Ecological Risk Assessment (ERA) for Effects of Fishing

REPORT FOR THE PURSE SEINE SUB-FISHERY
OF THE SMALL PELAGIC FISHERY

Authors

Ross Daley
Jo Dowdney
Cathy Bulman
Miriana Sporcic
Mike Fuller
Scott Ling
David Milton
Alistair Hobday

Natural Heritage Trust
Hetping Gommuntifes Hetping Australifa
An Australian Government Initiative

This work is copyright. Except as permitted under the Copyright Act 1968 (Commonwealth), no part of this publication may be reproduced by any process, electronic or otherwise, without prior written permission from either CSIRO Marine and Atmospheric Research or the Australian Fisheries Management Authority (AFMA). Neither may information be stored electronically in any form whatsoever without such permission.

This fishery ERA report should be cited as
Daley, R., Dowdney, J., Bulman, C, Sporcic, M., Fuller, M., Ling, S. Milton, D., and Hobday, A (2007). Draft Ecological Risk Assessment for the Effects of Fishing. Report for the purse seine sub-fishery of the Small Pelagic Fishery. Report for the Australian Fisheries Management Authority, Canberra, Australia.

Notes to this document:
This fishery ERA report document contains figures and tables with numbers that correspond to the full methodology document for the ERAEF method:
(Hobday, A. J., A. Smith, H. Webb, R. Daley, S. Wayte, C. Bulman, J.
Dowdney, A. Williams, M. Sporcic, J. Dambacher, M. Fuller, T. Walker. (2007) Ecological Risk Assessment for the Effects of Fishing: Methodology. Report R04/1072 for the Australian Fisheries Management Authority, Canberra) Thus, table and figure numbers within the fishery ERA report document are not sequential as not all are relevant to the fishery ERA report results.

Additional details on the rationale and the background to the methods development are contained in the ERAEF Final Report:

Smith, A., A. Hobday, H. Webb, R. Daley, S. Wayte, C. Bulman, J. Dowdney, A. Williams, M. Sporcic, J. Dambacher, M. Fuller, D. Furlani, T. Walker. (2007) Ecological Risk Assessment for the Effects of Fishing: Final Report R04/1072 for the Australian Fisheries Management Authority, Canberra.

Executive Summary

This assessment of the ecological impacts of the Small Pelagic Fishery - Purse Seine was undertaken using the ERAEF method (version 9.2). ERAEF stands for "Ecological Risk Assessment for Effect of Fishing", and was developed in a research program sponsored by CSIRO Marine and Atmospheric Research (CMAR) and the Australian Fisheries Management Authority (AFMA). ERAEF provides a hierarchical framework for a comprehensive assessment of the ecological risks arising from fishing, with impacts assessed against five ecological components - target species; by-product and by-catch species; threatened, endangered and protected (TEP) species; habitats; and (ecological) communities.

ERAEF proceeds through four stages of analysis: scoping; an expert judgment based Level 1 analysis (SICA - Scale Intensity Consequence Analysis); an empirically based Level 2 analysis (PSA - Productivity Susceptibility Analysis); and a model based Level 3 analysis. This hierarchical approach provides a cost-efficient way of screening hazards, with increasing time and attention paid only to those hazards that are not eliminated at lower levels in the analysis. Risk management responses may be identified at any level in the analysis.

Application of the ERAEF methods to a fishery can be thought of as a set of screening or prioritization steps that work towards a full quantitative ecological risk assessment. At the start of the process, all components are assumed to be at high risk. Each step, or Level, potentially screens out issues that are of low concern. The Scoping stage screens out activities that do not occur in the fishery. Level 1 screens out activities that are judged to have low impact, and potentially screens out whole ecological components as well. Level 2 is a screening or prioritization process for individual species, habitats and communities at risk from direct impacts of fishing. The Level 2 methods do not provide absolute measures of risk. Instead they combine information on productivity and exposure to fishing to assess potential risk - the term used at Level 2 is risk. Because of the precautionary approach to uncertainty, there will be more false positives than false negatives at Level 2, and the list of high risk species or habitats should not be interpreted as all being at high risk from fishing. Level 2 is a screening process to identify species or habitats that require further investigation. Some of these may require only a little further investigation to identify them as a false positive; for some of them managers and industry may decide to implement a management response; others will require further analysis using Level 3 methods, which do assess absolute levels of risk.

This assessment of the Small Pelagic Fishery - Purse Seine includes the following:

- Scoping
- Level 1 results for all components
- Level 2 results for the three species components, and for habitats

Fishery Description of the Purse-Seine sub-fishery

Gear:	Purse seine
Area:	Queensland border south around Tasmania, to 31S along the west coast of Western Australia, from 3-200 nm, and including waters inside 3 nm around Tasmania. Divided into 4 zones.
Depth range:	30 to 3000 m ; no real offshore depth limit as surface gear fishes the upper 20 meters
Fleet size:	75 permits, but only 2-3 vessels in the fishery (2002-2004)
Effort:	Zone A: Only four shots in 2005
	Zone B \& C: Four shots in 2005
	Zone D: 78 shots in 2005
Landings:	<2,000 t in 2005
Discard rate:	unknown, presumed to be very low
Main target species:	historically jack mackerel (Trachurus declivis), more recently blue mackerel (Scomber australasicus)
Management:	Individual Transferable Quotas (It's) expected in near future, trigger catch limits in place at present, by zone for each species
Observer program:	None

Ecological Units Assessed

Target species:
By-product and bycatch species:
TEP species:
Habitats:

Communities:

> 5 species
> 9 and 3 respectively
> 218 in fishery jurisdiction
> 258 benthic in fishery jurisdiction
> 6 pelagic in fishery jurisdiction
> 4 demersal in area of effort
> 4 pelagic in area of effort

Level 1 Results

One ecological component (habitat) was eliminated at Level 1. There was at least one risk score of 3 - moderate - for each remaining component.

All but one hazard (fishing activities) was eliminated at Level 1 (risk scores 1 or 2). The remaining hazard was:

- Fishing (direct impacts on four ecological components)

Significant external hazards included other fisheries in the region and coastal development.

Impacts from fishing on all species components were assessed in more detail at Level 2. Community impacts should also be examined in future iterations; time was insufficient to complete this analysis following development of the ERAEF Level 2 community analysis.

Level 2 Results

Species

Of the 235 species assessed at Level 2 using the PSA analysis, expert/observer overrides were used on 4 species. A total of 108 species were found to be at high risk. Of these, 2 species had more than 3 missing attributes.

The, 108 high risk species were all in the TEP species component. By taxa, the high risk TEP species comprised 1 chondrichthyan (sharks and rays), 78 marine birds and 29 marine mammals. In the absence of information from any observer program, many of these may be false positives, but cannot be eliminated from the assessment.

No target, bycatch or byproduct species were found to be of risk. The majority were at low risk, in part because of their high productivity, and medium susceptibility (e.g. wide distribution).

Of the TEP species assessed to be at high risk, the birds are at high risk due to lack of information on presence in the area of the fishery; thus, without more information on encounter rates with the fishery, they remain at high risk. Many of the marine mammals of risk, such as the beaked whales, fall into the same situation.

White sharks are also considered at high risk and are known to feed among schools of pelagic fishes. White sharks have been observed among salmon schools in SA and southwest WA as well as among sardine schools off South Africa, and there are records of sardines in the stomach contents of white sharks. (Klimely 1985; Malcolm et al 2001). Observer data may reduce this risk score.

The high risk species that are of more concern are the seals and dolphins, and in the absence of any observer data for this fishery, risk estimates are difficult to revise. These species will remain a concern until additional data is collected. For example, Australian fur seals may captured by the fishery, but its population is also known to be increasing quite rapidly. The issue with fur seals is one of capturing a protected species, not one of ecological sustainability. Dolphins have been captured in the south Australian purse seine fishery, resulting in a temporary shut-down in 2005. Lack of information in the SPF fishery means these species may also be an issue here.

Habitats

Habitats were eliminated at the end of Level 1

Communities

The community component was not assessed at Level 2 for this sub-fishery, but should be considered in future assessments when the methods to do this are fully developed.

Summary

At the conclusion of the Level 2 ERAEF analysis of the SPF purse seine fishery, three components have been eliminated; target species, bycatch and byproduct species and habitats (eliminated at Level 1).

The high risk species were all from the TEP component and fall into two main categories, seabirds and marine mammals; both probably contain a number of false positives (species where risk has been overestimated). Both these TEP groups suffer from a lack of information regarding the nature of the interaction with the fishery.

Managing identified risks

Using the results of the ecological risk assessment, the next steps for each fishery will be to consider and implement appropriate management responses to address these risks. To ensure a consistent process for responding to the ERA outcomes, Australian Fisheries Management Authority (AFMA) has developed an Ecological Risk Management (ERM) framework.

TABLE OF CONTENTS

Executive Summary i

1. Overview 1
Ecological Risk Assessment for the Effects of Fishing (ERAEF) Framework 1
The Hierarchical Approach 1
Conceptual Model 1
ERAEF stakeholder engagement process 3
Scoping 3
Level 1. SICA (Scale, Intensity, Consequence Analysis) 4
Level 2. PSA (Productivity Susceptibility Analysis) 4
Level 3 5
Conclusion and final risk assessment report. 5
Subsequent risk assessment iterations for a fishery 5
2. Results 6
2.1 Stakeholder Engagement 6
2.2 Scoping 8
2.2.1 General Fishery Characteristics (Step 1). 8
2.2.2 Unit of Analysis Lists (Step 2) 18
2.2.3 Identification of Objectives for Components and Sub-components (Step 3) 43
2.2.4 Hazard Identification (Step 4) 50
2.2.5 Bibliography (Step 5) 56
2.2.6 Decision rules to move to Level 1(Step 6) 56
2.3 Level 1 Scale, Intensity and Consequence Analysis (SICA) 57
2.3.1 Record the hazard identification score (absence (0) presence (1) scores) identified at step 3 in the scoping level onto the SICA Document (Step 1) 58
2.3.2 Score spatial scale of activity (Step 2) 58
2.3.3 Score temporal scale of activity (Step 3) 58
2.3.4 Choose the sub-component most likely to be affected by activity (Step 4) 59
2.3.5 Choose the unit of analysis most likely to be affected by activity and to have highest consequence score (Step 5) 59
2.3.6 Select the most appropriate operational objective (Step 6) 59
2.3.7 Score the intensity of the activity for the component (Step 7) 59
2.3.8 Score the consequence of intensity for that component (Step 8) 60
2.3.9 Record confidence/uncertainty for the consequence scores (Step 9) 60
2.3.10 Document rationale for each of the above steps (Step 10) 61
2.3.11 Summary of SICA results 106
2.3.12 Evaluation/discussion of Level 1 109
2.3.13 Components to be examined at Level 2 110
2.4 Level 2 Productivity and Susceptibility Analysis (PSA) 111
2.4.1 Units excluded from analysis and document the reason for exclusion (Step 1)114
2.4.2 and 2.4.3 Level 2 PSA (steps 2 and 3) 115
2.4.4 PSA Plot for individual units of analysis (Step 4) 129
2.4.5 Uncertainty analysis ranking of overall risk (Step 5) 132
2.4.6 Evaluation of the PSA results (Step 6) 136
2.4.7 Decision rules to move from Level 2 to Level 3 (Step 7) 138
2.4.8 High/Medium risk categorisation (Step 8) 140
2.5 Level 3 142
3. General discussion and research implications 143
3.1 Level 1 143
3.2 Level 2 143
3.2.1 Species at risk 143
3.2.2 Habitats at risk 144
3.2.3 Communities at risk 144
3.3 Key Uncertainties / Recommendations for Research and Monitoring 145
References 146
Glossary of Terms 154
Appendix A: General summary of stakeholder feedback 156
Appendix B: PSA results summary of stakeholder discussions 159
Appendix C: SICA consequence scores for ecological components 160

Fishery ERA report documents to be completed

List of Summary documents
2.1 Summary Document SD1. Summary of stakeholder involvement for fishery 6
List of Scoping documents
Scoping Document S1 General Fishery Characteristics 8
Scoping Document S2A Species list for the Target (TA), Byproduct and Bycatch (BP, DI) and TEP components. 18
Scoping Document S2B1. Benthic Habitats 29
Scoping Document S2B2. Pelagic Habitats 39
Scoping Document S2C1. Demersal Communities 40
Scoping Document S2C2. Pelagic Communities 42
Scoping Document S3 Components and Sub-components Identification of Objectives 44Scoping Document S4. Hazard Identification Scoring Sheet50
List of Level 1 (SICA) documents
2.3.1 Level 1 (SICA) Documents L1.1 - Target Species Component 62
2.3.1 Level 1 (SICA) Documents L1.2 - Byproduct and Bycatch Component 71
2.3.1 Level 1 (SICA) L1.3 - TEP Species Component 80
2.3.1 Level 1 (SICA) Documents L1.4 - Habitat Component 88
2.3.1 Level 1 (SICA) Documents L1.. 5 - Community Component 98
Level 1 (SICA) Document L1.6. Summary table of consequence scores for all activity/component combinations 106
List of Level 2 (PSA) documents
Level 2 (PSA) Document L2.1. Summary table of stakeholder discussion regarding PSA results. 156
List of Figures
Figure 1. Overview of ERAEF showing focus of analysis for each level. 1
Figure 2. Generic conceptual model used in ERAEF. 2
Figure 13. The axes on which risk to the ecological units is plotted 114
Figure 17. Overall risk values in the PSA plot. 131

List of Tables

Table 4. Examples of fishing activities 53
Table 5A. Target Species. Description of consequences for each component and each sub-component. Use table as a guide for scoring the level of consequence for target species. (Modified from Fletcher et al. 2002) 160
Table 5B. Bycatch and Byproduct species. Description of consequences for each component and each sub-component. Use table as a guide for scoring the level ofconsequence for bycatch/byproduct species (Modified from Fletcher et al. 2002)163
Table 5C. TEP species. Description of consequences for each component and each sub- component. Use table as a guide for scoring the level of consequence for TEP species (Modified from Fletcher et al. 2002) 166
Table 5D. Habitats. Description of consequences for each component and each sub- component. Use table as a guide for scoring the level of consequence for habitats. Note that for sub-components Habitat types and Habitat structure and function, time to recover from impact scales differ from substrate, water and air. Rationale: structural elements operate on greater timeframes to return to pre-disturbance states (Modified from Fletcher et al. 2002) 169
Table 5E. Communities. Description of consequences for each component and each sub-component. Use table as a guide for scoring the level of consequence for communities (Modified from Fletcher et al. 2002) 172

1. Overview

Ecological Risk Assessment for the Effects of Fishing (ERAEF) Framework

The Hierarchical Approach

The Ecological Risk Assessment for the Effects of Fishing (ERAEF) framework involves a hierarchical approach that moves from a comprehensive but largely qualitative analysis of risk at Level 1, through a more focused and semi-quantitative approach at Level 2, to a highly focused and fully quantitative "model-based" approach at Level 3 (Figure 1). This approach is efficient because many potential risks are screened out at Level 1, so that the more intensive and quantitative analyses at Level 2 (and ultimately at Level 3) are limited to a subset of the higher risk activities associated with fishing. It also leads to rapid identification of high-risk activities, which in turn can lead to immediate remedial action (risk management response). The ERAEF approach is also precautionary, in the sense that risks will be scored high in the absence of information, evidence or logical argument to the contrary.

Figure 1. Overview of ERAEF showing focus of analysis for each level at the left in italics.

Conceptual Model

The approach makes use of a general conceptual model of how fishing impacts on ecological systems, which is used as the basis for the risk assessment evaluations at each level of analysis (Levels 1-3). For the ERAEF approach, five general ecological components are evaluated, corresponding to five areas of focus in evaluating impacts of
fishing for strategic assessment under Environment Protection and Biodiversity Conservation (EPBC) legislation. The five components are:

- Target species
- By-product and by-catch species
- Threatened, endangered and protected species (TEP species)
- Habitats
- Ecological communities

This conceptual model (Figure 2) progresses from fishery characteristics of the fishery or sub-fishery, \rightarrow fishing activities associated with fishing and external activities, which may impact the five ecological components (target, byproduct and bycatch species, TEP species, habitats, and communities); \rightarrow effects of fishing and external activities which are the direct impacts of fishing and external activities; \rightarrow natural processes and resources that are affected by the impacts of fishing and external activities; \rightarrow subcomponents which are affected by impacts to natural processes and resources; \rightarrow components, which are affected by impacts to the sub-components. Impacts to the subcomponents and components in turn affect achievement of management objectives.

Figure 2. Generic conceptual model used in ERAEF.
The external activities that may impact the fishery objectives are also identified at the Scoping stage and evaluated at Level 1. This provides information on the additional impacts on the ecological components being evaluated, even though management of the external activities is outside the scope of management for that fishery.

The assessment of risk at each level takes into account current management strategies and arrangements. A crucial process in the risk assessment framework is to document the rationale behind assessments and decisions at each step in the analysis. The decision to proceed to subsequent levels depends on

- Estimated risk at the previous level
- Availability of data to proceed to the next level
- Management response (e.g. if the risk is high but immediate changes to management regulations or fishing practices will reduce the risk, then analysis at the next level may be unnecessary).

A full description of the ERAEF method is provided in the methodology document (Hobday et al 2007). This fishery report contains figures and tables with numbers that correspond to this methodology document. Thus, table and figure numbers within this fishery ERAEF report are not sequential, as not all figures and tables are relevant to the fishery risk assessment results.

ERAEF stakeholder engagement process

A recognized part of conventional risk assessment is the involvement of stakeholders involved in the activities being assessed. Stakeholders can make an important contribution by providing expert judgment, fishery-specific and ecological knowledge, and process and outcome ownership. The ERAEF method also relies on stakeholder involvement at each stage in the process, as outlined below. Stakeholder interactions are recorded.

Scoping

In the first instance, scoping is based on review of existing documents and information, with much of it collected and completed to a draft stage prior to full stakeholder involvement. This provides all the stakeholders with information on the relevant background issues. Three key outputs are required from the scoping, each requiring stakeholder input.

1. Identification of units of analysis (species, habitats and communities) potentially impacted by fishery activities (section 2.2.2; Scoping Document S2A, S2B and S2C).
2. Selection of objectives (section 2.2.3; Scoping Document S3) is a challenging part of the assessment, because these are often poorly defined, particularly with regard to the habitat and communities components. Stakeholder involvement is necessary to agree on the set of objectives that the risks will be evaluated against. A set of preliminary objectives relevant to the sub-components is selected by the drafting authors, and then presented to the stakeholders for modification. An agreed set of objectives is then used in the Level 1 SICA analysis. The agreement of the fishery management advisory body (e.g. the MAC, which contains representatives from industry, management, science, policy and conservation) is considered to represent agreement by the stakeholders at large.
3. Selection of activities (hazards) (section 2.2.4; Scoping Document S4) that occur in the sub-fishery is made using a checklist of potential activities provided. The checklist was developed following extensive review, and allows repeatability between fisheries. Additional activities raised by the stakeholders can be
included in this checklist (and would feed back into the original checklist). The background information and consultation with the stakeholders is used to finalize the set of activities. Many activities will be self-evident (e.g. fishing, which obviously occurs), but for others, expert or anecdotal evidence may be required.

Level 1. SICA (Scale, Intensity, Consequence Analysis)

The SICA analysis evaluates the risk to ecological components resulting from the stakeholder-agreed set of activities. Evaluation of the temporal and spatial scale, intensity, sub-component, unit of analysis, and credible scenario (consequence for a sub-component) can be undertaken in a workshop situation, or prepared ahead by the draft fishery ERA report author and debated at the stakeholder meeting. Because of the number of activities (up to 24) in each of five components (resulting in up to 120 SICA elements), preparation before involving the full set of stakeholders may allow time and attention to be focused on the uncertain or controversial or high risk elements. The rationale for each SICA element must be documented and this may represent a challenge in the workshop situation. Documenting the rationale ahead of time for the straw-man scenarios is crucial to allow the workshop debate to focus on the right portions of the logical progression that resulted in the consequence score.

SICA elements are scored on a scale of 1 to 6 (negligible to extreme) using a "plausible worst case" approach (see ERAEF Methods Document for details). Level 1 analysis potentially result in the elimination of activities (hazards) and in some cases whole components. Any SICA element that scores 2 or less is documented, but not considered further for analysis or management response.

Level 2. PSA (Productivity Susceptibility Analysis)

The semi-quantitative nature of this analysis tier should reduce but not eliminate the need for stakeholder involvement. In particular, transparency about the assessment will lead to greater confidence in the results. The components that were identified to be at moderate or greater risk (SICA score > 2) at Level 1 are examined at Level 2. The units of analysis at Level 2 are the agreed set of species, habitat types or communities in each component identified during the scoping stage. A comprehensive set of attributes that are proxies for productivity and susceptibility have been identified during the ERAEF project. Where information is missing, the default assumption is that risk will be set high. Details of the PSA method are described in the accompanying ERAEF Methods Document. Stakeholders can provide input and suggestions on appropriate attributes, including novel ones, for evaluating risk in the specific fishery. The attribute values for many of the units (e.g. age at maturity, depth range, and mean trophic level) can be obtained from published literature and other resources (e.g. scientific experts) without full stakeholder involvement. This is a consultation of the published scientific literature. Further stakeholder input is required when the preliminary gathering of attribute values is completed. In particular, where information is missing, expert opinion can be used to derive the most reasonable conservative estimate. For example, if the species attribute values for annual fecundity have been categorized as low, medium and high on the set [$<5,5-500,>500]$, estimates for species with no data can still be made. Estimated fecundity of a species such as a broadcast-spawning fish with unknown fecundity, is still likely greater than the cutoff for the high fecundity categorization (>500).

Susceptibility attribute estimates, such as "fraction alive when landed", can also be made based on input from experts such as scientific observers. The final PSA is completed by scientists because access to computing resources, databases, and programming skills is required. Feedback to stakeholders regarding comments received during the preliminary PSA consultations is considered crucial. The final results are then presented to the stakeholder group before decisions regarding Level 3 are made. The stakeholder group may also decide on priorities for analysis at Level 3.

Level 3

This stage of the risk assessment is fully-quantitative and relies on in-depth scientific studies on the units identified as at medium or greater risk in the Level 2 PSA. It will be both time and data-intensive. Individual stakeholders are engaged as required in a more intensive and directed fashion. Results are presented to the stakeholder group and feedback incorporated, but live modification is not considered likely.

Conclusion and final risk assessment report

The conclusion of the stakeholder consultation process will result in a final risk assessment report for the individual fishery according to the ERAEF methods. It is envisaged that the completed assessment will be adopted by the fishery management group and used by AFMA for a range of management purposes, including addressing the requirements of the EPBC Act as evaluated by Department of the Environment and Heritage (DEH).

Subsequent risk assessment iterations for a fishery

The frequency at which each fishery must revise and update the risk assessment is not fully prescribed. As new information arises or management changes occur, the risks can be reevaluated, and documented as before. The fishery management group or AFMA may take ownership of this process, or scientific consultants may be engaged. In any case the ERAEF should again be based on the input of the full set of stakeholders and reviewed by independent experts familiar with the process.

Each fishery ERA report will be revised at least every four years or as required by Strategic Assessment. However, to ensure that actions in the intervening period do not unduly increase ecological risk, each year certain criteria will be considered. At the end of each year, the following trigger questions should be considered by the MAC for each sub-fishery.

- Has there been a change in the spatial distribution of effort of more than 50% compared to the average distribution over the previous four years?
- Has there been a change in effort in the fishery of more than 50% compared to the four year average (e.g. number of boats in the fishery)?
- Has there been an expansion of a new gear type or configuration such that a new sub-fishery might be defined?
Responses to these questions should be tabled at the relevant fishery MAC each year and appear on the MAC calendar and work program. If the answer to any of these trigger questions is yes, then the sub-fishery should be re-evaluated.

2. Results

The focus of analysis is the fishery as identified by the responsible management authority. The assessment area is defined by the fishery management jurisdiction within the Australian Fishery Zone (AFZ). The fishery may also be divided into sub-fisheries on the basis of fishing method and/or spatial coverage. These sub-fisheries should be clearly identified and described during the scoping stage. Portions of the scoping and analysis at Level 1 and beyond, is specific to a particular sub-fishery. The fishery is a group of people carrying out certain activities as defined under a management plan. Depending on the jurisdiction, the fishery/sub-fishery may include any combination of commercial, recreational, and/or indigenous fishers.

The results presented below are for the Small Pelagic Fishery - Purse Seine.

2.1 Stakeholder Engagement

2.1 Summary Document SD1. Summary of stakeholder involvement for fishery

SMALL PELAGIC FISHERY - PURSE SEINE

Fishery ERA report stage	Type of stakeholder interaction	Date of stakeholder interaction	Composition of stakeholder group (names or roles)	Summary of outcome
Scoping	Workshop Phone call and email comments on draft materials sent to meeting	Feb 27, 2004, Canberra March 23, 2004	Small Pelagics Research Assessment Team (SPRAT). See minutes for this meeting Denis Brown	New Strategic Assessment document made available to ERA team. Hazards agreed on. Species list comments to be included. Comments to be incorporated.
Level 1 (SICA)	Workshop	Feb 27, 2004, Canberra	SPRAT. See minutes for this meeting	Presented the scenarios as an overview of the preliminary outcomes. Agreed to distribute out of session once modified with some of the feedback
Level 2 (PSA)	Workshop	$\begin{aligned} & \text { February 27, } \\ & 2004 . \\ & \text { Canberra } \end{aligned}$	SPRAT. See minutes for this meeting	Draft Level 2 presented. Additional sources for biological attributes identified. Papers sent through by Jeremy Lyle with additional species data.
Level 2 (PSA)	Meeting at TAFI	$\begin{aligned} & \text { September } \\ & 2005 \end{aligned}$	Ross Daley, Jeremy Lyle, Dirk Welsford	Comments mainly on TEP species and need to improve mapping/availability of these species. Feedback incorporated prior to workshop[
Level 2 (PSA)	Workshop	$\begin{aligned} & \text { September } \\ & 2005 \end{aligned}$	AFMA, fishers, and Scientists (Tasmanian Aquaculture and Fisheries Institute -	Review of updated methodology and level 2. Problems with lack of PS observer data highlighted. AFMA staff undertake to obtain observer data from state PS Fisheries

$\left.\begin{array}{llll}\hline \begin{array}{c}\text { Fishery } \\ \text { ERA } \\ \text { report } \\ \text { stage }\end{array} & \begin{array}{c}\text { Type of } \\ \text { stakeholder } \\ \text { interaction }\end{array} & \begin{array}{c}\text { Date of } \\ \text { stakeholder } \\ \text { interaction }\end{array} & \begin{array}{c}\text { Composition } \\ \text { of stakeholder } \\ \text { group (names } \\ \text { or roles) }\end{array} \\ \hline & & & \begin{array}{l}\text { TAFI, South } \\ \text { Australian } \\ \text { Research and } \\ \text { Development }\end{array} \\ \text { Institute - }\end{array}\right]$

2.2 Scoping

The aim in the Scoping stage is to develop a profile of the fishery being assessed. This provides information needed to complete Levels 1 and 2 and at stakeholder meetings. The focus of analysis is the fishery, which may be divided into sub-fisheries on the basis of fishing method and/or spatial coverage. Scoping involves six steps:

Step 1 Documenting the general fishery characteristics

Step 2 Generating "unit of analysis" lists (species, habitat types, communities)
Step 3 Selection of objectives
Step 4 Hazard identification
Step 5 Bibliography
Step 6 Decision rules to move to Level 1

2.2.1 General Fishery Characteristics (Step 1).

The information used to complete this step may come from a range of documents such as the Fishery's Management Plan, Assessment Reports, Bycatch Action Plans, and any other relevant background documents. The level and range of information available will vary. Some fisheries/sub-fisheries will have a range of reliable information, whereas others may have limited information.

Scoping Document S1 General Fishery Characteristics

Fishery Name: Small Pelagics Fishery - Purse Seine
Date of assessment: 25 May 2006
Assessor: Ross Daley

| General Fishery Characteristics |
| :--- | :--- |
| Fishery |
| Name | Small Pelagics Fishery (SPF)

In 1983, the Offshore Constitutional Settlement came into effect. This arrangement between the state and the Australian Government allows for the exchange of powers for controlling resources that cross jurisdictional boundaries. This process is still not finalised for the purse seine fishery in Zone A. In 1984, the first large catches of Jack mackerel were taken off eastern Tasmania. These large catches continued from 1986-1988 when they exceeded $35,000 \mathrm{t}$ annually.

From 1991 - 2000, the annual catch were lower, on average around 12,000 t per annum.
In 2004 plans to restructure management of most zones of the fishery were announced. AFMA issued an investment warning and freeze on permits. A discussion paper on management of zones B, C, D was developed. An Independent Allocation Advisory Panel (IAAP) was established to investigate how TAC management could be developed for the fishery. In December 2005, The AFMA Board accepted most of the advice from the Independent Allocation Advisory Panel and finalised the allocation formula to be used in allocating statutory fishing rights under the management plan for the fishery. The Board lifted the freeze on boat nominations and expects to finalise a new management plan for the fishery in 2006.

The fishery is likely to face some challenges for monitoring TEP Species and reducing bycatch. In May 2005 the Minister for DEH directed the SPF to collect observer data for the fishery. This was in response to dolphin captures in other sectors of the SPF. Later in 2005, the South Australian State Government temporarily closed their State managed purse seine fishery for pilchards after significant catches of dolphins were reported by observers.

The fishery is currently facing a number of challenges for managing the target species. In December 2005, the Minister for Fisheries, Forestry and Conservation directed AFMA to take steps immediate action to prevent overfishing in Australian Government Fisheries. Output controls are to be the preferred method for managing Australian Government Fisheries but his may be problematic for the SPF. Output controls are normally set against some reference point based on the initial biomass of the stock. Setting reference points for the SPF will be a challenge for the future.

In December 2005, The AFMA Board accepted most of the advice from the Independent Allocation Advisory Panel and finalised the allocation formula to be used in allocating statutory fishing rights under the management plan for the fishery. The Board lifted the freeze on boat nominations and expects to finalise a new management plan for the fishery in 2006. In December 2005, the Minister for Fisheries, Forestry and Conservation directed AFMA to take steps immediate action to prevent overfishing in Australian Government Fisheries. Output controls are to be the preferred method for managing Australian Government Fisheries but his may be problematic for the SPF. Output controls are normally set against some reference point based on the initial biomass of the stock.

There are no estimates of original biomass. In line with the Ministerial Direction a harvest strategy is being developed for the fishery. The harvest strategy will be used to determine appropriate TACs. James Findlay (Bureau of Rural Sciences BRS) is preparing a draft harvest strategy for SPFRAG and SPFMAC to consider later this year.

In Zone A no explicit catch limit exists for jack mackerel; there is however a combined species TAC for Zone A; 25,000 t is allocated and there is a further $9,000 \mathrm{t}$ available as a competitive allocation. Trigger catch limits also exist for the inshore (Tasmanian general fishery) sector, currently around 3800 t (though actual catch from this sector rarely exceeds 50t) (Jeremy Lyle, May 2006)

Geographic The geographic extent of the managed area of the fishery. Maps of the managed area and extent of distribution of fishing effort should be included in the detailed description below, or

fishery	appended to the end of this table. The jurisdictional boundary of the fishery extends from waters south of the Queensland border on the east coast, across southern Australia to $31^{\circ} \mathrm{S}$ on the west coast, north of Perth. It includes waters from 3 - 200 miles and waters inside 3 nautical miles around Tasmania. Area of the Small Pelagic Fishery Jurisdictional Boundary of the SPF Fishery - AFMA Website
Regions or Zones within the fishery	Any regions or zones used within the fishery for management purposes and the reason for these zones if known. The fishery is divided into four zones. Map of the Small Pelagic Fishery including Zones, © Commonwealth of Australia 2005
ing	

Zone A and Tasmania will retain licensing control for State waters.
There is no Offshore Constitutional Settlement (OCS) arrangement for SPF species in Tasmania. There was agreement to form a formal Joint Authority to manage Zone A but this agreement was not gazetted and therefore did not take effect. Presently Zone A is managed cooperatively with Tasmania having responsibility for setting annual TACs. The current TAC for all species and gears is 34,000t.
Current and The most recent estimate of effort levels in the fishery by fishing method (sub-fishery). recent
fishery effort After a long history of fishing for jack mackerel off Tasmania, purse seine effort in zone A trends by has been close to zero in recent years (4 shots in 2005). Similarly there has been very little method effort in zones B and C (total of four shots off South Australia in 2005).

On the other hand, in southern NSW, effort has increased in Zone D, with the building of a processing plant for small pelagic species at Eden, although effort is still low (78 shots in 2005. An alternative measure of effort is the number of search hours by purse seine vessels.

