblage it is unknown how affected the vulnerable habitat types are (Pitcher et al. 2016). Removal of complex structure may take periods greater than a decade to recover in these depths. Confidence: low.
	Incidental behaviour	0									
Direct impact without capture	Bait collection	0									
	Fishing	1	4	6	Habitat structure and function	Habitat forming benthos (GAB assemblage 8)	5.1	3	4	1	Greatest effort is spent in outer shelf depths. Habitat types in GAB assemblage 8 most vulnerable to impact Pitcher et al. (2016). In the process of fishing without capture, bottom may be dragged repeatedly damaging habitat structure even if not retained by gear. Octocoral and bryozoan-dominant habitat structures are altered when the removal of delicate, inflexible structural forms results in the conversion of lower relief 'hard' bottom, to soft bottom, on sediments. Function within this habitat type will be altered, both by removal and damage of fauna,

DIRECT IMPACT OF FISHING	FISHING ACTIVITY				SUB-COMPONENT	UNIT OF ANALYSIS					RATIONALE
biological material	Discarding catch	1	4	6	Substrate quality	Habitat forming benthos (GAB assemblage 8)	3.1	3	2	2	Discarding occurs regulalry throughout the fishery. Substrate quality on the shelf assemblages was considered most likely to be impacted because discarding of catch may result in accumulation of carcasses, leading to altered sediment chemistry in and above substrate, fine sediments can be disturbed, and bioturbators and filter feeders smothered. Intensity: moderate over the scale of the fishery, waste expected to be taken up quickly by opportunistic scavengers. Consequence: minor because measurable impacts were considered to only be detectable at localised scales. Confidence: high, because operators generally discard waste over the course of fishing operations leading to no localised accumulations of waste.
	Stock enhancement	0									
	Provisioning	0									
	Organic waste disposal	1	4	6	Water quality	Habitat forming benthos (GAB assemblage 8)	1.1	1	1	2	Discharge of organic waste (e.g. uncontaminated food waste) likely to occur daily although relatively small amounts. Intensity: negligible, unlikely to detect due to small volumes and rapid dispersal. Consequence: negligible, unlikely to be measurable or persistent for more than a few hours. Confidence: high, localised short term increases in nutrient not expected to adversely affect water column.
Addition of nonbiological material	Debris	0									
	Chemical pollution	0									
	Exhaust	1	4	6	Air quality	Southern Pelagic provinces - coastal P7	2.1	1	1	2	Exhaust from running engines may impact the air quality within Southern Oceanic Pelagic habitat. Intensity: negligible because although the hazard occurs over a larger range/scale, impact area is only within metres of the vessel. Consequence: negligible due to rapid dispersal of pollutants in winds, and likely to be physically undetectable even over

DIRECT IMPACT OF FISHING	FISHING ACTIVITY			TEMPORAL SCALE OF HAZARD (1-6)	SUB-COMPONENT	UNIT OF ANALYSIS					RATIONALE
											translocated by currents, smother bioturbators, and filter feeding fauna and disrupt the biogeochemical cycle in and above substratum. Intensity: moderate, effects may be concentrated. Consequence: moderate, can change 'hard' grounds to 'soft', removing surface attachment for some fauna. Confidence: low, footprint in assemblage quite high but $\%$ of vulnerable habitat affected unknown.
	Boat launching	0									
	Anchoring/mooring	0									
	Navigation/steaming	1	4	6	Water quality	Southern Pelagic provinces - coastal P7	1.1	3	1	2	Fishing activity hence navigation/steaming occurs throughout the year over the entire SESSF. Disturbance of physical processes will occur during the normal course of steaming throughout the fishing zone. Turbulence and disturbance of pelagic water quality is unlikely to affect normal water column processes for long. Any disruption to these processes can therefore be expected to alter habitat function only briefly. Intensity: moderate, occurs over broad spatial scale. Consequence: negligible, remote likelihood of detection of impact against natural variation. Confidence: high, logical.
External impacts	Other fisheries: SESSF CTS otter, shark gillnet, shark hook, scalefish auto-longline; SPF, WTBF, SBT, SSJ; SA fisheries - sardine, marine scalefish, rock lobster, recreational; WA South Coast purse seine	1	6	6	Habitat structure and function	Habitat forming benthos (GAB assemblage 8)	5.1	3	1	2	Other fisheries operate over the same grounds. No other benthicimpacting fisheries overlap within the GABT fishery. Fishing activity of these fisheries occurs over a large spatial range, over which there can be daily fishing activity. Intensity: moderate. Consequence: negligible as benthos is rarely involved with pelagic methods and tends to be more inshore inner shelf where it does (e.g. inadvertent net groundings in SPF, feed accumulation in SBT during transporting/ caging). Confidence: high, data on overlaps exists.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY			¢	SUB-COMPONENT	UNIT OF ANALYSIS		¢			RATIONALE
	Aquaculture - abalone, oyster, mussels, SBT, yellowtail kingfish	1	4	6	Water quality, substrate quality	Southern Pelagic provinces-coastal P7, Inner shelf assemblages of fine sediments, unrippled, large sponges (not identified by Pitcher et al. 2016)	$\begin{aligned} & 1.1, \\ & 3.1 \end{aligned}$	2	1	2	Aquaculture occurs at sites on western Eyre Peninsula, Spencer Gulf (State waters), Port Lincoln (SBT), Kangaroo Is, coastal bays etc and inlets (oysters). Nutrient depletion effects possible but likely to be rapidly dispersed in inshore waters. Intensity: minor, in adjacent state waters and localised areas. Consequence: minor, impacts of nutrient depletion unlikley to be detectable against natural variability except on seagrass habitats important to different life stages of various species. Confidence: high, studies on nutrient inputs into estuaries are quickly dispersed but impacts if any difficult to measure against other anthopogenic sources (Wild-Allen and Andrewartha 2016). Confidence: high.
	Coastal development	1	5	6	Water quality, substrate quality	Southern Pelagic provinces-coastal P7, Inner shelf assemblages of fine sediments, unrippled, large sponges (not identified by Pitcher et al. 2016)	$\begin{aligned} & \text { 1.1, } \\ & 3.1 \end{aligned}$	3	2	2	Coastal development, particualry in Gulfs where the largest population centres occur, could affect non-overlapping habitats which may be important as nursery grounds for some species. Frequent, local impacts at small spatial scales are likely to have most obvious impact on the habitat water and substrate quality of these areas. Intensity: moderate, range of activities restricted spatial scale and the relatively low level of development in this area. Consequence: minor, impacts most likely to be inshore including waters less than 25 m (and not within fishery jurisdiction) and likely undetectable within jurisdiction. Confidence: high, logical consideration.
	Other extractive activities	1	4	6	Habitat type, structure and function	Assemblages 1 to 8	$\begin{aligned} & \text { 4.1, } \\ & 5.1 \end{aligned}$	2	2	2	Oil and gas extraction and exploration occurs at a variety of sites throughout the GABT fishery in central and eastern GAB. Extraction occurs daily throughout the year in a few locations. Two seismic surveys were conducted in 2015 and more are planned. Habitat types may be affected if this activity concentrates on particular geomorphology supporting similar forms and ultimately alteration of habitat structure and function. Intensity: minor, restricted spatial scale and the relatively low level of development in this area. Consequence: minor. Confidence: high, data exists, consensus and logical consideration.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY		⿳亠丷厂犬			SUB－COMPONENT	UNIT OF ANALYSIS						RATIONALE
	Other non extractive activities	1		6	6	Water quality	Southern Oceanic Pelagic provinces－ coastal and oceanic （P7 and 8）	1.1	3		2	2	Shipping occurs throughout the area daily－eastern and western routes to and from major South Australian ports and considered to impact the water quality of the pelagic habitat through introduction of pollutants or chemicals，noise，light and changes to water chemistry or turbidity． Intensity：moderate．Consequence：minor，area of disturbances confined to immediate area of vessels，and unlikley to detect impact．Confidence： high，logical．
	Other anthropogenic activities	1		4	6	Water quality	Inner shelf assemblages of fine sediments，unrippled， large sponges（not identified by Pitcher et al．2016）	1.1	2		2	2	Tourism and recreational activity could increase noise，pollutants，into the pelagic habitat particularly．Some activities could impact habitats such as recreational fishing／diving with certain gear．Intensity：minor although difficult to assess cumulative effects．Consequence：minor， unlikely to detect impacts although no information to assess cumulative effects．Confidence：high，logical．

Level 1 (SICA) Document L1.5-Community Component.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY			TEMPORAL SCALE OF HAZARD (1-6)	Z 0 0 0 0 0 0 0 Un						RATIONALE
Capture	Bait collection	0									
	Fishing	1	4	6	Species composition	Southern outer shelf	1.1	3	3	2	Fishing occurs daily throughout the year on southern outer shelf effort primarily, but effort has significantly reduced since last assessment (to about 30%). Species composition is most likely to be affected. Community abundance indices will be altered by removal of wide range of fish captured in southern outer shelf trawls. Intensity: moderate, broad but impact could be severe at a local scale. Consequence: moderate, changes to community species composition without a major change in function (no loss of function) occurring detectable i.e. redfish @63\% B_{0}, Dw flathead declining cpue and predicted cpue > observed cpue, W gemfish improving but discarding high (GABRAG 2015). Confidence: high, data exists (GABRAG 2015).
	Incidental behaviour	0									
Direct impact without capture	Bait collection	0									
	Fishing	1	4	6	Species composition	Southern outer shelf	1.1	3	2	1	Fishing occurs daily throughout the year on Southern outer shelf effort primarily, but effort has significantly reduced since last assessment (to about 30%). Direct impact without captures most likely to affect species composition from post-capture mortality. SET outer shelf has the highest proportion of area fished, highest average catch amd logically highest escapement and post-capture mortality. Intensity: moderate as fishing occurs in broadly across the shelf. Consequence: minor as most key species populations are stable and further impact from post-capture mortality undetectable. Confidence: low, cannot demonstrate changes due to postescapement mortality.
	Incidental behaviour	0									

DIRECT IMPACT OF FISHING	FISHING ACTIVITY											RATIONALE
	Gear loss	1	1	3	Species composition	Southern outer shelf	1.1	2	1		2	Most gear loss likely to occur on GAB Southern outer shelf. Sessile species composition and abundance is the most likely to be adversely affected by lost gear through smothering. Intensity: minor, gear is rarely lost. Consequence: negligible as any effect on communities due to gear loss immeasurable. Confidence: high, any gear loss must be reported.
	Anchoring/mooring	0										
	Navigation/steaming	1	4	6	Species composition	Southern coastal pelagic	1.1	3	1		2	Navigation/steaming could impact pelagic species or birds of Southern coastal pelagic community as most effort concentrated in that community. Intensity: moderate as fishing occurs over the shelf. Consequence: negligible it is unlikely to detect any measurable effect on communities. Confidence: high, logic.
Addition/	Translocation of species	0										
biological	On board processing	0										
	Discarding catch	1	4	6	Functional group composition	Southern outer shelf; Southern coastal pelagic	2.1	3	2		1	Discarding of non-commercial bycatch occurs commonly (up to 44% by weight: Koopman et al. 2017) but varies by season and depth. Functional group composition is likely to be affected from an increase in abundance of scavenger species from enhanced food supply. This will promote scavenger species in the benthic community once they have sunk to the sea floor (including seals and sea lions in the pelagic community). Intensity: moderate, waste is discarded across a broad spatial scale. Consequence: minor, as localized accumulations of waste rapidly dispersed within weeks and minimal detectable change if any. Confidence: low, no data but logical consideration.
	Stock enhancement	0										
	Provisioning	0										

DIRECT IMPACT OF FISHING	FISHING ACTIVITY										RATIONALE
	Organic waste disposal	1	4	6	Functional group composition	Southern outer shelf	2.1	1	1	2	Organic waste disposal most likely to attract scavengers thus affecting distribution of community temporarily. Intensity: negligible, unlikely to detect due to small volumes and rapid dispersal. Consequence: negligible, unlikely to be measurable or persistent for more than a few hours. Confidence: high, logical consideration.
Addition of nonbiological material	Debris	0									
	Chemical pollution	0									
	Exhaust	1	4	6	Distribution of community	Southern outer shelf		1	1	2	Exhaust emissions most likely to affect distributions of communities by affecting distribution of birds in the vicinity of vessels. GAB outer shelf chosen as most fishing occurs there. Intensity: minor, exhaust emissions occur over a large range, but impact area is only within metres of the vessel. Consequence: negligible as exhaust is rapidly dissipated and birds can avoid. Confidence: high, logical consideration.
	Gear loss	1	1	3	Distribution of community	Southern outer shelf	3.1	2	1	2	Fishing occurs throughout the year over the SET shelf. Fishery management plan requires operators to take all reasonable steps to minimise loss of gear, though evidence of gear loss does exist, and retrieval may be impossible. Lost gear may create new structure providing new refuge for species. Intensity: minor, rarely that gear is lost. Consequence: negligible as any effect on communities due to gear loss immeasurable. Confidence: high, any gear loss must be reported.
	Navigation/steaming	1	4	6	Distribution of community	Southern outer shelf	3.1	3	1	2	Navigation/steaming introduces noise such as engine noise and echosounding during fishing and considered to have most potential effect on distribution of communities by disturbing fish. Intensity: moderate, echosounders and engines of vessels would be running for duration of fishing trips and shelf communities constantly fished. Consequence: negligible as disturbance unlikely to be detected against other factors. Confidence: high, logical.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY										RATIONALE
	Activity/presence on water	1	4	6	Distribution of community	Southern coastal pelagic; Southern oceanic pelagic (1)	3.1	3	1	2	Activity/ presence on water of fishing vessels widespread on GAB outer shelf. May affect the distribution of pelagic community by changing behaviour of cetaceans, scavengers, marine mammals, birds. Intensity: moderate, vessels present over broad spatial scale. Consequence: negligible, any change to community distribution would be temporary or undetectable. Confidence: high, logical consideration.
Disturb physical processes	Bait collection	0									
	Fishing	1	4	6	Distribution of community	Southern outer shelf	3.1	3	2	1	Removal and disruption of habitat (structure) and sediments could change distribution of benthic species in the community. Bio-geochemical cycles could become affected locally if trawling very frequent e.g. on shelf benthic sand/mud sediments where disturbance results in plumes that reduce light conditions in the short term and may trigger the release of toxic substances from the sediments. Intensity: moderate as fishing occurs broadly across shelf. Consequence: minor, effect on benthic communities minimal. Confidence: low, no information on actual disturbance of habitats.
	Boat launching	0									
	Anchoring/mooring	0									
	Navigation/steaming	1	4	6	Species composition	Southern coastal pelagic; Southern oceanic pelagic (1)	1.1	3	1	2	Navigation/steaming occurs regularly on the continental shelf and shelf break of GAB outer shelf. Intensity: moderate, navigation/steaming is a large component of the trawling operations that occur broadly across shelf. Consequence: negligible, localised impact within immediate vicinity of the vessel and impact considered likely undetectable against natural levels of mixing and re-mixing. Confidence: high, logical consideration.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY				E 0 un						RATIONALE
External Impacts	Other fisheries: SESSF CTS otter, shark gillnet, shark hook, scalefish auto-longline; SPF, WTBF, SBT, SSJ; SA fisheries - sardine, marine scalefish, rock lobster, recreational; WA South Coast purse seine	1	6	6	Species composition	Southern outer shelf	1.1	3	2	2	A couple of SESSF fisheries overlap the GABT fishery outer shelf (autolongline, shark hook) and the SSJ, SPF, WTBF and SBT targetting different species across the whole community; other fisheries affect adjacent communities (gillnet, SASF, recreational). Likely to affect species composition. Intensity: moderate, direct overlap occurs across broad scale but very small footprint, more impact likely on adjacent inner shelf communities where GABT fishery doesn't operate. Consequence: minor, cumulative effects to this community species composition unlikely to be detectable. Confidence: high, logical, little overlapping effort.
	Aquaculture - abalone, oyster, mussels, SBT, yellowtail kingfish	1	4	6	Bio- and geo-chemical cycles	Southern coastal pelagic	5.1	2	1	2	Aquaculture occurs at sites on western Eyre Peninsula, Spencer Gulf (State waters), Port Lincoln (SBT), Kangaroo Is, coastal bays etc and inlets (oysters). Nutrient depletion effects possible leading to alteration of bio-geochemical cycles locally but likely to be rapidly dispersed in inshore waters. Intensity: minor. Consequence: negligible as impacts on community unlikley to detect variability against natural variability except where seagrass habitat important to different life stages of a variety species-no evidence. Confidence: high, studies of nutrient inputs of estuaries found impacts if any difficult to measure against other anthopogenic sources (Wild-Allen and Andrewartha 2016).
	Coastal development	1	5	6	Distribution of community	Southern inner shelf	3.1	3	2	1	Coastal development mostly localised within gulfs and eastern GAB. Sewage, runoff and modifications to beaches, rivers and other coastal/land features disturb physical habitat of coastal communities and distribution of community components. Intensity: minor, coastal development occurs at localized sites across broad spatial extent. Consequence: minor, if occur, changes to community distribution would be localised. Confidence: low, no data.

DIRECT IMPACT OF FISHING	FISHING ACTIVITY				5 2 0						RATIONALE
	Other extractive activities	1	4	6	Distribution of community	Southern outer shelf	3.1	2	2	2	Ongoing development and expansion of oil and gas pipelines, oil and gas exploration and extraction drilling, and seismic surveys most likely to affect distribution of the community. Evidence that seismic surveys affect fish and invertebrate (scallop) behaviour possibly causing them to migrate out of fishing grounds. Intensity: minor, local effects are potentially severe but confined to small areas, surveys infrequent. Consequence: minor, possible detectable change in geographic range of communities but minimal impact on community dynamics changes in geographic range. Confidence: high, some studies exist and ongoing.
	Other non-extractive activities	1	6	6	Distribution of community	Southern coastal pelagic; Southern oceanic pelagic (1)	3.1	3	1	2	Shipping occurs throughout the area daily - eastern and western routes to and from major South Australian ports. Distribution of pelagic communities may be impacted through disturbance particularly on marine mammals. Intensity: moderate. Consequence: negligible, interactions which affect the distribution of communities unlikely to be detectable against natural variation. Confidence: high, lack of information on shipping-animal interactions but logical.
	Other anthropogenic activities	1	4	6	Distribution of community	Southern inner shelf	3.3	2	1	2	Communities may be disturbed by charter boats associated with general recreational activities, and tourism (e.g. whale watching, fishing tours, anchoring, recreational diving etc). Most common off GAB Southern inner and outer shelf. Intensity: minor, occurs in localised area. Consequence: negligible, interactions which affect the distribution of communities unlikely to be detectable against natural variation. Confidence: high, logical.

2.3.11 Summary of SICA results

Table 2.19. Level 1 (SICA) Document L1.6. Summary table of consequence scores for all activity/component combinations. Those that scored ≥ 3 are highlighted blue and bolded if high confidence. * existing stock assessment -assessment not required. Note: external hazards are not considered at Level 2.