Year	Search time (hours) for purse seiners in SPF (Logbook data)
2000	133
2001	124
2002	196
2003	183
2004	384
2005	465

Control small pelagic resources within 3 nm . Western Australia manages waters inside 3 nm east of $125^{\circ} \mathrm{E}$. The Australian Government has jurisdiction to the high water mark west of this point. Victoria, South Australia and Western Australia do not allow state licensed commercial operators to target small pelagic species. (Draft Assessment Report 2003)

The relationship with other Australian Government fisheries is difficult to interpret because of complex jurisdictional arrangements. Australian Government tuna fisheries, such as the Skipjack Fishery, may target bait using a SPF permit, or alternatively target the same bait species using the same vessel in State waters using a different permit.

Small amounts of Jack mackerel and redbait are also caught as bycatch by demersal trawl in the South Eastern Shark and Scalefish (SESS) fishery demersal trawl sectors. The 2003 SESSF management plan prohibits targeting of small pelagic species. However, a vessel with both SPF and SESS permits could potentially target small pelagic stocks using midwater trawl.

Gear

Fishing gear Description of the methods and gear in the fishery, average number days at sea per trip. and methods

In a purse seine, the top of the net is floated at the ocean's surface and the bottom of the net is held under the water by lead weights. A wire that is threaded through the bottom of the net can be tightened to close the bottom of the net trapping the fish inside. The net is then pulled in toward the boat and the catch is either pumped or lifted out with small nets or the whole net is brought aboard.

Operators in the SPF often catch the SPF species when they are using purse-seine nets optimized for an adjacent state fishery - at other times they are caught with purse-seine nets optimized for the SPF fishery. Gear configuration depends on the seasonal fishing plan and the expectations of the vessel skipper as to which net is on the vessel at the time.

	PURSE SEINE BOAT CIRCLES SCHOOL WITH WALL OF NET PURSE WIRE IS WINCHED IN, GATHERING THE NET \& HARVESTING THE FISH
Fishing gear restrictions	Any restrictions on gear There are no net prescription regulations in the SPF (such as mesh size, maximum and typical depth of net, maximum and typical length of net) Operators often catch the SPF species when they are using purse-seine nets optimized for an adjacent fishery - at other times they are caught with purse-seine nets optimized for the SPF fishery. Gear configuration depends on the seasonal fishing plan and the expectations of the vessel skipper as to which net is on the vessel at the time. Operators believe that any prescription of net regulations in the SPF has extremely high potential to be counterproductive to the economic efficiency of the holistic purse seine fishery in Australia. Any conceptual net prescription MUST accommodate the extremes of potential net

	configurations used in the holistic Australian purse-seine fishery. Larger operators cannot efficiently change nets with changes in target species, as the nets are very large, very heavy, and in some cases cannot be transported without disassembly into sections \& manually sewing back together again when put back on the vessel (Denis Brown, Mar 2004). Bait for-own-use purse-seine nets are generally prescribed in regard to length \& mesh size; however, there is no potential for bait-for-own-use nets to expand into the commercial target purse seine fishery (Denis Brown, Mar 2004).
Selectivity of gear and fishing methods	f Description of the selectivity of the sub-fishery methods The purse seine method selects surface species located visually. These may be single species or multi-species fish schools. A number of dolphins were recently captured in purse -seine fisheries off South Australia. Without observer data it is difficult to determine how catches of dolphins and other small cetaceans can be avoided
Spatial gear zone set	Description where gear set i.e. continental shelf, shelf break, continental slope (range nautical miles from shore) The gear is generally set in areas of high productivity over the shelf and along the edge of the shelf
Depth range gear set	Depth range gear set at in meters The bottom depth can be anywhere from $30-3,000 \mathrm{~m}$. The gear is set from the surface down to 20 m
	Description how set, pelagic in water column, benthic set (weighted) on seabed The gear is set from the surface to 20 m depth in the water column around schools of fish that have been identified visually or on a sounder.
Area of gear impact per set or shot	Description of area impacted by gear per set (square metres) The nets are typically about 1000 meter for the commercial sets, and 100 m nets for bait fishing. Thus the area surrounded by the net is 0.1 square km . The immediate area of impact is that water column surrounded by the net. If the net does not contact the bottom, there is no lasting impact on the habitat.
Capacity of gear	Description number hooks per set, net size weight per trawl shot A single shot may capture up to 200 tonnes (Dennis Brown pers. comm.)
Effort per annum all boats	Description effort per annum of all boats in fishery by shots or sets and hooks, for all boats See trends in effort
Lost gear and ghost fishing	Description of how gear is lost, whether lost gear is retrieved, and what happens to gear that is not retrieved, and impacts of ghost fishing. The gear is deployed at the surface and not prone to snagging. The top of net is buoyed by floats and even if it became detached from the vessel it would be straight forward to retrieve. The gear is expensive and economics and career prospects for skippers provide powerful incentives to recover any lost gear
Issues	
Target species issues	List any issues, including biological information such as spawning season and spawning location, major uncertainties about biology or management, interactions etc There is large-scale variation in catches of target species and this makes assessment of Target Catch Limits difficult. There is recognition that localised depletion may be occurring in the main fishing zone (Zone A) off eastern Tasmania but is difficult to determine if recent low catches have resulted from over-fishing or from inter-annual variation in recruitment.

	For the highly migratory pelagic stocks, susceptibility to capture is difficult to assess. Fisheries data generally only provides a measure of stock abundance on the fishing grounds during the fishing season. If abundance is high inside the grounds then availability for capture is high. At the other extreme, for a highly aggregated schooling stock availability of the stock outside the fishing grounds during the fishing season could be zero. Determining where the target species in the SPF lie in this spectrum will be a key challenge for setting TACs for this, as well as other pelagic fisheries. In fisheries for large tunas this challenge has been taken up through electronic tagging experiments which seek to understand the distribution of stocks inside and outside Australian waters. These methods are amenable to large, high value species but with current technology, this approach may not be practical or cost effective for small pelagics.
Byproduct and bycatch issues and interactions	List any issues, as for the target species above There is no verified data for byproduct or bycatch in the sub-fishery
TEP issues and interactions	List any issues. This section should consider all TEP species groups: marine mammals, chondrichthyans (sharks, rays etc.), marine reptiles, seabirds, teleosts (bony fishes), include any key spawning/breeding/aggregation locations that might overlap with the fishery/sub-fishery. Dolphins are vulnerable capture in purse seine fisheries. Operators report that the mortality for mammals in the fishery is negligible. Both birds and mammals are vulnerable to indirect impacts. SPF target species play an important ecological role as food for many marine birds and mammals (see community issues below). It is important that harvest strategies contain reference points for the target species that allow a viably functioning ecosystem that can support birds and mammals higher in the food chain.
Habitat issues and interactions	List any issues for any of the habitat units identified in Scoping Document S1.2. This should include reference to any protected, threatened or listed habitats None identified. The gear is designed to fly just above the bottom and, although the gear does come into contact with the bottom occasionally, the impact on benthic habitats is likely to be minimal compared to other fishing methods that overlap with the fishery, such as demersal trawling
Community issues and interactions	List any issues for any of the community units identified in Scoping Document S1.2. Production and structure of the food chain is linked to seasonal and interannual variability in the physical processes in the water masses off Tasmania (Harris et al. 1991). The shared nature of this migratory resource, its ecological importance within the broader marine environment, and its trophic importance in supporting other more valuable fisheries, make small pelagic species of the SPF a valuable component of Australia's marine ecosystem that need further examination
Discar	Summary of discarding practices by sub-fishery, including bycatch, juveniles of target species, high-grading, processing at sea. Logbook records indicate there is virtually no discarding of bycatch species but there are no independent data to verify this. There is no processing at sea.
Management:	: planned and those implemented
Managemen t Objectives	The management objectives from the most recent management plan The management objectives from AFMA's SPF management policy are: - Ensuring management arrangements facilitate the Ecologically Sustainable Development of the SPF, and promote the productivity and efficient conduct of the commercial, recreational, and ecological components of the fishery; - Adopting a strategic approach to management of the SPF, developing and maintaining fisheries management best practice, including recognising and embracing the need for ecosystem based management; - Managing the SPF resource on behalf of the Australian community, and in doing so ensuring that management arrangements are consistent with the requirements

	of key stakeholders, including other management jurisdictions; and, - Within the life of this policy, developing a set of performance criteria by which the effectiveness of SPF management arrangements can be measured. (Source: Management Policy for the Commonwealth Small Pelagics Fishery; AFMA webpage, 10-Feb-04)
Fishery management plan	Is there a fisheries management plan is it in the planning stage or implemented what are the key features A management plan for the fishery is under development and expected to be in place later in 2006. A harvest strategy framework is being developed by SPFRAG and SPFMAC in 2006. The Harvest Strategy Plan (HSP) will be reviewed by experts and AFMA will report on the HSP to the Minister by 30 June 2006.
	Is there a fisheries management plan is it in the planning stage or implemented what are the key features Limited entry will apply on a zone by zone basis under the new management plan
	Summary of any output controls in the fishery, e.g. quotas. Effort days at sea. Primarily focused on target species as other species are addressed below. See section on TAC trends and history of the fishery (above))
	Summary of any technical measures in the fishery, e.g. size limits, bans on females, closed areas or seasons. Gear mesh size, mitigation measures such as TEDs. Primarily focused on target species as other species are addressed below. None identified. There are currently no spatial closures in the fishery and none have been proposed or considered to date. However, SPFRAG and SPFMAC may consider the role of spatial management in future.
Regu	Regulations regarding species (bycatch and byproduct, TEP), habitat, and communities; MARPOL and pollution; rules regarding activities at sea such as discarding offal and/ or processing at sea. Under the new management plan, all interactions with TEP species need to be recorded on the monthly catch returns.
Initiatives and strategies	BAPs; TEDs; Industry codes of conduct In December 2005 the AFMA board approved a new Bycatch Action Plan for the Fishery
Enabling processes	Monitoring, logbooks, observer data, scientific surveys); assessment stock assessments); performance indicators (decision rules, processes, compliance; education; consultation process. The Small Pelagic Fishery Cetacean Mitigation Working Group was established to minimise cetacean interactions. Its first meeting was held in April 2005 SPFRAG - Assesses research for the fishery SPFMAC - Provides advice to the AFMA Board on management of the fishery
Other initiatives or agreements	State, national or international conventions or agreements that impact on the management of the fishery/sub-fishery being evaluated. Electronic monitoring using vessel mounted cameras is being developed to reduce costs and improve data quality
Data	
Logbo	Verified logbook data; data summaries describe program Fishing effort is recorded on a shot by shot basis in daily logs
Observer data	There is no observer data available for the purse-seine sector of the fishery
Other data	TAFI has undertaken biological studies of the target species over the past 20 years

2.2.2 Unit of Analysis Lists (Step 2)

The units of analysis for the sub-fishery are listed by component:

- Species Components (target, byproduct/discards and TEP components). [Scoping document S2A Species]
- Habitat Component: habitat types. [Scoping document S2B Habitats]
- Community Component: community types. [Scoping document S2C Communities]

The number of units of analysis examined in this report is shown by component in the following Table.

Target	By-product	By-catch	TEP	Habitats	Communities
5	9	3	218	6	8

Scoping Document S2A Species list for the Target (TA), Byproduct and Bycatch (BP, DI) and TEP components.

Each species identified during the scoping is added to the ERAEF database used to run the Level 2 analyses. A CAAB code (Code for Australian Aquatic Biota) is required to input the information. The CAAB codes for each species may be found at http://www.marine.csiro.au/caab/

Target species

This list is obtained by reviewing all available fishery literature, including logbooks, observer reports and discussions with stakeholders. Target species are as agreed by the fishery.

ERAEF Species ID	Role in Fishery (Component)	Taxa name	Family name	Scientific name	Common name	CAAB Code	Reference
1088	TA	Teleost	Carangidae	Trachurus declivis	Jack Mackerel	37337002	ERA Stage 1
540	TA	Teleost	Carangidae	Trachurus novaezelandiae	Yellow tail scad	37337003	ERA Stage 1
807	TA	Teleost	Carangidae	Trachurus murphyi	Peruvian Jack Mackerel	37337077	ERA Stage 1
155	TA	Teleost	Emmelichthyidae	Emmelichthys nitidus	redbait	37345001	ERA Stage 1
210	TA	Teleost	Scombridae	Scomber australasicus	Blue Mackerel	37441001	ERA Stage 1
Byproduct species							

Byproduct refers to any part of the catch which is kept or sold by the fisher but which is not a target species. This list is obtained by reviewing all available fishery literature, including logbooks, observer reports and discussions with stakeholders.

ERAEF Species ID	Role in Fishery (Component)	Taxa name	Family name	Scientific name	Common name	CAAB Code	Reference
825	BP	Teleost	Clupeidae	Sardinops neopilchardus	Pilchard	37085002	ERA Stage 1
982	BP	Teleost	Merlucciidae	Macruronus novaezelandiae	Blue Grenadier	37227001	ERA Stage 1
148	BP	Teleost	Carangidae	Seriola lalandi	Yellowtail Kingfish	37337006	ERA Stage 1
1130	BP	Teleost	Carangidae	Decapterus russelli	Red tailed round scad	37337023	Don Bromhead
150	BP	Teleost	Carangidae	Pseudocaranx dentex	Silver Trevally	37337062	ERA Stage 1
1087	BP	Teleost	Gempylidae	Thyrsites atun	Barracouta	37439001	ERA Stage 1
958	BP	Teleost	Centrolophidae	Hyperoglyphe antarctica	Blue Eye Trevalla	37445001	ERA Stage 1
1068	BP	Teleost	Centrolophidae	Seriolella brama	Blue Warehou	37445005	ERA Stage 1
1069	BP	Teleost	Centrolophidae	Seriolella punctata	Spotted Warehou	37445006	ERA Stage 1

Discard species

Bycatch as defined in the Commonwealth Policy on Fisheries Bycatch 2000 refers to:

- that part of a fisher's catch which is returned to the sea either because it has no commercial value or because regulations preclude it being retained; and
- that part of the 'catch' that does not reach the deck but is affected by interaction with the fishing gear

However, in the ERAEF method, the part of the target or byproduct catch that is discarded is included in the assessment of the target or byproduct species. The list of bycatch species is obtained by reviewing all available fishery literature, including logbooks, observer reports and discussions with stakeholders.

ERAEF Species ID	Role in (Component)	Taxa name	Family name	Scientific name	
69	DI	Teleost	Berycidae	Centroberyx lineatus	Common name
208	DI	Teleost	Trichiuridae	Lepidopus caudatus	Swallowtail
233	DI	Teleost	Monacanthidae	Nelusetta ayraudi	Southern Frostfish

TEP species

Highlight species that are known to interact directly with the fishery. TEP species are those species listed as Threatened, Endangered or Protected under the EPBC Act.

TEP species are often poorly listed by fisheries due to low frequency of direct interaction. Both direct (capture) and indirect (e.g. food source captured) interaction are considered in the ERAEF approach. A list of TEP species has been generated for each fishery and is included in the PSA workbook species list. This list has been generated using the DEH Search Tool from DEH home page http://www.deh.gov.au/

For each fishery, the list of TEP species is compiled by reviewing all available fishery literature. Species considered to have potential to interact with fishery (based on geographic range \& proven/perceived susceptibility to the fishing gear/methods and examples from other similar fisheries across the globe) should also be included.

ERAEF Species ID	Role in Fishery (Component)	Taxa name	Family name	Scientific name	Common name	CAAB Code	Reference
313	TEP	Chondrichthyan	Odontaspididae	Carcharias taurus	grey nurse shark	37008001	DEH
315	TEP	Chondrichthyan	Lamnidae	Carcharodon carcharias	white shark	37010003	DEH
1067	TEP	Chondrichthyan	Rhincodontidae	Rhincodon typus	whale shark	37014001	DEH
898	TEP	Marine bird	Spheniscidae	Eudyptula minor	Little Penguin	40001008	ERA Stage 1
1032	TEP	Marine bird	Diomedeidae	Thalassarche bulleri	Buller's Albatross	40040001	DEH
1033	TEP	Marine bird	Diomedeidae	Thalassarche cauta	Shy Albatross Yellow-nosed Albatross, Atlantic	40040002	ERA Stage 1
1034	TEP	Marine bird	Diomedeidae	Thalassarche chlororhynchos	Yellow-	40040003	ERA Stage 1
1035	TEP	Marine bird	Diomedeidae	Thalassarche chrysostoma	Grey-headed Albatross	40040004	DEH
753	TEP	Marine bird	Diomedeidae	Diomedea epomophora	Southern Royal Albatross	40040005	DEH
451	TEP	Marine bird	Diomedeidae	Diomedea exulans	Wandering Albatross	40040006	ERA Stage 1
1085	TEP	Marine bird	Diomedeidae	Thalassarche melanophrys	Black-browed Albatross	40040007	ERA Stage 1
1008	TEP	Marine bird	Diomedeidae	Phoebetria fusca	Sooty Albatross	40040008	DEH
1009	TEP	Marine bird	Diomedeidae	Phoebetria palpebrata	Light-mantled Albatross	40040009	DEH
755	TEP	Marine bird	Diomedeidae	Diomedea gibsoni	Gibson's Albatross	40040010	DEH
628	TEP	Marine bird	Diomedeidae	Diomedea antipodensis	Antipodean Albatross	40040011	DEH
799	TEP	Marine bird	Diomedeidae	Diomedea sanfordi	Northern Royal Albatross	40040012	DEH
1084	TEP	Marine bird	Diomedeidae	Thalassarche impavida	Campbell Albatross	40040013	DEH
1031	TEP	Marine bird	Diomedeidae	Thalassarche carteri	Indian Yellow-nosed Albatross	40040014	DEH

ERAEF Species \qquad ID	Role in Fishery (Component)	Taxa name	Family name	Scientific name	Common name	CAAB Code	Reference
894	TEP	Marine bird	Diomedeidae	Thalassarche salvini	Salvin's albatross	40040016	DEH
889	TEP	Marine bird	Diomedeidae	Thalassarche eremita	Chatham albatross	40040017	DEH
1428	TEP	Marine bird	Diomedeidae	Diomedea amsterdamensis	Amsterdam Albatross	40040018	DEH
1429	TEP	Marine bird	Diomedeidae	Diomedea dabbenena	Tristan Albatross	40040019	DEH
1580	TEP	Marine bird	Procellariidae	Calonectris leucomelas	streaked shearwater	40041002	DEH
595	TEP	Marine bird	Procellariidae	Daption capense	Cape Petrel	40041003	DEH
314	TEP	Marine bird	Procellariidae	Fulmarus glacialoides	Southern fulmar	40041004	DEH
939	TEP	Marine bird	Procellariidae	Halobaena caerulea	Blue Petrel	40041005	DEH
1052	TEP	Marine bird	Procellariidae	Lugensa brevirostris	Kerguelen Petrel	40041006	DEH
73	TEP	Marine bird	Procellariidae	Macronectes giganteus	Southern Giant-Petrel	40041007	DEH
981	TEP	Marine bird	Procellariidae	Macronectes halli	Northern Giant-Petrel	40041008	DEH
1003	TEP	Marine bird	Procellariidae	Pachyptila turtur	Fairy Prion	40041013	DEH
1006	TEP	Marine bird	Procellariidae	Pelecanoides urinatrix	Common Diving-Petrel	40041017	DEH
1041	TEP	Marine bird	Procellariidae	Procellaria aequinoctialis	White-chinned Petrel	40041018	DEH
494	TEP	Marine bird	Procellariidae	Procellaria cinerea	Grey petrel	40041019	DEH
1042	TEP	Marine bird	Procellariidae	Procellaria parkinsoni	Black Petrel; Parkinsons Petrel	40041020	DEH
1043	TEP	Marine bird	Procellariidae	Procellaria westlandica	Westland Petrel	40041021	DEH
1691	TEP	Marine bird	Procellariidae	Pseudobulweria rostrata	Tahiti Petrel	40041022	DEH
1045	TEP	Marine bird	Procellariidae	Pterodroma cervicalis	White-necked Petrel	40041025	DEH
504	TEP	Marine bird	Procellariidae	Pterodroma lessoni	White-headed petrel	40041029	DEH
1046	TEP	Marine bird	Procellariidae	Pterodroma leucoptera	Gould's Petrel	40041030	DEH
1047	TEP	Marine bird	Procellariidae	Pterodroma macroptera	Great-winged Petrel	40041031	DEH
1048	TEP	Marine bird	Procellariidae	Pterodroma mollis	Soft-plumaged Petrel	40041032	DEH
1049	TEP	Marine bird	Procellariidae	Pterodroma neglecta	Kermadec Petrel (western)	40041033	DEH
1050	TEP	Marine bird	Procellariidae	Pterodroma nigripennis	Black-winged Petrel	40041034	DEH
1051	TEP	Marine bird	Procellariidae	Pterodroma solandri	Providence Petrel	40041035	DEH
1053	TEP	Marine bird	Procellariidae	Puffinus assimilis	Little Shearwater (Tasman Sea)	40041036	DEH
1054	TEP	Marine bird	Procellariidae	Puffinus bulleri	Buller's Shearwater	40041037	DEH
1055	TEP	Marine bird	Procellariidae	Puffinus carneipes	Flesh-footed Shearwater	40041038	DEH
1056	TEP	Marine bird	Procellariidae	Puffinus gavia	Fluttering Shearwater	40041040	DEH
1057	TEP	Marine bird	Procellariidae	Puffinus griseus	Sooty Shearwater	40041042	DEH

ERAEF Species ID	Role in Fishery (Component)	Taxa name	Family name	Scientific name	Common name	CAAB Code	Reference
1058	TEP	Marine bird	Procellariidae	Puffinus huttoni	Hutton's Shearwater	40041043	DEH
1059	TEP	Marine bird	Procellariidae	Puffinus pacificus	Wedge-tailed Shearwater	40041045	DEH
1060	TEP	Marine bird	Procellariidae	Puffinus tenuirostris	Short-tailed Shearwater White-bellied Storm-Petrel	40041047	DEH
918	TEP	Marine bird	Hydrobatidae	Fregetta grallaria	(Tasman Sea),	40042001	DEH
917	TEP	Marine bird	Hydrobatidae	Fregetta tropica	Black-bellied Storm-Petrel	40042002	DEH
555	TEP	Marine bird	Hydrobatidae	Garrodia nereis	Grey-backed storm petrel Wilson's storm petrel	40042003	DEH
556	TEP	Marine bird	Hydrobatidae	Oceanites oceanicus	(subantarctic)	40042004	DEH
1004	TEP	Marine bird	Hydrobatidae	Pelagodroma marina	White-faced Storm-Petrel	40042007	DEH
1432	TEP	Marine bird	Phaethontidae	Phaethon rubricauda	Red-tailed Tropicbird	40045002	DEH
1549	TEP	Marine bird	Sulidae	Morus capensis	Cape gannet	40047001	DEH
998	TEP	Marine bird	Sulidae	Morus serrator	Australasian Gannet	40047002	ERA Stage 1
1433	TEP	Marine bird	Sulidae	Sula dactylatra	Masked Booby	40047004	DEH
912	TEP	Marine bird	Phalacrocoracidae	Phalacrocorax fuscescens	Black faced cormorant	40048003	DEH
1438	TEP	Marine bird	Laridae	Anous minutus	Black Noddy	40128001	DEH
203	TEP	Marine bird	Laridae	Anous stolidus	Common noddy	40128002	DEH
67	TEP	Marine bird	Laridae	Anous tenuirostris	Lesser noddy	40128003	DEH
325	TEP	Marine bird	Laridae	Catharacta skua	Great Skua	40128005	DEH
973	TEP	Marine bird	Laridae	Larus dominicanus	Kelp Gull	40128012	DEH
974	TEP	Marine bird	Laridae	Larus novaehollandiae	Silver Gull	40128013	DEH
975	TEP	Marine bird	Laridae	Larus pacificus	Pacific Gull	40128014	DEH
1582	TEP	Marine bird	Laridae	Procelsterna cerulea	grey ternlet	40128018	DEH
1014	TEP	Marine bird	Laridae	Sterna albifrons	Little tern	40128022	DEH
1015	TEP	Marine bird	Laridae	Sterna anaethetus	Bridled Tern	40128023	DEH
1017	TEP	Marine bird	Laridae	Sterna bergii	Crested Tern	40128025	ERA Stage 1
1018	TEP	Marine bird	Laridae	Sterna caspia	Caspian Tern	40128026	DEH
1020	TEP	Marine bird	Laridae	Sterna fuscata	Sooty tern	40128028	DEH
1021	TEP	Marine bird	Laridae	Sterna hirundo	Common tern	40128029	DEH
1023	TEP	Marine bird	Laridae	Sterna paradisaea	Arctic tern	40128032	DEH
1024	TEP	Marine bird	Laridae	Sterna striata	White-fronted Tern	40128033	DEH
1025	TEP	Marine bird	Laridae	Sterna sumatrana	Black-naped tern	40128034	DEH

ERAEF Species ID	Role in Fishery (Component)	Taxa name	Family name	Scientific name	Common name	CAAB Code	Reference
1086	TEP	Marine bird	Diomedeidae	Thalassarche steadi	White-capped Albatross		DEH
1673	TEP	Marine bird Marine	Thalassarche	Thalassarche nov. sp.	Pacific Albatross		DEH
256	TEP	mammal Marine	Balaenopteridae	Balaenoptera acutorostrata	Minke Whale	41112001	DEH
984	TEP	mammal Marine	Balaenopteridae	Megaptera novaeangliae	Humpback Whale	41112006	DEH
902	TEP	mammal Marine	Delphinidae	Feresa attenuata	Pygmy Killer Whale	41116002	DEH
934	TEP	mammal Marine	Delphinidae	Globicephala macrorhynchus	Short-finned Pilot Whale	41116003	DEH
935	TEP	mammal Marine	Delphinidae	Globicephala melas	Long-finned Pilot Whale	41116004	DEH
937	TEP	mammal Marine	Delphinidae	Grampus griseus	Risso's Dolphin	41116005	DEH
970	TEP	mammal Marine	Delphinidae	Lagenodelphis hosei	Fraser's Dolphin	41116006	DEH
832	TEP	mammal Marine	Delphinidae	Lagenorhynchus cruciger	Hourglass dolphin	41116007	DEH
61	TEP	mammal Marine	Delphinidae	Lissodelphis peronii	Southern Right Whale Dolphin	41116009	DEH
1002	TEP	mammal Marine	Delphinidae	Orcinus orca	Killer Whale	41116011	DEH
1044	TEP	mammal Marine	Delphinidae	Pseudorca crassidens	False Killer Whale	41116013	DEH
1076	TEP	mammal Marine	Delphinidae	Sousa chinensis	Indo-Pacific Humpback Dolphin	41116014	DEH
1081	TEP	mammal Marine	Delphinidae	Stenella coeruleoalba	Striped Dolphin	41116016	DEH
1083	TEP	mammal Marine	Delphinidae	Steno bredanensis	Rough-toothed Dolphin	41116018	DEH
1091	TEP	mammal Marine	Delphinidae	Tursiops truncatus	Bottlenose Dolphin	41116019	DEH
1494	TEP	mammal Marine	Delphinidae	Tursiops aduncus	Indian Ocean bottlenose dolphin	41116020	DEH
969	TEP	mammal Marine	Physeteridae	Kogia simus	Dwarf Sperm Whale	41119002	DEH
959	TEP	mammal Marine	Ziphiidae	Hyperoodon planifrons	Southern Bottlenose Whale	41120002	DEH
985	TEP	mammal Marine	Ziphiidae	Mesoplodon bowdoini	Andrew's Beaked Whale	41120004	DEH
986	TEP	mammal	Ziphiidae	Mesoplodon densirostris	Blainville's Beaked Whale	41120005	DEH

ERAEF Species ID	Role in Fishery (Component)	Taxa name	Family name	Scientific name	Common name	CAAB Code	Reference
987	TEP	Marine mammal Marine	Ziphiidae	Mesoplodon gingkodens	Gingko Beaked Whale	41120006	DEH
988	TEP	mammal Marine	Ziphiidae	Mesoplodon grayi	Gray's Beaked Whale	41120007	DEH
989	TEP	mammal Marine	Ziphiidae	Mesoplodon hectori	Hector's Beaked Whale	41120008	DEH
990	TEP	mammal Marine	Ziphiidae	Mesoplodon layardii	Strap-toothed Beaked Whale	41120009	DEH
991	TEP	mammal Marine	Ziphiidae	Mesoplodon mirus	True's Beaked Whale	41120010	DEH
1098	TEP	mammal Marine	Ziphiidae	Ziphius cavirostris	Cuvier's Beaked Whale	41120012	DEH
253	TEP	mammal Marine	Otariidae	Arctocephalus pusillus doriferus	Australian Fur Seal	41131003	ERA Stage 1
295	TEP	mammal Marine	Phocidae	Hydrurga leptonyx	Leopard seal	41136001	DEH
993	TEP	mammal Marine	Phocidae	Mirounga leonina	Elephant seal	41136004	DEH
896	TEP	mammal Marine	Balaenidae	Eubalaena australis	Southern Right Whale	41110001	DEH
289	TEP	mammal Marine	Balaenidae	Caperea marginata	Pygmy Right Whale	41110002	DEH
261	TEP	mammal Marine	Balaenopteridae	Balaenoptera borealis	Sei Whale	41112002	DEH
262	TEP	mammal Marine	Balaenopteridae	Balaenoptera edeni	Bryde's Whale	41112003	DEH
265	TEP	mammal Marine	Balaenopteridae	Balaenoptera musculus	Blue Whale	41112004	DEH
268	TEP	mammal Marine	Balaenopteridae	Balaenoptera physalus	Fin Whale	41112005	DEH
1439	TEP	mammal Marine	Balaenidae	Balaenoptera bonaerensis	Antarctic Minke Whale	41112007	DEH
612	TEP	mammal Marine	Delphinidae	Delphinus delphis	Common Dolphin	41116001	DEH
971	TEP	mammal Marine	Delphinidae	Lagenorhynchus obscurus	Dusky Dolphin	41116008	DEH
1007	TEP	mammal Marine	Delphinidae	Peponocephala electra	Melon-headed Whale	41116012	DEH
1080	TEP	mammal Marine	Delphinidae	Stenella attenuata	Spotted Dolphin	41116015	DEH
1082	TEP	mammal	Delphinidae	Stenella longirostris	Long-snouted Spinner Dolphin	41116017	DEH

ERAEF Species \qquad	Role in Fishery (Component)	Taxa name	Family name	Scientific name	Common name	CAAB Code	Reference
968	TEP	Marine mammal Marine	Physeteridae	Kogia breviceps	Pygmy Sperm Whale	41119001	DEH
1036	TEP	mammal Marine	Physeteridae	Physeter catodon	Sperm Whale	41119003	DEH
269	TEP	mammal Marine	Ziphiidae	Berardius arnuxii	Arnoux's Beaked Whale	41120001	DEH
1030	TEP	mammal Marine	Ziphiidae	Tasmacetus shepherdi	Tasman Beaked Whale	41120011	DEH
216	TEP	mammal Marine	Otariidae	Arctocephalus forsteri	New Zealand Fur-seal	41131001	DEH
263	TEP	mammal Marine	Otariidae	Arctocephalus tropicalis	Subantarctic fur seal	41131004	DEH
1000	TEP	mammal Marine	Otariidae	Neophoca cinerea	Australian Sea-lion	41131005	DEH
813	TEP	mammal	Dugongidae	Dugong dugon	Dugong	41206001	DEH
957	TEP	Marine reptile	Hydrophiidae	Hydrophis elegans	Elegant seasnake	39125021	DEH
324	TEP	Marine reptile	Cheloniidae	Caretta caretta	Loggerhead	39020001	DEH
541	TEP	Marine reptile	Cheloniidae	Chelonia mydas	Green turtle	39020002	ERA Stage 1
822	TEP	Marine reptile	Cheloniidae	Eretmochelys imbricata	Hawksbill turtle	39020003	ERA Stage 1
613	TEP	Marine reptile	Dermochelyidae	Dermochelys coriacea	Leathery turtle	39021001	ERA Stage 1
1408	TEP	Marine reptile	Hydrophiidae	Acalyptophis peronii	Horned Seasnake	39125001	DEH
254	TEP	Marine reptile	Hydrophiidae	Astrotia stokesii	Stokes' seasnake	39125009	DEH
1530	TEP	Marine reptile	Hydrophiidae	Disteira kingii	spectacled seasnake	39125010	DEH
1423	TEP	Marine reptile	Hydrophiidae	Hydrophis ornatus	seasnake	39125028	DEH
1005	TEP	Marine reptile	Hydrophiidae	Pelamis platurus	yellow-bellied seasnake Harlequin Ghost Pipefish, Ornate	39125033	DEH
1075	TEP	Teleost	Solenostomidae	Solenostomus paradoxus	Ghost Pipefish	37281002	DEH
1010	TEP	Teleost	Syngnathidae	Phycodurus eques	Leafy Seadragon Weedy Seadragon, Common	37282001	DEH
1011	TEP	Teleost	Syngnathidae	Phyllopteryx taeniolatus	Seadragon Indonesian Pipefish, Gunther's	37282002	DEH
320	TEP	Teleost	Syngnathidae	Solegnathus guentheri	Pipehorse Robust Spiny Pipehorse, Robust	37282003	DEH
1072	TEP	Teleost	Syngnathidae	Solegnathus robustus	Pipehorse	37282004	DEH
549	TEP	Teleost	Syngnathidae	Hippocampus angustus	Western Spiny Seahorse Bend Stick Pipefish, Short-tailed	37282005	DEH
1089	TEP	Teleost	Syngnathidae	Trachyrhamphus bicoarctatus	Pipefish	37282006	DEH

ERAEF Species ID	Role in Fishery (Component)	Taxa name	Family name	Scientific name	Common name	CAAB Code	Reference
1092	TEP	Teleost	Syngnathidae	Urocampus carinirostris	Hairy Pipefish	37282008	DEH
980	TEP	Teleost	Syngnathidae	Lissocampus runa	Javelin Pipefish	37282009	DEH
946	TEP	Teleost	Syngnathidae	Hippocampus bleekeri	pot bellied seahorse Briggs' Crested Pipefish, Briggs'	37282010	DEH
953	TEP	Teleost	Syngnathidae	Histiogamphelus briggsii	Pipefish	37282011	DEH
961	TEP	Teleost	Syngnathidae	Hypselognathus rostratus	Knife-snouted Pipefish	37282012	DEH
978	TEP	Teleost	Syngnathidae	Leptoichthys fistularius	Brushtail Pipefish	37282013	DEH
966	TEP	Teleost	Syngnathidae	Kaupus costatus	Deep-bodied Pipefish	37282014	DEH
995	TEP	Teleost	Syngnathidae	Mitotichthys semistriatus	Half-banded Pipefish Australian Smooth Pipefish,	37282015	DEH
979	TEP	Teleost	Syngnathidae	Lissocampus caudalis	Smooth Pipefish	37282016	DEH
1026	TEP	Teleost	Syngnathidae	Stigmatopora argus	Spotted Pipefish Wide-bodied Pipefish, Black	37282017	DEH
1027	TEP	Teleost	Syngnathidae	Stigmatopora nigra	Pipefish	37282018	DEH
1028	TEP	Teleost	Syngnathidae	Stipecampus cristatus	Ring-backed Pipefish	37282019	DEH
1061	TEP	Teleost	Syngnathidae	Pugnaso curtirostris	Pug-nosed Pipefish	37282021	DEH
994	TEP	Teleost	Syngnathidae	Mitotichthys mollisoni	Mollison's Pipefish	37282022	DEH
1094	TEP	Teleost	Syngnathidae	Vanacampus phillipi	Port Phillip Pipefish Australian Long-snout Pipefish,	37282023	DEH
1095	TEP	Teleost	Syngnathidae	Vanacampus poecilolaemus	Long-snouted Pipefish	37282024	DEH
996	TEP	Teleost	Syngnathidae	Mitotichthys tuckeri	Tucker's Pipefish Short-head Seahorse, Short-	37282025	DEH
947	TEP	Teleost	Syngnathidae	Hippocampus breviceps	snouted Seaho	37282026	DEH
952	TEP	Teleost	Syngnathidae	Hippocampus whitei	white's seahorse	37282027	DEH
1073	TEP	Teleost	Syngnathidae	Solegnathus spinosissimus	spiny pipehorse	37282029	DEH
938	TEP	Teleost	Syngnathidae	Halicampus grayi	Mud Pipefish, Gray's Pipefish Spotted Seahorse, Yellow	37282030	DEH
949	TEP	Teleost	Syngnathidae	Hippocampus taeniopterus	Seahorse	37282033	DEH
105	TEP	Teleost	Syngnathidae	Acentronura australe	Southern Pygmy Pipehorse	37282034	DEH
114	TEP	Teleost	Syngnathidae	Acentronura breviperula	Hairy Pygmy Pipehorse	37282035	DEH
287	TEP	Teleost	Syngnathidae	Campichthys galei	Gale's Pipefish	37282039	DEH
288	TEP	Teleost	Syngnathidae	Campichthys tryoni	Tryon's Pipefish	37282041	DEH
389	TEP	Teleost	Syngnathidae	Choeroichthys suillus	Pig-snouted Pipefish	37282046	DEH
563	TEP	Teleost	Syngnathidae	Corythoichthys amplexus	Fijian Banded Pipefish, Brown-	37282047	DEH

ERAEF Species ID	Role in Fishery (Component)	Taxa name	Family name	Scientific name	Common name	CAAB Code	Reference
					banded Pipefish		
578	TEP	Teleost	Syngnathidae	Corythoichthys ocellatus	Orange-spotted Pipefish, Ocellated Pipefish	37282050	DEH
401	TEP	Teleost	Syngnathidae	Cosmocampus banneri	Roughridge Pipefish	37282053	DEH
580	TEP	Teleost	Syngnathidae	Cosmocampus howensis	Lord Howe Pipefish	37282055	DEH
569	TEP	Teleost	Syngnathidae	Doryrhamphus melanopleura	Bluestripe Pipefish	37282058	DEH
904	TEP	Teleost	Syngnathidae	Festucalex cinctus	Girdled Pipefish	37282061	DEH
321	TEP	Teleost	Syngnathidae	Festucalex scalaris	Ladder Pipefish	37282063	DEH
914	TEP	Teleost	Syngnathidae	Filicampus tigris	Tiger Pipefish	37282064	DEH
54	TEP	Teleost	Syngnathidae	Halicampus brocki	Brock's Pipefish	37282065	DEH
1592	TEP	Teleost	Syngnathidae	Halicampus macrorhynchus	[a pipefish]	37282067	DEH
942	TEP	Teleost	Syngnathidae	Heraldia nocturna	Upside-down Pipefish Blue-speckled Pipefish, Blue-	37282071	DEH
943	TEP	Teleost	Syngnathidae	Hippichthys cyanospilos	spotted Pipefish	37282072	DEH
944	TEP	Teleost	Syngnathidae	Hippichthys heptagonus	Madura Pipefish Beady Pipefish, Steep-nosed	37282073	DEH
945	TEP	Teleost	Syngnathidae	Hippichthys penicillus	Pipefish	37282075	DEH
951	TEP	Teleost	Syngnathidae	Hippocampus planifrons	Flat-face Seahorse Rhino Pipefish, Macleay's	37282078	DEH
954	TEP	Teleost	Syngnathidae	Histiogamphelus cristatus	Crested Pipefish	37282081	DEH
960	TEP	Teleost	Syngnathidae	Hypselognathus horridus	Shaggy Pipefish, Prickly Pipefish	37282082	DEH
967	TEP	Teleost	Syngnathidae	Kimblaeus bassensis	Trawl Pipefish, Kimbla Pipefish	37282083	DEH
390	TEP	Teleost	Syngnathidae	Lissocampus fatiloquus	Prophet's Pipefish	37282084	DEH
983	TEP	Teleost	Syngnathidae	Maroubra perserrata	Sawtooth Pipefish Anderson's Pipefish, Shortnose	37282085	DEH
992	TEP	Teleost	Syngnathidae	Micrognathus andersonii	Pipefish	37282086	DEH
1604	TEP	Teleost	Syngnathidae	Micrognathus pygmaeus	[a pipefish] Manado River Pipefish, Manado	37282087	DEH
798	TEP	Teleost	Syngnathidae	Microphis manadensis	Pipefish	37282091	DEH
1243	TEP	Teleost	Syngnathidae	Mitotichthys meraculus	Western Crested Pipefish	37282092	DEH
1242	TEP	Teleost	Syngnathidae	Nannocampus subosseus	Bony-headed Pipefish	37282094	DEH
1001	TEP	Teleost	Syngnathidae	Notiocampus ruber	Red Pipefish	37282095	DEH
1070	TEP	Teleost	Syngnathidae	Solegnathus dunckeri	Duncker's Pipehorse	37282098	DEH
1071	TEP	Teleost	Syngnathidae	Solegnathus sp. 1 [in Kuiter, 2000]	Pipehorse	37282099	DEH

ERAEF Species ID	Role in Fishery (Component)	Taxa name	Family name	Scientific name	Common name	CAAB Code	Reference
1093	TEP	Teleost	Syngnathidae	Vanacampus margaritifer	Mother-of-pearl Pipefish	37282102	DEH
1096	TEP	Teleost	Syngnathidae	Vanacampus vercoi	Verco's Pipefish	37282103	DEH
950	TEP	Teleost	Syngnathidae	Hippocampus minotaur	Bullneck Seahorse	37282105	DEH
1591	TEP	Teleost	Syngnathidae	Halicampus boothae	[a pipefish]	37282107	DEH
948	TEP	Teleost	Syngnathidae	Hippocampus queenslandicus	Kellogg's Seahorse	37282110	DEH
1602	TEP	Teleost	Syngnathidae	Hippocampus tristis	[a pipefish] Big-bellied / southern potbellied	37282117	DEH
1664	TEP	Teleost	Syngnathidae	Hippocampus abdominalis	seahorse	37282120	DEH
548	TEP	Teleost	Syngnathidae	Hippocampus subelongatus	West Australian Seahorse	37282123	DEH
1548	TEP	Teleost	Syngnathidae	Heraldia sp. 1 [in Kuiter, 2000]	Western upsidedown pipefish	37282130	DEH
308	TEP	Teleost	Clinidae	Heteroclinus perspicillatus	Common weedfish	37416013	DEH
1666	TEP	Teleost	Syngnathidae	Hippocampus kelloggi	Kellogg's Seahorse Spotted Seahorse, Yellow		DEH
1667	TEP	Teleost	Syngnathidae	Hippocampus kuda	Seahorse		DEH
1668	TEP	Teleost	Syngnathidae	Hippocampus subelongatus	West Australian Seahorse		DEH
1699	TEP	Teleost	Syngnathidae	Idiotropiscis australe	Southern Pygmy Pipehorse Blue-finned Ghost Pipefish,		DEH
1074	TEP	Teleost	Solenostomidae	Solenostomus cyanopterus	Robust Ghost Double-ended Pipehorse,	37281001	DEH
1029	TEP	Teleost	Syngnathidae	Syngnathoides biaculeatus	Alligator Pipefish	37282100	DEH

Scoping Document S2B1. Benthic Habitats

Risk assessment for benthic habitats considers both the seafloor structure and its attached invertebrate fauna. Because data on the types and distributions of benthic habitat in Australia's Commonwealth fisheries are generally sparse, and because there is no universally accepted benthic classification scheme, the ERAEF methodology has used the most widely available type of data - seabed imagery - classified in a similar manner to that used in Bioregionalisation and deep seabed mapping in Australian Commonwealth waters. Using this imagery, benthic habitats are classified based on an SGF score, using sediment, geomorphology, and fauna. Where seabed imagery is not available, a second method (Method 2) is used to develop an inferred list of potential habitat types for the fishery. For details of both methods, see Hobday et al (2007).

A list of the benthic habitats for the Small Pelagics: Purse Seine sub-fishery. Shading denotes habitats occurring within the jurisdictional boundary of the sub-fishery that are not in areas subject to effort from Purse Seining. This list does not imply contact with these habitats, just that they fall within the area of the fishing effort. The ERAEF habitat number, record number, and SGF score are for database checking.

ERAEF record No.	ERAEF Habitat Number	Sub-biome	Feature	Habitat type	SGF Score	Depth (m)	Image available	Reference image location
0011	001	inner-shelf	shelf	gravel, current rippled, mixed faunal community	313	25-100	Y	SE Image Collection
0023	002	inner-shelf	shelf	Sedimentary rock, outcrop, large sponges	691	25-100	Y	SE Image Collection
0035	003	inner-shelf	shelf	Sedimentary rock, outcrop, mixed faunal community	693	25-100	Y	SE Image Collection
0047	004	inner-shelf	shelf	Sedimentary rock, outcrop, large sponges	671	25-100	Y	SE Image Collection
0059	005	inner-shelf	shelf	cobble, debris flow, large sponges	441	25-100	Y	SE Image Collection
0071	006	inner-shelf	shelf	coarse sediments, subcrop, large sponges	251	25-100	Y	SE Image Collection
0083	007	inner-shelf	shelf	gravel, debris flow, mixed faunal community	343	25-100	Y	SE Image Collection
0095	009	inner-shelf	shelf	coarse sediments, wave rippled, sedentary	227	25-100	Y	SE Image Collection
0994	010	Inner shelf	shelf	Coarse sediments, directed scour, No fauna	210	25-100	Y	GAB image collection
0120	011	inner-shelf	shelf	coarse sediments, wave rippled, large sponges	221	25-100	Y	SE Image Collection
0132	012	inner-shelf	shelf	fine sediments, unrippled, large sponges	101	25-100	Y	SE Image Collection
0144	013	inner-shelf	shelf	coarse sediments, unrippled, large sponges	201	25-100	Y	SE Image Collection
0156	014	inner-shelf	shelf	fine sediments, wave rippled, large sponges	111	25-100	Y	SE Image Collection

ERAEF record No.	ERAEF Habitat Number	Sub-biome	Feature	Habitat type	SGF Score	Depth (m)	Image available	Reference image location
0168	016	inner-shelf	shelf	fine sediments, unrippled, mixed faunal community	103	25-100	Y	SE Image Collection
2137	089	inner shelf	Shelf	Coarse sediments, irregular, bryozoan turf	236	25-100	Y	WA Image Collection
0868	090	inner-shelf	shelf	coarse sediments, current rippled, bioturbators	219	25-100	N	SE Image Collection
0880	091	inner-shelf	shelf	fine sediments, irregular, large sponges	131	25-100	N	SE Image Collection
0892	092	inner-shelf	shelf	fine sediments, irregular, small sponges	132	25-100	N	SE Image Collection
0904	093	inner-shelf	shelf	fine sediments, unrippled, bioturbators	109	25-100	N	SE Image Collection
0916	094	inner-shelf	shelf	fine sediments, unrippled, small sponges	102	25-100	N	SE Image Collection
2133	095	inner shelf	Shelf	Fine sediments, Wave rippled, No fauna	120	25-100	Y	WA Image Collection
0941	096	inner-shelf	shelf	fine sediments, wave rippled, small sponges	122	25-100	N	SE Image Collection
0953	097	inner-shelf	shelf	gravel, wave rippled, bioturbators	329	25-100	Y	SE Image Collection
0965	098	inner-shelf	shelf	gravel, wave rippled, no fauna	320	25-100	Y	SE Image Collection
0977	099	inner-shelf	shelf	Igneous rock, high outcrop, large sponges	591	25-100	N	SE Image Collection
2112	152	inner shelf	Slope	Sedentary: e.g. seapens	217	700-1500	Y	GAB image collection
2002	191	inner shelf	shelf	coarse sediments, wave rippled, small sponges	222	25-100	N	SE Image Collection
2078	199	inner shelf	shelf	cobble, wave rippled, low/ encrusting mixed fauna	426	25-100	N	SE Image Collection
2091	200	inner shelf	shelf	coarse sediments, wave rippled, encrustors	226	25-100	N	SE Image Collection
2100	201	inner-shelf	shelf	fine sediments, wave rippled, encrustors	126	25-100	N	SE Image Collection
2116	203	Inner shelf	shelf	Fine sediments, Unrippled, Small encrustors / erect forms (including bryozoans)	106	25-100	Y	GAB image collection
2117	204	Inner shelf	shelf	Fine sediments, Subcrop, Mixed faunal community (sponges, seawhips, ascidians)	153	25-100	Y	GAB image collection
2118	205	inner shelf	shelf	Coarse sediments, Unrippled, Small encrustors / erect forms (including bryozoans)	206	25-100	Y	GAB image collection
2119	206	Inner shelf	shelf	Coarse sediments, Current rippled / directed scour, large sponges	211	25-100	Y	GAB image collection
2132	229	inner shelf	Canyon	Fine sediments, current rippled, no fauna	110	25-100	Y	WA Image Collection
2135	234	inner shelf	Shelf	Coarse sediments, unrippled, solitary epifauna	207	25-100	Y	WA Image Collection
2139	271	inner shelf	Shelf	Rock/ biogenic matrix, high outcrop, large sponges	719	25-100	Y	WA Image Collection
2140	272	inner shelf	Shelf	Rock/ biogenic matrix, Wave rippled, No fauna	720	25-100	Y	WA Image Collection
2145	273	inner shelf	Shelf	Rock/ biogenic matrix,subcrop, large sponges	751	25-100	3	WA Image Collection
2146	274	inner shelf	Shelf	Rock/ biogenic matrix, subcrop, small encrustors	756	25-100	Y	WA Image Collection

ERAEF record No.	ERAEF Habitat Number	Sub-biome	Feature	Habitat type	SGF Score	Depth (m)	Image available	Reference image location
2142	275	inner shelf	Shelf	Rock/ biogenic matrix, low outcrop, mixed faunal community	763	25-100	Y	WA Image Collection
2143	276	inner shelf	Shelf	Rock/ biogenic matrix, low outcrop, octocorals	765	25-100	Y	WA Image Collection
2147	277	inner shelf	Shelf	Rock/ biogenic matrix, low outcrop (with holes/cracks), mixed faunal community Rock/ biogenic matrix, outcrop low (with holes/ cracks),	773	25-100	Y	WA Image Collection
2144	278	inner shelf	Shelf	mixed faunal community	793	25-100	Y	WA Image Collection
2138	242	inner shelf	Shelf	Gravel, irregular, no fauna	330	25-100	Y	WA Image Collection
2151	100	outer shelf	Shelf	Mud, flat, sedentary (eg seapens)	007	100-200	2	WA Image Collection
1003	101	outer-shelf	shelf	coarse sediments, subcrop, small sponges	252	100-200	N	SE Image Collection
1015	102	outer-shelf	shelf	coarse sediments, wave rippled, encrustors	226	100-200	N	SE Image Collection
1027	103	outer-shelf	shelf	coarse sediments, wave rippled, small sponges	222	100-200	N	SE Image Collection
1039	104	outer-shelf	shelf	fine sediments, current rippled, bioturbators	119	100-200	Y	SE Image Collection
1051	105	outer-shelf	shelf	fine sediments, irregular, large sponges	131	100-200	N	SE Image Collection
1064	106	outer-shelf	shelf	fine sediments, irregular, no fauna	130	100-200	N	SE Image Collection
1077	107	outer-shelf	shelf	fine sediments, irregular, small sponges	132	100-200	N	SE Image Collection
1089	108	outer-shelf	shelf	fine sediments, subcrop, mixed faunal community	153	100-200	N	SE Image Collection
1102	109	outer-shelf	shelf	fine sediments, subcrop, small sponges	152	100-200	Y	SE Image Collection
1115	110	outer-shelf	shelf	fine sediments, unrippled, bioturbators	109	100-200	Y	SE Image Collection
2156	111	outer shelf	Shelf	Fine sediments, unrippled, large/ erect sponges	101	100-200	3	WA Image Collection
1140	112	outer-shelf	shelf	fine sediments, unrippled, no fauna	100	100-200	Y	SE Image Collection
1153	113	outer-shelf	shelf	fine sediments, unrippled, small sponges	102	100-200	Y	SE Image Collection
1166	114	outer-shelf	shelf	fine sediments, wave rippled, bioturbators	129	100-200	Y	SE Image Collection
1178	115	outer-shelf	shelf	fine sediments, wave rippled, encrustors	126	100-200	N	SE Image Collection
1190	116	outer-shelf	shelf	fine sediments, wave rippled, large sponges	121	100-200	N	SE Image Collection
1203	117	outer-shelf	shelf	fine sediments, wave rippled, no fauna	120	100-200	N	SE Image Collection
1215	118	outer-shelf	shelf	fine sediments, wave rippled, sedentary	127	100-200	N	SE Image Collection
1227	119	outer-shelf	shelf	fine sediments, wave rippled, small sponges	122	100-200	N	SE Image Collection
1240	120	outer-shelf	shelf	gravel, current rippled, bioturbators	319	100-200	N	SE Image Collection
1253	121	outer-shelf	shelf	gravel, wave rippled, bioturbators	329	100-200	Y	SE Image Collection
1265	122	outer-shelf	shelf	gravel, wave rippled, encrustors	326	100-200	N	SE Image Collection

ERAEF record No.	ERAEF Habitat Number	Sub-biome	Feature	Habitat type	$\begin{aligned} & \text { SGF } \\ & \text { Score } \end{aligned}$	Depth (m)	Image available	Reference image location
1278	123	outer-shelf	shelf	gravel, wave rippled, large sponges	321	100-200	N	SE Image Collection
1291	124	outer-shelf	shelf	gravel, wave rippled, no fauna	320	100-200	N	SE Image Collection
1304	125	outer-shelf	shelf	mud, subcrop, small sponges	052	100-200	Y	SE Image Collection
2109	126	outer shelf	shelf	Sedimentary rock, Subcrop, large sponges	651	100-200	Y	GAB image collection
1329	127	outer-shelf	shelf	Sedimentary rock, subcrop, small sponges	652	100-200	Y	SE Image Collection
0181	017	outer-shelf	shelf	fine sediments, subcrop, large sponges	151	100-200	Y	SE Image Collection
0193	018	outer-shelf	shelf	Sedimentary rock, outcrop, encrustors	696	100-200	Y	SE Image Collection
0197	019	outer shelf	Terrace	coarse sediments, subcrop, large sponges	251	100-200	Y	GAB image collection
0218	020	outer-shelf	shelf	cobble, outcrop, crinoids	464	100-200	Y	SE Image Collection
0230	022	outer-shelf	shelf	Sedimentary rock, subcrop, mixed faunal community	653	100-200	Y	SE Image Collection
2162	023	outer shelf	Shelf	Sedimentary rock (?), low outcrop, large sponges	671	100-200	2	WA Image Collection
0254	024	outer-shelf	shelf	gravel, irregular, encrustors	336	100-200	Y	SE Image Collection
0267	025	outer-shelf	shelf	coarse sediments, wave rippled, no fauna	220	100-200	Y	SE Image Collection
0279	026	outer-shelf	shelf	coarse sediments, unrippled, encrustors	206	100-200	Y	SE Image Collection
0292	027	outer-shelf	shelf	coarse sediments, current rippled, no fauna	210	100-200	Y	SE Image Collection
0304	028	outer-shelf	shelf	cobble, unrippled, large sponges	401	100-200	Y	SE Image Collection
0316	029	outer-shelf	shelf	coarse sediments, irregular, large sponges	231	100-200	Y	SE Image Collection
0328	030	outer-shelf	shelf	coarse sediments, unrippled, mixed faunal community	203	100-200	Y	SE Image Collection
0340	032	outer-shelf	shelf	cobble, subcrop, crinoids	454	100-200	Y	SE Image Collection
0676	065	outer-shelf	canyon	Sedimentary rock, outcrop, small sponges	672	$\begin{gathered} 100-200 \\ 100-200,200- \end{gathered}$	Y	SE Image Collection
1761	166	outer-shelf	shelf-break	Bryozoan based communities	xx6	$\begin{gathered} 700 \\ 100-200,200- \end{gathered}$	N	SE Image Collection
1773	167	outer-shelf	shelf-break	fine sediments, irregular, bioturbators	139	$\begin{gathered} 700 \\ 100-200,200- \end{gathered}$	N	SE Image Collection
1785	168	outer-shelf	shelf-break	fine sediments, irregular, small sponges	132	$\begin{gathered} 700 \\ 100-200,200- \end{gathered}$	N	SE Image Collection
1797	169	outer-shelf	shelf-break	fine sediments, unrippled, bioturbators	109	$\begin{gathered} 700 \\ 100-200,200- \end{gathered}$	N	SE Image Collection
1809	170	outer-shelf	shelf-break	fine sediments, unrippled, no fauna	100	$\begin{gathered} 700 \\ 100-200,200- \end{gathered}$	N	SE Image Collection
1821	171	outer-shelf	shelf-break	fine sediments, unrippled, octocorals	105	700	N	SE Image Collection
1833	172	outer-shelf	shelf-break	Igneous rock, high outcrop, no fauna	590	100-200, 200-	N	SE Image Collection

ERAEF record No.	ERAEF Habitat Number	Sub-biome	Feature	Habitat type	$\begin{aligned} & \text { SGF } \\ & \text { Score } \end{aligned}$	Depth (m)	Image available	Reference image location

1845	173	outer-shelf	shelf-break	mud, unrippled, no fauna	000
1857	174	outer-shelf	shelf-break	mud, unrippled, sedentary	007
1869	175	outer-shelf	shelf-break	Sedimentary rock, subcrop, crinoids	654
1881	176	outer-shelf	shelf-break	Sedimentary rock, subcrop, small sponges	652
1890	177	outer shelf	shelf	mud, unrippled, low encrusting sponges	002
1899	178	outer shelf	shelf	mud, unrippled, bioturbators	009
1908	179	outer shelf	shelf	mud, subcrop, erect sponges	051
1917	180	outer shelf	shelf	mud, subcrop, low encrusting mixed fauna	056
1926	181	outer shelf	shelf	fine sediments, unrippled, encrustors	106
1935	183	outer shelf	shelf	fine sediments, current rippled, no fauna	110
1944	184	outer shelf	shelf	fine sediments, current rippled, low/ encrusting sponges	112
1953	185	outer shelf	shelf	fine sediments, irregular, low encrusting mixed fauna	136
1962	187	outer shelf	shelf	fine sediments, irregular, bioturbators	139
1971	188	outer shelf	shelf	fine sediments, rubble banks, low encrusting sponges	142
1980	189	outer shelf	shelf	fine sediments, subcrop, mixed low fauna	156
1989	190	outer shelf	shelf	coarse sediments, unrippled, no fauna	200
2011	192	outer shelf	shelf	gravel/ pebble, current rippled, large sponges	311
2020	193	outer shelf	shelf	gravel/ pebble, current rippled, mixed low fauna	316
2029	194	outer shelf	shelf	gravel/ pebble, wave rippled, low encrusting sponges	322
2038	195	outer shelf	shelf	gravel, wave rippled, encrustors	326
2047	196	outer shelf	shelf	gravel, wave rippled, encrustors	346
2056	197	outer shelf	shelf	cobble, unrippled, low/ encrusting mixed fauna	406
2065	198	outer shelf	shelf	cobble, current rippled, low/ encrusting mixed fauna	416
2122	209	Outer shelf	Terrace	Coarse sediments, Subcrop, Mixed faunal community	253
2149	219	outer shelf	Shelf	mud, unrippled, small or large sponges	001
2150	220	outer shelf	Shelf	Mud, flat, octocorals	005
2152	223	outer shelf	Shelf	mud, current rippled, bioturbators	019

700
-200, 200 00-200,
700
100-200, 200 700
$100-200,200$
700
100-200, 200 700
100-200 100-200

SE Image Collection
$\mathrm{N} \quad$ SE Image Collection
$\mathrm{N} \quad$ SE Image Collection
N SE Image Collection 100-200 $\begin{array}{lll}100-200 & \mathrm{~N} & \text { SE Image Collection } \\ 100-200 & \mathrm{~N} & \text { SE Image Collection } \\ 100-200 & \mathrm{~N} & \text { SE Image Collection }\end{array}$
100-200 $\quad \mathrm{N} \quad$ SE Image Collection
100-200 N SE Image Collection
100-200 N SE Image Collection

$100-200$	N	SE Image Collection
$100-200$	N	SE

100-200 N SE Image Collection
100-200 N SE Image Collectio

$100-200$	Y	GAB image collection
$100-200$	Y	WA Image Collection

100-200
WA Image Collection
100-200 \quad Y WA Image Collection

ERAEF record No.	ERAEF Habitat Number	Sub-biome	Feature	Habitat type	SGF Score	Depth (m)	Image available	Reference image location
2153	224	outer shelf	Shelf	mud, wave rippled, no fauna	020	100-200	Y	WA Image Collection
2154	225	outer shelf	Shelf	Mud, irregular, bioturbators	039	100-200	Y	WA Image Collection
2155	226	outer shelf	Shelf	Mud, subcrop, mixed faunal community	053	100-200	Y	WA Image Collection
2158	233	outer shelf	Shelf	Coarse sediments, unrippled, octocoral/ and bryozoans??	205	100-200	Y	WA Image Collection
2159	246	outer shelf	Shelf	cobble/boulder (slab), outcrop, mixed low encrustors	466	100-200	Y	WA Image Collection
2216	254	outer shelf	Shelf	Sedimentary rock (?), low outcrop, large erect sponges	661	100-201	Y	WA Image Collection
2161	255	outer shelf	Shelf	Sedimentary rock (?) low outcrop, mixed faunal community	663	100-200	Y	WA Image Collection
2163	258	outer shelf	Shelf	Sedimentary rock (?), low outcrop, mixed faunal community Rock (sedimentary?), outcrop (low, holes and cracks etc),	673	100-200	Y	WA Image Collection
2164	259	outer shelf	Shelf	encrustors	676	100-200	Y	WA Image Collection
2165	260	outer shelf	Shelf	Rock (sedimentary?), outcrop, solitary	677	100-200	Y	WA Image Collection
2166	263	outer shelf	Shelf	Rock (sedimentary?), high outcrop, ?small sponges	682	100-200	Y	WA Image Collection
2167	266	outer shelf	Shelf	Rock (sedimentary?),, high outcrop, large sponges	691	100-200	Y	WA Image Collection
2168	268	outer shelf	Shelf	Rock (sedimentary?), outcrop	693	100-200	Y	WA Image Collection
2148	279	outer shelf	Shelf	mud, current rippled, no fauna	010	100-200	Y	WA Image Collection
2217	280	outer shelf	Shelf	Rock (sedimentary?), high outcrop, solitary	681	100-201	Y	WA Image Collection
2218	281	outer shelf	Shelf	Rock/ biogenic matrix, low outcrop, mixed faunal community	763	100-200	Y	WA Image Collection
2182	247	upper slope	Slope	boulders, outcrop no fauna	470	200-700	Y	WA Image Collection
2183	251	upper slope	Slope	Sedimentary, subcrop, no fauna	650	200-700	Y	WA Image Collection
2185	256	upper slope	Slope	Sedimentary, outcrop, octocorals	665	200-700	Y	WA Image Collection
2187	257	upper slope	Shelf break	Sedimentary, low outcrop, no fauna	670	200-700	3	WA Image Collection
2190	261	upper slope	Slope	Sedimentary, outcrop, sedentary (anemones)	677	200-700	Y	WA Image Collection
2191	264	upper slope	Slope	Sedimentary, high outcrop, octocoral	683	200-700	Y	WA Image Collection
2193	265	upper slope	Slope	Sedimentary rock (mudstone?), high outcrop, no fauna	690	200-700	3	WA Image Collection
2194	267	upper slope	Slope	Sedimentary rock (mudstone?), high outcrop, small sponges	692	200-700	Y	WA Image Collection
2195	269	upper slope	Slope	Sedimentary, outcrop, octocorals	695	200-700	Y	WA Image Collection
2196	270	upper slope	Slope	Sedimentary, high outcrop, solitary epifauna	697	200-700	Y	WA Image Collection
0352	033	upper-slope	slope	Sedimentary rock, subcrop, mixed faunal community	653	200-700	Y	SE Image Collection
0364	034	upper-slope	slope	Sedimentary rock, outcrop, encrustors	696	200-700	Y	SE Image Collection
2186	035	upper slope	Slope	Sedimentary, outcrop, small encrustors	666	200-700	Y	WA Image Collection