DIRECT IMPACT	ACTIVITY	KEY/SECONDARY COMMERCIAL SPECIES	$\begin{aligned} & \text { BYPRODUCT } \\ & \text { AND } \\ & \text { BYCATCH } \\ & \text { SPECIES } \end{aligned}$	PROTECTED SPECIES	HABITATS	COMMUNITIES
Capture	Bait collection	0	0	0	0	0
	Fishing	*	3	1	4	3
	Incidental behaviour	0	0	0	0	0
Direct impact without capture	Bait collection	0	0	0	0	0
	Fishing	1	2	1	4	2
	Incidental behaviour	0	0	0	0	0
	Gear loss	1	1	1	1	1
	Anchoring/mooring	0	0	0	0	0
	Navigation/steaming	1	1	2	1	1
Addition/ movement of biological material	Translocation of species	0	0	0	0	0
	On board processing	0	0	0	0	0
	Discarding catch	2	2	2	2	2
	Stock enhancement	0	0	0	0	0
	Provisioning	0	0	0	0	0
	Organic waste disposal	1	1	1	1	1
Addition of non-biological material	Debris	0	0	0	0	0
	Chemical pollution	0	0	0	0	0
	Exhaust	1	1	1	1	1
	Gear loss	1	1	1	1	1
	Navigation/steaming	1	1	1	1	1
	Activity/presence on water	2	2	1	1	1
Disturb physical processes	Bait collection	0	0	0	0	0
	Fishing	2	2	2	3	2
	Boat launching	0	0	0	0	0
	Anchoring/mooring	0	0	0	0	0
	Navigation/steaming	1	1	1	1	1
External Impacts	Other fisheries	3	3	2	1	2
	Aquaculture	2	2	2	1	1
	Coastal development	2	2	1	2	2
	Other extractive activities	2	2	2	2	2
	Other non-extractive	2	2	1	2	1
	Other anthropogenic	2	2	1	2	1

Figure 2.3. Key/secondary commercial species: Frequency of consequence score by high and low confidence.

Figure 2.4. Byproduct and bycatch species: Frequency of consequence score by high and low confidence.

Figure 2.5. Protected species: Frequency of consequence score by high and low confidence.

Figure 2.6. Habitat: Frequency of consequence score by high and low confidence.

Figure 2.7. Communities: Frequency of consequence score by high and low confidence.

2.3.12 Evaluation/discussion of Level 1

Two ecological components were eliminated at Level 1 (i.e. no components with risk scores of 3 - moderate - or above): key/commercial and protected species.

A number of hazards (fishing activities) were eliminated at Level 1 (i.e. no components with risk scores of 3 - moderate - or above). Those remaining included:

- Fishing (direct capture impacts on 3 components)
- Fishing (without capture impacts on 1 component)
- Disturbance of physical processes (on 1 component)

As a result of direct capture by fishing, the most vulnerable byproduct/bycatch species, latchets, and a variety of chondrichthyans that are mostly discarded (AFMA logbooks) were assessed at moderate risk largely due to unknown population size within this assessment period.

Shy albatross was considered to be most at risk from capture although only two birds were fatally injured during the assessment period and therefore were not considered at high enough risk for further assessment. Longnosed fur seals are currently stable or increasing and were not considered at risk.

The impact of fishing represented a signficiant risk to habitats largely due to the relatively large footprint that the otter trawl has on the seafloor and the concentration within the assemblage in which the most vulnerable habitat types are known to exist (Pitcher et al. 2016).

Significant external hazards included other fisheries in the region on key commercial, and byproduct/bycatch species.

2.3.13 Components to be examined at Level 2

As a result of the SICA analysis, the components that are to be examined at Level 2 are those with any consequence scores of 3 or above. These components are:

- Byproduct/bycatch

Therefore, a Level 2 examiniation is required. The habitats and community's components will not be examined at Level 2.

2.4 Level 2 Productivity and Susceptibility Analysis (PSA)

When the risk of an activity at Level 1 (SICA) on a component is moderate or higher and no planned management interventions that would remove this risk are identified, an assessment is required at Level 2. The PSA approach is a method of assessment which allows all units within any of the ecological components to be effectively and comprehensively screened for risk. The units of analysis are the complete set of species habitats or communities identified at the scoping stage. The PSA results in sections 2.4.2 and 2.4.3 of this report measure risk of direct impacts of fishing only. Future iterations of the methodology will include PSAs modified to measure the risk due to other activities, such as gear loss.

The PSA approach is based on the assumption that the risk to an ecological component will depend on two characteristics of the component units: (1) the extent of the impact due to the fishing activity, which will be determined by the susceptibility of the unit to the fishing activities (Susceptibility) and (2) the productivity of the unit (Productivity), which will determine the rate at which the unit can recover after potential depletion or damage by the fishing. It is important to note that the PSA analysis essentially measures potential for risk, hereafter denoted as "risk". A measure of absolute risk requires some direct measure of abundance or mortality rate for the unit in question, and this information is generally lacking at Level 2.

The PSA approach examines attributes of each unit that contribute to or reflect its productivity or susceptibility to provide a relative measure of risk to the unit. The following section describes how this approach is applied to the different components in the analysis. Full details of the methods are described in Hobday et al. (2007).

Species

The following Table outlines the seven attributes that are averaged to measure productivity, and the four aspects that are multiplied to measure susceptibility for all the species components.

Table 2.20. Attributes that measure productivity and suscepability.

ATTRIBUTE	
Productivity	Average age at maturity
	Average size at maturity
	Average maximum age
	Fecundity Reproductive strategy
	Trophic level
Availability considers overlap of fishing effort with a species distribution	
Encounterability considers the likelihood that a species will encounter fishing gear that is	
deployed within the geographic range of that species (based on two attributes: adult habitat	
and bathymetry)	

Post capture mortality considers the condition and subsequent survival of a species that is captured and released (or discarded)

The productivity attributes for each species are based on data from the literature or from data sources such as FishBase. The four aspects of susceptibility are calculated in the following way:

Availability considers overlap of effort with species distribution. For species without distribution maps, availability is scored based on broad geographic distribution (global, southern hemisphere, Australian endemic). Where more detailed distribution maps are available (e.g. from BIOREG data or DEH protected species maps), availability is scored as the overlap between fishing effort and the portion of the species range that lies within the broader geographical spread of the fishery. Overrides can occur where direct data from independent observer programs are available.

Encounterability is the likelihood that a species will encounter fishing gear deployed within its range. Encounterability is scored using habitat information from FishBase, modified by bathymetric information. Higher risk corresponds to the gear being deployed at the core depth range of the species. Overrides are based on mitigation measures and fishery independent observer data.

For species that do encounter gear, selectivity is a measure of the likelihood that the species will be caught by the gear. Factors affecting selectivity will be gear and species dependent, but body size in relation to gear size is an important attribute for this aspect. Overrides can be based on body shape, swimming speed and independent observer data.

For species that are caught by the gear, post capture mortality measures the survival probability of the species. Obviously, for species that are retained, survival will be zero. Species that are discarded may or may not survive. This aspect is mainly scored using independent filed observations or expert knowledge.

Overall susceptibility scores for species are a product of the four aspects outlined above. This means that susceptibility scores will be substantially reduced if any one of the four aspects is considered to be low risk. However, the default assumption in the absence of verifiable supporting data is that all aspects are high risk.

Habitats

Similar to species, PSA methods for habitats are based around a set of attributes that measure productivity and susceptibility. Productivity attributes include speed of regeneration of fauna, and likelihood of natural disturbance. The susceptibility attributes for habitats are described in the following Table.

Table 2.21. Description of susceptibility attributes for habitats.

ASPECT	ATTRIBUTE	CONCEPT	RATIONALE
Susceptability			
Availability	General depth range (Biome)	Spatial overlap of subfishery with habitat defined at biomic scale	Habitat occurs within the management area
Encounterability	Depth zone and feature type	Habitat encountered at the depth and location at which fishing activity occurs	Fishing takes place where habitat occurs
	Ruggedness (fractal dimension of substratum and seabed slope)	Relief, rugosity, hardness and seabed slope influence accessibility to different sub-fisheries	Rugged substratum is less accessible to mobile gears. Steeply sloping seabed is less accessible to mobile gears
	Level of disturbance	Gear footprint and intensity of encounters	Degree of impact is determined by the frequency and intensity of encounters (inc. size, weight and mobility of individual gears)
Selectivity	Removability/ mortality of fauna/ flora	Removal/ mortality of structure forming epifauna/ flora (inc. bioturbating infauna)	Erect, large, rugose, inflexible, delicate epifauna and flora, and large or delicate and shallow burrowing infauna (at depths impacted by mobile gears) are preferentially removed or damaged.
	Areal extent	How much of each habitat is present	Effective degree of impact greater in rarer habitats: rarer habitats may maintain rarer species.
	Removability of substratum	Certain size classes can be removed	Intermediate sized clasts ($\sim 6 \mathrm{~cm}$ to 3 m) that form attachment sites for sessile fauna can be permanently removed
	Substratum hardness	Composition of substrata	Harder substratum is intrinsically more resistant
	Seabed slope	Mobility of substrata once dislodged; generally higher levels of structural fauna	Gravity or latent energy transfer assists movement of habitat structures, eg turbidity flows, larger clasts. Greater density of filter feeding animals found where currents move up and down slopes.
Productivity			
	Regeneration of fauna	Accumulation/ recovery of fauna	Fauna have different intrinsic growth and reproductive rates which are also variable in different conditions of temperature, nutrients, productivity.
	Natural disturbance	Level of natural disturbance affects intrinsic ability to recover	Frequently disturbed communities adapted to recover from disturbance

Communities

There are seven steps for the PSA undertaken for each component brought forward from Level 1 analysis (see Hobday et al. 2006 for full details).

Step 1. Identify the units excluded from analysis and document the reason for exclusion
Step 2. Score units for productivity
Step 3. Score units for susceptibility
Step 4. Plot individual units of analysis onto a PSA Plot
Step 5. Ranking of overall risk of each unit
Step 6. Evaluation of the PSA analysis
Step 7. Decision rules to move from Level 2 to Level 3

2.4.1 Units excluded from analysis (Step 1)

Table 2.22. Species/species groups/taxa excluded from the PSA and SAFE because they were either not identified at the species level, not interacted in the fishery or outside the fishery's jurisdictional boundary. No obs/ints: No observations or interactions. These entries have been excluded from the protected species list since the last ERA assessment because they have not been observed within the fishery and/or occur outside the depth range of the fishery.

ROLE IN FISHERY	TAXA	FAMILY NAME	SCIENTIFIC NAME	COMMON NAME	CAAB CODE	RATIONALE
BP	Chondrichthyan	Brachaeluridae and related families	Brachaeluridae and related families undifferentiated	Wobbegongs blind nurse carpet and zebra shark	37013000	Apportioned to rusty carpetshark.
BP	Chondrichthyan	Centrophoridae	Deania calcea and Deania quadrispinosa	Platypus sharks (mixed)	37020905	Apportioned to both species within species list. Deania calcea is Deanis calceus.
BP	Chondrichthyan	Pristiophoridae	Pristiophoridae - undifferentiated	Sawsharks	37023000	Apportioned to common sawshark and southern sawshark.
BP	Chondrichthyan	Squatinidae	Squatinidae - undifferentiated	Angel Sharks	37024000	Apportioned to Australian angelshark and ornate angelshark species.
BP	Chondrichthyan	Chimaeridae	Chimaeridae - undifferentiated	Ghostsharks	37042000	Apportioned this to 37042001 within list. ERA classifciation of 37042001 changed from BC to BP.
BP	Chondrichthyan	Dasyatidae, Gymnuridae, Myliobatidae and Urolophidae	Dasyatidae, Gymnuridae, Myliobatidae and Urolophidae spp	Rays	37990001	Apportioned to 4 species within species list.
BP	Invertebrate		Order Teuthoidea - undifferentiated	Squids	23615000	Apportioned to Gould's squid.
BP	Invertebrate	Loliginidae	Loliginidae - undifferentiated	Calamari	23617000	Apportioned to Southern calamari.
BP	Teleost	Congridae, Colocongridae	Congridae, Colocongridae undifferentiated	Conger eels	37067000	Apportioned to 2 other species within list.
BP	Teleost	Zeidae	Cyttopsis rosea	Rosy Dory	37264010	Misidentification. Outside fishery range.
BP	Teleost	Serranidae	Lepidoperca pulchella	Eastern Orange Perch	37311001	Misidentification: outside fishery range. This species is inshore ocean perch (Helicolenus percoides; 37287001). Dan Corrie (AFMA) advice from skippers.

ROLE IN FISHERY	TAXA	FAMILY NAME	SCIENTIFIC NAME	COMMON NAME	CAAB CODE	RATIONALE
BP	Teleost	Pentacerotidae	Pentacerotidae - undifferentiated	Boarfishes	37367000	Apportioned to yellowspotted boarfish.
BP	Teleost	Pentacerotidae	Paristiopterus labiosus	Giant Boarfish	37367002	Misidentification: outside fishery range. This is yellow spotted boarfish (Paristiopterus gallipavo; 37367001). Dan Corrie (AFMA), advice from skippers.
BP	Teleost	Uranoscopidae	Uranoscopidae - undifferentiated	Stargazers	37400000	Apportioned to 4 species within list.
BP	Teleost	Balistidae, Monacanthidae	Balistidae, Monacanthidae undifferentiated	Leatherjackets	37465000	Apportioned to leatherjacket species within list.
BP	Teleost		Mixed reef fish	Fish (mixed)	37999999	Insufficient taxonomic resolution.
BC	Chondrichthyan	Hexanchidae -	Hexanchidae - undifferentiated	Sixgill and sevengill sharks unspecified	37005000	Insufficient taxonomic resolution. No Hexanchidae within list.
BC	Chondrichthyan	Alopiidae	Alopias spp.	Thresher Sharks (mixed)	37012901	Insufficient taxonomic resolution. No species within list.
BC	Chondrichthyan	Orectolobidae	Orectolobidae	Wobbegong (mixed)	37013900	Apportioned to 37013001, 37013003, 37013005.
BC	Chondrichthyan		Scyliorhinidae - undifferentiated	Catsharks	37015000	Apportioned to 37015009, 37015013, 37015020, 37015026.
BC	Chondrichthyan	Scyliorhinidae	Asymbolus analis	Australian spotted catshark	37015027	Misidentification (Fishes of Australia); Within fishery (Fishbase).
BC	Chondrichthyan	Triakidae	Triakidae - undifferentiated	Hound Sharks	37017000	Apportioned to 3 species (37017001, 37017003, 37017008) within list.
BC	Chondrichthyan	Sphyrnidae	Sphyrnidae - undifferentiated	Hammerhead sharks	37019000	Apportioned to smooth hammerhead.
BC	Chondrichthyan	Centrophoridae, Dalatiidae, Squalidae, Somniosidae and Etmopteridae	Centrophoridae, Dalatiidae, Squalidae, Somniosidae and Etmopteridae - undifferentiated	Gulper sharks, Sleeper sharks, Dogfishes	37020000	Apportioned to 1 Dalatiidae, 2 Squalidae, 1 Somniosidae and 2 Etmopteridae species within list.
BC	Chondrichthyan	Urolophidae	Squalus chloroculus	Greeneye Dogfish	37020007	Inactive code - Squalus mitsukurii - is not an Australian species. It is S. chloroculus (CSIRO; W. White, Pers. comm).
BC	Chondrichthyan	Squalidae	Squalus spp	Greeneye Dogfishes (mixed)	37020901	Apportioned to 37020048 and 27020006.
BC	Chondrichthyan	Somniosidae	Centroscymnus spp	Sleeper Sharks (mixed)	37020906	Added 37020019.

ROLE IN FISHERY	TAXA	FAMILY NAME	SCIENTIFIC NAME	COMMON NAME	CAAB CODE	RATIONALE
BC	Chondrichthyan	Squalidae	Squalidae - undifferentiated	Dogfishes (mixed)	37020923	Apportioned to two species of Squalidae.
BC	Chondrichthyan	Pristiophoridae	Pristiophorus spp	Sawshark (mixed)	37023900	Apportioned to two species within list (37023001, 37023002).
BC	Chondrichthyan	Trygonorrhinidae	Trygonorrhina spp.	Fiddler Rays Unspecified	37027999	Apportioned to 37027006 and 37027011
BC	Chondrichthyan	Rajidae	Raja spp.	Skate (mixed)	37031900	No Raja spp within list.
BC	Chondrichthyan	Dasyatidae	Dasyatidae - undifferentiated	Stingrays	37035000	Apportioned to 37035001 and 37035002.
BC	Chondrichthyan	Urolophidae, Plesiobatidae	Urolophidae, Plesiobatidae undifferentiated	Stingarees and giant stingarees	37038000	Apportioned to 37035001 and 37025002 within list.
BC	Chondrichthyan	Urolophidae	Urolophus bucculentus	Sandyback stingaree	37038001	Misidentification. Outside fishery range (Fishes of Australia).
BC	Chondrichthyan	Urolophidae	Urolophus viridis	Greenback stingaree	37038007	Misidentification. Outside fishery range (Fishes of Australia).
BC	Chondrichthyan	Myliobatidae	Myliobatidae - undifferentiated	Eagle rays	37039000	No Myliobatidae within list.
BC	Chondrichthyan	Chimaeridae	Hydrolagus lemures	Blackfin Ghostshark	37042003	This species has been superseded in 2018. It is now 37042001 - Ogilby's ghostshark, which was added to species list.
BC	Chondrichthyan	Chimaeridae	Hydrolagus homonycteris	Black ghostshark; Black whitefin	37042010	Misidentifcation. Outside fishery range
BC	Chondrichthyan		Sharks - other	Sharks (mixed)	37990003	Insufficient taxonomic resolution. Apportioned to shark species within list.
BC	Chondrichthyan		Skates and rays, unspecified	Skates and rays	37990018	Apportioned to 14 skate and ray species within existing list.
BC	Chondrichthyan		Order Rajiformes - undifferentiated	Skates and rays (mixed)	37990030	Apportioned to 15 skates and ray species within list across Rajidae, Dasyatidae, Trygonorrhinidae, Hypnidae, Torpedinidae, Arhynchobatidae, Arhynchobatidae.
BC	Gastropod	Cypraeidae	Cypraeidae - undifferentiated	Cowries	24155000	Insufficient taxonomic resolution.
BC	Invertebrate	Sepiidae	Sepia spp	Cuttlefish (mixed)	23607901	Insufficient taxonmic resolution; No species within list to apportion to. No Sepia spp. prior to assessment period.

ROLE IN FISHERY	TAXA	FAMILY NAME	SCIENTIFIC NAME	COMMON NAME	CAAB CODE	RATIONALE
BC	Invertebrate	Loliginidae	Loligo opalescens	Opalescent Inshore Squid	23617011	Misidentification. Outside fishery range.
BC	Invertebrate	Octopodidae	Octopodidae - undifferentiated	Octopuses	23659000	Insufficient taxonomic resolution.
BC	Invertebrate		Class Gastropoda - undifferentiated	Gastropods	24000000	Insufficient taxonomic resolution.
BC	Invertebrate	Crinoidea	Crinoidea - undifferentiated	Crinoids	25001000	Insufficient taxonomic resolution.
BC	Invertebrate		Class Asteroidea - undifferentiated	Starfish	25102000	Insufficient taxonomic resolution.
BC	Invertebrate		Class Echinoidea - undifferentiated	Sea urchins	25200000	Insufficient taxonomic resolution.
BC	Invertebrate		Class Holothuroidea undifferentiated	Holothurians	25400000	Insufficient taxonomic resolution.
BC	Invertebrate	Penaeidae	Penaeus esculentus	Brown tiger prawn	28711044	Misidentification. Outside fishery range.
BC	Invertebrate	Nephropidae	Nephropidae - undifferentiated	Scampi	28786000	Insufficient taxonomic resolution.
BC	Invertebrate	Scyllaridae	Scyllaridae - undifferentiated	Bugs - shovel nosed and slipper lobsters	28821000	Insufficient taxonomic resolution.
BC	Invertebrate	Scyllaridae	Ibacus peronii	Eastern Balmain bug	28821004	Misidentifcation. Outside fishery range.
BC	Invertebrate	Scyllaridae	Ibacus and Thenus spp	Bugs (Ibacus and Thenus)	28821904	No species to apportion to. Insufficient taxonomic resolution.
BC	Invertebrate	Diogenidae	Diogenidae - undifferentiated	Hermit crabs (left-handed)	28827000	Insufficient taxonomic resolution.
BC	Invertebrate	Brachyura	Brachyura - undifferentiated	Crabs	28850000	Insufficient taxonomic resolution.
BC	Invertebrate	Hypothalassiidae	Hypothalassia spp	Champagne crabs (mixed)	28916901	Apportioned to 28916002.
BC	Invertebrate		Ascidiacea - undifferentiated	Ascidians	35000000	Insufficient taxonomic resolution.
BC	Teleost	Holothuriidae and Stichopodidae	Holothuriidae and Stichopodidae undifferentiated	Beche-de-mer (sea cucumbers)	25415000	Insufficient taxonomic resolution.
BC	Teleost	Rhinidae	Rhinidae - undifferentiated	Guitarfishes, unspecified	37026000	No Rhinidae within list. Insufficient taxonomic resolution.
BC	Teleost	Rajidae	Rajidae - undifferentiated	Skates	37031000	Apportioned to 4 existing Rajidae species within list.
BC	Teleost	Chimaeridae	Hydrolagus spp	Ghostsharks	37042901	Apportioned to 37042001 - note the name change in 2018.

ROLE IN FISHERY	TAXA	FAMILY NAME	SCIENTIFIC NAME	COMMON NAME	CAAB CODE	RATIONALE
BC	Teleost	Anguillidae	Anguilla reinhardtii	Speckled longfin eel	37056002	Misidentifciation. Outside fishery range.
BC	Teleost	Muraenidae	Muraenidae - undifferentiated	Moray eels	37060000	No species to apportion to. Insufficient taxonomic resolution.
BC	Teleost	Congridae	Conger verreauxi and Conger wilsoni	Conger eel (mixed)	37067900	Apportioned to 37060000.
BC	Teleost	Clupeidae	Clupea harengus	Herring	37085790	Misidentification. Outside fishery range (Fishes of Australia).
BC	Teleost	Stomiidae	Stomiidae - undifferentiated	Scaly dragonfishes	37112000	Insufficient taxonomic resolution.
BC	Teleost	Chlorophthalmidae, Paraulopidae and Bathysauroididae, Bathysauropsidae	Chlorophthalmidae, Paraulopidae and Bathysauroididae, Bathysauropsidae undifferentiated	Cucumberfishes, greeneyes and lizardfishes	37120000	Apportioned to 37120001.
BC	Teleost	Myctophidae	Myctophidae - undifferentiated	Lanternfishes	37122000	No Myctophidae in list. Insufficient taxonomic resolution.
BC	Teleost	Ceratiodae	Ceratiidae - undifferentiated	Seadevils	37220000	Insufficient taxonomic resolution.
BC	Teleost	Ophidiidae	Ophidion muraenolepis	Blackedge cusk	37228006	Misidentification. Outside fishery range.
BC	Teleost	Ophidiidae	Genypterus spp	Ling (mixed)	37228901	Apportioned to two species within list.
BC	Teleost	Ophidiidae	Ophidiidae spp.	Cusk eels (mixed)	37228999	Apportioned to 37228001, 37228008.
BC	Teleost	Macrouridae and Bathygadidae	Macrouridae and Bathygadidae undifferentiated	Whiptails	37232000	Apportioned to 37232001, 37232002, 37232003 and 37232004.
BC	Teleost	Macrouridae	Coelorinchus spp	Whiptails, coelorinchid	37232900	Apportioned to 37232001, 37232002, 37232003)
BC	Teleost	Berycidae	Centroberyx affinis	Redfish	37258003	Misidentification. Outside fishery range. Possibly bight redfish.
BC	Teleost	Monocentrididae	Monocentrididae - undifferentiated	Pineapplefishes	37259000	Insufficient taxonomic resolution.
BC	Teleost	Cyttidae	Cyttus novaezealandiae	New Zealand dory	37264005	Misidentification. Outside fishery range.
BC	Teleost	Veliferidae	Veliferidae - undifferentiated	Veilfins	37269000	Aportioned to 37279001 and 37279002.
BC	Teleost	Macroramphosidae	Macroramphosidae - undifferentiated	Bellowfish	37279000	Apportioned to 37279001 and 37279002.
BC	Teleost	Synbranchidae	Monopterus albus	Belut	37285001	Misidentification. Outside fishery range.

ROLE IN FISHERY	TAXA	FAMILY NAME	SCIENTIFIC NAME	COMMON NAME	CAAB CODE	RATIONALE
BC	Teleost	Scorpaenidae	Scorpaenidae	Coral perch	37287900	No species within list to apportion to.
BC	Teleost	Scorpaenidae	Scorpaena spp	Scorpionfishes - Scorpaenid	37287904	Insufficient taxonomic resolution.
BC	Teleost	Neosebastidae	Neosebastes spp.	Gurnard perches, Neosebastes	37287927	Expanded to 5 species within list.
BC	Teleost	Triglidae and Peristediidae	Triglidae and Peristediidae undifferentiated	Searobins and armour gurnards	37288000	Apportioned to 37288001, 37288003, 37288006 and 37288007.
BC	Teleost	Peristediidae	Satyrichthys of moluccense	Blackfin armour gurnard	37288012	Misidentifciation. Outside fishery range.
BC	Teleost	Triglidae	Lepidotrigla spp	Butterfly gurnard (mixed)	37288901	Aportioned to two species within list.
BC	Teleost	Platycephalidae	Platycephalidae - undifferentiated	Flatheads	37296000	Apportioned to 3 existing species within list.
BC	Teleost	Hoplichthyidae	Hoplichthyidae - undifferentiated	Ghost Flatheads	37297000	Apportioned to 37297001.
BC	Teleost	Polyprionidae	Polyprion americanus and Polyprion oxygeneios	Hapuku and bass groper	37311902	Apportined to P. oxygeneios within list.
BC	Teleost	Priacanthidae	Heteropriacanthus cruentatus	Blotched bigeye	37326008	Misidentification. Outside fishery range.
BC	Teleost	Apogonidae, Dinolestidae -	Apogonidae, Dinolestidae undifferentiated	Cardinalfishes	37327000	No Apogonidae, Dinolestidae - undifferentiated within list.
BC	Teleost	Carangidae	Carangidae - undifferentiated	Trevallies and scads	37337000	Apportioned to three species within list.
BC	Teleost	Carangidae	Trachurus murphyi	Chilean jack mackerel	37337077	Misidentification. Outside fishery range.
BC	Teleost	Carangidae	Trachurus spp	Mackerel scads	37337907	Apportioned to 37337002 and 37337003.
BC	Teleost	Carangidae	Trachurus declivis and Trachurus murphyi	Jack mackerels	37337912	Apportioned to T. declivis as T. murphyi is a misidentification - outside fishery range.
BC	Teleost	Lutjanidae	Etelis carbunculus	Ruby snapper	37346014	Misidentifciation. Outside fishery range.
BC	Teleost	Lutjanidae	Lutjanus spp	Sea perch	37346905	No Lutjanus species within list. Insufficient taxonomic resolution.
BC	Teleost	Sciaenidae	Argyrosomus hololepidotus and Protonibea diacanthus	Mulloway, mixed	37354903	The P. diacanthus is a misidentification - outside fishery range. A. japonicus was added to list (note: A. hololepidotus is a synonym).
BC	Teleost	Pempherididae, Leptobramidae	Pempherididae, Leptobramidae undifferentiated	Bullseyes and beach salmons	37357000	No species to apportion to. Insufficient taxonomic resolution.

ROLE IN FISHERY	TAXA	FAMILY NAME	SCIENTIFIC NAME	COMMON NAME	CAAB CODE	RATIONALE
BC	Teleost	Pentacerotidae	Pseudopentaceros richardsoni	Pelagic armourhead	37367009	Misidentification. Outside fishery range.
BC	Teleost	Oplegnathidae	Oplegnathidae - undifferentiated	Knifejaws	37369000	Apportioned to 37369002.
BC	Teleost	Cheilodactylidae	Nemadactylus douglasii	Grey morwong	37377002	Misidentifciation. Outside fishery range.
BC	Teleost	Cheilodactylidae	Cheilodactylus spectabilis	Banded morwong	37377006	Misidentifciation. Outside fishery range.
BC	Teleost	Labridae	Epibulus insidiator	Slingjaw wrasse	37384104	Misidentification. Outside fishery range.
BC	Teleost	Pinguipedidae	Pinguipedidae - undifferentiated	Grubfishes	37390000	No species to apportion to within list. Could be Parapercis haackei.
BC	Teleost	Scombridae	Scombridae spp (tribes Scomberomorini and Scombrini)	Mackerel (mixed)	37441911	Apportioned to 37445001 and 37445005 within list.
BC	Teleost	Centrolophidae	Tubbia tasmanica	Tasmanian rudderfish	37445002	Misidentification. Outside fishery range.
BC	Teleost	Nomeidae	Nomeidae - undifferentiated	Driftfishes	37446000	No species to apportion to. Insufficient taxonomic resolution.
BC	Teleost	Ostraciidae	Ostraciidae - undifferentiated	Boxfishes	37466000	Apportioned to 3 species: 37446010, 37446011, 37446014.
BC	Teleost	Ostraciidae	Anoplocapros inermis	Eastern smooth boxfish	37466002	Misidentification. Outside fishery range.
BC	Teleost	Tetraodontidae	Tetraodontidae - undifferentiated	Toadfishes unspecified	37467000	Apportioned to 37467002.
BC	Teleost	Diodontidae	Diodontidae - undifferentiated	Porcupine fish	37469000	Apportioned to 37469002.
BC	Teleost	Molidae	Molidae - undifferentiated	Ocean sunfishes	37470000	Apportioned to 37447001.
BC	Teleost	Scorpaenidae, Triglidae and Peristediidae	Scorpaenidae, Triglidae and Peristediidae - undifferentiated	Scorpionfishes, gurnards and latchets	37990084	Apportioned to 3 Triglidae species.
BC			Porifera - undifferentiated	Sponges	10000000	Insufficient taxonomic resolution.
BC		Spongiidae	Spongiidae - undifferentiated	Spongiid sponges	10114000	Insufficient taxonomic resolution.
BC			Subclass Octocorallia undifferentiated	Octocorals - Soft corals	11169000	
BC		Coralliidae	Coralliidae - undifferentiated	Precious corals	11183000	
BC			Order Scleractinia - undifferentiated	Stony corals	11290000	
BC			Shells	Shells	23999999	Insufficient taxonomic resolution.

ROLE IN FISHERY	TAXA	FAMILY NAME	SCIENTIFIC NAME	COMMON NAME	CAAB CODE	RATIONALE
BC			Infraorder Anomura undifferentiated	Anomurans	28825000	Insufficient taxonomic resolution.
BC			Various bits of the sea floor which may be alive	Benthos	99000001	Benthos
BC			Substrate or rocks that are non-living	Substrate or rocks	99000002	Benthos
BC			Human attributed objects (e.g. pipeline) or garbage	Human attributed objects	99000003	Insufficient taxonomic resolution.
BC			Identity unknown or bad data	Unknown or other	99999999	Insufficient taxonomic resolution.
PS	Marine bird	Procellariidae	Pterodroma leucoptera	Gould's petrel	40041030	Misidentification. Mostly likely Gould's squid (AFMA; Dan Corrie pers. comm).
PS	Marine bird	Procellariidae	Puffinus spp. - undifferentiated	Shearwaters	40041050	Expanded
PS	Marine bird	Procellariidae	Puffinus spp.	Shearwaters (mixed old afma code)	40041999	Expanded
PS	Teleost	Syngnathidae	Syngnathidae - undifferentiated	Seahorses and pipefishes	37282000	Expanded

2.4.2 Level 2 PSA (Steps 2 and 3)

The results in the Tables below provide details of the PSA assessments for each species, separated by role in the fishery, and by taxa where appropriate. These assessments are limited to direct impacts from fishing, and the operational objective is to avoid over-exploitation due to fishing, either as over-fishing or becoming over-fished. The risk scores and categories (high, medium, or low) reflect potential rather than actual risk using the Level 2 (PSA) method. For species assessed at Level 2 , no account is taken of the level of catch, the size of the population, or the likely exploitation rate. To assess actual risk for any species requires a Level 3 assessment which does account for these factors. However, recent fishing effort distributions are considered when calculating the availability attribute for the Level 2 analysis, whereas the entire jurisdictional range of the fishery is considered at Level 1.

The PSA analyses do not fully take account of management actions already in place in the fishery that may mitigate for high-risk species. Some management actions or strategies, however, can be accounted for in the analysis where they exist. These include spatial management that limits the range of the fishery (affecting availability), gear limits that affect the size of animals that are captured (selectivity), and handling practices that may affect the survival of species after capture (post capture mortality). Management strategies that are not reflected in the PSA scores include limits to fishing effort, use of catch limits (such as TACs), and some other controls such as seasonal closures.

It should be noted that the PSA method is likely to generate more false positives for high risk (species assessed to be high risk when they are actually low risk) than false negatives (species assessed to be low risk when they are actually high risk). This is due to the precautionary approach to uncertainty adopted in the PSA method, whereby attributes are set at high risk levels in the absence of information. It also arises from the nature of the PSA method assessing potential rather than actual risk, as discussed above. Thus, some species will be assessed at high risk because they have low productivity and are exposed to the fishery, even though they are rarely if ever caught and are relatively abundant.

In the PSA Tables below, the "Comments" column is used to provide information on one or more of the following aspects of the analysis for each species: use of overrides to alter susceptibility scores (for example based on use of observer data or taking account of specific management measures or mitigation); data or information sources or limitations; and information that supports the overall scores. The use of over-rides is explained more fully in Hobday et al. (2007).

The PSA Tables also report on "missing information" (the number of attributes with missing data that therefore score at the highest risk level by default). There are seven attributes used to score productivity and four aspects (availability, encounterability, selectivity and post capture mortality) used to score susceptibility (though encounterability is the average of two attributes). An attribute or aspect is scored as missing if there are no data available to score it, and it has defaulted to high risk for this reason. For some species, attributes may be scored on information from related species or other supplementary information, and even though this information is indirect and less reliable than if species specific information was available, this is not scored as a missing attribute.

There are differences between analyses for protected species and the other species components. Target, by-product and by-catch species are included on the basis that they are known to be caught by the fishery (in some cases only very rarely). However protected species are included in the analysis on the basis that they occur in the area of the fishery, whether or not there has ever been an interaction with the fishery recorded. For this reason, there may be a higher proportion of false positives for high vulnerability for protected species, unless there is a robust observer program that can verify that species do not interact with the gear.

Observer data and observer expert knowledge are important sources of information in the PSA analyses, particularly for the bycatch and protected components. The level of observer data for this fishery is regarded as medium. An AFMA observer program has been operating since July 2003, and coverage varies depending on the fishing location. Information on target and byproduct species is well collected, and bycatch attempts are made, but may be compromised by taxonomic difficulties. Interactions with protected species are recorded, although again, taxonomic resolution is weak for some taxa (e.g. whales and seabirds).

Summary of Habitat PSA results

The Habitat component was not assessed at Level 2.

Summary of Community PSA results

The Community component was not assessed at Level 2.

2.4.3 PSA results for individual units of analysis (Step 4-6)

The average productivity and susceptibility scores for each unit of analysis (e.g. for each species) are then used to place the individual units of analysis on 2D plots (as below). The relative position of the units on the plot will determine relative risk at the unit level as per PSA plot below. The overall risk value for a unit is the Euclidean distance from the origin of the graph. Units that fall in the upper third of the PSA plots are deemed to be at high risk. Units with a PSA score in the middle are at medium risk, while units in the lower third are at low risk with regard to the productivity and susceptibility attributes. The divisions between these risk categories are based on dividing the area of the PSA plots into equal thirds. If all productivity and susceptibility scores (scale 1-3) are assumed to be equally likely, then $1 / 3^{\text {rd }}$ of the Euclidean overall risk values will be greater than 3.18 (high risk), $1 / 3^{\text {rd }}$ will be between 3.18 and 2.64 (medium risk), and $1 / 3^{\text {rd }}$ will be lower than 2.64 (low risk).

The PSA output allows identification and prioritization (via ranking the overall risk scores) of the units (e.g. species, habitat types, communities) at greatest risk to fishing activities. This prioritization means units with the lowest inherent productivity or highest susceptibility, which can only sustain the lowest level of impact, can be examined in detail. The overall risk of an individual unit will depend on the level of impact as well its productivity and susceptibility.

The overall risk value for each unit is the Euclidean distance from the origin to the location of the species on the PSA plot. The units are then divided into three risk categories, high, medium, and low, according to the risk values described above.

2.4.4 Uncertainty analysis ranking of overall risk (Step 5)

The final PSA result for a species is obtained by ranking overall risk value resulting from scoring the productivity and susceptibility attributes. Uncertainty in the PSA results can arise when there is imprecise, incorrect or missing data, where an average for a higher taxonomic unit was used (e.g. average genera value for species units), or because an inappropriate attribute was included. The number of missing attributes, and hence conservative scores, is tallied for each unit of analysis. Units with missing scores will have a more conservative overall risk value than those species with fewer missing attributes, as the highest score for the attribute is used in the absence of data. Gathering the information to allow the attribute to be scored may reduce the overall risk value. Identification of high-risk units with missing attribute information should translate into prioritisation of additional research (an alternative strategy).

A second measure of uncertainty is due to the selection of the attributes. The influence of particular attributes on the final result for a unit of analysis (e.g. a habitat unit) can be quantified with an uncertainty analysis, using a Monte Carlo resampling technique. A set of productivity and susceptibility scores for each unit is calculated by removing one of the productivity or susceptibility attributes at a time, until all attribute combinations have been used. The variation (standard deviation) in the productivity and susceptibility scores is a measure of the uncertainty in the overall PSA score. If the uncertainty analysis shows that the unit would be treated differently regarding risk, it should be the subject of more study.

The validity of the ranking can also be examined by comparing the results with those from other data sources or modelling approaches that have already been undertaken in specific fisheries. For example, the PSA results of the individual species (target, byproduct and bycatch and protected) can be compared against catch rates for any species or against completed stock assessments. These comparisons will show whether the PSA ranking agrees with these other sources of information or more rigorous approaches.