ERAEF record No.	ERAEF Habitat Number	Sub-biome	Feature	Habitat type	SGF Score	Depth (m)	Image available	Reference image location
2184	036	upper slope	Slope	Sedimentary, subcrop, small encrustors (hydroids?)	656	200-700	Y	WA Image Collection
0400	039	upper-slope	slope	Sedimentary rock, outcrop, crinoids	684	200-700	Y	SE Image Collection
0412	040	upper-slope	slope	fine sediments, subcrop, sedentary	157	200-700	Y	SE Image Collection
2174	041	upper slope	Slope	fine, irregular, bioturbators	139	200-700	3	WA Image Collection
0436	043	upper-slope	slope	coarse sediments, unrippled, low mixed encrustors	206	200-700	Y	SE Image Collection
2102	044	upper slope	Terrace	Fine sediments, Unrippled, bioturbators	109	200-700	Y	GAB image collection
0460	045	upper-slope	slope	coarse sediments, unrippled, sedentary	207	200-700	Y	SE Image Collection
0472	046	upper-slope	slope	fine sediments, unrippled, no fauna	100	200-700	Y	SE Image Collection
0688	066	upper-slope	canyon canyon,	Sedimentary rock, outcrop, crinoids	694	200-700	Y	SE Image Collection
0700	067	upper-slope	slope	Sedimentary rock, subcrop, large sponges	651	200-700	Y	SE Image Collection
0712	069	upper-slope	canyon	cobble, outcrop, crinoids	464	200-700	Y	SE Image Collection
0724	070	upper-slope	canyon	Sedimentary rock, subcrop, small sponges	652	200-700	Y	SE Image Collection
2104	071	upper slope	Canyon	Sedimentary rock, Low Outcrop, Small encrustors	676	200-700	Y	GAB image collection
2176	072	upper slope	Slope	Coarse, rippled, bioturbators	239	200-700	Y	WA Image Collection
2105	073	upper slope	Terrace canyon,	Fine sediments, irregular, Small encrustors	136	200-700	Y	GAB image collection
0772	076	upper-slope	slope canyon,	coarse sediments, irregular, low mixed encrustors	236	200-700	Y	SE Image Collection
0784	077	upper-slope	slope	fine sediments, subcrop, small sponges	152	200-700	Y	SE Image Collection
2106	078	upper slope	Terrace	Fine sediments, Unrippled, Sedentary	107	200-700	Y	GAB image collection
0820	081	upper-slope	seamount	Sedimentary rock, unrippled, no fauna	600	200-700	Y	SE Image Collection
0844	085	upper-slope	seamount	Sedimentary rock, unrippled, encrustors	606	200-700	Y	SE Image Collection
1341	128	upper-slope	slope	Bryozoan based communities	xx6	200-700	N	SE Image Collection
1353	129	upper-slope	slope	cobble, debris flow, encrustors	446	200-700	Y	SE Image Collection
1365	130	upper-slope	slope	cobble, debris flow, no fauna	440	200-700	Y	SE Image Collection
1377	131	upper-slope	slope	cobble, debris flow, octocorals	445	200-700	N	SE Image Collection
1389	132	upper-slope	slope	cobble, debris flow, small sponges	442	200-700	Y	SE Image Collection
2172	133	upper slope	Slope	Fine, current rippled, no fauna	110	200-700	Y	WA Image Collection
1413	134	upper-slope	slope	fine sediments, subcrop, large sponges	151	200-700	N	SE Image Collection
1425	136	upper-slope	slope	fine sediments, unrippled, encrustors	106	200-700	Y	SE Image Collection

ERAEF record No.	ERAEF Habitat Number	Sub-biome	Feature	Habitat type	$\begin{aligned} & \text { SGF } \\ & \text { Score } \\ & \hline \end{aligned}$	Depth (m)	Image available	Reference image location
1437	137	upper-slope	slope	fine sediments, unrippled, small sponges	102	200-700	N	SE Image Collection
1449	138	upper-slope	slope	gravel, debris flow, encrustors	346	200-700	Y	SE Image Collection
1461	139	upper-slope	slope	gravel, debris flow, no fauna	340	200-700	N	SE Image Collection
1473	140	upper-slope	slope	mud, irregular, bioturbators	039	200-700	Y	SE Image Collection
2169	141	upper slope	Slope	mud, unrippled, distinct infaunal bioturbators	009	200-700	Y	WA Image Collection
1497	142	upper-slope	slope	mud, unrippled, encrustors	006	200-700	Y	SE Image Collection
1509	143	upper-slope	slope	mud, unrippled, large sponges	001	200-700	N	SE Image Collection
2110	144	upper slope	Canyon	Mud, Unrippled, Sedentary	007	200-700	Y	GAB image collection
2188	145	upper slope	Canyon	Sedimentary, low outcrops on steep slope, large sponges	671	200-700	2	WA Image Collection
1545	146	upper-slope	slope	Sedimentary rock, low outcrop, small sponges	672	200-700	Y	SE Image Collection
2111	148	upper slope	Terrace	Sedimentary rock, Subcrop, Octocorals	655	200-700	Y	GAB image collection
2115	202	upper slope	Terrace	Mud, Unrippled, No fauna	000	200-700	Y	GAB image collection
2129	216	upper slope	Canyon	Sedimentary rock, low outcrop, Octocorals (gold corals / seawhips)	675	200-700	Y	GAB image collection
2130	217	upper slope	Canyon	Sedimentary rock, High Outcrop, Small encrustors / erect forms (including bryozoans)	686	200-700	Y	GAB image collection
2131	218	upper slope	Canyon	Sedimentary rock, High Outcrop, Sedentary: e.g. seapens	687	200-700	Y	GAB image collection
2173	231	upper slope	Slope	Fine sediments, irregular, glass sponge (stalked)	137	200-700	Y	WA Image Collection
2170	227	upper slope	Slope	Fine sediments, unrippled, sponges	101	200-700	Y	WA Image Collection
2175	235	upper slope	Slope	Coarse sediments, rippled, no fauna	210	200-700	Y	WA Image Collection
2175	236	upper slope	Slope	Coarse sand, rippled, solitary epifauna	217	200-700	Y	WA Image Collection
2177	237	upper slope	Slope	Coarse sand, wave rippled, bryozoan turf Coarse sediments, irregular, octocorals (matrix of solsomalia	226	200-700	Y	WA Image Collection
2178	238	upper slope	Slope	- dead corals)	235	200-700	Y	WA Image Collection
2179	239	upper slope	Slope	Coarse sediments, subcrop, large (?) sponges	251	200-700	Y	WA Image Collection
2180	240	upper slope	Slope	Sedimentary, subcrop, octocorals Coarse sediments, subcrop, low encrusting community	255	200-700	Y	WA Image Collection
2181	241	upper slope	Slope	(ascidians)	256	200-700	Y	WA Image Collection
0484	049	mid-slope	slope	Igneous rock, high outcrop, bioturbators	594	700-1500	Y	SE Image Collection
0496	050	mid-slope	slope	cobble, debris flow, encrustors	446	700-1500	Y	SE Image Collection
0508	051	mid-slope	slope	cobble, outcrop, no fauna	460	700-1500	Y	SE Image Collection
0520	052	mid-slope	slope	Sedimentary rock, outcrop, octocorals	675	700-1500	Y	SE Image Collection

ERAEF record No.	ERAEF Habitat Number	Sub-biome	Feature	Habitat type	$\begin{aligned} & \text { SGF } \\ & \text { Score } \end{aligned}$	Depth (m)	Image available	Reference image location
0532	053	mid-slope	slope	Igneous rock, low outcrop, sedentary	567	700-1500	Y	SE Image Collection
0544	054	mid-slope	slope	Sedimentary rock, outcrop, crinoids	694	700-1500	Y	SE Image Collection
0556	055	mid-slope	slope slope, canyons,	Sedimentary rock, unrippled, sedentary	607	700-1500	Y	SE Image Collection
0568	056	mid-slope	seamounts	Sedimentary rock, outcrop, mixed faunal community	673	700-1500	Y	SE Image Collection
0580	057	mid-slope	slope	fine sediments, subcrop, bioturbators	150	700-1500	Y	SE Image Collection
0592	058	mid-slope	slope	cobble, unrippled, small sponges	402	700-1500	Y	SE Image Collection
2103	059	mid-slope	Seamount	Coarse sediments, Highly irregular, Small encrustors	236	700-1500	Y	GAB image collection
0616	060	mid-slope	slope	cobble, outcrop, crinoids	464	700-1500	Y	SE Image Collection
0628	061	mid-slope	slope	fine sediments, irregular, bioturbators	139	700-1500	Y	SE Image Collection
0640	062	mid-slope	slope	coarse sediments, unrippled, octocorals	205	700-1500	Y	SE Image Collection
0652	063	mid-slope	slope	fine sediments, unrippled, octocorals	105	700-1500	Y	SE Image Collection
0664	064	mid-slope	slope	Sedimentary boulders, outcrop, crinoids	464	700-1500	Y	SE Image Collection
2107	080	mid-slope	Terrace	Sedimentary rock, Low Outcrop, Small encrustors	676	700-1500	Y	GAB image collection
2108	084	mid-slope	Canyon	Sedimentary rock, Low Outcrop, Sedentary	677	700-1500	Y	GAB image collection
1569	150	mid-slope	slope	coarse sediments, current rippled, no fauna	210	700-1500	N	SE Image Collection
1581	151	mid-slope	slope	coarse sediments, current rippled, octocorals	215	700-1500	N	SE Image Collection
1605	153	mid-slope	slope	coarse sediments, unrippled, no fauna	200	700-1500	N	SE Image Collection
1617	154	mid-slope	slope	cobble, debris flow, crinoids	444	700-1500	N	SE Image Collection
1629	155	mid-slope	slope	slabs/ boulders, debris flow, octocorals	445	700-1500	Y	SE Image Collection
2113	156	mid-slope	Terrace	Fine sediments, Unrippled, No fauna	100	700-1500	Y	GAB image collection
2211	157	mid-slope	Slope	Igneous rock, high outcrop, octocoral	595	700-1500	Y	WA Image Collection
1665	158	mid-slope	slope	mud, current rippled, bioturbators	019	700-1500	N	SE Image Collection
2199	159	mid-slope	Slope	Mud, irregular, bioturbators	039	700-1500	Y	WA Image Collection
1689	160	mid-slope	slope	mud, irregular, sedentary	037	700-1500	N	SE Image Collection
1701	161	mid-slope	slope	mud, unrippled, small sponges	002	700-1500	N	SE Image Collection
1713	162	mid-slope	slope	Sedimentary rock, debris flow, crinoids	644	700-1500	N	SE Image Collection
2114	163	mid-slope	Terrace	Sedimentary rock, High Outcrop, Octocorals (gold corals / seawhips)	695	700-1500	Y	GAB image collection
1737	164	mid-slope	slope	Sedimentary rock, subcrop, crinoids	654	700-1500	Y	SE Image Collection

ERAEF record No.	ERAEF Habitat Number	Sub-biome	Feature	Habitat type	$\begin{aligned} & \text { SGF } \\ & \text { Score } \end{aligned}$	Depth (m)	Image available	Reference image location
2212	165	mid-slope	Slope	Sedimentary, subcrop, octocoral	655	700-1500	Y	WA Image Collection
2120	207	mid-slope	Terrace	Coarse sediments, Current rippled / directed scour, Small encrustors / erect forms (including bryozoans)	216	700-1500	Y	GAB image collection
2121	208	mid-slope	Seamount	Coarse sediments, Highly irregular, Mixed faunal community (sponges, seawhips, ascidians)	233	700-1500	Y	GAB image collection
2123	210	mid-slope	Seamount	Cobble/ boulder, Debris flow / rubble banks, Sedentary: e.g. seapens	447	700-1500	Y	GAB image collection
2124	211	mid-slope	Seamount	Igneous / metamorphic rock, Subcrop, Small encrustors	556	700-1500	Y	GAB image collection
2125	212	mid-slope	Seamount	Igneous / metamorphic rock, Subcrop, Sedentary: e.g. seapens Igneous / metamorphic rock, Low Outcrop, Octocorals (gold	557	700-1500	Y	GAB image collection
2126	213	mid-slope	Seamount	corals / seawhips)	575	700-1500	Y	GAB image collection
2127	214	mid-slope	Seamount	Igneous / metamorphic rock, Low Outcrop, Small encrustors	576	700-1500	Y	GAB image collection
2128	215	mid-slope	Seamount	Igneous / metamorphic rock, Low Outcrop, Sedentary: e.g. seapens	577	700-1500	Y	GAB image collection
2197	221	mid-slope	Slope	Mud, irregular (bioturbators), crinoids/ featherstars on whip	005	700-1500	Y	WA Image Collection
2198	222	mid-slope	Slope	Mud, flat, solitary	007	700-1500	Y	WA Image Collection
2201	228	mid-slope	Slope	Fine, unrippled, solitary	107	700-1500	Y	WA Image Collection
2202	230	mid-slope	Slope	fine sediments, irregular, no fauna	130	700-1500	Y	WA Image Collection
2203	232	mid-slope	Slope	Fine sediments, subcrop, octocorals	155	700-1500	Y	WA Image Collection
2204	243	mid-slope	Slope	Gravel, irregular, low encrustings	336	700-1500	2	WA Image Collection
2205	244	mid-slope	Slope	Igneous rock/boulder, rubble bank, none	440	700-1500	Y	WA Image Collection
2206	245	mid-slope	Slope	boulders and slabs, subcropping, octocorals	455	700-1500	Y	WA Image Collection
2207	248	mid-slope	Slope	Igneous rock, rubble bank, no fauna	540	700-1500	Y	WA Image Collection
2208	249	mid-slope	Seamount	Igneous rock, rubble bank, octocorals	545	700-1500	Y	WA Image Collection
2209	250	mid-slope	Seamount	Igneous rock, low outcrop, no fauna	570	700-1500	Y	WA Image Collection
2213	252	mid-slope	Slope	Sedimentary, subcrop, small encrustors	656	700-1500	2	WA Image Collection
2214	253	mid-slope	Slope	rock (conglomerate/sedimentary), subcrop, bioturbators	659	700-1500	Y	WA Image Collection
2215	262	mid-slope	Slope	sedimentary/mudstone, high outcrop, no fauna	680	700-1500	Y	WA Image Collection

Scoping Document S2B2. Pelagic Habitats

A list of the pelagic habitats for the Small Pelagics Fishery: Purse Seine. Shading denotes habitats occurring within the jurisdictional boundary of the sub-fishery that are not in areas subject to effort from Purse Seining.

ERAEF Habitat Number	Pelagic Habitat type	Depth (m)	Comments	Reference
P1	Eastern Pelagic Province - Coastal	0-200		dow167A1, A2, A4
P2	Eastern Pelagic Province - Oceanic	$0->600$	this is a compilation of the range covered by Oceanic Community (1) and (2)	dow167A1, A2, A4
P7	Southern Pelagic Province - Coastal	0-200	this is a compilation of the range covered by Coastal pelagic Tas and GAB	dow167A1, A2, A4
P8	Southern Pelagic Province - Oceanic	$0->600$	this is a compilation of the range covered by Oceanic Communities (1), (2), and (3)	dow167A1, A2, A4
P9	Southern Pelagic Province - Seamount Oceanic	$0->600$	this is a compilation of the range covered by Seamount Oceanic Communities (1), (2), and (3)	dow167A1, A2, A4
P12	Eastern Pelagic Province - Seamount Oceanic	$0->600$	this is a compilation of the range covered by Seamount Oceanic Communities (1) and (2)	dow167A1, A2, A4

Scoping Document S2C1. Demersal Communities

In ERAEF, communities are defined as the set of species assemblages that occupy the large scale provinces and biomes identified from national bioregionalisation studies. The biota includes mobile fauna, both vertebrate and invertebrate, but excludes sessile organisms such as corals that are largely structural and are used to identify benthic habitats. The same community lists are used for all fisheries, with those selected as relevant for a particular fishery being identified on the basis of spatial overlap with effort in the fishery. The spatial boundaries for demersal communities are based on IMCRA boundaries for the shelf, and on slope bioregionalisations for the slope (IMCRA 1998; Last et al. 2005). The spatial boundaries for the pelagic communities are based on pelagic bioregionalisations and on oceanography (Condie et al. 2003; Lyne and Hayes 2004). Fishery and region specific modifications to these boundaries are described in detail in Hobday et al. (2007) and briefly outlined in the footnotes to the community Tables below.

Demersal community	$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \text { © } \end{aligned}$															$\begin{aligned} & \bar{\circ} \\ & \stackrel{E}{\risingdotseq} \end{aligned}$			
Inner Shelf 0-110m ${ }^{1,2}$						x													
Outer Shelf $110-250 \mathrm{~m}^{1,2,4}$						x		x		x									
Upper Slope 250-565m ${ }^{3,4}$																			
Mid-Upper Slope 565-820m ${ }^{3,5}$																			
Mid Slope 820-1100m ${ }^{3,5}$																			
Lower slope/ Abyssal > 1100m ${ }^{6}$																			
Reef $0-110 m^{7,8}$																			
Reef 110-250m ${ }^{8}$																			
Seamount 0-110m																			
Seamount 110-250m																			
Seamount 250-565m																			
Seamount 565-820m																			
Seamount 820-1100m																			
Seamount 1100-3000m																			
Plateau 0-110m																			

Demersal communities that occur within the jurisdictional area of the SPF purse-seine sub-fishery (indicated by x) although fishing activity does not necessarily occur in all. Shaded cells indicate all communities within the province. ${ }^{1}$ Four inner shelf communities occur in the Timor Transition (Arafura, Groote, Cape York and Gulf of Carpentaria) and three inner shelf communities occur in the Southern (Eyre, Eucla and South West Coast). At Macquarie Is: ${ }^{2}$ inner \& outer shelves, and ${ }^{3}$ upper and midslope communities combined. At Heard/McDonald Is: ${ }^{4}$ outer shelf and upper slope combined ($100-500 \mathrm{~m}$), ${ }^{5} \mathrm{mid}$ and upper slopes combined into 3 trough and southern slope communities ($500-100 \mathrm{~m}$), ${ }^{9}$ plateaux equivalent to Shell and Western Banks ($100-500 \mathrm{~m}$) and ${ }^{6} 3$ groups at Heard Is: Deep Shell Bank ($>1000 \mathrm{~m}$), Southern and North East Lower slope/Abyssal, ${ }^{7}$ Great Barrier Reef in the North Eastern Province and Transition and ${ }^{8}$ Rowley Shoals in North Western Transition.

Scoping Document S2C2. Pelagic Communities

Pelagic communities that occur within the jurisdictional area of SPF purse-seine (indicated by x) although fishing activity may not necessarily occur in all. Shaded cells indicate all communities that exist in the province.

indicate all communities that exist in the province.
P\|

${ }^{1}$ Northern Province has five coastal pelagic zones (NWS, Bonaparte, Arafura, Gulf and East Cape York). ${ }^{2}$ Coastal pelagic zone at Heard and McDonald Is broadened to cover entire plateau to maximum of 1000 m .

2.2.3 Identification of Objectives for Components and Sub-components (Step 3)

Objectives are identified for each sub-fishery for the five ecological components (target, bycatch/byproduct, TEP, habitats, and communities) and sub-components, and are clearly documented. It is important to identify objectives that managers, the fishing industry, and other stakeholders can agree on, and that scientists can quantify and assess. The criteria for selecting ecological operational objectives for risk assessment are that they:

- be biologically relevant;
- have an unambiguous operational definition;
- be accessible to prediction and measurement; and
- that the quantities they relate to be exposed to the hazards.

For fisheries that have completed Ecologically Sustainable Development (ESD) reports, use can be made of the operational objectives stated in those reports.

Each 'operational objective' is matched to example indicators. Scoping Document S3 provides suggested examples of operational objectives and indicators. Where operational objectives are already agreed for a fishery (Existing Management Objectives), those should be used (e.g. Strategic Assessment Reports). The objectives need not be exactly specified, with regard to numbers or fractions of removal/impact, but should indicate that an impact in the sub-component is of concern/interest to the sub-fishery. The rationale for including or discarding an operational objective is a crucial part of the table and must explain why the particular objective has or has not been selected for in the (sub) fishery. Only the operational objectives selected for inclusion in the (sub)fishery are used for Level 1 analysis (Level 1 SICA Document L1.1).

Scoping Document S3 Components and Sub-components Identification of Objectives

Table (Note: Operational objectives that have been eliminated have been shaded out and a rationale provided as for the retained operational objectives)

Component	Core Objective	Sub-component	Example Operational Objectives	Example Indicators	Rationale
	"What is the general goal?"		"What you are specifically trying to achieve"	"What you are going to use to measure performance"	Rationale flagged as ‘EMO’ where Existing Management Objective in place
Target species	Avoid recruitment failure of the target species Avoid negative consequences for species or population subcomponents	1. Population size	1.1 No trend in biomass 1.2 Maintain biomass above a specified level 1.3 Maintain catch at specified level 1.4 Species do not approach extinction or become extinct	Biomass, numbers, density, CPUE, yield	1.1 EMO - Catch levels set to ensure a high probability the population is maintained. 1.2 EMO - set Total Allowable Catch (TAC) for target species. Trigger catch limits of target species is being used to manage fishing effort in each zone. 1.3 EMO - Current catch levels set to ensure it should not fall below 50% of TAC
		2. Geographic range	2.1 Geographic range of the population, in terms of size and continuity does not change outside acceptable bounds	Presence of population across space	2.1 Fishery managed in four zones and there are trigger catch limits for target species in each zone.
		3- Genetic structure	- Genetic diversity does not change outside acceptable bounds	Frequency of genotypes in the population, effective population size $\left(\mathrm{N}_{\mathrm{e}}\right)$, number of spawning units	3.1- Not currently monitored in this fishery, difficult and expected to respond at a slower rate than some of the other indicators.
		4. Age/size/sex structure	4.1 Age/size/sex structure does not change outside acceptable bounds (e.g. more than $\mathrm{X} \%$ from reference structure)	Biomass, numbers or relative proportion in age/size/sex classes Biomass of spawners Mean size, sex ratio	4.1 Maintain population size and age structure. Fishery catches can be dominated by few age classes. Need to ensure this does not adversely impact on the entire population

Component	Core Objective	Sub-component	Example Operational Objectives	Example Indicators	Rationale
		5. Reproductive Capacity	5.1 Fecundity of the population does not change outside acceptable bounds (e.g. more than $\mathrm{X} \%$ of reference population fecundity) Recruitment to the population does not change outside acceptable bounds	Egg production of population Abundance of recruits	5.1 TACs and Trigger catch limits are set conservatively in the knowledge that the target species have large natural fluctuations in numbers. A change in fecundity might result in lower recruitment to the fishery
		6. Behaviour /Movement	6.1 Behaviour and movement patterns of the population do not change outside acceptable bounds	Presence of population across space, movement patterns within the population (e.g. attraction to bate, lights)	6.1 Populations of target species move widely in response to currents. Trigger TACs set to minimize impacts on spatially or temporally more vulnerable schools
Byproduct and Bycatch species	Avoid recruitment failure of the byproduct and bycatch species Avoid negative consequences for species or population subcomponents	1. Population size	1.1 No trend in biomass 1.2 Species do not approach extinction or become extinct 1.3 Maintain biomass above a specified level 1.4 Maintain catch at specified level	Biomass, numbers, density, CPUE, yield	1.1 EMO - Fishing is conducted in a manner that does not threaten stocks of by-product / bycatch species (AFMA 2002). 1.2 Byproduct/bycatch trigger levels set to ensure catch remains a small proportion of total catch. 1.3 Total catch set to ensure biomass or target and byproduct/bycatch remain at sustainable levels. 1.4 Not desirable to maintain by-catch/byproduct at specified level for the SBT Fishery want to minimise by-catch/by-product
		2. Geographic range	2.1 Geographic range of the population, in terms of size and continuity does not change outside acceptable bounds	Presence of population across space	2.1 Not currently monitored. No specific management objective based on the geographic range of by-catch/byproduct species.
		3. Genetic structure	- Genetic diversity does not change outside acceptable bounds	Frequency of genotypes in the population, effective population size $\left(\mathrm{N}_{\mathrm{e}}\right)$, number of spawning units	Not currently monitored. No reference levels established. No specific management objective based on the genetic structure of by-catch species.

Component	Core Objective	Sub-component	Example Operational Objectives	Example Indicators	Rationale
		4. Age/size/sex structure	4.1 Age/size/sex structure does not change outside acceptable bounds (e.g. more than X\% from reference structure)	Biomass, numbers or relative proportion in age/size/sex classes Biomass of spawners Mean size, sex ratio	4.1 Not currently monitored. No reference levels established. No specific management objective for the age/size structure of byproduct/bycatch species
		5 Reproductive Capacity	5.1 Fecundity of the population does not change outside acceptable bounds (e.g. more than $\mathrm{X} \%$ of reference population fecundity) Recruitment to the population does not change outside acceptable bounds	Egg production of population Abundance of recruits	5.1. Not currently monitored in the fishery. No specific management measures identified to assess changes in reproductive capacity of byproduct/bycatch species
		6. Behaviour /Movement	6.1 Behaviour and movement patterns of the population do not change outside acceptable bounds	Presence of population across space, movement patterns within the population (e.g. attraction to bait, lights)	6.1 Not currently monitored in the fishery. No specific management measures identified to assess changes in reproductive capacity of byproduct/bycatch species
TEP species	Avoid recruitment failure of TEP species Avoid negative consequences for TEP species or population sub-components Avoid negative impacts on the population from fishing	1. Population size	1.1 Species do not further approach extinction or become extinct - No trend in biomass - Maintain biomass above a specified level - Maintain catch at specified level	Biomass, numbers, density, CPUE, yield	1.1 EMO - The fishery is conducted in a manner that avoids mortality of, or injuries to, endangered, threatened or protected species (AFMA 2002). - A positive trend in biomass is desirable for TEP species. - Maintenance of TEP biomass above specified level not currently a fishery operational objective.
		2. Geographic range	2.1 Geographic range of the population, in terms of size and continuity does not change outside acceptable bounds	Presence of population across space, i.e. the GAB	2.1 Change in geographic range of TEP species may have serious consequences e.g. population fragmentation and/or forcing species into sub-optimal areas.

Component	Core Objective	Sub-component	Example Operational Objectives	Example Indicators	Rationale
		3. Genetic structure	3.1 Genetic diversity does not change outside acceptable bounds	Frequency of genotypes in the population, effective population size $\left(\mathrm{N}_{\mathrm{e}}\right)$, number of spawning units	3.1 Because population size of TEP species is often small, TEP's are sensitive to loss of genetic diversity. Genetic monitoring may be an effective approach to measure possible fishery impacts.
		4. Age/size/sex structure	4.1 Age/size/sex structure does not change outside acceptable bounds (e.g. more than X\% from reference structure)	Biomass, numbers or relative proportion in age/size/sex classes Biomass of spawners Mean size, sex ratio	4.1 Monitoring the age/size/sex structure of TEP populations may be useful management tool allowing the identification of possible fishery impacts and that crosssection of the population most at risk.
		5. Reproductive Capacity	5.1 Fecundity of the population does not change outside acceptable bounds (e.g. more than $\mathrm{X} \%$ of reference population fecundity) 5.2 Recruitment to the population does not change outside acceptable bounds	Egg production of population Abundance of recruits	5.1 \& 5.2 The reproductive capacity of TEP species is of concern to the Small Pelagics Fishery because potential fishery induced changes in reproductive ability (e.g. reduction in bait fish reduction in seabird brooding success) may have immediate impact on the population size of TEP species.
		6. Behaviour /Movement	6.1 Behaviour and movement patterns of the population do not change outside acceptable bounds	Presence of population across space, movement patterns within the population (e.g. attraction to bait, lights)	6.1 Purse seine capture methods may attract TEP species and alter behaviour and movement patterns, resulting in the attraction of offshore species to inshore areas e.g. great white shark. The overall effect may be to further fragment the population. Fishing operations may also influence the behaviour of calving whales by visual/sound stimuli.

Component	Core Objective	Sub-component	Example Operational Objectives	Example Indicators	Rationale
		7. Interactions with fishery	7.1 Interactions between TEP and the fishery are minimised. 7.2 Survival after interactions is maximised 7.3 Interactions do not affect the viability of the population or its ability to recover	Number of interactions Survival rate of species after interactions Number of interactions, biomass or numbers in population	7.1, 7.2, 7.3 EMO - The fishery is conducted in a manner that avoids mortality of, or injuries to, endangered, threatened or protected species (AFMA 2002).
Habitats	Avoid negative impacts on the quality of the environment Avoid reduction in the amount and quality of habitat	1. Water quality	1.1 Water quality does not change outside acceptable bounds	Water chemistry, noise levels, debris levels, turbidity levels, pollutant concentrations, light pollution from artificial light	1.1 Few water quality issues because of the dispersed nature of the fishery and low levels in fishing effort.
		- Air quality	- Air quality does not change outside acceptable bounds	Air chemistry, noise levels, visual pollution, pollutant concentrations, light pollution from artificial light	- Not currently perceived as an important habitat sub-component, purse seine operations not believed to strongly influence air quality.
		- Substrate quality	- Sediment quality does not change outside acceptable bounds	Sediment chemistry, stability, particle size, debris, pollutant concentrations	- Purse-seining and midwater trawling do not impact on the substrate so there is not perceived effects from this fishery.
		- Habitat types	- Relative abundance of habitat types does not vary outside acceptable bounds	Extent and area of habitat types, \% cover, spatial pattern, landscape scale	- Purse seine operations not perceived to result in change of habitat frequency.
		2. Habitat structure and function	2.1 Size, shape and condition of habitat types does not vary outside acceptable bounds	Size structure, species composition and morphology of biotic habitats	2.1 Purse seining and mid-water trawling activities may result in local disruption to pelagic processes
Communities	Avoid negative impacts on the composition/ function/ distribution/ structure of the community	1. Species composition	1.1 Species composition of communities does not vary outside acceptable bounds	Species presence/absence, species numbers or biomass (relative or absolute) Richness Diversity indices Evenness indices	1.1 EMO - The fishery is conducted, in a manner that minimises the impact of fishing operations on ecological communities (AFMA 2002).

Component	Core Objective	Sub-component	Example Operational Objectives	Example Indicators	Rationale
		2. Functional group composition	2.1 Functional group composition does not change outside acceptable bounds	Number of functional groups, species per functional group (e.g. autotrophs, filter feeders, herbivores, omnivores, carnivores)	2.1 The presence/abundance of ‘functional group’ members may fluctuate widely, however in terms of maintenance of ecosystem processes it is important that the aggregate effect of a functional group is maintained.
		3. Distribution of the community	3.1 Community range does not vary outside acceptable bounds	Geographic range of the community, continuity of range, patchiness	3.1 There may be changes to the geographic extent of pelagic community components due to associated fishing activities.
		4. Trophic/size structure	4.1 Community size spectra/trophic structure does not vary outside acceptable bounds	Size spectra of the community Number of octaves, Biomass/number in each size class Mean trophic level Number of trophic levels	4.1 Extraction of Small Pelagics may reduce the prey of the higher level predator functional group in the Zone 4 potentially resulting in migratory or behavioural shifts in predator species like SBT and seals.
		5 Bio- and geochemical cycles	5.1 Cycles do not vary outside acceptable bounds	Indicators of cycles, salinity, carbon, nitrogen, phosphorus flux	5.1 Purse seine and midwater trawl operations not perceived to have a measurable effect on bio and geochemical cycles.

2.2.4 Hazard Identification (Step 4)

Hazards are the activities undertaken in the process of fishing, and any external activities, which have the potential to lead to harm.

The effects of fishery/sub-fishery specific hazards are identified under the following categories:

- capture
- direct impact without capture
- addition/movement of biological material
- addition of non biological material
- disturbance of physical processes
- external hazards

These fishing and external activities are scored on a presence/absence basis for each fishery/sub-fishery. An activity is scored as a zero if it does not occur and as a one if it does occur. The rationale for the scoring is also documented in detail and must include if/how the activity occurs and how the hazard may impact on organisms/habitat.

Scoping Document S4. Hazard Identification Scoring Sheet

This table is completed once for each sub-fishery. Table 4 provides a set of examples of fishing activities for the effects of fishing to be used as a guide to assist in scoring the hazards.

Fishery Name: Small Pelagics Fishery
Sub-fishery Name: Purse-seine sub-fishery
Date: 25 May 2006

Direct impact of Fishing	Fishing Activity	Score $\mathbf{(0 / 1)}$	Documentation of Rationale
Capture	Bait collection	0	Bait not required by fishery, but the fishery does supply bait to lobster fishers and for the capture of larger pelagic species.
	Fishing	1	Actual fishing, i.e. capture of small pelagic species due to deployment and retrieval of purse seine net as well as bycatch, byproduct and, potentially TEP species and organisms caught but not landed.
	Incidental behaviour	0	
	Bait collection	0	Fishing
	1	Disorientation/injury/mortality as a result of momentary entanglement in seine net but animal able to free itself, e.g. seal/shark, escaping target species.	
	Incidental behaviour	0	

Direct impact of Fishing	Fishing Activity	Score (0/1)	Documentation of Rationale
	Gear loss	1	Minor components: occasionally lost. Potential lost items known to entangle animals includes netting, ropes, buoys, etc. - requires monitoring. Major component gear loss - purse seine net There has been 1 temporary major gear loss in the smaller scale sector of the industry - this was exceptional as abnormal currents caused bottom fouling and a weather front prevented the vessel remaining on site to recover the gear safely after the net ripped away when weather struck- the situation was responded to by issuing a maritime warning on the location - recovery of the gear after 2 days by divers and cancellation of the marine warning. No abnormal species mortalities were noted - approximately 100 decaying bodies or partly eaten bodies of the target blue mackerel were found in the recovered net. Shark predation of these incidentally meshed target species caused unrecoverable damage to 75% of the net. No sharks were entangled in the recovered net or observed by the diver. (From Denis Brown, March 23, 2004).
	Anchoring/ mooring	0	
	Navigation/stea ming	1	Steaming/navigation (including spotter planes) to find aggregations of fish may result in collisions (e.g. seabirds or whales vessel interactions), seabird collisions with night-time lights/navigation lights.
Addition/ movement of biological material	Translocation of species (boat launching, reballasting)	0	
	On board processing	0	
	Discarding catch	1	Discarding is limited, but may attract predators.
	Stock enhancement	0	
	Provisioning	0	
	Organic waste disposal	1	Disposal of organic wastes (food scraps, sewage) occurs as a result of general fishing vessel operations, may affect behaviour/ movement of animals.
Addition of nonbiological material	Debris	1	Debris generated during general fishing vessel operations, debris may entangle animals causing damage or mortality or may disrupt behaviour, volume of debris generated by SP fishery unknown requires monitoring.
	Chemical pollution	1	Exhaust from diesel engines occurs during fishing activities and steaming.
	Exhaust	1	Occurs.
	Gear loss	1	See comments under above entry for gear loss. Potential lost items includes netting, ropes, buoys etc. requires monitoring, may entangle animals causing damage or mortality.
	Navigation/ steaming	1	Purse seine operations involve vessels navigating to and from fishing grounds.

Direct impact of Fishing	Fishing Activity	Score (0/1)	Documentation of Rationale
	Activity/ presence on water	1	Purse seine operations involve the presence of several vessels on the fishing grounds -introducing noise and visual stimuli into the environment.
Disturb physical processes	Bait collection	0	Bait not required by fishery.
	Fishing	1	Purse seine fishing activities may disturb/disrupt local physical water flow patterns, e.g. vertical mixing.
	Boat launching	0	Not applicable. Vessels in fishery come from designated ports.
	Anchoring/ mooring	0	Does not occur on fishing grounds.
	Navigation/ steaming	1	Purse seine operations involve vessels navigating to and from fishing grounds.
External Hazards (specify the particular example within each activity area)	Other capture fishery methods	1	Species targeted by recreational (Tas, NSW) and other state and Australian Government commercial fisheries (NSW Ocean trawl, SE Non-trawl fisheries).
	Aquaculture	0	Fishery offshore.
	Coastal development	1	Runoff thought to affect productivity.
	Other extractive activities	1	Oil exploration occurs in Bass Strait.
	Other nonextractive activities	1	Coastal shipping may disrupt feeding schools and local habitats.
	Other anthropogenic activities	1	Whale watching has started recently, diving, charter fishing.

Table 4. Examples of fishing activities.

(Modified from Fletcher et al. 2002)

Direct Impact of Fishing	Fishing Activity	Examples of Activities Include
Capture		Activities that result in the capture or removal of organisms. This includes cryptic mortality due to organisms being caught but dropping out prior to the gear's retrieval (i.e. They are caught but not landed)
	Bait collection	Capture of organisms due to bait gear deployment, retrieval and bait fishing. This includes organisms caught but not landed.
	Fishing	Capture of organisms due to gear deployment, retrieval and actual fishing. This includes organisms caught but not landed.
	Incidental behaviour	Capture of organisms due to crew behaviour incidental to primary fishing activities, possible in the crew's down time; e.g. crew may line or spear fish while anchored, or perform other harvesting activities, including any land-based harvesting that occurs when crew are camping in their down time.
Direct impact, without capture		This includes any activities that may result in direct impacts (damage or mortality) to organisms without actual capture.
	Bait collection	Direct impacts (damage or mortality) to organisms due to interactions (excluding capture) with bait gear during deployment, retrieval and bait fishing. This includes: damage/mortality to organisms through contact with the gear that doesn't result in capture, e.g. Damage/mortality to benthic species by gear moving over them, organisms that hit nets but aren't caught.
	Fishing	Direct impacts (damage or mortality) to organisms due to interactions (excluding capture) with fishing gear during deployment, retrieval and fishing. This includes: damage/mortality to organisms through contact with the gear that doesn't result in capture, e.g. Damage/mortality to benthic species by gear moving over them, organisms that hit nets but are not caught.
	Incidental behaviour	Direct impacts (damage or mortality) without capture, to organisms due to behaviour incidental to primary fishing activities, possibly in the crew's down time; e.g. the use of firearms on scavenging species, damage/mortality to organisms through contact with the gear that the crew uses to fish during their down time. This does not include impacts on predator species of removing their prey through fishing.
	Gear loss	Direct impacts (damage or mortality), without capture on organisms due to gear that has been lost from the fishing boat. This includes damage/mortality to species when the lost gear contacts them or if species swallow the lost gear.
	Anchoring/ mooring	Direct impact (damage or mortality) that occurs and when anchoring or mooring. This includes damage/mortality due to physical contact of the anchor, chain or rope with organisms, e.g. An anchor damaging live coral.
	Navigation/ steaming	Direct impact (damage or mortality) without capture may occur while vessels are navigating or steaming. This includes collisions with marine organisms or birds.
Addition/ movement of biological material		Any activities that result in the addition or movement of biological material to the ecosystem of the fishery.
	Translocation of species (boat	The translocation and introduction of species to the area of the fishery, through transportation of any life stage. This transport can occur through movement on boat hulls or in ballast water as boats move throughout the fishery or from outside areas into

Direct Impact of Fishing	Fishing Activity	Examples of Activities Include
		flow patterns.
	Fishing	Fishing activities may disturb physical processes if the gear contacts seafloor-disturbing sediment, or if the gear disrupts water flow patterns.
	Boat launching	Boat launching may disturb physical processes, particularly in the intertidal regions, if dredging is required, or the boats are dragged across substrate. This would also include foreshore impacts where fishers drive along beaches to reach fishing locations and launch boats. Impacts of boat launching that occurs within established marinas are outside the scope of this assessment.
	Anchoring /mooring	Anchoring/mooring may affect the physical processes in the area that anchors and anchor chains contact the seafloor.
	Navigation /steaming	Navigation /steaming may affect the physical processes on the benthos and the pelagic by turbulent action of propellers or wake formation.
External hazards		Any outside activities that will result in an impact on the component in the same location and period that the fishery operates. The particular activity as well as the mechanism for external hazards should be specified.
	Other capture fishery methods	Take or habitat impact by other commercial, indigenous or recreational fisheries operating in the same region as the fishery under examination
	Aquaculture	Capture of feed species for aquaculture. Impacts of cages on the benthos in the region
	Coastal development	Sewage discharge, ocean dumping, agricultural runoff
	Other extractive activities	Oil and gas pipelines, drilling, seismic activity
	Other nonextractive activities	Defense, shipping lanes, dumping of munitions, submarine cables
	Other anthropogenic activities	Recreational activities, such as scuba diving leading to coral damage, power boats colliding with whales, dugongs, turtles. Shipping, oil spills

2.2.5 Bibliography (Step 5)

All references used in the scoping assessment are included in the References section.
Key documents to assist the risk assessment can be found on the AFMA web page at www.afma.gov.au and include the following:

- Assessment Report
- Management Plan
- Management Regulations
- Management Plan and Regulation Guidelines
- AFMA At a glance web page
http://www.afma.gov.au/fisheries/etbf/at_a_glance.php
- Bycatch Action Plans
- Data Summary Reports (logbook and observer)

Other publications that may provided information include

- BRS Fishery Status Reports
- Strategic Plans

2.2.6 Decision rules to move to Level 1(Step 6)

Any hazards that are identified at Step 4 Hazard Identification as occurring in the fishery are carried forward for analysis at Level 1.

In this case, 14 out of 26 possible internal activities were identified as occurring in this fishery. Five out of 6 external activities were identified. Thus, a total of 19 activitycomponent scenarios will be considered at Level 1 . This results in 95 total scenarios (of 160 possible) to be developed and evaluated using the unit lists (species, habitats, communities).

2.3 Level 1 Scale, Intensity and Consequence Analysis (SICA)

Level 1 aims to identify which hazards lead to a significant impact on any species, habitat or community. Analysis at Level 1 is for whole components (target; bycatch and byproduct; TEP species; habitat; and communities), not individual sub-components. Since Level 1 is used mainly as a rapid screening tool, a "worst case" approach is used to ensure that elements screened out as low risk (either activities or components) are genuinely low risk. Analysis at Level 1 for each component is accomplished by considering the most vulnerable sub-component and the most vulnerable unit of analysis (e.g. most vulnerable species, habitat type or community). This is known as credible scenario evaluation (Richard Stocklosa e-systems Pty Ltd (March 2003) Review of CSIRO Risk Assessment Methodology: ecological risk assessment for the effects of fishing) in conventional risk assessment. In addition, where judgments about risk are uncertain, the highest level of risk that is still regarded as plausible is chosen. For this reason, the measures of risk produced at Level 1 cannot be regarded as absolute.

At Level 1 each fishery/sub-fishery is assessed using a scale, intensity and consequence analysis (SICA). SICA is applied to the component as a whole by choosing the most vulnerable sub-component (linked to an operational objective) and most vulnerable unit of analysis. The rationale for these choices must be documented in detail. These steps are outlined below. Scale, intensity, and consequence analysis (SICA) consists of thirteen steps. The first ten steps are performed for each activity and component, and correspond to the columns of the SICA table. The final three steps summarise the results for each component.

Step1: Record the hazard identification score (absence (0) presence (1) scores) identified at step 3 at the scoping level (Scoping Document S3) onto the SICA table
Step 2: Score spatial scale of the activity
Step 3: Score temporal scale of the activity
Step 4: Choose the sub-component most likely to be affected by activity
Step 5: Choose the most vulnerable unit of analysis for the component e.g. species, habitat type or community assemblage
Step 6: Select the most appropriate operational objective
Step 7: Score the intensity of the activity for that sub-component
Step 8: Score the consequence resulting from the intensity for that subcomponent
Step 9: Record confidence/uncertainty for the consequence scores
Step 10: Document rationale for each of the above steps
Step 11: Summary of SICA results
Step 12: Evaluation/discussion of Level 1
Step 13: Components to be examined at Level 2

2.3.1 Record the hazard identification score (absence (0) presence (1) scores) identified at step 3 in the scoping level onto the SICA Document (Step 1)

Record the hazard identification score absence (0) presence (1) identified at Step 3 at the scoping level onto the SICA sheet. A separate sheet will be required for each component (target, bycatch and byproduct, and TEP species, habitat, and communities). Only those activities that scored a 1 (presence) will be analysed at Level 1

2.3.2 Score spatial scale of activity (Step 2)

The greatest spatial extent must be used for determining the spatial scale score for each identified hazard. For example, if fishing (e.g. capture by longline) takes place within an area of 200 nm by 300 nm , then the spatial scale is scored as 4 . The score is then recorded onto the SICA Document and the rationale documented.

Spatial scale score of activity

$<1 \mathrm{~nm}:$	$1-10 \mathrm{~nm}:$	$10-100 \mathrm{~nm}:$	$100-500 \mathrm{~nm}:$	$500-1000 \mathrm{~nm}:$	$>1000 \mathrm{~nm}:$
1	2	3	4	5	6

Maps and graphs may be used to supplement the information (e.g. sketches of the distribution of the activity relative to the distribution of the component) and additional notes describing the nature of the activity should be provided. The spatial scale score at Step 2 is not used directly, but the analysis is used in making judgments about level of intensity at Step 7. Obviously, two activities can score the same with regard to spatial scale, but the intensity of each can differ vastly. The reasons for the score are recorded in the rationale column of the SICA spreadsheet.

2.3.3 Score temporal scale of activity (Step 3)

The highest frequency must be used for determining the temporal scale score for each identified hazard. If the fishing activity occurs daily, the temporal scale is scored as 6 . If oil spillage occurs about once per year, then the temporal scale of that hazard scores a 3. The score is then recorded onto the SICA Document and the rationale documented.

Temporal scale score of activity

Decadal (1 day every 10 years or so) $)$	Every several years (1 day every several years)	Annual $(1-100$ days per year)	Quarterly $(100-200$ days per year $)$	Weekly $(200-300$ days per year)	Daily $(300-365$ days per year)
1	2	3	4	5	6

It may be more logical for some activities to consider the aggregate number of days that an activity occurs. For example, if the activity "fishing" was undertaken by 10 boats during the same 150 days of the year, the score is 3 . If the same 10 boats each spend 30 non-overlapping days fishing, the temporal scale of the activity is a sum of 300 days, indicating that a score of 6 is appropriate. In the case where the activity occurs over many days, but only every 10 years, the number of days by the number of years in the cycle is used to determine the score. For example, 100 days of an activity every 10 years averages to 10 days every year, so that a score of 3 is appropriate.

The temporal scale score at Step 3 is not used directly, but the analysis is used in making judgments about level of intensity at Step 7. Obviously, two activities can score the same with regard to temporal scale, but the intensity of each can differ vastly. The reasons for the score are recorded in the rationale column.

2.3.4 Choose the sub-component most likely to be affected by activity (Step 4)

The most vulnerable sub-component must be used for analysis of each identified hazard. This selection must be made on the basis of expected highest potential risk for each 'direct impact of fishing' and 'fishing activity’ combination, and recorded in the ‘subcomponent' column of the SICA Document. The justification is recorded in the rationale column.

2.3.5 Choose the unit of analysis most likely to be affected by activity and to have highest consequence score (Step 5)

The most vulnerable 'unit of analysis' (i.e. most vulnerable species, habitat type or community) must be used for analysis of each identified hazard. The species, habitats, or communities (depending on which component is being analysed) are selected from Scoping Document S2 (A-C). This selection must be made on the basis of expected highest potential risk for each 'direct impact of fishing' and 'fishing activity' combination, and recorded in the 'unit of analysis' column of the SICA Document. The justification is recorded in the rationale column.

2.3.6 Select the most appropriate operational objective (Step 6)

To provide linkage between the SICA consequence score and the management objectives, the most appropriate operational objective for each sub-component is chosen. The most relevant operational objective code from Scoping Document S3 is recorded in the 'operational objective' column in the SICA document. Note that SICA can only be performed on operational objectives agreed as important for the (sub) fishery during scoping and contained in Scoping Document S3. If the SICA process identifies reasons to include sub-components or operational objectives that were previously not included/eliminated then these sub-components or operational objectives must be re-instated.

2.3.7 Score the intensity of the activity for the component (Step 7)

The score for intensity of an activity considers the direct impacts in line with the categories shown in the conceptual model (Figure 2) (capture, direct impact without capture, addition/movement of biological material, addition of non-biological material, disturbance to physical processes, external hazards). The intensity of the activity is judged based on the scale of the activity, its nature and extent. Activities are scored as per intensity scores below.

Intensity score of activity (Modified from Fletcher et al. 2002)

Level	Score	Description
Negligible	1	remote likelihood of detection at any spatial or temporal scale
Minor	2	occurs rarely or in few restricted locations and detestability even at these scales is rare
Moderate	3	moderate at broader spatial scale, or severe but local
Major	4	severe and occurs reasonably often at broad spatial scale
Severe	5	occasional but very severe and localized or less severe but widespread and frequent
Catastrophic	6	local to regional severity or continual and widespread

This score is then recorded on the Level 1 (SICA) Document and the rationale documented.

2.3.8 Score the consequence of intensity for that component (Step 8)

The consequence of the activity is a measure of the likelihood of not achieving the operational objective for the selected sub-component and unit of analysis. It considers the flow on effects of the direct impacts from Step 7 for the relevant indicator (e.g. decline in biomass below the selected threshold due to direct capture). Activities are scored as per consequence scores below. A more detailed description of the consequences at each level for each component (target, bycatch and byproduct, TEP species, habitats, and communities) is provided as a guide for scoring the consequences of the activities in the description of consequences table (see Table 5, Appendix C).

Consequence score for ERAEF activities (Modified from Fletcher et al. 2002).

Level	Score	Description
Negligible	1	Impact unlikely to be detectable at the scale of the stock/habitat/community
Minor	2	Minimal impact on stock/habitat/community structure or dynamics Moderate
Maximum impact that still meets an objective (e.g. sustainable level of impact such as full exploitation rate for a target species).		
Major	4	Wider and longer term impacts (e.g. long-term decline in CPUE) Severe
Intolerable	6	Very serious impacts now occurring, with relatively long time period likely to be needed to restore to an acceptable level (e.g. serious decline in spawning biomass limiting population increase). Widespread and permanent/irreversible damage or loss will occur-unlikely to ever be fixed (e.g. extinction)

The score should be based on existing information and/or the expertise of the risk assessment group. The rationale for assigning each consequence score must be documented. The conceptual model may be used to link impact to consequence by showing the pathway that was considered. In the absence of agreement or information, the highest score (worst case scenario) considered plausible is applied to the activity.

2.3.9 Record confidence/uncertainty for the consequence scores (Step 9)

The information used at this level is qualitative and each step is based on expert (fishers, managers, conservationists, scientists) judgment. The confidence rating for the consequence score is rated as 1 (low confidence) or 2 (high confidence) for the activity/component. The score is recorded on the SICA Document and the rationale documented. The confidence will reflect the levels of uncertainty for each score at steps 2, 3, 7 and 8 .

Description of Confidence scores for Consequences. The confidence score appropriate to the rationale is used, and documented on the SICA Document.

Confidence	Score	Rationale for the confidence score
Low	1	Data exists, but is considered poor or conflicting No data exists
High	2	Disagreement between experts Data exists and is considered sound Consensus between experts Consequence is constrained by logical consideration

2.3.10 Document rationale for each of the above steps (Step 10)

The rationale forms a logical pathway to the consequence score. It is provided for each choice at each step of the SICA analysis.

2.3.1 Level 1 (SICA) Documents L1.1 - Target Species Component

SICA steps 1-10. Tables of descriptions of consequences for each component and each sub component provide a guide for scoring the level of consequence (see Table 5, Appendix C)

Direct impact of Fishing TARGET	Fishing Activity				Sub-component	Unit of analysis		$\begin{aligned} & 0 \\ & \text { ì } \\ & 0 \\ & 00 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		苞 0 0 0 0 0 0 0 0 0	Rationale
Capture	Bait collection	0									
	Fishing	1	6	4	Population size	Jack mackerel	1.2	2	3	1	In Tasmania, the purse seine fishery declined because of lack of surface schools of fish. It must be considered in the risk assessment that fishing may result in some impacts on population size. Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. Future management arrangements likely to implement TAC to maintain biomass above reference points $=>$ Consequence considered moderate. Decline in catches over recent years $=>$ Confidence low because no formal stock assessments are difficult for highly migratory pelagic species.
	Incidental behaviour	0									
Direct impact without capture	Bait collection	0									
	Fishing	1	6	4	Behaviour/ movement	Jack mackerel	6.1	2	2	1	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. Fishing known to disrupt target species schools and hence is expected to have highest potential risk for the Behaviour/ movement sub-component => Consequence considered minor as 'school' impacts would be localised and change not detectable at the scale of the fishery => Confidence low because no data exists on non-capture fishing mortality on small pelagics.
	Incidental behaviour	0									

Direct impact of Fishing TARGET	Fishing Activity				Sub-component	Unit of analysis					Rationale
	Discarding catch	1	6	4	Behaviour/ movement	Jack mackerel	6.1	2	2	1	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. .=> Addition of biological material due to discarded catch was considered most likely to effect Behaviour/ movement of small pelagic species => Discarding catch could cause local Behavioural/ movement impacts indirectly via attraction of predators => Intensity considered Minor as discarding considered to occur rarely or in few restricted locations => Consequence Minor - possible detectable change, time to return to original behaviour/ movement on the scale of days to weeks => Confidence low because there is no observational data.
	Stock enhancement	0									
	Provisioning	0									
	Organic waste disposal	1	6	4	Behaviour/ movement	Jack mackerel	6.1	1	1	2	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. .=> Disposal of organic waste is expected to pose greatest potential risk for the Behaviour/movement of target species resulting in either attraction e.g. food scraps or repulsion e.g. raw sewage => Intensity was scored as negligible because although the hazard was considered over a large range/scale, each disposal event was considered to only effect a small $<1 \mathrm{~nm}$ area and because small pelagic species are highly mobile strong avoidance ability was expected at the scale of $1 \mathrm{~nm}=>$ Consequence was also considered negligible i.e. any consequence on the small pelagic species in the four fishing zones are unlikely to be measurable => Confidence in the consequence score was high because general fishing waste disposal was considered unlikely to impact on behaviour/movement of the mobile Small Pelagic species..

Direct impact of Fishing TARGET	Fishing Activity				Sub-component	Unit of analysis		0 0 0 0 0 0 0 0 0 0 0	$\begin{aligned} & \ddot{0} \\ & 0 \\ & 0 \\ & \ddot{0} \\ & 0 \\ & 0 \\ & \ddot{0} \\ & 0 \\ & 0 . \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	苞 0 0 0 0 0 0 0 0 0 0	Rationale
Addition of nonbiological material	Debris	1	6	4	Behaviour/ movement	Jack mackerel	6.1	2	1	2	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. .=> Floating marine debris may attract small pelagic species to shelter beneath it affecting behaviour and movement. .=> Intensity considered Minor occurs rarely or in few isolated incidences $=>$ Consequence scored negligible - unlikely to be measurable against background variability for population. .=> Confidence high - no dumping
	Chemical pollution	1	6	4	Population size	Jack mackerel	1.1	2	2	2	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. Small chemical spill e.g. bottle of detergent, may occur quarterly. =>Possible detectable change in behaviour/ movement but minimal impact on population, time to return to behaviour on the scale of days to weeks. =>Intensity Minor - Chemical pollution occurs infrequently and on local scale. . =>Chemical pollution likely to have measurable consequences if large-scale event occurs in a sensitive area, the scale of an event will be limited by the amount of chemicals carried by the fishing vessels). Consequence considered Minor Possible detectable change in behaviour/ movement but minimal impact on population, time to return to behaviour on the scale of days to weeks. . =>Confidence high because chemical spill considered to quickly disperse in the pelagic environment (note the likelihood of large event, e.g. sinking and oil slick, considered very rare).

Direct impact of Fishing TARGET	Fishing Activity				Sub-component	Unit of analysis					Rationale
	Exhaust	1	6	4	Behaviour/ movement	Jack mackerel	6.1	1	1	2	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season.=> Exhaust emission was considered to pose greatest risk for the Behaviour/movement of small pelagic species resulting in repulsion => Intensity was scored as negligible because although the hazard was considered over a large range/scale, exhaust considered to only impact a small $<1 \mathrm{~nm}$ area and because pelagic species are highly mobile strong avoidance ability was expected at the scale of $1 \mathrm{~nm}=>$ Consequence was also considered negligible i.e. any consequence on small pelagics unlikely to be detectable => Confidence in the consequence score was considered high because localised exhaust unlikely to impact on behaviour/movement of highly mobile small pelagics.
	Gear loss	1	6	4	Behaviour/ movement	Target species	6.1	2	2	1	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. Gear is expensive and gear loss more than four times per year would not be commercially viable. $=>$ Lost gear not resulting in damage/mortality most likely to effect behaviour /movement of small pelagic species => Intensity was scored as Minor because lost gear - small pelagic species interactions (if they occur) are considered to be rare => Consequence considered minor on small pelagic species stock any consequence on small pelagics unlikely to be detectable, time taken to recover on scale of days -weeks => Confidence was scored as low because of a lack of data on interactions between small pelagic species and lost purse seine fishing gear.

Direct impact of Fishing TARGET	Fishing Activity				Sub-component	Unit of analysis		$\begin{aligned} & 0 \\ & \vdots \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		亡. 0 0 0 0 0 0 0 0 0 0	Rationale
	Navigation/ steaming	1	6	4	Behaviour/ movement	Jack mackerel	6.1	1		2	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season.=> Navigation/ steaming most likely to effect Behaviour/ movement of small pelagic species.=> Intensity: unlikely to have a measurable impact.=> Consequence: Negligible unlikely to be detectable - any consequence on small pelagic species unlikely to be detectable, time taken to recover on scale of days - weeks => Confidence: high because it is considered unlikely for there to be strong interactions between Navigation/ steaming and small pelagic species Behaviour/ movement.
	Activity/ presence on water	1	6	4	Behaviour/ movement	Jack mackerel	6.1	1	1	2	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. .=> Activity/presence on water of purse seine fishing vessels was expected to pose greatest potential risk for the Behaviour/movement of small pelagic species resulting in disruption to feeding and/or movement => Intensity was scored as negligible because although the hazard was considered over a large range/scale, vessel presence considered to only impact a small $<1 \mathrm{~nm}$ area and because small pelagic species are highly mobile strong avoidance ability was expected at the scale of $1 \mathrm{~nm}=>$ Consequence was also considered negligible with any consequence of vessel presence impacts unlikely to be detectable for small pelagic species => Confidence in the consequence score was high because localised vessel presence/activity considered unlikely to impact and have consequences for the behaviour/movement of highly mobile small pelagic species.
Disturb	Bait collection	0									

Direct impact of Fishing TARGET	Fishing Activity				Sub-component	Unit of analysis		$\begin{aligned} & 0 \\ & \text { i } \\ & 0 \\ & 00 \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$			Rationale
physical processes	Fishing	1	6	4	Behaviour/ movement	Jack mackerel	6.1	1		2	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. .=> Disturbance of physical processes via purse seine fishing was expected to pose greatest potential risk for the Behaviour/movement of small pelagic species resulting in momentary disruption to feeding and/or movement => Intensity was scored as negligible because although the hazard was considered over a large range/scale, fishing considered to only impact physical processes over a small $<1 \mathrm{~nm}$ area => Consequence was also considered negligible with any consequence of water column disturbance unlikely to be detectable for small pelagic species => Confidence in the consequence score was considered high because localised disruption of water column unlikely to impact and have consequences for the behaviour/movement of highly mobile pelagic species.
	Boat launching	0									
	Anchoring/ mooring	0									
	Navigation/ steaming	1	6	4	Behaviour/ movement	Jack mackerel	6.1	1	1	2	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. .=> physical processes due to Navigation/steaming of fishing vessels was expected to pose greatest potential risk for the Behaviour/movement of small pelagic species resulting in disruption to feeding and/or migration =>Intensity was scored as negligible because although the hazard was considered over a large range/scale, Navigation/ steaming considered to only impact a small $<1 \mathrm{~nm}$ area and because small pelagic species are highly mobile strong avoidance ability was expected at the scale of $1 \mathrm{~nm}=>$ Consequence was also considered negligible with any impact of Navigation/ steaming unlikely to be detectable for small pelagic species => Confidence in the consequence score was considered high because Navigation/ steaming unlikely to impact and have

Direct impact of Fishing TARGET	Fishing Activity				Sub-component	Unit of analysis					Rationale
											consequences for the behaviour/movement of highly mobile pelagic species.
External Impacts (specify the particular example within each activity area)	Other fisheries	1	6	6	Population size	Jack mackerel	1.1	3	3	1	Target species are captured daily in external fisheries including in three Australian Government tuna fisheries and various state fisheries. .=> Intensity considered Moderate because all target species in this fishery are also the target or bycatch of other Australian Government and state fisheries => Consequence considered Moderate (full exploitation rate but long term recruitment dynamics not adversely damaged) because current assessment of small pelagic species off SA is that they are under-exploited, but the additional catches in other fisheries are probably underestimated at present, this makes the overall impacts moderate on all species. .=> Consequence may be widespread relative to the species distribution in Australian waters ..=> Confidence considered low because of a lack of formal stock assessment and the existence of unreported catch of unknown magnitude.
	Aquaculture	0									
	Coastal development	1	6	6	Behaviour/movement	Jack mackerel	6.1	1	1	2	Shipping activity occurs daily across the full range of the fishery, and outside areas of current effort. .=> Greatest potential risks are to the Behaviour/movement of small pelagic species resulting in disruption to feeding and/ or migration.=> Intensity: negligible because although the hazard was considered over a large range/scale, the shipping track is narrow - impact $<1 \mathrm{~nm}$ wide and because small pelagic species are highly mobile strong avoidance ability was expected at the scale of 1 nm . .=> Consequence: negligible with any consequence of shipping impacts unlikely to be detectable for small pelagic species.=> Confidence: high shipping unlikely to impact and have consequences for the behaviour/movement of highly mobile small pelagic species.

Direct impact of Fishing TARGET	Fishing Activity				Sub-component	Unit of analysis		Intensity Score (1-6)	$\begin{aligned} & \ddot{0} \\ & 0 \\ & 0 \\ & \ddot{U} \\ & 0 \\ & 0 \\ & \ddot{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		Rationale
	Other extractive activities	1	6	6	Behaviour/movement	Jack mackerel	6.1	1	1	2	Tourism occurs daily across the full range of the fishery, and outside areas of current effort. .=> Greatest potential risks are to the Behaviour/movement of small pelagic species resulting in disruption to feeding and/ or migration. .=> Intensity: negligible because although the hazard is dispersed over a large range, its occurrence is patchy- around population centres, and because small pelagic species are highly mobile strong avoidance ability was expected. .=> Consequence: negligible with any consequence of tourism impacts unlikely to be detectable for small pelagic species. .=> Confidence: high- tourism unlikely to impact and have consequences for the behaviour/movement of highly mobile small pelagic species.
	Other non extractive activities	1	6	6	Behaviour/movement	Jack mackerel	6.1	1	1	2	Shipping activity occurs daily across the full range of the fishery, and outside areas of current effort. .=> Greatest potential risks are to the Behaviour/movement of small pelagic species resulting in disruption to feeding and/ or migration.=> Intensity: negligible because although the hazard was considered over a large range/scale, the shipping track is narrow - impact $<1 \mathrm{~nm}$ wide and because small pelagic species are highly mobile strong avoidance ability was expected at the scale of 1 nm . .=> Consequence: negligible with any consequence of shipping impacts unlikely to be detectable for small pelagic species.=> Confidence: high shipping unlikely to impact and have consequences for the behaviour/movement of highly mobile small pelagic species.
	Other anthropogenic activities	1	6	6	Behaviour/movement	Jack mackerel	6.1	1	1	2	Tourism occurs daily across the full range of the fishery, and outside areas of current effort. .=> Greatest potential risks are to the Behaviour/movement of small pelagic species resulting in disruption to feeding and/ or migration. .=> Intensity: negligible because although the hazard is dispersed over a large range, its occurrence is patchy- around population centres, and because small pelagic species are highly mobile strong avoidance ability was expected. .=> Consequence: negligible with any consequence of tourism impacts unlikely to be detectable for small pelagic species. .=> Confidence: high- tourism unlikely to impact and have consequences for the behaviour/movement of highly mobile small pelagic species.