2.4.5 PSA results and discussion

a) Key/secondary commercial species

Under the revised ERAEF (AFMA 2017), key/secondary commercial species that undergo Tier stock assessments are not assessed at Level 2 with respect to the direct impact of capture of fishing hazard. This component was eliminated at Level 1 for other hazards and therefore not assessed at Level 2.
b) Commercial bait species

There are no commercial bait species in this sub-fishery.
c) Byproduct species

There was one medium risk teleost (Common gurnard perch - Neosebastes scorpaenoides), that was unassessable in bSAFE (Table 2.23).

Of the other two invertebrate byproduct species assessed in this PSA, one was high risk and one low risk (Table 2.23, Figure 2.8). The high-risk species was Gould's squid (Nototodarus gouldi) and therefore subject to a residual risk analysis (Table 2.23, Section 2.9).

Figure 2.8. PSA plot for byproduct species in the SESSF GAB Otter trawl sub-fishery for a) robust [left] and (b) data deficient [right] species. Note many species fall on some points.

Table 2.23. Summary of the PSA scores on the set of productivity and susceptibility attributes for byproduct species and residual risk (RR) for high risk species. Productivity attributes (P1-P7) are listed in Table $\mathbf{2 . 2 5}$ (in report). Susceptibility attributes (S1-S4) are listed in Susceptibility attributes
Table 2.26 (in report). Missing attributes are highlighted (red). Productivity score (Prod. score); Susceptibility score (Susc. score). No. interactions (No. Int) or catch (2012-2016) reported for extreme or high risk scores only (source: Commonwealth logbook (Log) and observer (Obs) databases). Residual risk guidelines drawn from document "Revision of residual risk guidelines to reflect updated Ecological Risk Assessment Methodology - version Oct 12, 2016. See numbers at the foot of this table. R: retained. NE: not entered.

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	P4	P5	P6	P7	\$1	S2	S3	S4	PROD. SCORE	SUSC. SCORE	MISSING ATTRIBUTES	$\begin{aligned} & \text { PSA } \\ & \text { 2D } \end{aligned}$	RISK CATEGORY	NO. INT. OR CATCH (2012-2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
Following 1 BP species were unassessable in bSAFE and analysed in PSA:																					
37287005	Neosebastes scorpaenoides	Common gurnard perch	3	3	3	1	2	1	3	1.03	2.90	3	3	2.29	1.65	3	2.82	Medium	NE	No RR required	Medium
Other BP species:																					
23636004	Nototodarus gouldi	Gould's squid	1	1	1	1	1	2	2	3	3	3	3	1.29	3	1	3.27	High	122.9 t ret. (Log). Also, Squids: 85.6 t ret. (Log), 14.3 t dis. (Log).	Population status unknown. No existing tiered assessment in this fishery or SSJ fishery, but Squid resource assessment group consider this species to be sustainable. A combined catch limit of 2000 t for the SESSF- GABT and SESSF-OT	High

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	P4	P5	P6	P7	S1	S2	S3	S4	PROD. SCORE	SUSC. SCORE	MISSING ATTRIBUTES	PSA	RISK CATEGORY	NO. INT. OR CATCH (2012-2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																				sectors are in place. RR remains high	
23617005	Sepioteuthis australis	Southern calamari	1	1	2	1	1	2	2	3	1	2	3	1.43	1.43	1	2.02	Low	NE	No RR required	Low

Risk ranking guidelines:

1	Risk rating due to missing, incorrect or out of date information	4	Effort and catch management arrangements for target and byproduct species
2	At risk due to external factors (cumulative risks)	5	Management arrangements to mitigate against the level of bycatch
3	At risk in regards to level of interaction/capture with a zero or negligible level of susceptibility	6	Management arrangements relating to seasonal, spatial and depth closures

d) Bycatch species

There were 16 bycatch species analysed in this PSA comprising 11 teleosts all of which were unassessable in bSAFE and five invertebrate species (Table 2.24). Of these 16 species, three were high risk, 10 were medium risk and three were low risk. Two teleosts were assessed at high risk: three-spined cardinal fish Verilus anomalus and thetis fish Neosebastes thetidis.

Of the invertebrates, only one species was assessed at high risk champagne crab Hypothalassia armata, three at medium risk: giant crab Pseudocarcinus gigas, southern rock lobster Jasus edwardsii and false bailer shell Livonia mammilla and one at low risk: blue swimmer crab Portunus armatus (Table 2.24, Figure 2.9).

A residual risk analysis was performed on the three high risk species (see Section 2.9).

Figure 2.9. PSA plot for bycatch species in the SESSF GAB Otter trawl sub-fishery for a) robust [left] and (b) data deficient [right] species. Note many species fall on some points.

Table 2.24. Summary of the PSA scores on the set of productivity and susceptibility attributes for bycatch species and residual risk (RR) for high risk species. Productivity attributes (P1-P7) are listed in Table 2.25 (in report). Susceptibility attributes (S1-S4) are listed in Susceptibility attributes
Table 2.26 (in report). Missing attributes are highlighted (red). Productivity score (Prod. score); Susceptibility score (Susc. Score). No. interactions (No. Int) or catach (2012-2016) reported for extreme or high risk scores only (source: Commonwealth logbook (Log) and observer (Obs) databases). Residual risk guidelines drawn from document "Revision of residual risk guidelines to reflect updated Ecological Risk Assessment Methodology - version Oct 12, 2016. See numbers at the foot of this table. R: retained. NE: not entered.

$\begin{aligned} & \text { CAAB } \\ & \text { CODE } \end{aligned}$	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	P4	P5	P6	P7	S1	S2	S3	S4	PROD. SCORE	SUSC. SCORE	MISSING ATTRIBUTES	$\begin{aligned} & \text { PSA } \\ & \text { 2D } \end{aligned}$	RISK CATEGO RY	NO. INT. OR CATCH (2012-2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
Following 11 BC species were unassessable in bSAFE and analysed in PSA:																					
37311053	Verilus anomalus	Three-spined cardinalfish	3	3	3	3	3	3	3	1.75	3	3	3	3	2.16	9	3.70	High	$13 \mathrm{~kg} \text { dis. }$ (Obs)	3-Low interaction/ca pture. 7 productivity and 2 susceptibility attributes are not available. Between 1- 4\% Observer coverage. Based on low interaction/ca tch, risk reduced to low.	Low
37287006	Neosebastes thetidis	Thetis fish	3	3	3	1	1	1	3	3	3	3	3	2.14	2.14	3	3.69	High	25 kg ret. (Log). 131.9 kg ret., 975.5 kg dis. (Obs).	3 - Low interaction/ca pture. 3 productivity attributes are not available. Between 14\% Observer coverage.	Low

$\begin{aligned} & \text { CAAB } \\ & \text { CODE } \end{aligned}$	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	P4	P5	P6	P7	S1	S2	S3	S4	PROD. SCORE	SUSC. SCORE	MISSING ATTRIBUTES	$\begin{aligned} & \text { PSA } \\ & \text { 2D } \end{aligned}$	RISK CATEGO RY	NO. INT. OR CATCH (2012-2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																				Based on low interaction/ca tch, risk reduced to low.	
37287003	Neosebastes pandus	Bighead gurnard perch	3	3	3	1	2	1	3	1.42	3	3	3	2.29	1.93	3	2.99	Medium	NE	No RR required	Medium
37297001	Hoplichthys haswelli	Deepsea flathead	3	3	3	1	2	1	3	1	3	3	3	2.29	1.65	3	2.82	Medium	NE	No RR required	Medium
37466014	Caprichthys gymnura	Rigid boxfish	3	3	3	3	1	3	2	1.27	3	3	3	2.57	1.87	6	3.15	Medium	NE	No RR required	Medium
37067002	Gnathophis longicaudus	Little conger	3	3	3	1	2	3	3	1	1	3	3	2.57	1.2	4	2.84	Medium	NE	No RR required	Medium
37287004	Neosebastes bougainvillii	Gulf gurnard perch	3	3	3	1	2	3	3	3	1	3	3	2.57	1.65	4	3.05	Medium	NE	No RR required	Medium
37013005	Parascyllium ferrugineum	Rusty carpetshark	3	3	3	1	2	2	3	1.07	3	3	3	2.43	1.70	2	2.97	Medium	NE	No RR required	Medium
37466011	Capropygia unistriata	Spiny boxfish	3	3	3	1	1	1	2	3	3	2	3	2	2.33	3	3.07	Medium	NE	No RR required	Medium
37070001	Diastobranchus capensis	Basketwork eel	3	3	1	2	2	1	3	1	2.30	3	3	2.14	1.49	2	2.61	Low	NE	No RR required	Low
37466010	Anoplocapros lenticularis	Whitebarred boxfish	3	3	3	1	1	1	3	1.02	3	2	3	2.14	1.44	3	2.58	Low	NE	No RR required	Low
Other BC species:																					
28916002	Hypothalassia armata	Champagne crab	3	3	3	1	1	2	3	3	3	2	3	2.29	2.33	5	3.27	High	0 ret., 3 kg dis. (Log). Also, 148 kg dis. (Log) of	```3-Low interaction/ca pture. } productivity and 1```	Low

$\begin{aligned} & \text { CAAB } \\ & \text { CODE } \end{aligned}$	SCIENTIFIC NAME	COMMON NAME	P1	P2	P3	P4	P5	P6	P7	S1	S2	S3	S4	PROD. SCORE	SUSC. SCORE	MISSING ATTRIBUTES	$\begin{aligned} & \text { PSA } \\ & \text { 2D } \end{aligned}$	RISK CATEGO RY	NO. INT. OR CATCH (2012-2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
																			Champagne crabs (mixed)	susceptibility attributes are not available. Based on low interaction rate, risk is reduced to low. Between 1-4\% Oberver coverage.	
28915002	Pseudocarcinus gigas	Giant crab	2	3	1	1	1	2	2	3	3	2	3	1.71	2.33	2	2.89	Medium	NE	No RR required	Medium
24207001	Livonia mammilla	False bailer shell	3	3	3	1	1	2	1	3	3	2	3	2	2.33	2	3.07	Medium	NE	No RR required	Medium
28820001	Jasus edwardsii	Southern rock lobster	2	2	1	1	1	2	1	3	3	2	3	1.43	2.33	1	2.73	Medium	NE	No RR required	Medium
28911005	Portunus armatus	Blue swimmer crab	1	1	1	1	1	3	2	3	1	2	3	1.43	1.43	2	2.02	Low	NE	No RR required	Low

Risk ranking guidelines:

1	Risk rating due to missing, incorrect or out of date information	4	Effort and catch management arrangements for target and byproduct species
2	At risk due to external factors (cumulative risks)	5	Management arrangements to mitigate against the level of bycatch
3	At risk in regards to level of interaction/capture with a zero or negligible level of susceptibility	6	Management arrangements relating to seasonal, spatial and depth closures

e) Protected species

There was no PSA required for the protected species component in this sub-fishery.

Productivity attributes

Table 2.25. Productivity attribute names and cutoff scores for the ERAF L2 PSA method. These cutoffs have been determined from analysis of the distribution of attribute values for species in the ERAF database and are intended to divide the attribute values into low, medium and high productivity categories.

ATTRIBUTE NUMBER	ATTRIBUTE NAME	LOW PRODUCTIVITY (RISK SCORE: 3)	MEDIUM PRODUCTIVITY (RISK SCORE: 2)	HIGH PRODUCTIVITY (RISK SCORE: 1)
P1	Average age at maturity	>15 years	$5-15$ years	<5 years
P2	Average max age	>25 years	$10-25$ years	<10 years
P3	Fecundity	<100 eggs per years	$100-20,000$ eggs per year	$>20,000$ eggs per year
P4	Average max size	$>300 \mathrm{~cm}$	$100-300 \mathrm{~cm}$	$<100 \mathrm{~cm}$
P5	Average size at Maturity	$>200 \mathrm{~cm}$	$40-200 \mathrm{~cm}$	$<40 \mathrm{~cm}$
P6	Reproductive strategy	Taxa is "Marine bird" or "Marine mammal"	Family is: "Syngnathidae" or "Solenostomidae" Or Reproductive Strategy is: "Demersal Spawner" Or "Brooder"	Reproductive Strategy is "Broadcast Spawner"

Susceptibility attributes

Table 2.26. Susceptibility attribute names and cutoff scores for the ERAF L2 PSA method. These cutoffs have been determined from analysis of the distribution of attribute values for species in the ERAF database and are intended to divide the attribute values into low, medium and high susceptibility categories.

ATTRIBUTE NUMBER		ATTRIBUTE NAME	LOW SUSCEPTIBILITY (RISK SCORE: 1)	MEDIUM SUSCEPTIBILITY (RISK SCORE: 2)	HIGH SUSCEPTIBILITY (RISK SCORE: 3)
S1	Availability	<10\% overlap	Continuous [1,3]	$>30 \%$ overlap	
S2	Encounterability (habitat and bathymetry based)	Fishery Specific	Fishery Specific	Fishery Specific	
S3	Selectivity (size based)	Fishery Specific	Fishery Specific	Fishery Specific	
S4	Post-Capture Mortality (role in fishery based, protected Species based)	Some Protected (Live)	Byproduct or bycatch Some protected (generally alive)	Key or secondary commercial Some protected (likely to be dead)	

Post Capture Mortality

The following rules were used to assign a risk score to Post Capture Mortality (PCM), based on each species ERAEF classification (see also Table 2.27):

- Commercial, secondary commercial, commercial bait or byproduct species: score is 3 .
- Bycatch species: score is 2
- Protected species (which are discarded), PCM is based on taxa, i.e.,
- marine birds and marine reptiles: score is 3
- marine mammals and chondricthyans: score is 2
- sygnathids: score is 1

Table 2.27. Post capture mortality attribute risk score for the GAB Otter trawl sub-fishery for the ERAEF L2 PSA and bSAFE methods. High: H; M: medium; Low: L. Risk scores that are not assigned by taxa (not specific) for each ERAEF classification are shaded.

ROLE IN FISHERY	TAXA	RATIONALE	RISK CATEGORY	RISK SCORE
Key commercial	Not specific	Retained, therefore dead	H	3
Secondary commercial	Not specific	Retained, therefore dead	H	3
Commercial bait	Not specific	Retained, therefore dead	H	3
Byproduct	Not specific	Retained, therefore dead	H	3
Bycatch	Not specific	Discarded alive or dead	M	2
Protected Species	Marine birds	long duration set, if caught, highly likely to drown	H	3
	Marine reptiles	long duration set, if caught, highly likely to drown	H	3
	Marine mammals	large enough/strong swimming to have a chance of survival	M	2
	Chondrichthyans	large enough/strong swimming to have a chance of survival	M	2
	All others e.g. sygnathids, invertebrates (if any)	Do not get hooked/trapped	L	1

2.5 bSAFE results and discussion

Each of the reference points (MSM, LIM, and CRASH) were evaluated. If the biological reference point mean was higher than the estimated F attributed to this sub-fishery, then the species was categorised as 'Below'. When the biological reference point mean was lower than the estimated F attributed to the sub-fishery, then the species was categorised as 'Above' for that species and reference point measure. The overall risk is a summary of the three reference point measures (Table 2.28). If all reference points are categorised as 'Below', then the overall risk is low. The intensity of fishing effort and gear affected area were used to estimate F, instead of gridded effort.

Table 2.28 Overall risk summary against each of the three reference point measures.

MSM	LIM	CRASH	OVERALL RISK
Below	Below	Below	Low
Above	Below	Below	Medium
Above	Above	Below	High
Above	Above	Above	Extreme

2.5.1 bSAFE - Key/secondary commercial species

Under the revised ERAEF (AFMA 2017), key/secondary commercial species that undergo Tier stock assessments are not assessed at Level 2 with respect to the direct impact of capture of fishing hazard. This component was eliminated at Level 1 for other hazards and therefore not assessed at Level 2.

2.5.2 bSAFE - Commercial bait species

There were no commercial bait species in this sub-fishery

2.5.3 bSAFE - Byproduct species

There were 35 byproduct species analysed in this bSAFE (Table 2.29, Figure 2.10a, b). Of these, the common gurnard perch (Neosebastes scorpaenoides) was unassessable due to missing biological attributes and therefore assessed in a PSA (see results; Table 2.23). All remaining 34 species species were assessed at low risk.

Figure 2.10. SAFE plot for Byproduct species in the SESSF GAB Otter trawl sub-fishery for (a) SAFEMSM reference point [left] and (b) SAFE limit (LIM) reference point [right]

Table 2.29. bSAFE risk categories for byproduct species ecological component for F_MSM, F_Lim and F_Crash. A residual risk (RR) analysis conducted for extreme and high risk species. Catch from Commonwealth logbook (Log) and observer (Obs) databases. Residual risk guidelines drawn from document "Revision of residual risk guidelines to reflect updated Ecological Risk Assessment Methodology - version Oct 12, 2016. See numbers at the foot of this table. NE: not entered. Ret: retained; dis: discarded. ^ Tiered species in this sub-fishery.