2.3.1 Level 1 (SICA) Documents L1.2 - Byproduct and Bycatch Component

Direct impact of fishing	Fishing activity		$\begin{array}{\|c} \text { (9-I) } \\ \text { pıezeH јо әएеэs [ẹ̣eds } \end{array}$		Sub-component	Unit of analysis	$\begin{aligned} & \text { Operational objective } \\ & \text { (S2.1) } \end{aligned}$	0 0 0 0 0 0 0 0 0 0 0	弋 0 0 0 0 \ddot{U} 0 0 0 0 0 0	N 弋 0 0 0 0 \ddot{U} 0 0 0 0	Rationale
Capture	Bait collection	0									
	Fishing	1	6	4	Population size	Spotted warehou	1.2	3	3	1	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. .=> Byproduct species include SEF quota species which have comprehensive management plans and detailed assessments e.g. spotted warehou Intense fishing effort of E. Tasmania, also fished of SA and NSW. Stock fully exploited off Tasmania. => Consequence: moderate, need to consider impacts on other fisheries.=> Confidence: low - hard to determine the impact on SEF quota species because the volume of SEF species is difficult to evaluate during the pumping out of the target species.
	Incidental behaviour	0									
Direct impact without capture	Bait collection	0									
	Fishing	1	6	4	Behaviour/movement	Spotted warehou	6.1	2	2	1	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. .=> Fishing known to disrupt schools and hence is expected to have highest potential risk for the Behaviour/ movement sub-component. .=> Consequence considered minor as 'school' impacts would be localised and change not detectable at the scale of the fishery . .=> Confidence: low - no data on non-capture fishing is sparse.
	Incidental behaviour	0									

Direct impact of fishing	Fishing activity				Sub-component	Unit of analysis	$\begin{aligned} & \text { Operational objective } \\ & \text { (S2.1) } \end{aligned}$	O \vdots 0 0.0 0 0 \vdots 0 0 0 \vdots	$\dot{1}$ 0 0 0 0 \ddot{U} 0 0 0 0 0 0 0	N さ 0 0 0 0 \ddot{U} 0 0 0 0	Rationale
moveme biological material	Gear loss	1	6	4	Population size	Spotted warehou	1.1	2	1	2	Lost gear resulting in damage/ mortality most likely to effect population size of demersal teleosts assuming the gear would sink.=> Intensity was scored as Minor because lost gear demersal teleost interactions (if they occur) are considered to be rare => Consequence considered Negligible - unlikely to be a detectable impact on stocks.=>Confidence was scored as low because of a lack of data on interactions between demersal teleosts and lost purse seine fishing gear.
	Anchoring/ mooring	0									
	Navigation/ steaming	1	6	4	Behaviour/movement	Pilchard	6.1	1	1	2	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. .=> Direct impact without capture due to Navigation/steaming was considered most likely to affect behaviour/ movement of pelagic teleosts. .=> Most fishing effort, hence Navigation/ steaming, is concentrated off eastern Tasmania in Zone A and so the intensity of the activity is local (Minor) => Consequence was considered Negligible - any impact unlikely to result in detectable change to behaviour and movement, time taken to recover to pre-disturbed state on the scale of hours => Confidence was scored as high because it was considered (within logical constraints) unlikely for there to be strong negative interactions between Navigation/steaming and demersal teleost species.
	Translocation of species	0									
	On board processing	0									

Direct impact of fishing	Fishing activity		$\begin{array}{\|c} \text { (9-I) } \\ \text { prezeн эo əreэs [е!̣eds } \end{array}$		Sub－component	Unit of analysis		0 岂 0 0 0 0 0 0 0 0 0		N さ 0 0 0 0 \ddot{U} 0 0 0 0	Rationale
	Discarding catch	1	6	4	Behaviour／movement	Pilchard	6.1	2	2	1	Fishing effort is dispersed．Most fishing activity occurs along on the edge of the continental shelf off Tasmania，NSW and SA，covering an area of over 4700 km ，effort may occur daily but only during the fishing season．．＝＞Addition of biological material due to onboard processing was considered most likely to effect Behaviour／movement of pelagic Byproduct／ bycatch species feeding near the surface $=>$ Discarding catch could cause local Behavioural／movement impacts indirectly via attraction of predators．＝＞Intensity considered Minor as discard volume is low．＝＞Consequence Minor－possible detectable change，time to return to original behaviour／ movement on the scale of days to weeks．Confidence low because there is no observational data．
	Stock enhancement	0									
	Provisioning	0									
	Organic waste disposal	1	6	4	Behaviour／movement	Byproduct and bycatch	6.1	1	1	2	Fishing effort is dispersed．Most fishing activity occurs along on the edge of the continental shelf off Tasmania，NSW and SA，covering an area of over 4700 km ，effort may occur daily but only during the fishing season．．＝＞Disposal of organic waste is expected to pose greatest potential risk for the Behaviour／movement of byproduct and bycatch species resulting in either attraction e．g．food scraps or repulsion e．g． raw sewage＝＞Intensity was scored as negligible because although the hazard was considered over a large range／scale， each disposal event was considered to only effect a small＜ 1 nm area and because the byproduct and bycatch are all mobile and so strong avoidance ability was expected at the scale of 1 $\mathrm{nm}=>$ Consequence was also considered negligible i．e．any consequence on the byproduct and bycatch species in the four fishing zones are unlikely to be measurable $=>$ Confidence in the consequence score was high because waste disposal as a result of general fishing activities was considered unlikely to impact on behaviour／movement of these species．．

Direct impact of fishing	Fishing activity				Sub-component	Unit of analysis					Rationale
Addition of non- biological material	Debris	1	6	4	Behaviour/movement	Pilchard	6.1	1	1	2	Fishing activity occurs over > 1000 nm Marine debris is probably widespread => Daily during fishing season => Floating marine debris may attract Byproduct/ bycatch to shelter beneath it affecting behaviour and movement => Intensity considered Minor - occurs rarely or in few isolated incidences .=> Consequence scored negligible - unlikely to be measurable against background variability for population. .=> Confidence high - no dumping
	Chemical pollution	1	6	4	Behaviour/movement	Pilchard	6.1	2	2	2	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. Small chemical spill e.g. bottle of detergent, may occur quarterly. .=> Possible detectable change in behaviour/ movement but minimal impact on avoidance, time to return to behaviour on the scale of days to weeks.=> Intensity Minor - Chemical pollution occurs infrequently and on local scale .=> Chemical pollution likely to have measurable consequences if large-scale event occurs in a sensitive area, the scale of an event will be limited by the amount of chemicals carried by the fishing vessels. Consequence considered Minor - Possible detectable change in behaviour/ movement but minimal impact on population, time to return to behaviour on the scale of days to => Confidence high because chemical spill considered to quickly disperse in the pelagic environment (note the likelihood of large event, e.g. sinking and oil slick, considered very rare).

Direct impact of fishing	Fishing activity		Spatial scale of Hazard $(1-6)$		Sub-component	Unit of analysis		0 0 0 0 0 0 0 0 0 0 0 0	Consequence Score (1- 6)	̃ 弋 0 0 0 0 0 0 0 0 0 0	Rationale
	Exhaust	1	6	4	Behaviour/movement	Pilchard	6.1	1	1	2	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. .=> Exhaust emission was considered to pose greatest risk for the Behaviour/movement of small pelagic species resulting in repulsion => Intensity was scored as negligible because although the hazard was considered over a large range/scale, exhaust considered to only impact a small < 1 nm area and because pelagic species are highly mobile strong avoidance ability was expected at the scale of $1 \mathrm{~nm}=>$ Consequence was also considered negligible i.e. any consequence on small pelagics unlikely to be detectable => Confidence in the consequence score was considered high because localised exhaust unlikely to impact on behaviour/movement of highly mobile small pelagics.
	Gear loss	1	6	4	Behaviour/movement	pilchard	6.1	1	1	2	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. Gear is expensive and gear loss more than four times per year would not be commercially viable. .=> Lost gear not resulting in damage/mortality most likely to effect behaviour /movement of pelagic teleosts e.g. pilchard.=> Intensity was scored as Minor because lost gear pelagic fish interactions (if they occur) are considered to be rare => Consequence considered minor on stocks - any consequence unlikely to be detectable , time taken to recover on scale of days -weeks .=> Confidence: low - no data.

Direct impact of fishing	Fishing activity				Sub-component	Unit of analysis				N 0	Rationale
	Navigation/ steaming	1	6	4	Behaviour/movement	pilchard	6.1	1	1	2	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. .=> Navigation/ steaming most likely to effect Behaviour/ movement of pelagic fish e.g. pilchard.=> Intensity: unlikely to have a measurable impact.=> Consequence: Negligible unlikely to be detectable - any consequence unlikely to be detectable, time taken to recover on scale of days - weeks .=> Confidence: high because it is considered unlikely for there to be strong interactions between Navigation/ steaming and demersal teleost Behaviour/ movement.
	Activity/ presence on water	1	6	4	Behaviour/movement	pilchard	6.1	1	1	2	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. .=> Activity/presence on water of purse seine fishing vessels was expected to pose greatest potential risk for the Behaviour/movement of pelagic fish e.g. pilchard.=> Intensity was scored as negligible because although the hazard was considered over a large range/scale, vessel presence considered to only impact a small $<1 \mathrm{~nm}$. area and because pelagic fish are highly mobile strong avoidance ability was expected at the scale of 1 nm => Consequence was also considered negligible with any consequence of vessel presence impacts unlikely to be detectable for pelagic fish.=> Confidence in the consequence score was high because localised vessel presence/activity considered unlikely to impact and have consequences for the behaviour/movement of highly mobile pelagic fish .
Disturb	Bait collection	0									

Direct impact of fishing	Fishing activity		$\begin{aligned} & \text { Spatial scale of Hazard } \\ & (1-6) \end{aligned}$		Sub-component	Unit of analysis				$\begin{aligned} & \text { ̃ } \\ & \text { ín } \\ & 0 \\ & 0 \\ & \text { in } \\ & \ddot{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Rationale
physical processes	Fishing	1	6	4	Behaviour/movement	pilchard	6.1	1	1	2	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. .=> Activity/presence on water of purse seine fishing vessels was expected to pose greatest potential risk for the Behaviour/movement of pelagic fish e.g. pilchard.=> Intensity was scored as negligible because although the hazard was considered over a large range/scale, vessel presence considered to only impact a small $<1 \mathrm{~nm}$. area and because pelagic fish are highly mobile strong avoidance ability was expected at the scale of $1 \mathrm{~nm}=>$ Consequence was also considered negligible with any consequence of vessel presence impacts unlikely to be detectable for pelagic fish.=> Confidence in the consequence score was high because localised vessel presence/activity considered unlikely to impact and have consequences for the behaviour/movement of highly mobile pelagic fish .
	Boat launching	0									
	Anchoring/ mooring	0									
	Navigation/ steaming	1	6	4	Behaviour/movement	pilchard	6.1	1	1	2	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. .=>Disturbance to physical processes due to Navigation/steaming of fishing vessels was expected to pose greatest potential risk for the Behaviour/movement of pelagic fish resulting in disruption to feeding and/or migration . .=> Intensity was scored as negligible because although the hazard was considered over a large range/scale, Navigation/ steaming considered to only impact a small $<1 \mathrm{~nm}$ area and because pelagic fish are highly mobile strong avoidance ability was expected at the scale of $1 \mathrm{~nm}=>$ Consequence was also considered negligible with any impact of Navigation/ steaming unlikely to be detectable for pelagic fish. .=> Confidence in the consequence score was considered high because Navigation/

Direct impact of fishing	Fishing activity				Sub-component	Unit of analysis				N 弋 0 0 0 0 0 0 0 0 0 0	Rationale
											steaming unlikely to impact and have consequences for the behaviour/movement of highly mobile pelagic fish
External Impacts (specify the particular example within each activity area)	Other fisheries	1	6	4	Population size	pilchard	1.1	3	3	1	Byproduct species are targeted daily in external fisheries e.g. pilchard targeted in SA state fisheries .=> Intensity considered Moderate because byproduct species in this fishery are also the target or bycatch of other commonwealth and state fisheries. .=> Consequence considered Moderate (full exploitation rate but long term recruitment dynamics not adversely damaged) because byproduct species are already fully exploited in other fisheries e.g. pilchard.=>Confidence considered low because of a lack of formal stock assessment and the existence of unreported catch of unknown magnitude
	Aquaculture	0									
	Coastal development	1	6	6	Behaviour/movement	pilchard	6.1	2	2	1	Coastal development occurs daily around the range of the fishery, beyond the areas where effort is currently focused. .=>Runoff may affect primary productivity. Considered to pose greatest risk by influencing behaviour/ movement of pelagic fish e.g. pilchard.=>Intensity considered Minor compared to large natural inter-annual variations in primary productivity .=>Consequence considered Minor - possible detectable change in Behaviour/ movement, time to return to original behaviour/ movement on the scale of days to weeks. .=>Confidence low because of a lack of data.
	Other extractive activities	1	6	6	Behaviour/movement	pilchard	6.1	1	1	2	Tourism occurs daily across the full range of the fishery, and outside areas of current effort. .=> Greatest potential risks are to the Behaviour/movement of small pelagic species resulting in disruption to feeding and/ or migration. .=> Intensity: negligible because although the hazard is dispersed over a large range, its occurrence is patchy- around population centres, and because small pelagic species are highly mobile strong avoidance ability was expected. .=> Consequence: negligible with any consequence of tourism impacts unlikely to be detectable for small pelagic species. .=> Confidence: high- tourism unlikely to impact and have consequences for the behaviour/movement of highly mobile small pelagic

Direct impact of fishing	Fishing activity				Sub-component	Unit of analysis					Rationale
											species.
	Other non extractive activities	1	6	6	Behaviour/movement	pilchard	6.1	1	1	1	Shipping activity occurs daily across the full range of the fishery, and outside areas of current effort. .=>Greatest potential risks are to the Behaviour/movement of pelagic fish species resulting in disruption to feeding and/ or migration.=> Intensity: negligible because although the hazard was considered over a large range/scale, the shipping track is narrow - impact <1 nm wide and because benthopelagic teleosts are highly mobile strong avoidance ability was expected at the scale of 1 nm . .=>Consequence: negligible with any consequence of shipping impacts unlikely to be detectable.=>Confidence: high shipping unlikely to impact and have consequences for the behaviour/movement
	Other anthropogenic activities	1	6	6	Behaviour/movement	pilchard	6.1	1	1	2	Tourism occurs daily across the full range of the fishery, and outside areas of current effort. .=>greatest potential risks are to the Behaviour/movement of pelagic fish species resulting in disruption to feeding and/ or migration. .=> Intensity: negligible because although the hazard is dispersed over a large range, its occurrence is patchy- around population centres, and because small pelagic species are highly mobile strong avoidance ability was expected. .=>Consequence: negligible with any consequence of tourism impacts unlikely to be detectable for benthopelagic teleosts. .=>Confidence: high- tourism unlikely to impact and have consequences for the behaviour/movement.

2.3.1 Level 1 (SICA) L1.3 - TEP Species Component

Direct impact of fishing TEP	Fishing Activity								$\begin{aligned} & 00 \\ & 0 \\ & 0 \\ & 0 \\ & \ddot{U} \\ & 0 \\ & \ddot{0} \\ & \stackrel{0}{0} \\ & 0 . \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		Rationale
Capture	Bait collection	0									
	Fishing	1	6	4	Population size	Bottle-nose dolphins,	1.2	2	3	1	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. .=>Intensity moderate: Species is protected. Catches using purse seine gear have been reported in other fisheries. Minister requires validation of historic catch levels.=>Consequence: moderate. Any significant catches would be publicly unacceptable. Possible detectable change in size/ growth rate (r) but minimal impact on population size and none on dynamics of TEP species. .=>Confidence 1ow: no validated observer data
	Incidental behaviour	0									
Direct impact without capture	Bait collection	0									
	Fishing	1	6	4	Behaviour / movement	Bottle-nose dolphins,	6.1	2	2	1	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season.=>Direct impact of fishing without capture would be expected to impact dolphins by modifying their behaviour and attracting them to regions they would not normally occur in high abundances, could lead to dependency and possible flow-on population effects if fishing patterns change => .=>At current levels of fishing the intensity was considered Minor - activity occurs in a few restricted locations over the scale of the total area of the fishery =>.=> Consequence considered Minor - no detectable change in behaviour/ movement, time to return to original behaviour/ movement on the scale of hours =>.=> The number of dolphinsfishing interactions in the purse-seine sub-fishery has not been verified so confidence score is low.
	Incidental behaviour	0									

Direct impact of fishing TEP	Fishing Activity					$\begin{aligned} & \tilde{n} \\ & \text { n } \\ & \text { त్ } \\ & \text { む } \\ & \text { \# } \\ & \end{aligned}$					Rationale
	Gear loss	1	6	4	Behaviour / movement	Bottle-nose dolphins,	6.1	2	2	1	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. Gear loss considered to occur quarterly during fishing season . .=>Gear loss may modify dolphin behaviour by attracting them to specific places =>.=> The frequency of gear loss events is low and so the Intensity of this activity is Minor - activity occurs in a few restricted locations over the scale of the total area of the fishery =>.=> Consequence considered Minor - no detectable change in behaviour/ movement, time to return to original behaviour/ movement on the scale of hours.=>This assessment was made with low confidence because the frequency of dolphin interactions in the purse-seine sub-fishery has not been verified
	Anchoring/ mooring	0									
	Navigation/stea ming	1	6	4	Behaviour / movement	Bottle-nose dolphins	6.1	3	2	2	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. .=>Navigation / steaming modify dolphin behaviour as they learn to ride bow waves and associate vessels with food may disrupt natural feeding patterns and/or migration $=>$.=> Intensity considered Moderate - severe but local or moderate at broader spatial scale => .=>Consequence was considered Minor - time to return to original behaviour/ movement on the scale of hours =>Confidence: low - lack of data
Addition/ movement of	Translocation of species	0									
biological material	On board processing	0									

Direct impact of fishing TEP	Fishing Activity							$$	0 0 0 $\ddot{0}$ 0 \vdots \vdots 0 0 0 0		Rationale
	Discarding catch	1	6	4	Behaviour / movement	Bottle-nose dolphins	6.1	2	2	1	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. =>At current levels of fishing, the Intensity was scored Minor. Discards $<1 \%$ of catch - activity occurs in a few restricted locations over the scale of the total area of the fishery. .=> Given the Minor intensity of the activity the consequence was also considered Minor - time to return to original behaviour/ movement on the scale of hours .=>The confidence score is low because of no data
	Stock enhancement	0									
	Provisioning	0									
	Organic waste disposal	1	6	4	Behaviour / movement	Bottle-nose dolphins	6.1	2	2	2	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. .=>Organic waste disposal will initially impact on dolphin behaviour by attracting them to the offal for food => At current levels of fishing, the Intensity was scored Minor - activity occurs in a few restricted locations over the scale of the total area of the fishery => Given the Minor intensity of the activity the consequence was also considered Minor - time to return to original behaviour/ movement on the scale of hours => The confidence score is high because the attraction toward this food is conceivably less than other sources e.g. discards/ onboard processing.
Addition of nonbiological material	Debris	1	6	4	Behaviour / movement	Species Seabirds, mainly smaller species of terns	6.1	2	2	1	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. .=>Floating debris will initially impact on seabird behaviour by attracting them to the debris for food because Debris generates new habitat for surface-schooling fish that seabirds would be attracted to for food => .=> Intensity considered Minor because Debris considered to occur rarely => Given the Minor intensity of the activity the Consequence was also considered Minor - time to return to original behaviour/

Direct impact of fishing TEP	Fishing Activity										Rationale
											movement considered to occur on the scale of hours => Low confidence - no data
	Chemical pollution	1	6	4	Population size	Species Seabirds, in particular little penguins	1.1	2	2	1	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. Small chemical spill e.g. bottle of detergent, may occur quarterly. .=>The direct impact of chemical pollution considered to lead to highest consequence was impact on seabirds in particular little penguins that would be immersed in the spill, .=>Population size was selected as the sub-component =>Intensity Minor - Chemical pollution occurs infrequently and on local scale => Consequence also scored Minor - insignificant change to population growth rate, unlikely to be detectable against background variability for this population => The confidence score is low because there is a lack of data on the extent that chemical pollution occurs and its true impact on seabird behaviour.
	Exhaust	1	6	4	Behaviour/ movement	Species Seabirds	6.1	1	2	2	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. .=>Exhaust emission was considered to pose greatest risk for the Behaviour/movement of Seabirds resulting in repulsion =>. Intensity was scored as negligible because although the hazard was considered over a large range/scale, exhaust considered to only impact a small < 1 nm area and because Seabird species are mobile hence strong avoidance ability was expected at the scale of $1 \mathrm{~nm}=>$ Consequence was considered Minor i.e. any consequence on seabirds unlikely to be detectable => Confidence in the consequence score was considered high because localised exhaust unlikely to impact on behaviour/movement of mobile seabirds.

Direct impact of fishing TEP	Fishing Activity										Rationale
	Gear loss	1	6	4	Behaviour / Movement	Bottle nosed dolphins	6.1	2	2	1	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. Gear is expensive and gear loss more than four times per year would not be commercially viable. .=>Gear loss is likely to attract dolphins to the food, hence lost gear not resulting in damage/mortality most likely to effect behaviour /movement of turtles => Intensity was scored as Minor because lost gear - dolphin interactions (if they occur) are considered to be rare => Consequence considered Minor on turtle behaviour/ movement - any consequence on turtles unlikely to be detectable, time taken to recover on scale of days weeks => Confidence was scored as low because of a lack of data on interactions between dolphins and lost purse seine fishing gear.
	Navigation/ steaming	1	6	4	Behaviour / Movement	Species Seabirds	6.1	1	2	2	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. .=> Navigation and steaming would have the greatest effect on seabird behaviour by encouraging the birds to follow the ships in the expectation of obtaining food => Navigation/steaming is a large component of the small pelagic species purse seine operations, however there is remote likelihood of impact on Seabirds over the spatial scale of the fishery $=>$ Consequence Minor - no detectable change in behaviour/ movement. Time to return to original behaviour/ movement on the scale of hours => Confidence was recorded as high because it is considered unlikely for there to be strong interactions between Navigation/ steaming and Seabird Behaviour/ movement.

Direct impact of fishing TEP	Fishing Activity				$\begin{aligned} & \ddot{E} \\ & \dot{U} \\ & \dot{0} \\ & \dot{E} \\ & 0 \\ & \dot{1} \\ & \dot{\vec{n}} \end{aligned}$				$\begin{aligned} & \ddot{0} \\ & \text { U } \\ & \text { U } \\ & 0 \\ & 0 \\ & \ddot{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \end{aligned}$		Rationale
	Activity/ presence on water	1	6	6	Behaviour / Movement	Species - Seabirds	6.1	1	2	2	Activity/ presence on water is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. The presence of vessels on the water would have the greatest effect on seabird behaviour by attracting birds to the vessel in the expectation of obtaining food=> Intensity was scored as Negligible because although the hazard was considered over a large range/scale, vessel presence considered to only impact a small $<1 \mathrm{~nm}$ area => Consequence was considered Minor with any impacts of vessel presence unlikely to be detectable for highly mobile Seabirds, expected to return to normal Behaviour/ movement on the scale of hours => Confidence in the consequence score was high because localised vessel presence/activity considered unlikely to have measurable impact on populations.
Disturb physical processes	Bait collection	0									
	Fishing	1	6	4	Behaviour/ movement	Seabirds	6.1	1	1	2	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. Disturbance of physical processes via purse seine fishing was expected to pose greatest potential risk for the Behaviour/movement of Seabirds resulting in momentary disruption to feeding and/or movement => Intensity was scored as negligible because although the hazard was considered over a large range/scale, fishing considered to only impact physical processes over a small $<1 \mathrm{~nm}$ area => Consequence was also considered Negligible with any consequence of water column disturbance unlikely to have detectable effects on Seabird foraging behaviour $=>$ Confidence in the consequence score was considered high because localised disruption of water column unlikely to impact and have consequences for the behaviour/movement of highly mobile Seabirds (logical constraints).
	Boat launching	0									
	Anchoring/ mooring	0									

Direct impact of fishing TEP	Fishing Activity							$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \ddot{0} \\ & \text { U } \\ & \text { U } \\ & \ddot{0} \\ & 0 \\ & \ddot{0} \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \end{aligned}$		Rationale
	Navigation/stea ming	1	6	4	Behaviour / Movement	Species Seabirds	6.1	1	1	2	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. .=>Disturbance of physical processes via navigation and steaming was expected to pose greatest potential risk for the Behaviour/movement of Seabirds resulting in momentary disruption to feeding and/or movement =>.=> Intensity was scored as negligible because although the hazard was considered over a large range/scale, the activity was considered to only impact physical processes over a small < 1 nm area => .=>Consequence was also considered Negligible with any consequence of water column disturbance unlikely to have detectable effects on Seabird foraging behaviour => .=>Confidence in the consequence score was considered high because localised disruption of water column unlikely to impact and have consequences for the behaviour/movement of highly mobile Seabirds (logical constraints).
External Impacts (specify the particular example within each activity area)	Other fisheries	1	6	4	Population size	Species Albatross species	1.1	4	4	2	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over 4700 km , effort may occur daily but only during the fishing season. .=>Other capture fishery methods were considered to pose greatest risk to the population size sub-component for TEP species, several albatross species are known to interact with long-line tuna fisheries =>. Long-line impact on albatrosses was considered a Major impact on population size that occurs reasonably often at broad spatial scale => Consequence was scored as Major because serious consequences are believed to be now occurring => Confidence was recorded as high because of extensive observational data on albatross long-line fishery interactions.
	Aquaculture	0									
	Coastal development	1	6	6	Behaviour / Movement	Species Seabirds	6.1	1	1	1	Coastal development occurs daily around the range of the fishery, beyond the areas where effort is currently focused. .=>Intensity considered Negligible - occurs rarely at small spatial scale .=>Coastal development was not considered to change behaviour and movement so the consequence scored

Direct impact of fishing TEP	Fishing Activity										Rationale
											negligible $=>$ Confidence low - no data
	Other extractive activities	1	6	6	Behaviour/ movement	Bottle nose dolphins	6.1	2	2	1	Oil exploration occurs daily, beyond the main effort in the fishery across a wide geographic range, particularly in Bass Strait.=>Dolphins species would avoid any spills other than a large oil slick caused by a sinking or stranding. .=> Intensity: spills are rare.=>Consequence: minor, unlikely to affect a population.=>Confidence low. Little data
	Other nonextractive activities	1	6	6	Behaviour / Movement	Species Seabirds	6.1	1	2	1	Shipping activity occurs daily across the full range of the fishery, and outside areas of current effort.=> Greatest potential risks are to the Behaviour/movement of seabird species resulting in disruption to feeding and/ or migration. Seabirds may be attracted to ships expecting food.=> Intensity: negligible because although the hazard was considered over a large range/scale, the shipping track is narrow - impact a $<1 \mathrm{~nm}$ wide. .=> Consequence: negligible with any consequence of shipping impacts likely to be detectable but for seabirds.=> Confidence: high shipping unlikely to impact and have significant negative consequences for the behaviour/movement of seabirds.
	Other anthropogenic activities	1	6	6	Behaviour/ movement	Dolphin	6.1	1	1	2	Tourism occurs daily across the full range of the fishery, and outside areas of current effort. .=>greatest potential risks are to the Behaviour/movement of dolphins riding on bow wave of tourist vessels resulting in disruption to feeding and/ or migration. .=>Intensity: negligible because although the hazard is dispersed over a large range, its occurrence is patchy- around population centres, and because dolphins are highly mobile strong avoidance ability was expected. . $=>$ Consequence: negligible with any consequence of tourism impacts unlikely to be detectable for dolphins. .=>Confidence: high- tourism unlikely to impact and have consequences for the behaviour/movement.

2.3.1 Level 1 (SICA) Documents L1.4 - Habitat Component

Direct impact of fishing HABITATS	Fishing Activity					n n त 0 0 0 0 5			$\begin{aligned} & 0 \\ & \vdots \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \ddot{U} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \because 00 \\ & 0 \\ & 0 \\ & \ddot{U} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Rationale
											Confidence: low due to unvalidated record of frequency of this occurrence.
	Incidental behaviour	0									
	Gear loss	1	6	4	Habitat structure and function	fine sediments, unrippled, mixed faunal community, inner shelf	5.1	2	1	2	Gear loss possible over entire range of the subfishery, but more likely to occur in the area of greatest fishing effort, and impact tall erect fauna on either hard or soft habitats. Gear loss considered to occur a few times a year during the calendar fishing year. Lost gear may be irretrievable in deeper waters, may impact benthos in process of balling up and retrieval and eventually become habitat. Intensity: minor, considered a rare event. Consequence: negligible, habitat modification likely to be undetectable. Confidence: high, though effects not visually documented for this fishery, and there is a lack of verified data on rates and types of gear loss.
	Anchoring/ mooring	0									

Direct impact of fishing HABITATS	Fishing Activity								0 0 0 0 0 0 0 0 0 \vdots 0 0 0 0		Rationale
	Navigation/stea ming	1	6	6	Habitat structure and function	Eastern coastal pelagic province	5.1	1	1	2	Navigation/ steaming may occur daily during fishing season. The pelagic water quality of the Eastern Coastal Pelagic habitat may change with increased turbulence and changes in water mixing that could occur from movement of vessels through water. Intensity and Consequence: negligible due to remote likelihood of detection at any spatial or temporal scale, and interactions that may be occurring are not detectable against natural variation. Confidence scored high because of logical constraints.
Addition/ movement of biological material	Translocation of species	0									
	On board processing	0									
	Discarding catch	1	6	4	Substrate quality	fine sediments, unrippled, mixed faunal community, inner shelf	3.1	2	2	1	Discarding byproduct species known to occur during fishing trips. Most discards will be opportunistically taken up by the increased relative abundance of predators attracted by this process i.e. sharks and TEP species. Some discards may reach the benthos, where they could be expected to be taken up rapidly by demersal species, depending on volume. Localized accumulation unlikely, but if occurs leads to anoxic bottom sediments, particularly if fine, which alters substratum biogeochemistry for burrowing infauna. Large, erect habitat could be damaged however, Intensity considered minor, as thought to occur rarely. Consequence: minor because only short term changes in benthos structure, function and quality likely to occur. Confidence low: because of a lack of insufficient knowledge on trophic dynamics.
	Stock enhancement	0									
	Provisioning	0									

Direct impact of fishing HABITATS	Fishing Activity					$\begin{aligned} & \text { n } \\ & \text { n } \\ & \text { त } \\ & \text { त } \\ & 0 \\ & \vdots \\ & \vdots \end{aligned}$	I N 0 0 0 0 0 0 0 0 0 0 000 0 0				Rationale
	Organic waste disposal	1	6	4	Water quality	Eastern coastal pelagic province	1.1	1	1	2	Organic waste disposal possible over the entire scale of fishing effort. Boats subject to MARPOL. Water quality of pelagic habitats is considered to experience greatest impact of organic waste disposal. Overall volume of waste likely to be too small to reach benthos, or accumulate even if it does. Intensity: moderate. Consequence: Minor, addition of high nutrient material is realistically expected to cause short term peaks in productivity or scavenging species interactions, with minimal detectability within minutes to hours. Confidence: high logical constraints.
Addition of nonbiological material	Debris	1	6	4	Habitat structure and function	Eastern coastal pelagic province	5.1	2	2	1	Fishing activity occurs along on the edge of the continental shelf and covers an area of over $4700 \mathrm{~km}^{2}$, hence generation of debris possible over this scale. Greatest effort within the Eastern Coastal Pelagic province habitat, therefore considered the most likely pelagic habitat to accumulate floating plastics, and inadvertent losses from fishing operations. All boats subject to MARPOL rules, which means losses should be unintentional, and retrieved if possible. Debris considered to reduce water quality, and alter habitat structure with the addition of ingestible materials putting susceptible species at risk e.g. seabirds, dolphins or seals. Intensity: minor if adherence to MARPOL regulations. Consequence: minor to habitat as dispersal and small volumes. Consequence: low because the volume of debris generated and species susceptibility are unknown.