$\begin{aligned} & \text { CAAB } \\ & \text { CODE } \end{aligned}$	SCIENTIFIC NAME	COMMON NAME	SUSCEPTIBILITY	F MSM	$\begin{aligned} & \text { F MSM } \\ & \text { RISK } \end{aligned}$	$\begin{gathered} \text { F } \\ \text { LIM } \end{gathered}$	$\begin{aligned} & \text { F LIM } \\ & \text { RISK } \end{aligned}$	$\begin{gathered} \text { F } \\ \text { CRASH } \end{gathered}$	$\begin{gathered} \text { F } \\ \text { CRASH } \\ \text { RISK } \end{gathered}$	F OVERALL RISK	CATCH (2012-2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
Following 1 BP species unassessable in SAFE:													
37287005	Neosebastes scorpaenoides	Common gurnard perch	0.000	-	NA	-	NA	-	NA	NA	-	-	$\begin{gathered} \text { See Table } \\ 2.23 \end{gathered}$
Other BP species:													
37024002	Squatina tergocellata	Ornate angelshark	0.015	0.07	Below	0.11	Below	0.15	Below	Low	NE	No RR required	Low
37018001	Carcharhinus brachyurus	Bronze whaler	0.011	0.04	Below	0.06	Below	0.08	Below	Low	NE	No RR required	Low
37377004	Nemadactylus valenciennesi	Blue morwong	0.065	0.23	Below	0.34	Below	0.46	Below	Low	NE	No RR required	Low
37228001	Dannevigia tusca	Tusk	0.000	0.23	Below	0.34	Below	0.46	Below	Low	NE	No RR required	Low
37023002	Pristiophorus cirratus	Common sawshark	0.016	0.09	Below	0.14	Below	0.19	Below	Low	NE	No RR required	Low
37377003	Nemadactylus macropterus	Jackass morwong	0.043	0.22	Below	0.32	Below	0.43	Below	Low	NE	No RR required	Low
37367001	Paristiopterus gallipavo	Yellowspotted boarfish	0.059	0.28	Below	0.42	Below	0.56	Below	Low	NE	No RR required	Low
37311006	Polyprion oxygeneios	Hapuku	0.001	0.13	Below	0.20	Below	0.26	Below	Low	NE	No RR required	Low
37228002	Genypterus blacodes	Pink ling	0.042	0.19	Below	0.29	Below	0.38	Below	Low	NE	No RR required	Low
37337062	Pseudocaranx georgianus	Silver trevally	0.016	0.27	Below	0.4	Below	0.53	Below	Low	NE	No RR required	Low

$\begin{aligned} & \text { CAAB } \\ & \text { CODE } \end{aligned}$	SCIENTIFIC NAME	COMMON NAME	SUSCEP- TIBILITY	F MSM	$\begin{aligned} & \text { F MSM } \\ & \text { RISK } \end{aligned}$	$\begin{gathered} \text { F } \\ \text { LIM } \end{gathered}$	F LIM RISK	F CRASH		$\begin{gathered} \text { F OVERALL } \\ \text { RISK } \end{gathered}$	CATCH (2012-2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
37013003	Orectolobus maculatus	Spotted wobbegong	0.0004	0.07	Below	0.1	Below	0.14	Below	Low	NE	No RR required	Low
37017001	Mustelus antarcticus	Gummy shark	0.000	0.1	Below	0.15	Below	0.21	Below	Low	NE	No RR required	Low
37024001	Squatina australis	Australian angel shark	0.005	0.07	Below	0.11	Below	0.15	Below	Low	NE	No RR required	Low
37039001	Myliobatis tenuicaudatus	New Zealand eagle ray; Southern eagle ray	0.003	0.07	Below	0.11	Below	0.14	Below	Low	NE	No RR required	Low
37224002	Mora moro	Ribaldo	0.000	0.31	Below	0.46	Below	0.61	Below	Low	NE	No RR required	Low
37227001	Macruronus novaezelandiae	Blue grenadier	0.001	0.25	Below	0.37	Below	0.50	Below	Low	NE	No RR required	Low
37255009	Hoplostethus atlanticus	Orange roughy	0.000	0.12	Below	0.18	Below	0.24	Below	Low	NE	No RR required	Low
37264001	Cyttus traversi	King dory	0.001	0.5	Below	0.75	Below	1	Below	Low	NE	No RR required	Low
37264004	Zeus faber	John dory	0.016	0.33	Below	0.50	Below	0.67	Below	Low	NE	No RR required	Low
37269001	Metavelifer multiradiatus	Common veilfin	0.014	0.44	Below	0.66	Below	0.88	Below	Low	NE	No RR required	Low
37287001	Helicolenus percoides	Reef ocean perch	0.000	0.23	Below	0.35	Below	0.46	Below	Low	NE	No RR required	Low
37287093	Helicolenus barathri	Bigeye ocean perch	0.000	0.2	Below	0.3	Below	0.4	Below	Low	NE	No RR required	Low
37288001	Chelidonichthys kumu	Red gurnard	0.031	0.52	Below	0.78	Below	1.04	Below	Low	NE	No RR required	Low
37288006	Pterygotrigla polyommata	Latchet	0.024	0.44	Below	0.65	Below	0.87	Below	Low	NE	No RR required	Low
37353001	Chrysophrys auratus	Snapper	0.018	0.28	Below	0.41	Below	0.55	Below	Low	NE	No RR required	Low

$\begin{aligned} & \text { CAAB } \\ & \text { CODE } \end{aligned}$	SCIENTIFIC NAME	COMMON NAME	SUSCEP- TIBILITY	F MSM	$\begin{aligned} & \text { F MSM } \\ & \text { RISK } \end{aligned}$	$\begin{gathered} \text { F } \\ \text { LIM } \end{gathered}$	$\begin{aligned} & \text { F LIM } \\ & \text { RISK } \end{aligned}$	F CRASH		$\begin{gathered} \text { F OVERALL } \\ \text { RISK } \end{gathered}$	CATCH (2012-2016)	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
37367004	Pentaceros decacanthus	Bigspine boarfish	0.001	0.27	Below	0.4	Below	0.53	Below	Low	NE	No RR required	Low
37367005	Zanclistius elevatus	Blackspot boarfish	0.055	0.27	Below	0.4	Below	0.53	Below	Low	NE	No RR required	Low
37369002	Oplegnathus woodwardi	Knifejaw	0.023	0.31	Below	0.47	Below	0.63	Below	Low	NE	No RR required	Low
37384014	Xiphocheilus typus	Bluetooth tuskfish	0.000	0.53	Below	0.79	Below	1.06	Below	Low	NE	No RR required	Low
37400002	Ichthyscopus barbatus	Fringe stargazer	0.002	0.33	Below	0.49	Below	0.66	Below	Low	NE	No RR required	Low
37400003	Kathetostoma laeve	Common stargazer	0.004	0.33	Below	0.49	Below	0.66	Below	Low	NE	No RR required	Low
37400005	Pleuroscopus pseudodorsalis	Scaled stargazer	0.000	0.33	Below	0.49	Below	0.66	Below	Low	NE	No RR required	Low
37439002	Rexea solandri	Gemfish	0.003	0.28	Below	0.41	Below	0.55	Below	Low	NE	No RR required	Low
37465006	Nelusetta ayraud	Ocean jacket	0.018	0.38	Below	0.56	Below	0.75	Below	Low	NE	No RR required	Low

Risk ranking guidelines:

1	Risk rating due to missing, incorrect or out of date information	4	Effort and catch management arrangements for target and byproduct species
2	At risk due to external factors (cumulative risks)	5	Management arrangements to mitigate against the level of bycatch
3	At risk in regards to level of interaction/capture with a zero or negligible level of susceptibility	6	Management arrangements relating to seasonal, spatial and depth closures

2.5.4 bSAFE - Bycatch species

There were 117 bycatch species analysed in bSAFE (Table 2.30). Eleven of these species (10 teleosts and one chondrichthyan) were unassessable due to missing biological attributes and were subsequently assessed in a PSA (see results Table 2.24). Of the 106 assessable species, one was medium risk and 105 were low risk (

Figure 2.11a, b; Table 2.30).

Figure 2.11. SAFE plot for Bycatch species in the SESSF GABT sub-fishery for (a) SAFE-MSM reference point [left] and (b) SAFE limit (LIM) reference point [right].

Table 2.30. bSAFE risk categories for bycatch species ecological component for F_MSM, F_Lim and F_Crash. A residual risk (RR) analysis conducted for extreme and high risk species. Catch from Commonwealth logbook (Log) and observer (Obs) databases. Residual risk guidelines drawn from document "Revision of residual risk guidelines to reflect updated Ecological Risk Assessment Methodology - version Oct 12, 2016. See numbers at the foot of this table. R: retained. NE: not entered. NA: not assessable.

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SUSCEPTIBILITY	$\begin{gathered} \text { F } \\ \text { MSM } \end{gathered}$	$\begin{aligned} & \text { F MSM } \\ & \text { RISK } \end{aligned}$	F LIM	$\begin{aligned} & \text { F LIM } \\ & \text { RISK } \end{aligned}$	$\begin{gathered} \text { F } \\ \text { CRASH } \end{gathered}$	$\begin{aligned} & \text { F CRASH } \\ & \text { RISK } \end{aligned}$	F OVERALL RISK	$\begin{aligned} & \text { CATCH (2012- } \\ & \text { 2016) } \end{aligned}$	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
The following 11 species have been analysed in the PSA (see Table 2.24):													
37466014	Caprichthys gymnura	Rigid boxfish	0.017	-	NA	-	NA	-	NA	NA	-	-	$\begin{aligned} & \text { see Table } \\ & 2.24 \end{aligned}$
37466011	Capropygia unistriata	Spiny boxfish	0.045	-	NA	-	NA	-	NA	NA	-	-	$\begin{aligned} & \text { see Table } \\ & 2.24 \end{aligned}$
37466010	Anoplocapros lenticularis	Whitebarred boxfish	0.008	-	NA	-	NA	-	NA	NA	-	-	$\begin{aligned} & \text { see Table } \\ & 2.24 \end{aligned}$
37311053	Verilus anomalus	Three-spined cardinalfish	0.024	-	NA	-	NA	-	NA	NA	-	-	$\begin{aligned} & \text { see Table } \\ & 2.24 \end{aligned}$
37297001	Hoplichthys haswelli	Deepsea flathead	0.003	-	NA	-	NA	-	NA	NA	-	-	$\begin{aligned} & \text { see Table } \\ & 2.24 \end{aligned}$
37287006	Neosebastes thetidis	Thetis fish	0.091	-	NA	-	NA	-	NA	NA	-	-	$\begin{aligned} & \text { see Table } \\ & 2.24 \\ & \hline \end{aligned}$
37287004	Neosebastes bougainvillii	Gulf gurnard perch	0.004	-	NA	-	NA	-	NA	NA	-	-	$\begin{aligned} & \text { see Table } \\ & 2.24 \\ & \hline \end{aligned}$
37287003	Neosebastes pandus	Bighead gurnard perch	0.023	-	NA	-	NA	-	NA	NA	-	-	$\begin{aligned} & \text { see Table } \\ & 2.24 \\ & \hline \end{aligned}$
37070001	Diastobranchus capensis	Basketwork eel	0.000	-	NA	-	NA	-	NA	NA	-	-	$\begin{aligned} & \text { see Table } \\ & 2.24 \end{aligned}$
37067002	Gnathophis longicaudus	Little conger	0.000	-	NA	-	NA	-	NA	NA	-	-	$\begin{aligned} & \text { see Table } \\ & 2.24 \\ & \hline \end{aligned}$
37013005	Parascyllium ferrugineum	Rusty carpetshark	0.013	-	NA	-	NA	-	NA	NA	-	-	$\begin{aligned} & \text { see Table } \\ & 2.24 \end{aligned}$
Other BC species:													
37038008	Urolophus expansus	Wide stingaree	0.051	0.14	Below	0.21	Below	0.28	Below	Low	NE	No RR required	Low
37028003	Torpedo macneilli	Short-tail torpedo ray	0.011	0.11	Below	0.16	Below	0.22	Below	Low	NE	No RR required	Low
37020006	Squalus megalops	Piked spurdog; spikey dogfish	0.068	0.06	Above	0.09	Below	0.12	Below	Medium	NE	No RR required	Medium

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SUSCEPTIBILITY	F MSM	$\begin{gathered} \text { F MSM } \\ \text { RISK } \end{gathered}$	F LIM	$\begin{aligned} & \text { F LIM } \\ & \text { RISK } \end{aligned}$	F CRASH	$\begin{gathered} \text { F CRASH } \\ \text { RISK } \end{gathered}$	F OVERALL RISK	$\begin{aligned} & \text { CATCH (2012- } \\ & 2016) \end{aligned}$	RISK SCORE FOLLOWING RESIDUAL RISK	$\begin{aligned} & \text { FINAL } \\ & \text { RISK } \\ & \text { SCORE } \end{aligned}$
37017008	Galeorhinus galeus	School shark	0.019	0.06	Below	0.09	Below	0.13	Below	Low	NE	No RR required	Low
37031003	Dentiraja cerva	Whitespotted skate	0.041	0.1	Below	0.15	Below	0.21	Below	Low	NE	No RR required	Low
37031001	Irolita waitii	Southern round skate	0.023	0.09	Below	0.13	Below	0.17	Below	Low	NE	No RR required	Low
37031006	Spiniraja whitleyi	Melbourne skate	0.000	0.06	Below	0.09	Below	0.12	Below	Low	NE	No RR required	Low
37258006	Centroberyx australis	Yelloweye redfish	0.032	0.35	Below	0.52	Below	0.70	Below	Low	NE	No RR required	Low
37311055	Callanthias australis	Splendid perch	0.018	0.29	Below	0.43	Below	0.58	Below	Low	NE	No RR required	Low
37311175	Lepidoperca filamenta	Western orange perch	0.083	0.21	Below	0.32	Below	0.42	Below	Low	NE	No RR required	Low
37005001	Heptranchias perlo	Sharpnose sevengill shark	0.001	0.1	Below	0.15	Below	0.2	Below	Low	NE	No RR required	Low
37007001	Heterodontus portusjacksoni	Port Jackson shark	0.013	0.07	Below	0.10	Below	0.14	Below	Low	NE	No RR required	Low
37311052	Lepidoperca occidentalis	Slender orange perch	0.019	0.21	Below	0.32	Below	0.42	Below	Low	NE	No RR required	Low
37015013	Cephaloscyllium albipinnum	Whitefin swellhark	0.009	0.12	Below	0.18	Below	0.24	Below	Low	NE	No RR required	Low
37465032	Eubalichthys quadrispinis	Fourspine leatherjacket	0.085	0.44	Below	0.65	Below	0.87	Below	Low	NE	No RR required	Low
37031010	Dipturus gudgeri	Bight skate	0.001	0.06	Below	0.09	Below	0.12	Below	Low	NE	No RR required	Low
37015009	Figaro boardmani	Australian sawtail catshark; sawtail catshark	0.011	0.12	Below	0.18	Below	0.25	Below	Low	NE	No RR required	Low
37017003	Furgaleus macki	Whiskery shark	0.017	0.1	Below	0.15	Below	0.2	Below	Low	NE	No RR required	Low
37043001	Callorhinchus milii	Elephantfish	0.000	0.13	Below	0.19	Below	0.25	Below	Low	NE	No RR required	Low
37287002	Neosebastes nigropunctatus	Blackspotted gurnard perch	0.09	0.19	Below	0.29	Below	0.39	Below	Low	NE	No RR required	Low
37345001	Emmelichthys nitidus	Redbait	0.000	0.43	Below	0.65	Below	0.87	Below	Low	NE	No RR required	Low

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SUSCEPTIBILITY	F MSM	$\begin{gathered} \text { F MSM } \\ \text { RISK } \end{gathered}$	F LIM	$\begin{aligned} & \text { F LIM } \\ & \text { RISK } \end{aligned}$	F CRASH	$\begin{gathered} \text { F CRASH } \\ \text { RISK } \end{gathered}$	F OVERALL RISK	$\begin{aligned} & \text { CATCH (2012- } \\ & \text { 2016) } \end{aligned}$	RISK SCORE FOLLOWING RESIDUAL RISK	
37255003	Paratrachichthys macleayi	Sandpaper fish	0.038	0.16	Below	0.24	Below	0.32	Below	Low	NE	No RR required	Low
37232003	Coelorinchus mirus	Gargoyle fish	0.011	0.27	Below	0.4	Below	0.53	Below	Low	NE	No RR required	Low
37020011	Centrophorus zeehaani	Southern dogfish	0.001	0.05	Below	0.07	Below	0.1	Below	Low	NE	No RR required	Low
37020002	Dalatias licha	Black shark	0.001	0.07	Below	0.11	Below	0.14	Below	Low	NE	No RR required	Low
37005002	Notorynchus cepedianus	Broadnose shark	0.006	0.1	Below	0.15	Below	0.2	Below	Low	NE	No RR required	Low
37013001	Orectolobus ornatus	Banded wobbegong	0.000	0.09	Below	0.14	Below	0.19	Below	Low	NE	No RR required	Low
37013020	Orectolobus halei	Gulf wobbegong	0.000	0.14	Below	0.21	Below	0.28	Below	Low	NE	No RR required	Low
37015020	Apristurus australis	Apristurus sp G	0.000	0.13	Below	0.19	Below	0.25	Below	Low	NE	No RR required	Low
37015024	Asymbolus occiduus	Western spotted catshark	0.000	0.13	Below	0.19	Below	0.25	Below	Low	NE	No RR required	Low
37019004	Sphyrna zygaena	Smooth hammerhead shark	0.002	0.09	Below	0.13	Below	0.18	Below	Low	NE	No RR required	Low
37020003	Deania calceus	Brier shark	0.001	0.06	Below	0.09	Below	0.13	Below	Low	NE	No RR required	Low
37020004	Deania quadrispinosa	Longsnout dogfish	0.001	0.06	Below	0.09	Below	0.12	Below	Low	NE	No RR required	Low
37020005	Etmopterus lucifer	Blackbelly lanternshark	0.001	0.1	Below	0.16	Below	0.21	Below	Low	NE	No RR required	Low
37020019	Centroscymnus owstonii	Owston's dogfish	0.000	0.05	Below	0.08	Below	0.10	Below	Low	NE	No RR required	Low
37020022	Etmopterus unicolor	Bristled lanternshark	0.000	0.08	Below	0.12	Below	0.16	Below	Low	NE	No RR required	Low
37020048	Squalus cholorculus	Greeneye spurdog	0.002	0.06	Below	0.09	Below	0.12	Below	Low	NE	No RR required	Low
37023001	Pristiophorus nudipinnis	Southern sawshark	0.000	0.12	Below	0.19	Below	0.25	Below	Low	NE	No RR required	Low
37027001	Aptychotrema vincentiana	Western shovelnose ray	0.000	0.11	Below	0.16	Below	0.21	Below	Low	NE	No RR required	Low
37027006	Trygonorrhina fasciata	Eastern fiddler ray	0.000	0.1	Below	0.14	Below	0.19	Below	Low	NE	No RR required	Low

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SUSCEPTIBILITY	$\begin{gathered} \text { F } \\ \text { MSM } \end{gathered}$	$\begin{aligned} & \text { F MSM } \\ & \text { RISK } \end{aligned}$	F LIM	$\begin{aligned} & \text { F LIM } \\ & \text { RISK } \end{aligned}$	$\begin{gathered} \text { F } \\ \text { CRASH } \end{gathered}$	$\begin{gathered} \text { F CRASH } \\ \text { RISK } \end{gathered}$	F OVERALL RISK	$\begin{aligned} & \text { CATCH (2012- } \\ & \text { 2016) } \end{aligned}$	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
37027011	Trygonorrhina dumerilii	Southern fiddler ray	0.000	0.1	Below	0.15	Below	0.2	Below	Low	NE	No RR required	Low
37028001	Hypnos monopterygius	Coffin ray	0.018	0.12	Below	0.18	Below	0.25	Below	Low	NE	No RR required	Low
37031028	Dipturus canutus	Grey skate	0.001	0.1	Below	0.14	Below	0.19	Below	Low	NE	No RR required	Low
37031035	Dipturus acrobelus	Deepwater skate	0.000	0.1	Below	0.14	Below	0.19	Below	Low	NE	No RR required	Low
37035001	Bathytoshia brevicaudata	Short-tail stingray	0.000	0.11	Below	0.16	Below	0.21	Below	Low	NE	No RR required	Low
37035002	Bathytoshia lata	Brown stingray/ Black stingray	0.003	0.10	Below	0.16	Below	0.21	Below	Low	NE	No RR required	Low
37042001	Chimaera ogilbyi	Ogilby's ghostshark	0.000		Below		Below		Below	Low	NE	No RR required	Low
37067007	Conger verreauxi	Southern conger	0.000	0.23	Below	0.34	Below	0.45	Below	Low	NE	No RR required	Low
37085002	Sardinops sagax	Australian sardine	0.011	0.49	Below	0.74	Below	0.98	Below	Low	NE	No RR required	Low
37086001	Engraulis australis	Australian anchovy	0.004	0.83	Below	1.25	Below	1.66	Below	Low	NE	No RR required	Low
37097001	Argentina australiae	Silverside	0.005	0.42	Below	0.64	Below	0.85	Below	Low	NE	No RR required	Low
37111001	Chauliodus sloani	Sloane's viperfish	0.001	0.48	Below	0.72	Below	0.96	Below	Low	NE	No RR required	Low
37117001	Latropiscis purpurissatus	Sergeant baker	0.014	0.31	Below	0.46	Below	0.62	Below	Low	NE	No RR required	Low
37120001	Paraulopus nigripinnis	Blacktip cucumberfish	0.039	0.53	Below	0.79	Below	1.05	Below	Low	NE	No RR required	Low
37224003	Pseudophycis barbata	Bearded rock cod	0.015	0.39	Below	0.58	Below	0.78	Below	Low	NE	No RR required	Low
37224006	Pseudophycis bachus	Red cod	0.003	0.42	Below	0.62	Below	0.83	Below	Low	NE	No RR required	Low
37224010	Lepidion microcephalus	Smallhead cod	0.000	0.40	Below	0.59	Below	0.79	Below	Low	NE	No RR required	Low
37228008	Genypterus tigerinus	Rock ling	0.000	0.20	Below	0.30	Below	0.41	Below	Low	NE	No RR required	Low
37232001	Coelorinchus australis	Southern whiptail	0.041	0.29	Below	0.44	Below	0.58	Below	Low	NE	No RR required	Low

[^6]| CAAB CODE | SCIENTIFIC NAME | COMMON NAME | SUSCEPTIBILITY | $\begin{gathered} \text { F } \\ \text { MSM } \end{gathered}$ | $\begin{aligned} & \text { F MSM } \\ & \text { RISK } \end{aligned}$ | F LIM | $\begin{aligned} & \text { F LIM } \\ & \text { RISK } \end{aligned}$ | $\begin{gathered} \text { F } \\ \text { CRASH } \end{gathered}$ | $\begin{gathered} \text { F CRASH } \\ \text { RISK } \end{gathered}$ | F
 OVERALL RISK | $\begin{aligned} & \text { CATCH (2012- } \\ & \text { 2016) } \end{aligned}$ | RISK SCORE FOLLOWING RESIDUAL RISK | FINAL RISK SCORE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 37232002 | Coelorinchus fasciatus | Banded whiptail | 0.000 | 0.27 | Below | 0.4 | Below | 0.53 | Below | Low | NE | No RR required | Low |
| 37232004 | Lepidorhynchus denticulatus | Toothed whiptail | 0.001 | 0.26 | Below | 0.4 | Below | 0.53 | Below | Low | NE | No RR required | Low |
| 37255001 | Hoplostethus intermedius | Blacktip sawbelly | 0.000 | 0.23 | Below | 0.34 | Below | 0.45 | Below | Low | NE | No RR required | Low |
| 37255004 | Gephyroberyx darwinii | Darwin's roughy | 0.000 | 0.16 | Below | 0.24 | Below | 0.32 | Below | Low | NE | No RR required | Low |
| 37258002 | Beryx splendens | Alfonsino | 0.001 | 0.34 | Below | 0.52 | Below | 0.69 | Below | Low | NE | No RR required | Low |
| 37258005 | Centroberyx lineatus | Swallowtail | 0.004 | 0.29 | Below | 0.44 | Below | 0.58 | Below | Low | NE | No RR required | Low |
| 37264002 | Cyttus australis | Silver dory | 0.036 | 0.37 | Below | 0.55 | Below | 0.73 | Below | Low | NE | No RR required | Low |
| 37264003 | Zenopsis nebulosa | Mirror dory | 0.001 | 0.27 | Below | 0.4 | Below | 0.54 | Below | Low | NE | No RR required | Low |
| 37266001 | Neocyttus rhomboidalis | Spikey oreodory | 0.001 | 0.16 | Below | 0.25 | Below | 0.33 | Below | Low | NE | No RR required | Low |
| 37266003 | Pseudocyttus maculatus | Smooth oreodory | 0.000 | 0.16 | Below | 0.23 | Below | 0.31 | Below | Low | NE | No RR required | Low |
| 37279001 | Centriscops humerosus | Banded bellowsfish | 0.001 | 0.95 | Below | 1.61 | Below | 2.14 | Below | Low | NE | No RR required | Low |
| 37279002 | Macroramphosus scolopax | Common bellowsfish | 0.017 | 0.96 | Below | 1.45 | Below | 1.93 | Below | Low | NE | No RR required | Low |
| 37287046 | Trachyscorpia eschmeyeri | Deepsea ocean perch | 0.000 | 0.21 | Below | 0.31 | Below | 0.42 | Below | Low | NE | No RR required | Low |
| 37287103 | Trachyscorpia carnomagula | Deepsea scorpionfish | 0.000 | 0.18 | Below | 0.28 | Below | 0.37 | Below | Low | NE | No RR required | Low |
| 37288003 | Lepidotrigla vanessa | Butterfly gurnard | 0.000 | 0.61 | Below | 0.91 | Below | 1.21 | Below | Low | NE | No RR required | Low |
| 37288007 | Lepidotrigla modesta | Cocky gurnard | 0.000 | 0.61 | Below | 0.91 | Below | 1.21 | Below | Low | NE | No RR required | Low |
| 37296001 | Platycephalus richardsoni | Tiger flathead | 0.001 | 0.41 | Below | 0.61 | Below | 0.81 | Below | Low | NE | No RR required | Low |
| 37296035 | Platycephalus aurimaculatus | Toothy flathead | 0.000 | 0.36 | Below | 0.54 | Below | 0.72 | Below | Low | NE | No RR required | Low |
| 37326001 | Priacanthus macracanthus | Spotted bigeye | 0.000 | 0.86 | Below | 1.3 | Below | 1.73 | Below | Low | NE | No RR required | Low |

CAAB CODE	SCIENTIFIC NAME	COMMON NAME	SUSCEPTIBILITY	$\begin{gathered} \text { F } \\ \text { MSM } \end{gathered}$	$\begin{aligned} & \text { F MSM } \\ & \text { RISK } \end{aligned}$	F LIM	$\begin{aligned} & \text { F LIM } \\ & \text { RISK } \end{aligned}$	$\begin{gathered} \text { F } \\ \text { CRASH } \end{gathered}$	$\begin{gathered} \text { F CRASH } \\ \text { RISK } \end{gathered}$	F OVERALL RISK	$\begin{aligned} & \text { CATCH (2012- } \\ & \text { 2016) } \end{aligned}$	RISK SCORE FOLLOWING RESIDUAL RISK	FINAL RISK SCORE
37330001	Sillaginodes punctatus	King George whiting	0.000	0.42	Below	0.63	Below	0.84	Below	Low	NE	No RR required	Low
37337002	Trachurus declivis	Common jack mackerel	0.003	0.47	Below	0.71	Below	0.95	Below	Low	NE	No RR required	Low
37337003	Trachurus novaezelandiae	Yellowtail scad	0.016	0.46	Below	0.69	Below	0.92	Below	Low	NE	No RR required	Low
37337007	Seriola hippos	Samsonfish	0.016	0.45	Below	0.67	Below	0.90	Below	Low	NE	No RR required	Low
37345002	Plagiogeneion macrolepis	Bigscale rubyfish	0.025	0.36	Below	0.54	Below	0.72	Below	Low	NE	No RR required	Low
37345003	Plagiogeneion rubiginosum	Cosmopolitan rubyfish	0.076	0.36	Below	0.54	Below	0.72	Below	Low	NE	No RR required	Low
37349001	Parequula melbournensis	Silverbelly	0.000	1.21	Below	1.81	Below	2.41	Below	Low	NE	No RR required	Low
37354001	Argyrosomus japonicus	Mulloway	0.000	0.21	Below	0.32	Below	0.43	Below	Low	NE	No RR required	Low
37355029	Upeneichthys vlamingii	Bluespotted goatfish	0.000	0.88	Below	1.32	Below	1.76	Below	Low	NE	No RR required	Low
37361002	Neatypus obliquus	Footballer sweep	0.005	0.31	Below	0.46	Below	0.61	Below	Low	NE	No RR required	Low
37361003	Tilodon sexfasciatus	Moonlighter	0.000	0.31	Below	0.46	Below	0.61	Below	Low	NE	No RR required	Low
37367003	Pentaceropsis recurvirostris	Longsnout boarfish	0.018	0.2	Below	0.3	Below	0.4	Below	Low	NE	No RR required	Low
37390023	Parapercis naevosa	Western Barred Grubfish	0.132	0.33	Below	0.49	Below	0.65	Below	Low	NE	No RR required	Low
37400004	Kathetostoma nigrofasciatum	Deepwater stargazer	0.046	0.33	Below	0.49	Below	0.66	Below	Low	NE	No RR required	Low
37439001	Thyrsites atun	Barracouta	0.003	0.36	Below	0.54	Below	0.71	Below	Low	NE	No RR required	Low
37439003	Ruvettus pretiosus	Oilfish	0.002	0.34	Below	0.51	Below	0.68	Below	Low	NE	No RR required	Low
37440002	Lepidopus caudatus	Southern frostfish; frostfish	0.003	0.36	Below	0.54	Below	0.71	Below	Low	NE	No RR required	Low
37441001	Scomber australasicus	Blue mackerel	0.003	0.37	Below	0.55	Below	0.73	Below	Low	NE	No RR required	Low
37441005	Thunnus alalunga	Albacore	0.002	0.19	Below	0.29	Below	0.39	Below	Low	NE	No RR required	Low

[^7]| CAAB CODE | SCIENTIFIC NAME | COMMON NAME | SUSCEPTIBILITY | $\begin{gathered} \text { F } \\ \text { MSM } \end{gathered}$ | $\begin{aligned} & \text { F MSM } \\ & \text { RISK } \end{aligned}$ | F LIM | $\begin{aligned} & \text { F LIM } \\ & \text { RISK } \end{aligned}$ | $\begin{gathered} \text { F } \\ \text { CRASH } \end{gathered}$ | $\begin{aligned} & \text { F CRASH } \\ & \text { RISK } \end{aligned}$ | F OVERALL RISK | $\begin{aligned} & \text { CATCH (2012- } \\ & 2016) \end{aligned}$ | RISK SCORE FOLLOWING RESIDUAL RISK | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 37445001 | Hyperoglyphe antarctica | Blue-eye trevalla | 0.003 | 0.21 | Below | 0.32 | Below | 0.42 | Below | Low | NE | No RR required | Low |
| 37445005 | Seriolella brama | Blue warehou | 0.024 | 0.31 | Below | 0.47 | Below | 0.62 | Below | Low | NE | No RR required | Low |
| 37445006 | Seriolella punctata | Silver warehou | 0.001 | 0.33 | Below | 0.50 | Below | 0.66 | Below | Low | NE | No RR required | Low |
| 37465003 | Eubalichthys mosaicus | Mosaic leatherjacket | 0.015 | 0.41 | Below | 0.61 | Below | 0.82 | Below | Low | NE | No RR required | Low |
| 37465005 | Meuschenia scaber | Velvet leatherjacket | 0.034 | 0.41 | Below | 0.61 | Below | 0.82 | Below | Low | NE | No RR required | Low |
| 37465039 | Eubalichthys bucephalus | Black reef leatherjacket | 0.012 | 0.44 | Below | 0.65 | Below | 0.87 | Below | Low | NE | No RR required | Low |
| 37467002 | Omegophora armilla | Ringed toadfish | 0.008 | 0.42 | Below | 0.63 | Below | 0.84 | Below | Low | NE | No RR required | Low |
| 37469002 | Allomycterus pilatus | Australian burrfish | 0.015 | 0.45 | Below | 0.68 | Below | 0.9 | Below | Low | NE | No RR required | Low |
| 37470001 | Mola ramsayi | Short sunfish | 0.002 | 0.12 | Below | 0.19 | Below | 0.25 | Below | Low | NE | No RR required | Low |

Risk ranking guidelines:

1	Risk rating due to missing, incorrect or out of date information	4	Effort and catch management arrangements for target and byproduct species
2	At risk due to external factors (cumulative risks)	5	Management arrangements to mitigate against the level of bycatch
3	At risk in regards to level of interaction/capture with a zero or negligible level of susceptibility	6	Management arrangements relating to seasonal, spatial and depth closures

2.5.5 bSAFE - Protected species

The protected species component was not required to be assessed in this SAFE.

2.6 Habitat Component

The Habitat component was not assessed at Level 2.

2.7 Community Component

The Community component was not assessed at Level 2.

2.8 Decision rules to move from Level 2 to Level 3 (Step 7)

For the PSA overall risk values, units that fall in the upper third (risk value >3.18) and middle third $(2.64<$ risk value <3.18) of the PSA plots are deemed to be at high and medium risk, respectively. For the SAFE method, species that fall above the SAFE-MSM or limit reference point (SAFE-LIM) are considered to be at risk of overfishing (Table 2.28). Species identified from either method need to be the focus of further work, either through implementing a management response to address the risk to the vulnerable species or by further examination for risk within the particular ecological component at Level 3. PSA-units at low risk, (i.e. in the lower third), or at SAFE where units were below the overfishing limit point (i.e. SAFE-LIM) will be deemed not at risk from the sub-fishery and the assessment is concluded for these units.

The output from the Level 2 analysis will result in four options:

- The risk of a unit of analysis within a component (e.g. single species or habitat type) is not high, the rationale is documented, and the impact of the fishing activity on this unit need not be assessed at a higher level unless management or the fishery changes.
- The risk of a unit is high but management strategies are introduced rapidly that will reduce this risk, this unit need not be assessed further unless the management or the fishery changes.
- The risk of a unit is high but there is additional information that can be used to determine if Level 3, or even a new management action is required. This information should be sought before action is taken.
- The risk of a unit is high and there are no planned management interventions that would remove this risk; therefore, the reasons are documented and the assessment moves to Level 3.

At the conclusion of the Level 2 analysis, a fishery can decide to further investigate the risk of fishing to the species via a Level 3 assessment or implement a management response to mitigate the risk. To ensure all fisheries follow a consistent process in responding to the results of the risk assessment, AFMA has developed an ecological risk management framework. The framework (Figure 2.12) makes use of the existing AFMA management structures to enable the

ERAs to become a part of normal fisheries management, including the involvement of fisheries consultative committees. A separate document, the ERM report, will be developed that outlines the reasons why species are at high risk and what actions the fishery will implement to respond to the risks.

Figure 2.12. Schematic of the Ecological risk management cycle. TSG - Technical Support Group.

2.9 Extreme and high risk categorisation (Step 8) Update with Residual Risk information

PSA

Byproduct species

Following a residual risk analysis, Gould's squid Nototodarus gouldi remained at high risk (Table 2.23).

Bycatch species

Following a residual risk analysis on three high risk species, two teleosts: three-spined cardinalfish Verilus anomalus and thetis fish Neosebastes thetidis and one invertebrate: champagne crab Hypothalassia armata, were all reduced to low risk due to low capture within the assessment period (Table 2.24).

bSAFE

No residual risk analysis was required for byproduct or bycatch species.

3 General discussion and research implications

3.1 Level 1

In this case, 12 out of 26 possible internal activities were identified as occurring in this subfishery. All six external scenarios were also identified. Thus, a total of 18 activity-component scenarios will be considered at Level 1. This results in 89 (excluding the key commercial x direct impact by capture activity) total scenarios (of 160 possible) to be developed and evaluated using the unit lists (Key commercial/secondary, byproduct/bycatch, protected species, habitats, communities).

3.2 Level 2

3.2.1 Species at risk

A Level 2 analysis was triggered for one ecological (species) component: byproduct/bycatch species, as risk (consequence) scores were ≥ 3 in the Level 1 SICA analysis.

Gould's squid (Nototodarus gouldi) was assessed as high risk. It is mainly managed by effort controls in the Southern Squid Jig Fishery (SSJF), and a combined trigger limit (2000 t) exists in the GAB Trawl and SESSF Otter trawl sub-fisheries. As such, further evaluation should take place with respect to potential risk and ecological sustainability.

The ornate angelshark (Squatina tergocellata) was assessed at extreme risk, given its high estimated fishing mortality, mainly due to high overlap of occurrence within fishery range and encounterability with gear. There are catches of Squatinidae (257 t retained, 2.8 t discarded; Logbooks) which may also include this species. While school shark (Galeorhinus galeus) was also assessed at extreme risk, it is currently subject to a rebuilding strategy in the SESSF. Therefore, existing mitigation measures are in place to help protect it.

The two high or extreme risk teleost species - yellow spotted boarfish (Paristiopterus gallipavo) and tusk (Dannevigia tusca) are highly encounterable with the trawl gear and selective to the gear used. Therefore, further evaluation should take place with respect to potential risk and ecological sustainability.

The extreme overall risk score reported in this assessment for bronze whaler (Carcharhinus brachyurus) should be treated with caution since this largely coastal species is almost morphologically indistinguishable from the closely related pelagic dusky whaler (C. obscurus), and hence likely subject to misidentification by fishers. Therefore, improved training on identification methods are required to reduce this uncertainty between these species.

Both extreme risk wide stingaree and short-tail torpedo ray bycatch species, remained at extreme risk following a residual risk analysis despite small quantities discarded (Logbook or Observer databases), due to their high encounterability with the trawl gear and selectivity to
the gear used. Other skates, rays and stingarees have also been recorded as discarded: skates and rays ($\sim 256 \mathrm{t}$) or stingarees and giant stingarees ($\sim 130 \mathrm{t}$). Consequently, these species should be further evaluated with respect to potential risk and ecological sustainability.

The finding of 15 species deemed to be extreme/high risk from this assessment contrasts the previous SAFE assessment which reported no high-risk species (Zhou et al. 2012). This may be associated with (i) differences in methodology (ii) changes in the accuracy of species identifications from the last assessment; and/or (iii) changes to species categorization since the last assessment, particularly those regarded as byproduct in the present assessment, but were categorized differently (i.e., bycatch) in 2012 assessment. In addition, updates to underlying species distribution information used to calculate species overlaps, methodological differences in 'area fished' calculations, along with improved (higher) resolution bathymetry used to refine species ranges may also have contributed to differences in overall risk scores since the 2012 SAFE assessment.

Residual risk

As discussed elsewhere in this report (Section 1), the ERAEF methods are both hierarchically structured and precautionary. The Level 1 (SICA) analyses are used to identify potential hazards associated with fishing and which broad components of the ecological system they apply to. The Level 2 (PSA) analyses consider the direct impacts of fishing on individual species and habitats (rather than whole components), but the large numbers of species that need to be assessed and the nature of the information available for most species in the PSA analyses limits these analyses in several important respects. These include that some existing management measures are not directly accounted for, and that no direct account is taken of the level of mortality associated with fishing. Both these factors are taken into account in the ERAEF framework at Level 3, but the analyses reported here stop at Level 2. This means that the risk levels for species must be regarded as identifying potential rather than actual risk, and due to the precautionary assumptions made in the PSA analyses, there will be a tendency to overestimate absolute levels of risk from fishing.

In moving from ERA to ERM, AFMA will focus scarce resources on the highest priority species and habitats (those likely to be most at risk from fishing). To that end, and because Level 3 analyses are not yet available for most species, AFMA (with input from CSIRO and other stakeholders) has developed guidelines to assess "residual risk" for those species identified as being at high potential risk based on the PSA analyses. The residual risk guidelines will be applied on a species by species basis and include consideration of existing management measures not currently accounted for in the PSA analyses, as well as additional information about the levels of direct mortality. These guidelines will also provide a transparent process for including more precise or missing information into the PSA analysis as it becomes available.

CSIRO and AFMA will continue to work together to include the broad set of management arrangements in Level 2 analyses, and these methods will be incorporated in future developments of the ERAEF framework. CSIRO has also undertaken some preliminary Level 3 analyses for bycatch species for several fisheries, and these or similar methods will also form part of the overall ERAEF framework into the future.