Direct impact of fishing HABITATS	Fishing Activity					$\begin{aligned} & \text { n } \\ & \text { n } \\ & \text { N } \\ & \text { \# } \\ & 0 \\ & 0 \\ & 5 \end{aligned}$	Operational objective (S2.1)		$\begin{aligned} & 0 \\ & \dot{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		Rationale
	Chemical pollution	1	6	4	Water quality	Eastern coastal pelagic province	1.1	2	2	1	Fishing activity occurs along on the edge of the continental shelf and covers an area of over $4700 \mathrm{~km}^{2}$, hence chemical spill during fishing activities possible over this scale. Chemical spill considered annual but is possible every time fishing occurs. The Eastern Coastal Pelagic habitat would be most at risk from chemical pollution. Residence time of small volume of contaminants likely to be short term in the offshore environment as weather and oceanographics disperse substances quickly. Intensity: minor because the activity (chemical spill) is thought to occur rarely, particularly if boats follow MARPOL rules. Consequence: minor, possible detectable change in water quality, but time to return to prior state on the scale of hours to days (note that chemical pollution likely to have measurable consequences if large-scale event occurs in a sensitive area, the scale of an event will be limited by the amount of chemicals carried by the fishing vessels). Confidence: low with out data on the volume of pollution.
	Exhaust	1	6	4	Air quality	Eastern coastal pelagic province	2.1	1	1	2	Exhaust from running engines may impact the air quality of the species within Eastern Coastal Pelagic habitat (e.g. birds). Intensity: negligible. Consequence: negligible due to rapid dispersal of pollutants in winds, and likely to be physically undetectable over very short time frames. Confidence in assessment: high because effect of exhaust was considered to be very localised, and logical consideration.
	Gear loss	1	6	4	Habitat structure and function	sedimentary rock, outcrop, mixed faunal community, inner-shelf	5.1	2	1	2	Lost gear known to ball up if not retrieved, or snag on higher relief reefs, potentially damaging habitat in the vicinity, eventually becoming habitat. Intensity: minor, considered an uncommon event. Consequence: negligible, habitat modification likely to be undetectable. Confidence: high, though effects not visually documented for this fishery, and there is a

Direct impact of fishing HABITATS	Fishing Activity					$\begin{aligned} & \text { n } \\ & \text { n } \\ & \text { त } \\ & \text { त } \\ & 0 \\ & \vdots \\ & 5 \end{aligned}$			$\begin{aligned} & 0 \\ & \text { ì } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \ddot{U} \\ & 0 \\ & 0 \\ & \ddot{0} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		Rationale
physical processes	Fishing	1	6	4	Substrate quality	fine sediments, unrippled, mixed faunal community, inner shelf	3.1	2	2	1	Fishing occurs mainly on the inner shelf, an area of wide sediment plains interspersed with hard surfaces (\pm a veneer of fine sediments) which provide attachment points for mixed faunal communities. Suspension and filter feeding animals dominate these communities. Disturbance of physical processes via purse seine fishing will occur if nets contact benthos. Sediments will be resuspended, potentially smothering animals dependent on nonturbid conditions. Shallow infaunal bioturbators will be dislodged, settling elsewhere. Recovery capacity of sessile species removed by the net is unknown for many groups. Intensity: minor because net contact with bottom not a usual part of deployment. Purse seine nets are not designed to fish the bottom, and fishing considered to only impact physical processes over a small area in total, with localized effects for benthic habitats. Consequence: minor with current level of effort, however, this would have to be reviewed if effort increases or net contact with the bottom increases in frequency. Disturbance of water column unlikely to be detectable for pelagic communities. Confidence: low for benthos, inadequate documentation of frequency of this occurrence, high for pelagic habitats because localized disruption of water column unlikely to impact and have consequences for the distribution of highly mobile pelagic communities.
	Boat launching	0									
	Anchoring/ mooring	0									

Direct impact of fishing HABITATS	Fishing Activity						I N 0 0 0 0 0 0 0 0 0 0 0 0		$\begin{aligned} & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \ddot{0} \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		Rationale
	Coastal development	1	6	6	Habitat structure and function	fine sediments, unrippled, mixed faunal community, inner shelf	5.1	3	3	1	Coastal development occurs throughout the coastal range of the fishery. Frequent, local impacts at small- moderate spatial scales are likely to have most obvious impact on the habitat composition, structure and function, including for pelagic types, water quality and for benthic types, substratum state. Intensity: moderate at broader spatial scale, or severe but localized within the areas affected. Consequence: moderate, greatest impacts likely to be inshore including waters less than 25 m , extending in some cases further out onto the inner shelf Eastern Coastal Pelagic and benthic habitats. Confidence: low because of a lack of data.
	Other extractive activities	1	6	6	Habitat structure and function	fine sediments, unrippled, mixed faunal community, inner shelf	5.1	2	2	1	Oil and gas industry occur in the broad area. There may be pollution from the petrochemical industry in both shallow and deep water and associated stimuli. Intensity: minor as direct and indirect impact(s) on community likely to be low, but linkages need to be better understood. Consequence: Cumulative impacts may exist, but considered minor as commercial fishing restricted within these zones. Confidence: low, due to limited information available.
	Other non extractive activities	1	6	6	Habitat structure and function	fine sediments, unrippled, mixed faunal community, outer shelf	5.1	2	1	1	Shipping considered to occur over the spatial range of the fishery, on a daily basis. Most shipping considered to occur in the Eastern Coastal Pelagic environment and impact bio- and geo-chemical cycles of pelagic waters by disturbing mixed depth layer, and addition of non biological materials. Intensity: minor because natural levels of mixing and re-mixing considered high in Eastern Coastal Pelagic and benthic impacts localised over scale of fishery area. Consequence: negligible - Interactions which affect bio- \& geochemical cycling unlikely to be detectable against natural variation. Benthic detection decreases with time and object forms basis of reef structure which will be

Direct impact of fishing HABITATS	Fishing Activity				\# 0 0 0 0 0 0 in	n n त 0 0 0 5 5	$\begin{aligned} & \text { İ } \\ & \text { in } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { N } \\ & .0 \\ & \overrightarrow{0} \\ & 0.0 \\ & 0.0 \end{aligned}$		0 0 0 0 0 0 0 0 0 0 0 0 0		Rationale
											colonized over time (more rapidly in waters < 200m. Confidence: low because of a lack of information on shippinganimal interactions plus insufficient knowledge on effects of ships on bio- and geo-chemical cycling.
	Other anthropogenic activities	1	6	6	Habitat structure and function	Sedimentary rock, outcrop, mixed faunal community, inner shelf	5.1	2	2	1	Habitats may be disturbed by charter boats associated with general recreational activities, and tourism (e.g. whale watching, fishing tours, anchoring, recreational diving etc). Intensity: Assumed to have minor direct and indirect impacts on pelagic habitat, and un measured on benthos. Consequence: Until there is better information, difficult to score therefore low confidence.

2.3.1 Level 1 (SICA) Documents L1.. 5 - Community Component

Direct impact of fishing COMM.	Fishing Activity					$$					Rationale
Capture	Bait collection	0									
	Fishing	1	6	4	Functional group composition	Eastern coastal pelagic	2	3	3	1	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over $4700 \mathrm{~km}^{2}$. Approximately 50% of these shots occur in Australian Government waters. Purse seine fishing for small pelagic species most likely to effect Functional group composition, i.e. removal of the small pelagic functional group from the Eastern Coastal Pelagic community => Intensity: moderate -i.e. the impact was considered to be potentially severe at local scales but moderate at broader spatial scale => Consequence: moderate, i.e. it was considered that fishing would have measurable changes to the ecosystem without a major change in function => Confidence: low because of insufficient knowledge of trophic interactions.
	Incidental behaviour	0									
Direct impact without capture	Bait collection	0									
	Fishing	1	6	4	Functional group composition	Eastern coastal pelagic	2	2	1	1	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over $4700 \mathrm{~km}^{2}$. Approximately 50\% of these shots occur in Australian Government waters. => Purse seine fishing (not resulting in capture) most likely to effect Functional group composition => damage or mortality to the small pelagic functional group from both the Eastern Coastal Pelagic community => Intensity: minor -i.e. the impact of noncapture damage or mortality was considered to occur rarely because mechanics of purse seine fishing unlikely to strongly impact fish not captured => Consequence: negligible because it was considered that damage or mortality to non-caught Small Pelagic species is unlikely to have strong impacts on the small pelagic functional group in its own right => Confidence: low because of

Direct impact of fishing COMM.	Fishing Activity				$\begin{aligned} & \vec{E} \\ & \dot{U} \\ & \stackrel{0}{0} \\ & \text { EU } \\ & \dot{0} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$						Rationale
movement biological											insufficient knowledge on effects of purse seine net on non-captured individuals.
	Incidental behaviour	0									
	Gear loss	1	6	4	Distribution of community	South East Transition inner shelf; South East Transition outer shelf	2	1	1	1	Fishing effort is dispersed. Most fishing activity occurs along on the edge of the continental shelf off Tasmania, NSW and SA, covering an area of over $4700 \mathrm{~km}^{2}$. Hence gear loss possible over this scale in the area of fishing effort => Gear loss considered to occur quarterly during the calendar fishing year. Gear loss was considered to have greatest community level impact by attracting scavengers altering distribution of community but not persistent=> The impact was scored as negligible -i.e. the likelihood of impact was considered remote $=>$ Therefore, consequence: negligible => Confidence in the consequence score: low because of a lack of verified data on rates and types of gear loss .
	Anchoring/ mooring	0									
	Navigation/ steaming	1	6	4	Species composition	Eastern coastal pelagic	1	1	1	2	Navigation/ steaming may occur daily during fishing season. The species composition of the autotrophs of the Eastern Coastal Pelagic community may change with increased turbulence and changes in water mixing that could occur from high levels of fishing activity => Intensity considered Negligible - remote likelihood of detection at any spatial or temporal scale => Consequence also considered negligible - interactions may be occurring which affect the internal dynamics of communities leading to change in species composition but not detectable against natural variation => Confidence scored high because of logical constraints.
	Translocation of species	0									Redbait sold as aquaculture but potential impact of potential pathogens would not occur in this fishery
	On board processing	0									

Direct impact of fishing COMM.	Fishing Activity					$\begin{aligned} & \text { n } \\ & \text { n } \\ & \text { N } \\ & \text { त } \\ & 0 \\ & \vdots \\ & \vdots \end{aligned}$					Rationale
material	Discarding catch	1	6	4	Distribution of community	Eastern coastal pelagic	1	2	2	1	Discarding byproduct species of low value or lack of markets occurs in the area of fishing activity (e.g. swallowtail (Centroberyx lineatus); Southern frostfish (Lepidopus caudatus); Chinaman leatherjacket (Nelusetta ayraudi)). Discarding species possible on during individual fishing trips. The Eastern Coastal Pelagic community are most at risk to discarded catch because discarded catch attracts large, rare top order predators i.e. sharks and TEP species. Intensity: minor -i.e. thought to occur rarely. Consequence: minor because changes temporary Confidence in consequence score: low because of a lack of insufficient knowledge on trophic dynamics.
	Stock enhancement	0									
	Provisioning	0									
	Organic waste disposal	1	6	4	Distribution of community	Eastern coastal pelagic	1	1	1	1	Fishing activity dispersed. Boats subject to MARPOL. The pelagic community is where any organic waste is considered to have greatest community level impact. This impact would be on distribution of community by temporarily attracting scavenging species e.g. large, rare top order predators or seabirds. Impact: negligible - i.e. thought to occur rarely. Consequence: negligible because only minor changes in relative abundance of constituents perceived to occur, organic matter likely to be scavenged or break down quickly (i.e. temporary and localized effect). Confidence in consequence score: low because of a lack of insufficient knowledge on trophic dynamics.
Addition of nonbiological material	Debris	1	6	4	Species composition	Eastern coastal pelagic	1	2	2	1	Fishing activity dispersed. The Eastern Coastal Pelagic community considered most likely to accumulate debris (e.g. floating plastics), debris was considered to have greatest community level impact on species composition by decreasing relative abundance of susceptible species e.g. seabirds, dolphins or seals. Intensity: minor - i.e. thought to occur rarely, and if MARPOL rules followed. Consequence: minor because considered only a minor change to relative abundance of seabird species - unlikely to change outside natural variation. Confidence in the

Direct impact of fishing COMM.	Fishing Activity					$$				$\begin{aligned} & 00 \\ & 0 \\ & 0 \\ & \ddot{U} \\ & \text { U } \\ & 0 \\ & \vdots \\ & 0 \\ & \text { in } \end{aligned}$	Rationale
											consequence score: low because the volume of debris generated and species susceptibility are unknown.
	Chemical pollution	1	6	4	Species composition	Eastern coastal pelagic	3	2	2	1	Fishing activity dispersed hence chemical spill during fishing activities occurs across this scale. The Eastern Coastal Pelagic community would be most at risk from chemical pollution from fishing boats, causing mortality. Intensity: minor because the activity (chemical spill) is thought to occur rarely, particularly if boats follow MARPOL rules. Consequence: minor - possible detectable change in community distribution but minimal impact on communities, time to return to prior distribution on the scale of days to weeks (note that chemical pollution likely to have measurable consequences if large-scale event occurs in a sensitive area, the scale of an event will be limited by the amount of chemicals carried by the fishing vessels). Confidence: low with out data on the volume of pollution.
	Exhaust	1	6	4	Distribution of community	Eastern coastal pelagic	3	1	1	2	Exhaust from running engines may impact the distribution of the Eastern Coastal Pelagic community (e.g. birds). Intensity: negligible. Consequence: negligible because considered low impact on communities i.e. physically affected, unlikely to be measurable, effects more likely to be short term and effect air quality. Confidence in assessment: high because effect of exhaust was considered to be very local, and disperse rapidly and unlikely to impact communities.
	Gear loss	1	6	4	Distribution of community	South East Transition inner shelf; South East Transition outer	2	1	1	1	Gear loss possible across the fishery. The South Eastern inner and outer shelf communities were considered most likely to interact with lost gear, gear loss was considered to have greatest community level impact by creating new benthic habitat and altering distribution of community members or risk of entanglement could attract predators temporarily=> Intensity: negligible -i.e. the likelihood of impact was considered remote. Consequence: negligible. Confidence in the consequence score: low because of a

Direct impact of fishing COMM.	Fishing Activity					$\begin{aligned} & \text { n } \\ & \text { n } \\ & \text { N } \\ & \text { त } \\ & 0 \\ & 0 \\ & \vdots \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \ddot{U} \\ & 0 \\ & \tilde{y} \\ & \text { ָ } \\ & 0 \end{aligned}$	Rationale
						shelf					lack of verified data on rates and types of gear loss and insufficient knowledge of trophic interactions.
	Navigation/ steaming	1	6	4	Distribution of community	Eastern coastal pelagic	1	1	1	2	Navigation/steaming occur during the year across the range of the fishery. The distribution of community of the Eastern Coastal Pelagic community is likely to be affected by changes in noise and visual stimuli due to Navigation/ steaming. Intensity: Negligible - navigation/steaming is a large component of the small pelagic species purse seine operations, however there is remote likelihood of impact on small pelagic species over the spatial scale of the fishery. Consequence: negligible, since unlikely to be detectable - any consequence on small pelagics unlikely to be detectable, time taken to recover on scale of days weeks. Confidence: high because direct impacts are unlikely to be detectable and interactions between navigation/steaming and community not perceived to be strong (i.e. logical constraints).
	Activity/ presence on water	1	6	4	Distribution of community	Eastern coastal pelagic	3	1	1	2	Activity/presence on water occurs across the range of the fishery => Daily during fishing season => Activity/presence on water of purse seine fishing vessels was expected to pose greatest potential risk for the Distribution of eastern coastal pelagic community. Intensity was scored as negligible - i.e. remote likelihood of impact at any spatial or temporal scale. Consequence: negligible. Confidence in consequence score: high because it was considered highly unlikely that vessel presence/activity would lead to community level changes in its own right (logical constraints).
Disturb	Bait collection	0									

Direct impact of fishing COMM.	Fishing Activity					$\begin{aligned} & \text { n } \\ & \text { n } \\ & \text { N } \\ & \text { た } \\ & 0 \\ & \vdots \\ & \vdots \end{aligned}$					Rationale
physical processes	Fishing	1	6	4	Distribution of community	Eastern coastal pelagic	3	1	1	2	Fishing activity occurs over the range of the fishery. Disturbance of physical processes via purse seine fishing was expected to pose greatest potential risk for the Distribution of the Eastern Coastal Pelagic community => Intensity: negligible because, fishing considered to only impact physical processes over a small < 1 nm area => Consequence: negligible with any consequence of water column disturbance unlikely to be detectable for pelagic communities => Confidence in the consequence score: high because localized disruption of water column unlikely to impact and have consequences for the distribution of highly mobile pelagic communities.
	Boat launching	0									
	Anchoring/ mooring	0									
	Navigation/steaming	1	6	4	Distribution of community	Eastern coastal pelagic	1	1	1	2	Navigation/steaming occur across the range of the fishery during the year, particularly in areas of greatest fishing effort. The species composition of the Eastern Coastal Pelagic community is likely to be affected by changes in turbulence and water movement due to Navigation/ steaming. Some species will not be able to survive in these environments. Intensity: negligible - navigation/steaming is a large component of the small pelagic species purse seine operations, however there is remote likelihood of impact on small pelagic species over the spatial scale of the fishery. Consequence: negligible as unlikely to be detectable, time taken to recover on scale of days -weeks. Confidence: high because direct impacts are unlikely to be detectable (i.e. logical constraints).

Direct impact of fishing COMM.	Fishing Activity										Rationale
External Impacts (specify the particular example within each activity area)	Other fisheries: e.g. South East Fishery otter trawl; South East Fishery Danish seine	1	6	6	Trophic/size structure	Eastern coastal pelagic	2	3	3	1	Fishery covers a large spatial area in which other fisheries occur, using different targeting methods and gears. Other fisheries likely to effect wide range of species and the overall exploitation levels would affect the trophic and size structure by targeting specific functional groups. Intensity: moderate - i.e. the impact was considered to be potentially severe at local scales but moderate at broader spatial scale => Consequence: moderate, i.e. it was considered that fishing would have measurable changes to the ecosystem without a major change in function => Confidence: low because of insufficient knowledge of trophic dynamics.
	Aquaculture	0									
	Coastal development	1	6	6	$\begin{aligned} & \text { Bio- and } \\ & \text { geo-chemical } \\ & \text { cycles } \end{aligned}$	Eastern coastal pelagic	1	3	2	1	Sewage outfalls, runoff (occurs daily)etc likely to affect bio-geochemical cycles and primary productivity leading to changes in species and their distribution. Frequent, local impacts at small spatial scales should have most obvious impact on the bio-geochemical cycles of the areas affected, the impacts should be local and their consequences only minor to the entire Eastern Coastal Pelagic community => Intensity Moderate - moderate at broader spatial scale, or severe but local => Consequence Minor - Impacted species do not play a keystone role only minor changes in relative abundance of other constituents. Confidence: low because of a lack of data.
	Other extractive activities	1	3	6	Distribution of community	Eastern coastal pelagic	3	2	2	1	Oil and gas industry occur mostly in eastern Bass Strait shelf -pipelines, construction, drilling activities and seismic activity might affect distribution of community but localised effect. Intensity: minor as direct and indirect impact(s) on community likely to be low, but linkages need to be better understood. Consequence: minor. Confidence: low, due to limited information available.

Direct impact of fishing COMM.	Fishing Activity				$\begin{aligned} & \vec{E} \\ & \dot{U} \\ & \dot{0} \\ & \text { E } \\ & 0 \\ & \dot{0} \\ & \dot{\omega} \end{aligned}$						Rationale
	Other non extractive activities	1	6	6	Distribution of community	Eastern coastal pelagic	5	3	1	1	Shipping considered to occur over the spatial range of the fishery => Shipping occurs daily => Most shipping considered to occur in the Eastern Coastal Pelagic community and impact distribution of community by introducing noise and visual stimuli into the environment => Intensity: moderate => Consequence: minor - unlikely to be detectable against natural variation and temporary => Confidence in consequence score: low because of a lack of information on shipping-animal interactions .
	Other anthropogenic activities	1	6	6	Distribution of community	Eastern coastal pelagic	3	3	2	1	Community may be disturbed shipping and boating e.g. tourism, whale watching, recreational fishing, diving. Dumping and munitions dumping occurred in the past in this community but vessels subject to MARPOL regulations. Intensity: moderate. Consequence: Assumed to have minor direct and indirect impacts on community. Confidence: low- no specific information on effects on community

2.3.11 Summary of SICA results

The report provides a summary table (Level 1 (SICA) Document L1.6) of consequence scores for all activity/component combinations and a table showing those that scored 3 or above for consequence (shaded), and differentiating those that did so with high confidence (in bold).

Level 1 (SICA) Document L1.6. Summary table of consequence scores for all activity/component combinations.

Direct impact of fishing	Fishing Activity	Target	Bycatch Byproduct	TEP	Habitat	Communities
Capture	Bait collection	0	0	0	0	0
	Fishing	3	3	3	1	3
	Incidental behaviour	0	0	0	0	0
Direct impact without capture	Bait collection	0	0	0	0	0
	Fishing	2	2	2	2	1
	Incidental behaviour	0	0	0	0	0
	Gear loss	1	1	2	1	1
	Anchoring/ mooring	0	0	0	0	0
	Navigation/ steaming	1	1	2	1	1
Addition/ movement of biological material	Translocation of species	0	0	0	0	0
	On board processing	0	0	0	0	0
	Discarding catch	2	2	2	2	2
	Stock enhancement	0	0	0	0	0
	Provisioning	0	0	0	0	0
	Organic waste disposal	1	1	2	1	1
Addition of nonbiological material	Debris	1	1	2	2	2
	Chemical pollution	2	2	2	2	2
	Exhaust	1	1	2	1	1
	Gear loss	2	1	2	1	1
	Navigation/ steaming	1	1	2	1	1
	Activity/ presence on water	1	1	2	1	1
Disturb physical processes	Bait collection	0	0	0	0	0
	Fishing	1	1	1	2	1
	Boat launching	0	0	0	0	0
	Anchoring/ mooring	0	0	0	0	0
	Navigation/steaming	1	1	1	1	1
External Impacts (specify the particular example within each activity area)	Other fisheries	3	3	4	4	3
	Aquaculture	0	0	0	0	0
	Coastal development	1	2	1	3	2
	Other extractive activities	1	1	2	2	2
	Other non-extractive activities	1	1	2	1	1
	Other anthropogenic activities	1	1	1	2	2

Target species: Frequency of consequence score differentiated between high and low confidence.

Byproduct and bycatch species: Frequency of consequence score differentiated between high and low confidence

TEP species: Frequency of consequence score differentiated between high and low confidence (SICA excel workbook)

Habitats: Frequency of consequence score differentiated between high and low confidence

Communities: Frequency of consequence score differentiated between high and low confidence (SICA excel workbook)

2.3.12 Evaluation/discussion of Level 1

This section provides a brief discussion of the results of the Level 1 analysis. Full details and rationale for the scores are provided in the SICA tables earlier in this section.

There were 19 of the 32 possible activity scenarios identified as leading to some form of impact in the SPF purse-seine sub-fishery (i.e., activities occurred in the sub-fishery). Of the 19 'impact causing activities' across five components (95 scenarios), only four scenarios (plus six out of 30 external to the fishery) were identified as having an impact of moderate or above (see Level 1 (SICA) Document L1.6). These four internal scenarios occurred across four components (one each); target species, bycatch and byproduct species, TEP species and communities. The only impact-causing activity involved was

- Fishing (direct impacts)

The significant external hazards to the components relevant to the SPF purse-seine subfishery were external fishing and coastal development.

This analysis did not yield any surprises; the low level of fishing currently occurring means that the impact of just about all activities was minor. The uncertain and possibly
low population level of the target species, together with some unknown impacts about the removal of the target species on the TEP species (which feed on the target) and the ecological community. Potential capture of an overfished byproduct species (Blue warehou) is a concern that should be considered in more detail, as little information exists on the byproduct/bycatch species in this sub-fishery. Evaluation of these components at Level 2 allows the risks to be considered in more detail, and they may subsequently be eliminated with greater analysis effort.

2.3.13 Components to be examined at Level 2

As a result of the preliminary SICA analysis, the components that are to be examined at Level 2 are those with any consequence scores of 3 or above. These components are:

- Target species
- Byproduct and bycatch
- TEP species
- Communities

The SICA has removed some components from further analysis, as these are judged to be impacted with low consequence by the set of activities considered. Those components excluded are

- Habitats

2.4 Level 2 Productivity and Susceptibility Analysis (PSA)

When the risk of an activity at Level 1 (SICA) on a component is moderate or higher and no planned management interventions that would remove this risk are identified, an assessment is required at Level 2. The PSA approach is a method of assessment which allows all units within any of the ecological components to be effectively and comprehensively screened for risk. The units of analysis are the complete set of species habitats or communities identified at the scoping stage. The PSA results in sections 2.4.2 and 2.4.3 of this report measure risk from direct impacts of fishing only. In all assessments to date, this has been the hazard with the greatest risks identified at Level 1. Future iterations of the methodology will include PSAs modified to measure the risk due to other activities, such as gear loss.

The PSA approach is based on the assumption that the risk to an ecological component will depend on two characteristics of the component units: (1) the extent of the impact due to the fishing activity, which will be determined by the susceptibility of the unit to the fishing activities (Susceptibility) and (2) the productivity of the unit (Productivity), which will determine the rate at which the unit can recover after potential depletion or damage by the fishing. It is important to note that the PSA analysis essentially measures potential for risk, hereafter noted as 'risk'. A measure of absolute risk requires some direct measure of abundance or mortality rate for the unit in question, and this information is generally lacking at Level 2.

The PSA approach examines attributes of each unit that contribute to or reflect its productivity or susceptibility to provide a relative measure of risk to the unit. The following section describes how this approach is applied to the different components in the analysis. Full details of the methods are described in Hobday et al. (2007).

Species

The following Table outlines the seven attributes that are averaged to measure productivity, and the four aspects that are multiplied to measure susceptibility for all the species components.

	Attribute
Productivity	Average age at maturity
	Average size at maturity
	Average maximum age
	Average maximum size
	Fecundity
	Reproductive strategy
	Trophic level
Susceptibility	Availability considers overlap of fishing effort with a species distribution
	Encounterability considers the likelihood that a species will encounter fishing gear that is deployed within the geographic range of that species (based on two attributes: adult habitat and bathymetry)
	Selectivity considers the potential of the gear to capture or retain species
	Post capture mortality considers the condition and subsequent survival of a species that is captured and released (or discarded)

The productivity attributes for each species are based on data from the literature or from data sources such as FishBase. The four aspects of susceptibility are calculated in the following way:

Availability considers overlap of effort with species distribution. For species without distribution maps, availability is scored based on broad geographic distribution (global, southern hemisphere, Australian endemic). Where more detailed distribution maps are available (e.g. from BIOREG data or DEH protected species maps), availability is scored as the overlap between fishing effort and the portion of the species range that lies within the broader geographical spread of the fishery. Overrides can occur where direct data from independent observer programs are available.

Encounterability is the likelihood that a species will encounter fishing gear deployed within its range. Encounterability is scored using habitat information from FishBase, modified by bathymetric information. Higher risk corresponds to the gear being deployed at the core depth range of the species. Overrides are based on mitigation measures and fishery independent observer data.

For species that do encounter gear, selectivity is a measure of the likelihood that the species will be caught by the gear. Factors affecting selectivity will be gear and species dependent, but body size in relation to gear size is an important attribute for this aspect. Overrides can be based on body shape, swimming speed and independent observer data.

For species that are caught by the gear, post capture mortality measures the survival probability of the species. Obviously, for species that are retained, survival will be zero. Species that are discarded may or may not survive. This aspect is mainly scored using independent filed observations or expert knowledge.

Overall susceptibility scores for species are a product of the four aspects outlined above. This means that susceptibility scores will be substantially reduced if any one of the four aspects is considered to be low risk. However the default assumption in the absence of verifiable supporting data is that all aspects are high risk.

Habitats

Similar to species, PSA methods for habitats are based around a set of attributes that measure productivity and susceptibility. Productivity attributes include speed of regeneration of fauna, and likelihood of natural disturbance. The susceptibility attributes for habitats are described in the following Table.

Aspect	Attribute	Concept Susceptibility	Reneral depth Availability range (Biome)			Spatial overlap of subfishery with habitat defined at biomic scale	Habitat occurs within the management area

Communities

PSA methods for communities are still under development. Consequently, it has not yet been possible to undertake level 2 risk analyses for communities.

During the Level 2 assessment, each unit of analysis within each ecological component (species or habitat) is scored for risk based on attributes for productivity and susceptibility, and the results are plotted as shown in Figure 13.

Figure 13. The axes on which risk to the ecological units is plotted. The x-axis includes attributes that influence the productivity of a unit, or its ability to recover after impact from fishing. The \boldsymbol{y} axis includes attributes that influence the susceptibility of the unit to impacts from fishing. The combination of susceptibility and productivity determines the relative risk to a unit, i.e. units with high susceptibility and low productivity are at highest risk, while units with low susceptibility and high productivity are at lowest risk. The contour lines divide regions of equal risk and group units of similar risk levels.

There are seven steps for the PSA undertaken for each component brought forward from Level 1 analysis.

Step 1 Identify the units excluded from analysis and document the reason for exclusion
Step 2 Score units for productivity
Step 3 Score units for susceptibility
Step 4 Plot individual units of analysis onto a PSA Plot
Step 5 Ranking of overall risk to each unit
Step 6 Evaluation of the PSA analysis
Step 7 Decision rules to move from Level 2 to Level 3

2.4.1 Units excluded from analysis and document the reason for exclusion (Step 1)

Species lists for PSA analysis are derived from recent observer data where possible or, for fisheries with no observer programs, from logbook and scientific data. In some logbook data, there may only be family level identifications. Where possible these are resolved to species level by cross-checking with alternative data sources and discussion with experts. In cases where this is not possible (mainly invertebrates) the analysis may be based on family average data.

There were no species excluded from the analysis.

2.4.2 and 2.4.3 Level 2 PSA (steps 2 and 3)

Summary of Species PSA results

The results in the Tables below provide details of the PSA assessments for each species, separated by role in the fishery, and by taxa where appropriate. These assessments are limited to direct impacts from fishing, and the operational objective is to avoid over-exploitation due to fishing, either as over-fishing or becoming over-fished. The risk scores and categories (high, medium or low) reflect potential rather than actual risk using the Level 2 (PSA) method. For species assessed at Level 2, no account is taken of the level of catch, the size of the population, or the likely exploitation rate. To assess actual risk for any species requires a Level 3 assessment which does account for these factors. However, recent fishing effort distributions are considered when calculating the availability attribute for the Level 2 analysis, whereas the entire jurisdictional range of the fishery is considered at Level 1.

The PSA analyses do not fully take account of management actions already in place in the fishery that may mitigate for high risk species. Some management actions or strategies, however, can be accounted for in the analysis where they exist. These include spatial management that limits the range of the fishery (affecting availability), gear limits that affect the size of animals that are captured (selectivity), and handling practices that may affect the survival of species after capture (post capture mortality). Management strategies that are not reflected in the PSA scores include limits to fishing effort, use of catch limits (such as TACs), and some other controls such as seasonal closures.

It should be noted that the PSA method is likely to generate more false positives for high risk (species assessed to be high risk when they are actually low risk) than false negatives (species assessed to be low risk when they are actually high risk). This is due to the precautionary approach to uncertainty adopted in the PSA method, whereby attributes are set at high risk levels in the absence of information. It also arises from the nature of the PSA method assessing potential rather than actual risk, as discussed above. Thus some species will be assessed at high risk because they have low productivity and are exposed to the fishery, even though they are rarely if ever caught and are relatively abundant.

In the PSA Tables below, the "Comments" column is used to provide information on one or more of the following aspects of the analysis for each species: use of overrides to alter susceptibility scores (for example based on use of observer data, or taking account of specific management measures or mitigation); data or information sources or limitations; and information that supports the overall scores. The use of over-rides is explained more fully in Hobday et al (2007).

The PSA Tables also report on "missing information" (the number of attributes with missing data that therefore score at the highest risk level by default). There are seven attributes used to score productivity and four aspects (availability, encounterability, selectivity and post capture mortality) used to score susceptibility (though encounterability is the average of two attributes). An attribute or aspect is scored as missing if there are no data available to score it, and it has defaulted to high risk for this reason. For some species, attributes may be scored on information from related species or other supplementary information, and even though this information is indirect and less reliable than if species specific information was available, this is not scored as a missing attribute.

There are differences between analyses for TEP species and the other species components. In particular, target, by-product and by-catch species are included on the basis that they are known to be caught by the fishery (in some cases only very rarely). However TEP species are included in the analysis on the basis that they occur in the area of the fishery, whether or not there has ever been an interaction with the fishery recorded. For this reason there may be a higher proportion of false positives for high vulnerability for TEP species, unless there is a robust observer program that can verify that species do not interact with the gear.

Observer data and observer expert knowledge are important sources of information in the PSA analyses, particularly for the bycatch and TEP components. To date there has been no observer data for this fishery.

A summary of the species considered at Level 2 is presented below, sorted by component, by taxa within components, and then by the overall risk score [high (>3.18), medium (2.64-3.18), low<2.64)], together with categorization of risk (refer to section 2.4.8).