References

Australian Fisheries Management Authority. (2017). Guide to AFMA's Ecological Risk Management. 130 p .

Barnes, B, Ward, P., Boero, V. (2015). Depletion analyses of Gould's squid in the Bass Strait, in J Larcombe, R Noriega \& I Stobutzki (eds.). Reducing uncertainty in fisheries stock status. ABARES, Canberra.

Castillo-Jordán, C. (2017). Yield, total mortality values and Tier 3 estimates for selected shelf and slope species in the SESSF 2017. CSIRO Oceans and Atmosphere, Hobart.

Castillo-Jordán, C., Althaus, F., Thomson, R. (2018). SESSF catches and discards for TAC purposes. CSIRO Oceans and Atmosphere, Hobart. 52 p.

Condie, S., Ridgway, K., Griffiths, B., Rintoul, S., Dunn, J. (2003). National Oceanographic Description and Information Review for National Bioregionalisation. Report for National Oceans Office. CSIRO Marine Research: Hobart, Tasmania, Australia.

Cordue, P. (2015). The 2015 stock assessment update for eastern and western pink ling, Innovative Solutions Ltd, Wellington, for AFMA, Canberra.

Day, J. (2016). Tiger flathead (Neoplatycephalus richardsoni) stock assessment based on data up to 2015, CSIRO Marine and Atmospheric Research, Hobart.

Day, J. (2017). School whiting (Sillago flindersi) stock assessment based on data up to 2016. Technical report presented to SERAG, December 2017, Hobart, Australia.

Daley, R., Knuckey, I., Dowdney, J., Williams, A., Bulma, C., Sporcic, M., Fuller, M., Smith, T. (2007). Draft Ecological Risk Assessment for the Effects of Fishing. Report fop the Great Australian Bight trawl sub-fishery of the Southern and Eastern Scalefish and Shark Fishery. Report for the Australian Fisheries Management Authority. Canberra, Australia

Deep RAG (2009). 2009 Stock Assessment Report for Orange Roughy in the Eastern, Southern and Western zones.

Elliott N.G., Ward R.D. (1994). Enzyme variation in jackass morwong, Nemadactylus macropterus (Schneider, 1801)(Teleostei, Cheilodactylidae), from Australian and New Zealand waters. Australian Journal of Marine and Freshwater Research 45: 51-67.

EPBC Act List of Threatened Fauna. http://www.environment.gov.au/cgibin/sprat/public/publicthreatenedlist.pl

Expert Panel on a Declared Commercial Fishing Activity (2014). Report of the Expert Panel on a Declared CommercialFishing Activity: Final (Small Pelagic Fishery) Declaration 2012. Department of Environment: Canberra, ACT.

Fletcher, W. J., Chesson, J., Fisher, M., Sainsbury, K. J., Hundloe, T., Smith, A.D.M. and Whitworth, B. (2002). National ESD reporting framework for Australian Fisheries: The how to guide for wild capture fisheries. FRDC Report 2000/145, Canberra, Australia.

Haddon, M. (2013). Tier 4 analyses in the SESSF, including deep water species: data from 1986-2012. CSIRO Marine and Atmospheric Research, Hobart.

Haddon, M. (2015a). Tier 4 analyses for selected species in the SESSF (data from 1986-2014). CSIRO Oceans and Atmosphere, Hobart.

Haddon, M. (2015b). Bight redfish (Centroberyx gerrardi) stock assessment using data to 2014/2015. CSIRO Oceans and Atmosphere, Hobart.

Haddon, M. (2016a). Deepwater flathead (Platycephalus conatus) stock assessment using data to 2015/16. CSIRO Oceans and Atmosphere, Hobart.

Haddon, M. (2016b) Tier 4 Analyses of Selected Species from the SESSF. Data from 1986-2015. CSIRO Oceans and Atmosphere, Hobart. 20 p.

Haddon, M. (2017). Orange Roughy East (Hoplostethus atlanticus) stock assessment using data to 2016 Report to November 2017 SE RAG meeting. CSIRO, Oceans and Atmosphere, Hobart. 47 p.

Haddon, M., Sporcic, M. (2017a). Tier 4 Assessments for selected SESSF Species (data to 2016). CSIRO Oceans and Atmosphere, Hobart. 52 p.

Haddon, M., Sporcic, M. (2017b). Tier 4 Assessment for Blue-Eye Trevalla (data to 2016). CSIRO Oceans and Atmosphere, Hobart. 6 p.

Haddon, M., Sporcic, M. (2017c). Statistical CPUE standardizations for selected SESSF species (data to 2016). CSIRO Oceans and Atmosphere, Hobart.

Haddon, M., Sporcic, M. (2018). Draft Tier 4 assessments for selected SESSF shark species (data to 2016). CSIRO Oceans and Atmosphere, Hobart.

Helidoniotis, F., Moore, A. (2016). Tier 1 assessment of western gemfish in the SESSF: draft, ABARES, Canberra.

Hobday, A.J., Smith, A., Webb, H., Daley, R., Wayte, S., Bulman, C., Dowdney, J., Williams, A., Sporcic, M., Dambacher, J., Fuller, M., and Walker, T. (2007). Ecological risk assessment for the effects of fishing: Methodology. AFMA Project R04/1072, Canberra.

Hobday, A.J., Bulman, C., Williams, A., Fuller, M. (2011a). Ecological risk assessment for effects of fishing on habitats and communities. FRDC Project 2009/029, Canberra.

Hobday, A. J., Smith, A.D.M., Stobutzki, I., Bulman, C.M., Daley, R., Dambacher, J.M., Deng, R.A., Dowdney, J, Fuller, M., Furlani, D., Griffiths, S.P., Johnson, D., Kenyon, R., Knuckey, I.A., Ling, S.D., Pitcher, R., Sainsbury, K.J., Sporcic, M., Smith, T., Turnball, C., Walker, T.I., Wayte, S.E., Webb, H., Williams, A., Wise, B.S., Zhou, S. (2011b). Ecological risk assessment from the effects of fishing. Fisheries Research 108(2-3): 372-384.

Interim Marine and Coastal Regionalisation for Australia Technical Group (1998). Interim Marine and Coastal Regionalisation for Australia: an ecosystem-based classification for marine and coastal environments. Version 3.3 Environment Australia, Commonwealth Department of the Environment: Canberra, Australia.

Jefferson, T.A., Webber, M.A., Pitman, R.L. (2015). Marine mammals of the world: A comprehensive guide to their identification. Second edition. London: Academic Press: London.

Klaer N.L. (2001). Steam trawl catches from south-eastern Australia from 1918 to 1957: trends in catch rates and species composition. Marine and Freshwater Research 52: 399-410.

Klaer, N. (2013). Yield, total mortality values and tier 3 estimates for selected shelf and slope species in the SESSF 2012, in GN Tuck (ed.), Stock assessment for the Southern and Eastern Scalefish and Shark Fishery 2012, part 2, AFMA \& CSIRO Marine and Atmospheric Research, Hobart.

Klaer, N, Day, J, Fuller, M, Krusic-Goleb, K., Upston, J. (2014). Data summary for the Southern and Eastern Scalefish and Shark Fishery: logbook, landings and observer data to 2013, CSIRO Marine and Atmospheric Research, Hobart.

Koopman, M. Knuckey, I., van Putten, I., Fleming, A., Hobday, A., Zhou, S. (2017). Realising economic returns of reducing waste through utilisation of bycatch in the GAB Trawl Sector of the SESSF. FRDC Project 2015/204. Fishwell Consulting 91pp

Kuiter, R.H. (2000). Seahorses and their relatives. Aquatic Photographics, Seaford, Australia. Pp. 1333.

Last, P., Lyne, V., Yearsley, G., Gledhill, D., Gomon, M., Rees, T., White, W. (2005). Validation of national demersal fish datasets for the regionalisation of the Australian continental slope and outer shelf ($>40 \mathrm{~m}$ depth). National Oceans Office, Department of Environment and Heritage and CSIRO Marine Research, Australia.

Little, R., Rowling, K. (2011). 2010 update of the eastern gemfish (Rexea solandri) stock assessment, in GN Tuck (ed.), Stock assessment for the Southern and Eastern Scalefish and Shark Fishery 2010, part 1, AFMA \& CSIRO Marine and Atmospheric Research, Hobart.

Lyne, V., Hayes, D. (2004). Pelagic Regionalisation. National Marine Bioregionalisation Integration Project. CSIRO Marine Research and NOO: Hobart, Australia. 137 p.

Menkhorst, P., Rogers, D. I., Clarke, R., Davies, J. N., Marsack, P., Franklin, K. (2017). The Australian bird guide, Original print edition, Clayton South, VIC. CSIRO Publishing. 566 p.

Patterson, H, Noriega R, Georgeson, L, Larcombe, J., Curtotti, R. (2017). Fishery status reports 2017, Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra. CC BY 4.0. Available at: www.agriculture.gov.au/abares/publications/display?url=http://143.188.17.20/anrdl/DAFFSer vice/display.php?fid=pb_fsr17d9abm_20170929.xml

Pitcher, C.R., Ellis, N., Althaus, F., Williams, A., McLeod, I. (2015). Predicting benthic impacts \& recovery to support biodiversity management in the South-east Marine Region, in: Hedge, N.J.B.P. (Ed.), Marine Biodiversity Hub, National Environmental Research Program, Final report 2011-2015. Report to Department of the Environment. Canberra, Australia

Pitcher, C.R., Williams, A., Ellis, N., Althaus, F., McLeod, I., Bustamante, R., Kenyon, R., Fuller, M. (2016). Implications of current spatial management measures for AFMA ERAs for habitats FRDC Project No 2014/204. CSIRO Oceans \& Atmosphere, Brisbane, Qld, p. 50.

Punt, A, Thomson, R., Sporcic, M. (2016). Gummy shark assessment update for 2016, using data to the end of 2015, report presented to the SharkRAG meeting, CSIRO Marine and Atmospheric Research, Hobart.

Reid, T.A., Hindell, M.A., Eades, D.W., Newman, M. (2002). Seabird Atlas of South-Eastern Australian Waters. Birds Australia Monograph 4.

Smith, A.D.M. and Wayte, S.E. (eds.) (2002). The South East Fishery 2002. Fishery Assessment Report compiled by the South East Fishery Assessment Group. AFMA, Canberra.

Sporcic, M., Haddon, M. (2018). Tier 4 analyses for selected SESSF shark species: (data to 2016). CSIRO Marine and Atmospheric Research, Hobart. 18 p.

Thomson, R. (2012). Projecting the school shark model into the future: rebuilding timeframes and auto-longlining in South Australia, CSIRO Marine and Atmospheric Research, Hobart.

Thomson, R., Punt, A.E. (2009). Stock assessment update for school shark Galeorhinus galeus based on data to 2008, report presented to the SharkRAG meeting, 17-18 November, CSIRO Marine and Atmospheric Research, Hobart.

Tuck, G. (2013). Stock assessment of blue grenadier Macruronus novaezelandiae based on data up to 2012. CSIRO Marine and Atmospheric Research, Hobart.

Tuck, G, Day, J, Haddon, M., Castillo-Jordán, C. (2017). Redfish (Centroberyx affinis) stock assessment based on data up to 2016. Technical paper presented to the SERAG, December 2017, Hobart, Australia.

Tuck, G, Day, J, Thomson, R., Wayte, S. (2015). Development of a base-case tier 1 assessment for the western stock of jackass morwong (Nemadactylus macropterus) based on data up to 2014, report produced by CSIRO Marine and Atmospheric Research for SheIfRAG, AFMA, Canberra.

Wayte, S. (2010). Jackass morwong (Nemadactylus macropterus) stock assessment based on data up to 2009. CSIRO Marine and Atmospheric Research, Hobart. 53 p.

Wild-Allen, K., Andrewartha, J. (2016). Connectivity between estuaries influences nutrient transport, cycling and water quality. Marine Chemistry 185: 12-26.

Williams, A., Gardner, C., Althaus, F., Barker, B.A., Mills, D. (2009). Understanding shelf-break habitat for sustainable management of fisheries with spatial overlap. Final report to the FRDC, project no. 2004/066. Hobart, Australia, p. 254.

Williams, A., Daley, R., Fuller, M., Knuckey, I. (2010a). Supporting sustainable fishery development in the GAB with interpreted multi-scale seabed maps based on fishing industry knowledge and scientific survey data: final report to the Fisheries Research Development Corporation. FRDC Project No 2006/036.

Williams, A., Althaus, F., Dunstan, P., K., Poore, G.C.B., Bax, N.J., Kloser, R.J., McEnnulty, F. (2010b). Scales of habitat heterogeneity and megabenthos biodiversity on an extensive Australian continental margin (100-1100 m depths). Marine Ecology (an Evolutionary Perspective) 31: 222-236.

Williams, A., Dunstan, P.K., Althaus, F., Barker, B.A., McEnnulty, F., Gowlett-Holmes, K., Keith, G. (2010c). Characterising the seabed biodiversity and habitats of the deep continental shelf and upper slope off the Kimberley coast, NW Australia. Final report to Woodside Energy Ltd. 30/6/2010. CSIRO Wealth from Oceans, Hobart, Australia, p. 94.

Williams, A., Daley, R., Fuller, M., Knuckey, I. (2011). Supporting sustainable fishery development in the GAB with interpreted multi-scale seabed maps based on fishing industry knowledge and scientific survey data in: FRDC (Ed.), FRDC 2006/036. CSIRO, Hobart, p. 178.

Woinarski, J. C. Z., Burbidge, A. A., Harrison, P.L., Milne, D.J. (2014). The Action Plan for Australian Mammals 2012, Collingwood, VIC CSIRO Publishing. 1038 p.

Zhou, S., Griffiths, S.P. (2008). Sustainability Assessment for Fishing Effects (SAFE): A new quantitative ecological risk assessment method and its application to elasmobranch bycatch in an Australian trawl fishery. Fisheries Research 91(1): 56-68.

Zhou, S., Smith, T., Fuller, M. (2007). Rapid quantitative risk assessment for fish species in major Commonwealth fisheries. Report to the Australian Fisheries Management Authority.

Zhou, S.J., Smith, A.D.M., Fuller, M. (2011). Quantitative ecological risk assessment for fishing effects on diverse data-poor non-target species in a multi-sector and multi-gear fishery. Fisheries Research 112(3): 168-178.

Zhou, S.J., Fuller, M., Daley, R. (2012). Sustainability assessment of fish species potentially impacted in the Southern and Eastern Scalefish and Shark Fishery: 2007-2010. Report to the Australia Fisheries Management Authority, Canberra, Australia. March 2012. 47 p.

Zhou, S., Hobday, A.J., Dichmont, C.M., Smith, A.D.M. (2016). Ecological risk assessments for the effects of fishing: A comparisonand validation of PSA and SAFE. Fisheries Research 112: 168178.

Appendix A. Commercial species and stock status

Commercial species stock status, assessment and tier status, and ERA classification in the GAB otter trawl. NSTOF: Not subject to overfishing; NOF: Not overfished; OF: Overfished; UNC: uncertain. Note: Stock status is not assessed for non-quota species. NT: no Tier assessment within 2012-2016 (where known). Primary: C1; Secondary: C2; Byproduct: BP; Bycatch: BC. ^: based on ABARES classification. ^^ based on stock assessment.

COMMON NAME	SPECIES NAME	$\begin{aligned} & \text { ERA } \\ & \text { CLASSIF- } \\ & \text { ICATION } \end{aligned}$	FISHING MORTALITY^	BIOMASS^	STOCK STATUS^^	YEAR LAST ASSESSED	REFERENCE	TIER LEVEL ASSESSMENT	COMMENT
Blue grenadier	Macruronus novaezelandiae	BP	NSTOF	NOF	Above limit reference	2013	Tuck 2013	1	
Tiger flathead	Platycephalus richardsoni	BC	NSTOF	NOF	Above limit reference	2016	Day 2016	1	
Pink ling	Genypterus blacodes	BP	NSTOF	NOF	Above limit reference	2015	Cordue 2015	1	
Silver warehou	Seriolella punctata	BC	NSTOF	NOF	Above limit reference	2015	Thompson et al. 2015	1	
Orange roughy (Albany and Esperance)	Hoplostethus atlanticus	BP	NSTOF	UNC	No commercial catch, no formal assessment	-	-	1	
Orange roughy (Cascade Plateau)			NSTOF	NOF	Above limit reference	2009	$\begin{aligned} & \text { DeepRAG } \\ & \text { (2009) } \end{aligned}$	1	
Orange roughy (Eastern)			NSTOF	NOF	Above limit reference	2016	Haddon 2017	1	
Orange roughy (Southern)			NSTOF	NOF	Negligible catches, no updated stock assessment	2000		1	
Orange roughy (Western)			NSTOF	OF	Negligible catches, no updated stock assessment	2002		1	
Jackass morwong	Nemadactylus macropterus	BP	NSTOF	NOF	Above limit reference	2015	Tuck et al. 2015	1	
Mirror dory	Zenopsis nebulosus	BC	NSTOF	NOF	Above limit reference	2017	Haddon and Sporcic 2017a	4	
Ocean jacket	Nelusetta ayraudi	BP	NSTOF	NOF	Above limit reference	2017	Haddon and Sporcic and (2017)^	NT	
Gould's squid	Nototodarus gouldi	BP	NSTOF	NOF	Above limit reference	2015	Barnes et al. (2015).	NT	Based on assessment of southern squid jig fishery
Frostfish	Lepidopus caudatus	BC	-	-	-	-	-	NT	
Flatheads*	Platycephalidae undifferentiated	BC	NSTOF	NOF	Above limit reference**	-	-		
Leatherjackets	Balistidae, Monacanthidae undifferentiated	BP	-	-	-	-	-	NT	
Eastern school whiting	Sillago flindersi	n / a	NSTOF	NOF	Above limit reference	2017	Day 2017	1	

COMMON NAME	SPECIES NAME		FISHING MORTALITY^	BIOMASS^	STOCK STATUS^^	YEAR LAST ASSESSED	REFERENCE	TIER LEVEL ASSESSMENT	COMMENT
Redfish	Centroberyx affinis	n / a	UNC	OF	Below limit reference	2017	Tuck et al. 2017	1	
Gemfish (eastern)	Rexea solandri	n / a	UNC	OF	Below limit reference	2011	Little and Rowling 2011	1	
Gemfish (western)		BP	NSTOF	NOF	Above limit reference	2016	Helidoniotis and Moore 2016; Haddon 2016b	$1 / 4$	Tier 1 was not formally accepted by GABRAG due to uncertain abundance index. Instead, a weight of evidence approach was used to estimate RBC
Royal red prawn	Haliporoides sibogae	n / a	NSTOF	NOF	Above limit reference	2017	Haddon and Sporcic 2017a	4	
Reef ocean perch	Helicolenus percoides	BP	NA	NA	NA	2017	Haddon and Sporcic 2017a	4	
Silver trevally	Pseudocaranx georgianus	BP	NSTOF	NOF	Above limit reference	2017	Haddon and Sporcic 2017a	4	
Latchet	Pterygotrigla polyommata	BP	-	-	-	-	-	NT	
King dory	Cyttus traversi	BP	-	-	-	-	-	NT	
Red gurnard	Chelidonichthys kumu	BP	-	-	-	-	-	NT	
Gummy shark	Mustelus antarcticus	BP	NSTOF	NOF	Above limit reference	2016	Punt et al. 2016	1	
Deepwater flathead	Platycephalus conatus	C1	NSTOF	NOF	Above limit reference	2016	$\begin{aligned} & \text { Haddon } \\ & \text { 2016a } \end{aligned}$	1	
School shark	Galeorhinus galeus	BC	UNC	OF	Uncertain if total mortality will allow recovery in required time frame.	2012 (re-ran the 2009 assessme nt with additiona I catch data 2009-12)	Thomson and Punt 2009; Thomson 2012	1	
Bight redfish	Centroberyx gerrardi	C1	NSTOF	NOF	Above limit reference	2015	$\begin{aligned} & \text { Haddon } \\ & \text { 2015b } \end{aligned}$	1	
Alfonsino	Beryx splendens	BC	NSTOF	NOF	Above limit reference	2013	Klaer 2013	3	
Ribaldo	Mora moro	BP	NSTOF	NOF	Above limit reference	2017	Haddon and Sporcic 2017a	4	
John dory	Zeus faber	BP	NSTOF	NOF	Above limit reference	2017	CastilloJordán 2017	3	
Blue-eye trevalla	Hyperoglyphe antarctica	BC	NSTOF	NOF	Above limit reference	2017	Haddon and Sporcic 2017b	4	
Blue warehou	Seriolella brama	BC	UNC	OF	No evidence to suggest rebuilding above the limit reference	2013	Haddon 2013	4	
Elephantfish	Callorhinchus milii	BC	NSTOF	NOF	Above limit reference	2018	Sporcic and Haddon 2018~	4	
Oreo (smooth Cascade)	Pseudocyttus maculatus	BC	NSTOF	NOF	Above limit reference	2015	$\begin{aligned} & \text { Haddon } \\ & \text { 2015a } \end{aligned}$	4	
Oreo (smooth other)			NSTOF	NOF	Above limit reference	2015	$\begin{aligned} & \hline \text { Haddon } \\ & \text { 2015a } \end{aligned}$	4	

COMMON NAME	SPECIES NAME	$\begin{aligned} & \text { ERA } \\ & \text { CLASSIF- } \\ & \text { ICATION } \end{aligned}$	FISHING MORTALITY^	BIOMASS^	STOCK STATUS^^	YEAR LAST ASSESSED	REFERENCE	TIER LEVEL ASSESSMENT	COMMENT
Oreo basket	Warty- Allocyttus verrucosus, spikey- Neocyttus rhomboidalis, rough-N. psilorhynchus, black-A. niger, other-Neocyttus spp.	BP	NSTOF	NOF	Above limit reference	2017	Haddon and Sporcic 2017a	4	
Sawshark	Pristiophorus cirratus and Pristiophorus nudipinnis	BP	NSTOF	NOF	Above limit reference	2018	Sporcic and Haddon 2018~	4	
Deepwater shark (east)	Dogfish (Squalidae), brier shark (Deania calcea), platypus shark (D. quadrispinosa), Plunket's shark (Centroscymnus plunketi),	BC	NSTOF	UNC	Multispecies nature of stock makes CPUE potentially unreliable as the index of abundance	2017	Haddon and Sporcic 2017a	4	
Deepwater shark (west)	roughskin shark (species of Centroscymnus and Deania), 'pearl shark' (D. calcea and D. quadrispinosa), black shark (Centroscymnus species), lantern shark (Etmopterus species) and other sharks (Klaer et al. 2014).		NSTOF	UNC	Multispecies nature of stock makes CPUE potentially unreliable as the index of abundance	2017	Haddon and Sporcic 2017a	4	

^: Based on relative standardized CPUE; * Tiger flathead has a separate Tier 1 assessment. The group "flatheads (Platycephalidae - undifferentiated)" do not have an assessment. **: No formal assessment, but assumed to be mostly comprised of Tiger flathead, which has an assessment. ~data up to 2016.

Record of stock assessments during the ERA assessment period and their respective tier levels. Tier 1 (blue); Tier 3 (orange); Tier 4 (green).

COMMON NAME	2012	2013	2014	2015	2016
Alfonsino	3	3			
Bight Redfish				1	
Blue Eye Trevalla		4		4	4
Blue Grenadier		1			
Blue Warehou	4	4			
Deepwater Flathead	1	1			1
Deepwater shark east		4			
Deepwater shark west		4			
Elephant Fish	4	4	4	4	
Flathead	1				1
Gemfish - East					
Gemfish - west		1/4			1/4
Gummy Shark		1			1
Jackass Morwong	1	1		1	
John Dory	3	3	3		
Mirror Dory	3	4	4	4	4
Reef Ocean Perch	4	4			
Orange Roughy - south					
Orange Roughy - east			1		
Orange Roughy - west					
Orange Roughy - Cascade Plateau					
Orange Roughy - Albany \& Esp					
Oreo Smooth - Cascade					
Oreo Smooth - other					
Oreo Basket	4	4			
Pink Ling	1	1		1	
Redfish	3/4	3/4	1		
Ribaldo	4	4			
Royal Red Prawn	4	4			
Saw Shark	4	4	4	4	
School Shark					
School Whiting - Tier 1					
Silver Trevally	4	4			
Silver Warehou	1			1	
Tiger Flathead		1			1

Appendix B. TAC and percent caught

SESSF	TAC AND CATCH	PRIMARY COMMERCIAL SPECIES	
		DEEPWATER FLATHEAD	BIGHT REDFISH
2008-09	Agreed TAC	1400000	2000000
	TAC after over/undercatch	1597444	2324939
	\% TAC caught (SESSF)	51\%	28\%
	Logbook catch otter trawl*	786641	644106
2009-10	Agreed TAC	1400000	2000000
	TAC after over/undercatch	1518598	2200000
	\% TAC caught (SESSF)	57\%	22\%
	Logbook catch otter trawl *	826985	475094
2010-11	Agreed TAC	1100000	1653000
	TAC after over/undercatch	1240000	1853000
	\% TAC caught (SESSF)	78\%	17\%
	Logbook catch otter trawl *	935657	282246
2011-12	Agreed TAC	1650000	1556000
	TAC after over/undercatch	1650000	1716382
	\% TAC caught (SESSF)	62\%	20\%
	Logbook catch otter trawl *	838196	333110
2012-13	Agreed TAC	1560000	2334000
	TAC after over/undercatch	1723000	2487600
	\% TAC caught (SESSF)	57\%	11\%
	Logbook catch otter trawl *	841445	271195
2013-14	Agreed TAC	1150000	2358000
	TAC after over/undercatch	1301000	2588400
	\% TAC caught (SESSF)	68\%	8\%
	Logbook catch otter trawl *	657555	182992
2014-15	Agreed TAC	1150000	2358000
	TAC after over/undercatch	1264568	2593740
	\% TAC caught (SESSF)	52\%	8\%
	Logbook catch otter trawl *	572622	249532
2015-16	Agreed TAC	1150000	2358000
	TAC after over/undercatch	1265000	2593800
	\% TAC caught (SESSF)	50\%	7\%
	Logbook catch otter trawl *	484368	176474
2016-17	Agreed TAC	1150000	800000
	TAC after over/undercatch	1256154	1034431
	\% TAC caught (SESSF)	54\%	28\%
	Logbook catch otter trawl *	547814	277657

Appendix C. Commonwealth Trawl Closures

Closures legislated under the Southern and Eastern Scalefish and Shark Fishery and Small Pelagic Fishery (Closures) Direction 2016.

For exact coordinates of area closures refer to the relevant sections of the SESSF Closure Directions, as referenced by the map title.

CLOSURE	DATE IMPLEMENTED
Head of the GAB	Aug-04
South Australian Shark Closure - Kangaroo Island	Jun-07
Murray Commonwealth Marine Reserves Closures	Aug-07
Commonwealth Gulper Shark Closure - Southern Dogfish	Jun-07
Central East Zone	Jun-08
Salisbury Canyon	Jun-08
Far West	Jun-08
Albany	Jun-08
Bremer	Jun-08
Humdinger West	Jun-08
Humdinger/Magic	Jun-08
Lomvar Gully	Jun-08
United Nations	Jun-08
The Knob	Jun-08
Racetrack/Hamburger	Jun-08
Kangaroo Island Hill	Jun-08
Great Australian Bight Far West Gulper Shark Closure	Jun-10
Port MacDonnell Closure	Feb-13
Murray Dogfish Closure	Feb-13

Schedule 3 - Head of the Great Australian Bight

Location: Great Australian Bight, South Australia
Reason: Protect breeding school shark and Australian sea lion populations
Prohibited: All fishing methods

Schedule 6 - South Australian Shark Closure - Kangaroo Island
Location: Kangaroo Island, South Australia
Reason: Protect breeding school shark and Australian sea lion populations
Prohibited: All fishing methods

Schedule 9-Murray Commonwealth Marine Reserves Closures
Location: Area off Kangaroo Island
Reason:Protect Upper-Slope dogfish
Prohibited: If the Harrisson's and southern dogfish triggers are met (refer to 6 (k) in the Direction) then all fishing methods (excluding hydraulic hand reel droplining) are prohibited for the concession holder for 12 months within this area. 100\% observer coverage is required. Please note that Demersal (bottom) Trawl, Danish Seine and Scallop Dredge are prohibited under the Commonwealth Marine Reserve Closure. Refer to http://www.environment.gov.au/topics/marine/marine-reserves for updated information on prohibited fishing methods.

Schedule 10-Commonwealth Gulper Shark Closure - Southern Dogfish
Location: South Australia
Reason: Protect Upper-Slope dogfish
Prohibited: Hook and Trawl methods

Schedule 14 - Eastern South Australia Trawl Closure
Location: Eastern South Australia
Reason: Reduce the catch of juvenile scalefish and protect structured benthic habitat

Prohibited: Demersal otter trawl method

Schedule 16-Central East Zone
Schedule 17-Salisbury Canyon

Schedule 18 - Far West

Location: Great Australian Bight, South Australia and Western Australia
Reason: Protect deep water species and orange roughy stocks
Prohibited: Demersal otter trawl methods

Schedule 19-Albany
Schedule 20 - Bremer
Schedule 21 - Humdinger West
Schedule 22 - Humdinger/Magic
Location: Great Australian Bight (West), Western Australia
Reason: Protect orange roughy stocks
Prohibited: Trawl methods

Schedule 23 - Lomvar Gully
Schedule 24 - United Nations
Schedule 25 - The Knob
Schedule 26-Racetrack/Hamburger
Schedule 27-Kangaroo Island Hill
Location: Great Australian Bight (East), South Australia
Reason: Protect orange roughy stocks
Prohibited: Trawl methods

Schedule 28-Great Australian Bight Far West Gulper Shark Closure
Location: Great Australian Bight (West), South Australia
Reason: Protect Upper-Slope dogfish
Prohibited: Trawl methods

Schedule 32 - Port MacDonnell Closure

Location: Area off south eastern Australia
Reason: Protect Upper-Slope dogfish
Prohibited: All fishing methods

Schedule 33-Murray Dogfish Closure

Location: Area off south eastern Australia
Reason: Protect Upper-Slope dogfish
Prohibited: Trawl methods and if the Harrisson's and southern dogfish triggers are met (refer to $6(\mathrm{u})$ in the Direction) then all fishing methods (excluding hydraulic hand reel droplining) are prohibited for the concession holder for 12 months within this area. 100% observer coverage is required.

Area closures outside AFMA's jurisdiction

Commonwealth Marine Reserves Network

Some fishing methods are prohibited in Commonwealth marine reserves. This information can be found on the Department of the Environment and Energy's website at http://www.environment.gov.au/topics/marine/marine-reserves.

Marine Parks

Fishing is prohibited in many state based marine parks and reserves. For more information on these areas please contact the relevant state authority.

GAB Marine Park Benthic Protection Zone

Preserve a representative sample of the sediments and benthic biota of the GAB.

GAB Marine Park Mammal Protection Zone

Protect the calving area for the Southern Right Whale and colonies of the endangered Australian Sea Lion in the area, additionally offering some protection of a representative sample of the seabed in deeper waters of the Commonwealth Park.

Appendix D. Incidental catch limits for state managed species

FINFISH	South Australia		Western Australia		
Snapper	50 kg				
Yellowtail kingfish	10 individuals				
CRUSTACEANS	South Australia		Western Australia		
Deepwater prawn					
Red prawn					
Prawn (Genus Aristeus)			Prohibited		
Royal red prawn					
Scarlet prawn					
Carid prawns (family Pandalidae)					
All other prawns					
Rock lobster			Prohibited		
Bay bugs (family Scyllaridae)	200 kg				
Giant (king) crab (Psuedocarincus gigas)	5 individuals	Combined 50 kg trip limi			
Other crustaceans	50 kg trip limit				
Coral		Prohibited	Prohibited		
MOLLUSCS	South Australia		Western Australia		
Arrow squid					
Red ocean squid	Trip limits do not apply				
Southern ocean arrow squid					
Yellowback squid					
Scallops			Prohibited		
Abalone					
Shells \& Shellfish (Class Gastropoda)	50 kg trip limit	Combined 500 kg limit			
Other molluscs	500 kg trip				

Glossary of Terms

Assemblage	A subset of the species in the community that can be easily recognized and studied. For example, the set of sharks and rays in a community is the Chondricythian assemblage.
Attribute	A general term for a set of properties relating to the productivity or susceptibility of a particular unit of analysis.
Bycatch species	A non-target species captured in a fishery, usually of low value and often discarded (see also Byproduct).
Byproduct species	A non-target species captured in a fishery, but it may have value to the fisher and be retained for sale.
Community	A complete set of interacting species.
Component	A major area of relevance to fisheries with regard to ecological risk assessment (e.g. target species, bycatch and byproduct species, threatened and endangered species, habitats, and communities).
Component model	A conceptual description of the impacts of fishing activities (hazards) on components and sub-components, linked through the processes and resources that determine the level of a component.
Consequence	The effect of an activity on achieving the operational objective for a sub-component.
Core objective	The overall aim of management for a component.
End point	A term used in risk assessment to denote the object of the assessment; equivalent to component or sub-component in ERAEF
Ecosystem	The spatially explicit association of abiotic and biotic elements within which there is a flow of resources, such as nutrients, biomass or energy (Crooks, 2002).
External factor	Factors other than fishing that affect achievement of operational objectives for components and sub-components.
Fishery method	A technique or set of equipment used to harvest fish in a fishery (e.g. long-lining, purse-seining, trawling).
Fishery	A related set of fish harvesting activities regulated by an authority (e.g. Southern and Eastern Scalefish and Shark Fishery).
F_MSM	Maximum sustainable fishing mortality
F_Lim	Limit fishing mortality which is half of the maximum sustainable fishing mortality
F_Crash	Minimum unsustainable fishing mortality rate that may lead to population extinction in the longer term
Habitat	The place where fauna or flora complete all or a portion of their life cycle.
Hazard identification	The identification of activities (hazards) that may impact the components of interest.

Indicator	Used to monitor the effect of an activity on a sub-component. An indicator is something that can be measured, such as biomass or abundance.
Likelihood	The chance that a sub-component will be affected by an activity.
Operational objective	A measurable objective for a component or sub-component (typically expressed as "the level of X does not fall outside acceptable bounds")
Precautionary approach	The approach whereby, if there is uncertainty about the outcome of an action, the benefit of the doubt should be given to the biological entity (such as species, habitat or community).
PSA	Productivity-Susceptibility Analysis. Used at Level 2 in the ERAEF methodology.
Scoping	A general step in an ERA or the first step in the ERAEF involving the identification of the fishery history, management, methods, scope and activities.
SICA	Scale, Impact, Consequence Analysis. Used at Level 1 in the ERAEF methodology.
Sub-component	A more detailed aspect of a component. For example, within the target species component, the sub-components include the population size, geographic range, and the age/size/sex structure.
Sub-fishery	A subdivision of the fishery on the basis of the gear or areal extent of the fishery. Ecological risk is assessed separately for each sub-fishery within a fishery.
Sustainability	Ability to be maintained indefinitely
Target species	A species or group of species whose capture is the goal of a fishery, sub-fishery, or fishing operation.
Trophic position	Location of an individual organism or species within a foodweb.
Unit of analysis	The entities for which attributes are scored in the Level 2 analysis. For example, the units of analysis for the Target Species component are individual "species", while for Habitats, they are "biotypes", and for Communities the units are "assemblages".

CONTACT US
t 1300363400
+6139545 2176
e csiroenquiries@csiro.au
w www.csiro.au

AT CSIRO, WE DO THE EXTRAORDINARY EVERY DAY
We innovate for tomorrow and help improve today - for our customers, all Australians and the world.

Our innovations contribute billions of dollars to the Australian economy every year. As the largest patent holder in the nation, our vast wealth of intellectual property has led to more than 150 spin-off companies.
With more than 5,000 experts and a burning desire to get things done, we are Australia's catalyst for innovation. CSIRO. WE IMAGINE. WE COLLABORATE. WE INNOVATE.

FOR FURTHER INFORMATION

Insert Business Unit name

Insert contact name
t +61362325222
e first.last@csiro.au
w www.csiro.au/businessunit

Insert Business Unit name
Insert contact name
t +61000000000
e first.last@csiro.au
w www.csiro.au/businessunit

Insert Business Unit name

Insert contact name
t +61000000000
e first.last@csiro.au
w www.csiro.au/businessunit

[^0]: * triggered but due to lack of methodology available in 2006 and ecosystem modelling projects underway in 2016 this component was not assessed at L2 in the ERA process. ^SAFE analysis was also performed on bycatch species 2007-2010 (Zhou et al. 2012). Risk scores for Level 2 are not directly comparable with 2018 assessment.

[^1]: ${ }^{1}$ The term "protected species" refers to species listed under [Part 13] of the EPBC Act (1999) and replaces the term "Threatened, endangered and protected species (TEPs)" commonly used in past Commonwealth (including AFMA) documents.
 ${ }^{2}$ Note "protected" (with small " p ") refers to all species covered by the EPBC Act (1999) while "Protected" (capital P) refers only to those protected species that are threatened (vulnerable, endangered or critically endangered).

[^2]: ${ }^{3}$ Future iterations of the methodology will include PSAs modified to measure the risk due to other activities, such as gear loss.

[^3]: ${ }^{5}$ Based on a recommendation by the ERA Technical Working Group, September 2015.
 ${ }^{6}$ In contrast to key and secondary commercial species managed via catch/effort limits under Harvest Strategies, which depending on species and Harvest Strategy, can be re-assessed any time between 1 and 5 years.

[^4]: ${ }^{7}$ ERA TWG recommendation, September 2015

[^5]: ${ }^{[2]}$ The term "protected" species refers to species listed under [Part 13] the EPBC Act 1999 and replaces the term "Threatened, endangered and protected species (PS)" commonly used in past Commonwealth Government (including AFMA) documents.
 ${ }^{[3]}$ Note "protected" (with small " p ") refers to all species covered by the EPBC Act 1999 while "Protected" (capital P) refers only to those protected species that are threatened (vulnerable, endangered or critically endangered).

[^6]: Ecological Risk Assessment for the Effects of Fishing | 133

[^7]: Ecological Risk Assessment for the Effects of Fishing | 135