Target species Small Pelagic Purse Seine Fishery

ERA species ID	Scientific Name	Common Name	Average logbook catch (kg) $(2001-04)$										Comments
Teleost													
155	Emmelichthys nitidus	redbait	0	N	1	0	1.57	1.67	2.29	N	Low		
1088	Trachurus declivis	Jack Mackerel	62,725	N	0	0	1.29	1.67	2.10	N	Low		
540	Trachurus novaezelandiae	Yellow tail scad	5,634	N	0	0	1.29	1.67	2.10	Y	Low		Expert over-ride: Availability reduced from 2 to 1. Detailed mapping analysis not available for pelagic species. Widely distributed outside the fishery, migratorry and unlikely to form separate stock in Australian waters (Gomon 1994, Stock structure proxy table - see methodology doccument)
807	Trachurus murphyi	Peruvian Jack Mackerel	0	N	0	0	1.29	1.67	2.10	Y	Low		Expert over-ride: see yellowtail scad
210	Scomber australasicus	Blue Mackerel	138,239	N	0	0	1.29	1.67	2.10	N	Low		

Byproduct species Small Pelagic Purse Seine Fishery

$\begin{aligned} & \text { ERA } \\ & \text { species } \end{aligned}$ ID	Scientific Name	Common Name	Average logbook catch (kg) (2001-04)										Comments
Teleost													
982	Macruronus novaezelandiae	Blue Grenadier	0	N	0	0	1.71	1.89	2.55	N	Low		
825	Sardinops neopilchardus	pilchard	252,900	N	0	0	1.00	2.33	2.54	N	Low		
958	Hyperoglyphe antarctica	Blue Eye Trevalla	0	N	0	0	2.00	1.44	2.47	N	Low		
148	Seriola lalandi	Yellowtail Kingfish	0	N	0	0	1.71	1.67	2.39	N	Low		
1087	Thyrsites atun	Barracouta	0	N	0	0	1.57	1.44	2.13	N	Low		
150	Pseudocaranx dentex	Silver Trevally	6,250	N	0	0	1.57	1.22	1.99	N	Low		
1068	Seriolella brama	Blue Warehou	0	N	0	0	1.29	1.44	1.93	N	Low		
1130	Decapterus russelli	red tailed round scad	12,950	N	0	0	1.43	1.22	1.88	N	Low		
1069	Seriolella punctata	Spotted Warehou	0	N	0	0	1.43	1.22	1.88	N	Low		

Bycatch species Small Pelagic Purse Seine Fishery

ERA species ID	Scientific Name	Common Name	Average logbook catch (kg) (2001-04)										Comments
Teleost													
208	Lepidopus caudatus	Southern Frostfish	0	N	1	0	1.71	1.44	2.24	N	Low		
69	Centroberyx lineatus	swallowtail	0	N	1	0	1.71	1.22	2.11	N	Low		
233	Nelusetta ayraudi	Chinaman-Leatherjacket	0	N	0	0	1.29	1.67	2.10	N	Low		

TEP species Small Pelagic Purse Seine Fishery

ERA species ID	Scientific Name	Common Name	Average logbook catch (kg) (200104)										Comments
Chondrichthyan													
315	Carcharodon carcharias	white shark	0	N	0	0	2.86	1.44	3.20	N	High	Low attribute score	
313	Carcharias taurus	grey nurse shark	0	N	0	0	2.71	1.44	3.07	Y	Med	Spatial uncertainty	Expert over-ride: Availability reduced from 2 to 1. Detailed mapping analysis not available for pelagic species. Does not occur off Tasmania where effort in the fishery was concentrated from 0104 logbook data, (expert comment Rory McAulay)
1067	Rhincodon typus	whale shark	0	N	0	0	2.71	1.30	3.01	Y	Med	Low attribute score	Expert over-ride: Availability reduced from 2 to 1. Detailed mapping analysis not available for pelagic species. Widely distributed outside the fishery, migratory and unlikely to form separate stock in Australian waters (Gomon 1994, Stock structure proxy table see methodology

Marine bird

889	Thalassarche eremita	Chatham albatross
753	Diomedea epomophora	Southern Royal Albatross
451	Diomedea exulans	Wandering Albatross
755	Diomedea gibsoni	Gibson's Albatross
628	Diomedea antipodensis	Antipodean Albatross
799	Diomedea sanfordi	Northern Royal Albatross
1084	Thalassarche impavida	Campbell Albatross
1031	Thalassarche carteri	Indian Yellow-nosed
894	Thalassarche salvini	Albatross
1428	Diomedea amsterdamensis	Amsterdam Albatross
1429	Diomedea dabbenena	Tristan Albatross
1580	Calonectris leucomelas	streaked shearwater
1045	Pterodroma cervicalis	White-necked Petrel
1051	Pterodroma solandri	Providence Petrel
1054	Puffinus bulleri	Buller's Shearwater
912	Phalacrocorax fuscescens	Black faced cormorant
1086	Thalassarche steadi	White-capped Albatross
1032	Thalassarche bulleri	Buller's Albatross
1033	Thalassarche cauta	Shy Albatross
1035	Thalassarche chrysostoma	Grey-headed Albatross
1085	Thalassarche melanophrys	Black-browed Albatross
1009	Phoebetria palpebrata	Light-mantled Albatross
314	Fulmarus glacialoides	Southern fulmar
939	Halobaena caerulea	Blue Petrel
1052	Lugensa brevirostris	Kerguelen Petrel
1003	Pachyptila turtur	Fairy Prion
1042	Procellaria parkinsoni	Black Petrel; Parkinsons
1043	Procellaria westlandica	Petrel
	Westland Petrel	

document, expert comment from John Stevens)

1046	Pterodroma leucoptera	Gould's Petrel	0	Y	4	0	2.43	3.00	3.86	N	High	Missing data
1047	Pterodroma macroptera	Great-winged Petrel	0	N	2	0	2.43	3.00	3.86	N	High	Low attribute score
1048	Pterodroma mollis	Soft-plumaged Petrel	0	N	3	0	2.43	3.00	3.86	N	High	Low attribute score
1050	Pterodroma nigripennis	Black-winged Petrel	0	N	3	0	2.43	3.00	3.86	N	High	Low attribute score
1053	Puffinus assimilis	Little Shearwater (Tasman Sea)	0	N	3	0	2.43	3.00	3.86	N	High	Low attribute score
1055	Puffinus carneipes	Flesh-footed Shearwater	0	N	1	0	2.43	3.00	3.86	N	High	Low attribute score
1059	Puffinus pacificus	Wedge-tailed Shearwater	0	N	1	0	2.43	3.00	3.86	N	High	Low attribute score
1060	Puffinus tenuirostris	Short-tailed Shearwater	0	N	1	0	2.43	3.00	3.86	N	High	Low attribute score
918	Fregetta grallaria	White-bellied Storm-Petrel (Tasman Sea),	0	N	3	0	2.43	3.00	3.86	N	High	Low attribute score
917	Fregetta tropica	Black-bellied Storm-Petrel	0	N	3	0	2.43	3.00	3.86	N	High	Low attribute score
555	Garrodia nereis	Grey-backed storm petrel	0	N	3	0	2.43	3.00	3.86	N	High	Low attribute score
325	Catharacta skua	Great Skua	0	N	1	0	2.43	3.00	3.86	N	High	Low attribute score
1034	Thalassarche chlororhynchos	Yellow-nosed Albatross, Atlantic Yellow-	0	N	1	0	2.29	3.00	3.77	N	High	Low attribute score
1008	Phoebetria fusca	Sooty Albatross	0	N	1	0	2.29	3.00	3.77	N	High	Low attribute score
595	Daption capense	Cape Petrel	0	N	1	0	2.29	3.00	3.77	N	High	Low attribute score
73	Macronectes giganteus	Southern Giant-Petrel	0	N	1	0	2.29	3.00	3.77	N	High	Low attribute score
981	Macronectes halli	Northern Giant-Petrel	0	N	1	0	2.29	3.00	3.77	N	High	Low attribute score
1041	Procellaria aequinoctialis	White-chinned Petrel	0	N	1	0	2.29	3.00	3.77	N	High	Low attribute score
494	Procellaria cinerea	Grey petrel	0	N	1	0	2.29	3.00	3.77	N	High	Low attribute score
1691	Pseudobulweria rostrata	Tahiti Petrel	0	N	1	1	2.29	3.00	3.77	N	High	Low attribute score
504	Pterodroma lessoni	White-headed petrel	0	N	1	0	2.29	3.00	3.77	N	High	Low attribute score
1049	Pterodroma neglecta	Kermadec Petrel (western)	0	N	2	0	2.29	3.00	3.77	N	High	Low attribute score
1057	Puffinus griseus	Sooty Shearwater	0	N	1	0	2.29	3.00	3.77	N	High	Low attribute score
1432	Phaethon rubricauda	Red-tailed Tropicbird	0	N	1	0	2.29	3.00	3.77	N	High	Low attribute score
1549	Morus capensis	Cape gannet	0	N	1	0	2.29	3.00	3.77	N	High	Low attribute score
998	Morus serrator	Australasian Gannet	0	N	1	0	2.29	3.00	3.77	N	High	Low attribute score
1433	Sula dactylatra	Masked Booby	0	N	1	0	2.29	3.00	3.77	N	High	Low attribute score
203	Anous stolidus	Common noddy	0	N	1	0	2.29	3.00	3.77	N	High	Low attribute score
975	Larus pacificus	Pacific Gull	0	N	1	0	2.29	3.00	3.77	N	High	Low attribute score
1017	Sterna bergii	Crested Tern	0	N	1	0	2.29	3.00	3.77	N	High	Low attribute score

1018	Sterna caspia	Caspian Tern	0	N	1	0	2.29	3.00	3.77	N	High	Low attribute score
1673	Thalassarche nov. sp.	Pacific Albatross	0	N	1	1	2.29	3.00	3.77	N	High	Low attribute score
898	Eudyptula minor	Little Penguin	0	N	1	0	2.14	3.00	3.69	N	High	Low attribute score
1056	Puffinus gavia	Fluttering Shearwater	0	N	2	0	2.14	3.00	3.69	N	High	Low attribute score
1058	Puffinus huttoni	Hutton's Shearwater	0	N	2	0	2.14	3.00	3.69	N	High	Low attribute score
1438	Anous minutus	Black Noddy	0	N	1	0	2.14	3.00	3.69	N	High	Low attribute score
67	Anous tenuirostris	Lesser noddy	0	N	2	0	2.14	3.00	3.69	N	High	Low attribute score
973	Larus dominicanus	Kelp Gull	0	N	1	0	2.14	3.00	3.69	N	High	Low attribute score
974	Larus novaehollandiae	Silver Gull	0	N	3	0	2.14	3.00	3.69	N	High	Low attribute score
1582	Procelsterna cerulea	grey ternlet	0	N	1	0	2.14	3.00	3.69	N	High	Low attribute score
1020	Sterna fuscata	Sooty tern	0	N	1	0	2.14	3.00	3.69	N	High	Low attribute score
1021	Sterna hirundo	Common tern	0	N	1	0	2.14	3.00	3.69	N	High	Spatial uncertainty
1023	Sterna paradisaea	Arctic tern	0	N	1	0	2.14	3.00	3.69	N	High	Low attribute score
1025	Sterna sumatrana	Black-naped tern	0	N	2	0	2.14	3.00	3.69	N	High	Low attribute score
556	Oceanites oceanicus	Wilson's storm petrel (subantarctic)	0	N	1	0	2.00	3.00	3.61	N	High	Spatial uncertainty
1004	Pelagodroma marina	White-faced Storm-Petrel	0	N	1	0	2.00	3.00	3.61	N	High	Low attribute score
1014	Sterna albifrons	Little tern	0	N	1	0	2.00	3.00	3.61	N	High	Low attribute score
1015	Sterna anaethetus	Bridled Tern	0	N	1	0	2.00	3.00	3.61	N	High	Spatial uncertainty
1024	Sterna striata	White-fronted Tern	0	N	1	0	2.00	3.00	3.61	N	High	Low attribute score
1006	Pelecanoides urinatrix	Common Diving-Petrel	0	N	1	0	1.86	3.00	3.53	N	High	Low attribute score
Marine mammal												
295	Hydrurga leptonyx	Leopard seal	0	N	0	0	2.71	3.00	4.05	N	High	Spatial uncertainty
253	Arctocephalus pusillus doriferus	Australian Fur Seal	0	N	0	0	2.29	3.00	3.77	N	High	Spatial uncertainty
902	Feresa attenuata	Pygmy Killer Whale	0	N	0	0	2.86	1.67	3.31	N	High	Spatial uncertainty
934	Globicephala macrorhynchus	Short-finned Pilot Whale	0	N	0	0	2.86	1.67	3.31	N	High	Spatial uncertainty
935	Globicephala melas	Long-finned Pilot Whale	0	N	0	0	2.86	1.67	3.31	N	High	Spatial uncertainty
937	Grampus griseus	Risso's Dolphin	0	N	0	0	2.86	1.67	3.31	N	High	Spatial uncertainty
1002	Orcinus orca	Killer Whale	0	N	0	0	2.86	1.67	3.31	N	High	Spatial uncertainty
1044	Pseudorca crassidens	False Killer Whale	0	N	1	0	2.86	1.67	3.31	N	High	Spatial uncertainty
1091	Tursiops truncatus	Bottlenose Dolphin	0	N	0	0	2.86	1.67	3.31	N	High	Spatial uncertainty
1494	Tursiops aduncus	Indian Ocean bottlenose dolphin	0	N	1	0	2.86	1.67	3.31	N	High	Spatial uncertainty

985	Mesoplodon bowdoini	Andrew's Beaked Whale	0	N	1	0	2.86	1.67	3.31	N	High	Spatial uncertainty
986	Mesoplodon densirostris	Blainville's Beaked Whale	0	N	0	0	2.86	1.67	3.31	N	High	Spatial uncertainty
987	Mesoplodon gingkodens	Gingko Beaked Whale	0	N	1	0	2.86	1.67	3.31	N	High	Spatial uncertainty
989	Mesoplodon hectori	Hector's Beaked Whale	0	N	0	0	2.86	1.67	3.31	N	High	Spatial uncertainty
991	Mesoplodon mirus	True's Beaked Whale	0	N	0	0	2.86	1.67	3.31	N	High	Spatial uncertainty
256	Balaenoptera acutorostrata	Minke Whale	0	N	0	0	2.86	1.44	3.20	N	High	Spatial uncertainty
959	Hyperoodon planifrons	Southern Bottlenose Whale	0	N	1	0	2.86	1.44	3.20	N	High	Spatial uncertainty
988	Mesoplodon grayi	Gray's Beaked Whale	0	N	1	0	2.86	1.44	3.20	N	High	Spatial uncertainty
990	Mesoplodon layardii	Strap-toothed Beaked Whale	0	N	1	0	2.86	1.44	3.20	N	High	Spatial uncertainty
1098	Ziphius cavirostris	Cuvier's Beaked Whale	0	N	0	0	2.86	1.44	3.20	N	High	Spatial uncertainty
984	Megaptera novaeangliae	Humpback Whale	0	N	0	0	2.71	1.67	3.19	N	High	Spatial uncertainty
970	Lagenodelphis hosei	Fraser's Dolphin	0	N	1	0	2.71	1.67	3.19	N	High	Spatial uncertainty
832	Lagenorhynchus cruciger	Hourglass dolphin	0	N	1	1	2.71	1.67	3.19	N	High	Spatial uncertainty
61	Lissodelphis peronii	Southern Right Whale Dolphin	0	N	1	0	2.71	1.67	3.19	N	High	Spatial uncertainty
1076	Sousa chinensis	Indo-Pacific Humpback Dolphin	0	N	0	0	2.71	1.67	3.19	N	High	Spatial uncertainty
1081	Stenella coeruleoalba	Striped Dolphin	0	N	0	0	2.71	1.67	3.19	N	High	Spatial uncertainty
1083	Steno bredanensis	Rough-toothed Dolphin	0	N	0	0	2.71	1.67	3.19	N	High	Spatial uncertainty
969	Kogia simus	Dwarf Sperm Whale	0	N	0	0	2.71	1.67	3.19	N	High	Spatial uncertainty
993	Mirounga leonina	Elephant seal	0	N	0	0	2.71	1.67	3.19	N	High	Spatial uncertainty
261	Balaenoptera borealis	Sei Whale	0	N	0	0	2.86	1.22	3.11	N	Med	Spatial uncertainty
262	Balaenoptera edeni	Bryde's Whale	0	N	0	0	2.86	1.22	3.11	N	Med	Spatial uncertainty
268	Balaenoptera physalus	Fin Whale	0	N	0	0	2.86	1.22	3.11	N	Med	Spatial uncertainty
1439	Balaenoptera bonaerensis	Antarctic Minke Whale	0	N	1	0	2.86	1.22	3.11	N	Med	Spatial uncertainty
968	Kogia breviceps	Pygmy Sperm Whale	0	N	0	0	2.86	1.22	3.11	N	Med	Spatial uncertainty
1036	Physeter catodon	Sperm Whale	0	N	0	0	2.86	1.22	3.11	N	Med	Spatial uncertainty
269	Berardius arnuxii	Arnoux's Beaked Whale	0	N	0	0	2.86	1.22	3.11	N	Med	Spatial uncertainty
1030	Tasmacetus shepherdi	Tasman Beaked Whale	0	N	1	0	2.86	1.22	3.11	N	Med	Spatial uncertainty
289	Caperea marginata	Pygmy Right Whale	0	N	1	0	2.71	1.44	3.07	N	Med	Spatial uncertainty
1007	Peponocephala electra	Melon-headed Whale	0	N	1	0	2.57	1.67	3.06	N	Med	Spatial uncertainty
1080	Stenella attenuata	Spotted Dolphin	0	N	1	0	2.57	1.67	3.06	N	Med	Spatial uncertainty
896	Eubalaena australis	Southern Right Whale	0	N	0	0	2.71	1.22	2.98	N	Med	Spatial uncertainty

813	Dugong dugon	Dugong	0	N	1	0	2.71	1.22	2.98	N	Med	Spatial uncertainty	
1082	Stenella longirostris	Long-snouted Spinner Dolphin	0	N	0	0	2.43	1.67	2.95	N	Med	Spatial uncertainty	
216	Arctocephalus forsteri	New Zealand Fur-seal	0	N	0	0	2.43	1.67	2.95	N	Med	Spatial uncertainty	
1000	Neophoca cinerea	Australian Sea-lion	0	N	0	0	2.43	1.67	2.95	N	Med	Spatial uncertainty	
265	Balaenoptera musculus	Blue Whale	0	N	0	0	2.57	1.22	2.85	N	Med	Spatial uncertainty	
612	Delphinus delphis	Common Dolphin	0	N	0	0	2.29	1.67	2.83	N	Med	Spatial uncertainty	
971	Lagenorhynchus obscurus	Dusky Dolphin	0	N	0	0	2.29	1.67	2.83	N	Med	Spatial uncertainty	
263	Arctocephalus tropicalis	Subantarctic fur seal	0	N	0	0	2.29	1.67	2.83	N	Med	Spatial uncertainty	
Marine reptile													
957	Hydrophis elegans	Elegant seasnake	0	N	2	0	2.14	1.22	2.47	Y	Low		See Horned seasnake
1408	Acalyptophis peronii	Horned Seasnake	0	N	3	0	2.71	1.22	2.98	Y	Med	Low attribute score	Expert over-ride: Encounterability reduced from 3 to 1 : Sea snakes are caught mainly in demersal gear, not surface nets (wassenberg et al. 1994)
254	Astrotia stokesii	Stokes' seasnake	0	N	3	0	2.71	1.22	2.98	Y	Med	Low attribute score	See Horned seasnake
1530	Disteira kingii	spectacled seasnake	0	Y	3	1	2.71	1.22	2.98	Y	Med	Missing data	See Horned seasnake
1423	Hydrophis ornatus	seasnake	0	N	3	0	2.71	1.22	2.98	Y	Med	Low attribute score	See Horned seasnake
1005	Pelamis platurus	yellow-bellied seasnake	0	N	3	0	2.71	1.22	2.98	Y	Med	Low attribute score	See Horned seasnake
613	Dermochelys coriacea	Leathery turtle	0	N	1	0	2.57	1.22	2.85	Y	Med	Low attribute score	See Horned seasnake
324	Caretta caretta	Loggerhead	0	N	1	0	2.43	1.22	2.72	Y	Med	Low attribute score	See Horned seasnake
541	Chelonia mydas	Green turtle	0	N	1	0	2.43	1.22	2.72	Y	Med	Low attribute score	See Horned seasnake
822	Eretmochelys imbricata	Hawksbill turtle	0	N	1	0	2.43	1.22	2.72	Y	Med	Low attribute score	See Horned seasnake
Teleost													
308	Heteroclinus perspicillatus	Common weedfish	0	N	3	0	2.29	1.22	2.59	N	Low		
1075	Solenostomus paradoxus	Harlequin Ghost Pipefish, Ornate Ghost Pipefish	0	N	3	0	2.14	1.22	2.47	N	Low		
1026	Stigmatopora argus	Spotted Pipefish	0	N	0	0	1.43	1.67	2.20	N	Low		
390	Lissocampus fatiloquus	Prophet's Pipefish	0	N	0	0	1.43	1.67	2.20	N	Low		
1548	Heraldia sp. 1 [in Kuiter, 2000]	Western upsidedown pipefish	0	N	0	0	1.43	1.67	2.20	N	Low		
1666	Hippocampus kelloggi	Kellogg's Seahorse	0	N	0	0	1.43	1.67	2.20	N	Low		

1668	Hippocampus subelongatus	West Australian Seahorse	0	N	0	0	1.43	1.67	2.20	N	Low
1699	Idiotropiscis australe	Southern Pygmy Pipehorse	0	N	0	0	1.43	1.67	2.20	N	Low
1667	Hippocampus kuda	Spotted Seahorse, Yellow Seahorse	0	N	0	0	1.57	1.44	2.13	N	Low
980	Lissocampus runa	Javelin Pipefish	0	N	0	0	1.43	1.44	2.03	N	Low
979	Lissocampus caudalis	Australian Smooth Pipefish, Smooth Pipefish	0	N	0	0	1.43	1.44	2.03	N	Low
1027	Stigmatopora nigra	Wide-bodied Pipefish, Black Pipefish	0	N	0	0	1.43	1.44	2.03	N	Low
798	Microphis manadensis	Manado River Pipefish, Manado Pipefish	0	N	0	0	1.43	1.44	2.03	N	Low
1010	Phycodurus eques	Leafy Seadragon	0	N	0	0	1.57	1.22	1.99	N	Low
1011	Phyllopteryx taeniolatus	Weedy Seadragon, Common Seadragon	0	N	0	0	1.57	1.22	1.99	N	Low
949	Hippocampus taeniopterus	Spotted Seahorse, Yellow Seahorse	0	N	0	0	1.57	1.22	1.99	N	Low
569	Doryrhamphus melanopleura	Bluestripe Pipefish	0	N	0	0	1.57	1.22	1.99	N	Low
983	Maroubra perserrata	Sawtooth Pipefish	0	N	0	0	1.57	1.15	1.95	N	Low
563	Corythoichthys amplexus	Fijian Banded Pipefish, Brown-banded Pipefish	0	N	0	0	1.43	1.30	1.93	N	Low
320	Solegnathus guentheri	Indonesian Pipefish, Gunther's Pipehorse	0	N	0	0	1.43	1.22	1.88	N	Low
1072	Solegnathus robustus	Robust Spiny Pipehorse, Robust Pipehorse	0	N	0	0	1.43	1.22	1.88	N	Low
549	Hippocampus angustus	Western Spiny Seahorse	0	N	0	0	1.43	1.22	1.88	N	Low
1089	Trachyrhamphus bicoarctatus	Bend Stick Pipefish, Shorttailed Pipefish	0	N	0	0	1.43	1.22	1.88	N	Low
1092	Urocampus carinirostris	Hairy Pipefish	0	N	0	0	1.43	1.22	1.88	N	Low
946	Hippocampus bleekeri	pot bellied seahorse	0	N	0	0	1.43	1.22	1.88	N	Low
953	Histiogamphelus briggsii	Briggs' Crested Pipefish, Briggs' Pipefish	0	N	0	0	1.43	1.22	1.88	N	Low
961	Hypselognathus rostratus	Knife-snouted Pipefish	0	N	0	0	1.43	1.22	1.88	N	Low
978	Leptoichthys fistularius	Brushtail Pipefish	0	N	0	0	1.43	1.22	1.88	N	Low
966	Kaupus costatus	Deep-bodied Pipefish	0	N	0	0	1.43	1.22	1.88	N	Low
995	Mitotichthys semistriatus	Half-banded Pipefish	0	N	0	0	1.43	1.22	1.88	N	Low

1028	Stipecampus cristatus	Ring-backed Pipefish	0	N	0	0	1.43	1.22	1.88	N	Low
1061	Pugnaso curtirostris	Pug-nosed Pipefish	0	N	0	0	1.43	1.22	1.88	N	Low
994	Mitotichthys mollisoni	Mollison's Pipefish	0	N	0	0	1.43	1.22	1.88	N	Low
1095	Vanacampus poecilolaemus	Australian Long-snout Pipefish, Long-snouted Pipefish	0	N	0	0	1.43	1.22	1.88	N	Low
996	Mitotichthys tuckeri	Tucker's Pipefish	0	N	0	0	1.43	1.22	1.88	N	Low
1073	Solegnathus spinosissimus	spiny pipehorse	0	N	0	0	1.43	1.22	1.88	N	Low
938	Halicampus grayi	Mud Pipefish, Gray's Pipefish	0	N	0	0	1.43	1.22	1.88	N	Low
114	Acentronura breviperula	Hairy Pygmy Pipehorse	0	N	0	0	1.43	1.22	1.88	N	Low
578	Corythoichthys ocellatus	Orange-spotted Pipefish, Ocellated Pipefish	0	N	0	0	1.43	1.22	1.88	N	Low
401	Cosmocampus banneri	Roughridge Pipefish	0	N	0	0	1.43	1.22	1.88	N	Low
580	Cosmocampus howensis	Lord Howe Pipefish	0	N	0	0	1.43	1.22	1.88	N	Low
904	Festucalex cinctus	Girdled Pipefish	0	N	0	0	1.43	1.22	1.88	N	Low
321	Festucalex scalaris	Ladder Pipefish	0	N	0	0	1.43	1.22	1.88	N	Low
914	Filicampus tigris	Tiger Pipefish	0	N	0	0	1.43	1.22	1.88	N	Low
54	Halicampus brocki	Brock's Pipefish	0	N	0	0	1.43	1.22	1.88	N	Low
945	Hippichthys penicillus	Beady Pipefish, Steepnosed Pipefish	0	N	0	0	1.43	1.22	1.88	N	Low
951	Hippocampus planifrons	Flat-face Seahorse	0	N	0	0	1.43	1.22	1.88	N	Low
954	Histiogamphelus cristatus	Rhino Pipefish, Macleay's Crested Pipefish	0	N	0	0	1.43	1.22	1.88	N	Low
960	Hypselognathus horridus	Shaggy Pipefish, Prickly Pipefish	0	N	0	0	1.43	1.22	1.88	N	Low
967	Kimblaeus bassensis	Trawl Pipefish, Kimbla Pipefish	0	N	0	0	1.43	1.22	1.88	N	Low
992	Micrognathus andersonii	Anderson's Pipefish, Shortnose Pipefish	0	N	0	0	1.43	1.22	1.88	N	Low
1604	Micrognathus pygmaeus	[a pipefish]	0	N	0	0	1.43	1.22	1.88	N	Low
1243	Mitotichthys meraculus	Western Crested Pipefish	0	N	0	0	1.43	1.22	1.88	N	Low
1242	Nannocampus subosseus	Bony-headed Pipefish	0	N	0	0	1.43	1.22	1.88	N	Low
1001	Notiocampus ruber	Red Pipefish	0	N	0	0	1.43	1.22	1.88	N	Low
1070	Solegnathus dunckeri	Duncker's Pipehorse	0	N	0	0	1.43	1.22	1.88	N	Low
1071	Solegnathus sp. 1 [in Kuiter, 2000]	Pipehorse	0	N	0	0	1.43	1.22	1.88	N	Low

1093	Vanacampus margaritifer	Mother-of-pearl Pipefish	0	N	0	0	1.43	1.22	1.88	N	Low	
1096	Vanacampus vercoi	Verco's Pipefish	0	N	0	0	1.43	1.22	1.88	N	Low	
950	Hippocampus minotaur	Bullneck Seahorse	0	N	0	0	1.43	1.22	1.88	N	Low	
1591	Halicampus boothae	[a pipefish]	0	N	0	0	1.43	1.22	1.88	N	Low	
948	Hippocampus queenslandicus	Kellogg's Seahorse	0	N	0	0	1.43	1.22	1.88	N	Low	
1602	Hippocampus tristis	[a pipefish]	0	N	0	0	1.43	1.22	1.88	N	Low	
1664	Hippocampus abdominalis	Big-bellied / southern potbellied seahorse	0	N	0	0	1.43	1.22	1.88	N	Low	
548	Hippocampus subelongatus	West Australian Seahorse	0	N	0	0	1.43	1.22	1.88	N	Low	
947	Hippocampus breviceps	Short-head Seahorse, Shortsnouted Seaho	0	N	0	0	1.43	1.15	1.83	N	Low	
952	Hippocampus whitei	white's seahorse	0	N	0	0	1.43	1.15	1.83	N	Low	
105	Acentronura australe	Southern Pygmy Pipehorse	0	N	0	0	1.43	1.15	1.83	N	Low	
287	Campichthys galei	Gale's Pipefish	0	N	0	0	1.43	1.15	1.83	N	Low	
288	Campichthys tryoni	Tryon's Pipefish	0	N	0	0	1.43	1.15	1.83	N	Low	
389	Choeroichthys suillus	Pig-snouted Pipefish	0	N	0	0	1.43	1.15	1.83	N	Low	
942	Heraldia nocturna	Upside-down Pipefish	0	N	0	0	1.43	1.15	1.83	N	Low	
943	Hippichthys cyanospilos	Blue-speckled Pipefish, Blue-spotted Pipefish	0	N	0	0	1.43	1.15	1.83	N	Low	
944	Hippichthys heptagonus	Madura Pipefish	0	N	0	0	1.43	1.15	1.83	N	Low	
1094	Vanacampus phillipi	Port Phillip Pipefish	0	N	0	0	1.29	1.22	1.77	N	Low	
1592	Halicampus macrorhynchus	[a pipefish]	0	N	0	0	1.43	1.00	1.74	N	Low	
1029	Syngnathoides biaculeatus	Double-ended Pipehorse, Alligator Pipefish	0	N	0	0	1.43	2.33	2.74	N	Med	Widely distributed
1074	Solenostomus cyanopterus	Blue-finned Ghost Pipefish, Robust Ghost	0	N	3	0	2.14	1.67	2.71	N	Med	Low attribute score

2.4.4 PSA Plot for individual units of analysis (Step 4)

The average productivity and susceptibility scores for each unit of analysis (e.g. for each species) are then used to place the individual units of analysis on 2D plots (as below). The relative position of the units on the plot will determine relative risk at the unit level as per PSA plot below. The overall risk value for a unit is the Euclidean distance from the origin of the graph. Units that fall in the upper third of the PSA plots are deemed to be at high risk. Units with a PSA score in the middle are at medium risk, while units in the lower third are at low risk with regard to the productivity and susceptibility attributes. The divisions between these risk categories are based on dividing the area of the PSA plots into equal thirds. If all productivity and susceptibility scores (scale 1-3) are assumed to be equally likely, then $1 / 3^{\text {rd }}$ of the Euclidean overall risk values will be greater than 3.18 (high risk), $1 / 3^{\text {rd }}$ will be between 3.18 and 2.64 (medium risk), and $1 / 3^{\text {rd }}$ will be lower than 2.64 (low risk).

PSA plot for target species in the SPF purse seine fishery. The magenta dot in the center of the blue diamonds is the average risk for this component.

PSA plot for byproduct species in the SPF purse seine fishery. The magenta dot in the center of the blue diamonds is the average risk for this component.

PSA plot for bycatch species in the SPF purse seine fishery. The magenta dot in the center of the blue diamonds is the average risk for this component

PSA plot for TEP species in the SPF purse seine fishery. The magenta dot in the center of the blue diamonds is the average risk for this component

The overall risk value for each unit is the Euclidean distance from the origin to the location of the species on the PSA plot. The units are then divided into three risk categories, high, medium and low, according to the risk values (Figure 17). The cutoffs for each category are thirds of the total distribution of all possible risk values (Figure 17).

Figure 17. Overall risk values in the PSA plot. Left panel. Colour map of the distribution of the euclidean overall risk values. Right panel. The PSA plot contoured to show the low (blue) risk, medium (orange) risk and high (red) risk values.

The PSA output allows identification and prioritization (via ranking the overall risk scores) of the units (e.g. species, habitat types, communities) at greatest risk to fishing activities. This prioritization means units with the lowest inherent productivity or highest susceptibility, which can only sustain the lowest level of impact, can be examined in detail. The overall risk to an individual unit will depend on the level of impact as well its productivity and susceptibility.

2.4.5 Uncertainty analysis ranking of overall risk (Step 5)

The final PSA result for a species is obtained by ranking overall risk value resulting from scoring the productivity and susceptibility attributes. Uncertainty in the PSA results can arise when there is imprecise, incorrect or missing data, where an average for a higher taxonomic unit was used (e.g. average genera value for species units), or because an inappropriate attribute was included. The number of missing attributes, and hence conservative scores, is tallied for each unit of analysis. Units with missing scores will have a more conservative overall risk value than those species with fewer missing attributes, as the highest score for the attribute is used in the absence of data. Gathering the information to allow the attribute to be scored may reduce the overall risk value. Identification of high-risk units with missing attribute information should translate into prioritisation of additional research (an alternative strategy).

A second measure of uncertainty is due to the selection of the attributes. The influence of particular attributes on the final result for a unit of analysis (e.g. a habitat unit) can be quantified with an uncertainty analysis, using a Monte Carlo resampling technique. A set of productivity and susceptibility scores for each unit is calculated by removing one of the productivity or susceptibility attributes at a time, until all attribute combinations have been used. The variation (standard deviation) in the productivity and susceptibility scores is a measure of the uncertainty in the overall PSA score. If the uncertainty analysis shows that the unit would be treated differently with regard to risk, it should be the subject of more study.

The validity of the ranking can also be examined by comparing the results with those from other data sources or modelling approaches that have already been undertaken in specific fisheries. For example, the PSA results of the individual species (target, byproduct and bycatch and TEP) can be compared against catch rates for any species or against completed stock assessments. These comparisons will show whether the PSA ranking agrees with these other sources of information or more rigorous approaches.

Availability of information
The ability to score each species based on information on each attribute varied between the attributes (as per summary below). With regard to the productivity attributes, trophic level was missing in 42% of cases and average maximum age was missing in 15% of species, and so the most conservative score was used, while information on the could be found or calculated for reproductive strategy 100% of species. The current method of scoring the susceptibility attributes provides a value for each attribute for each species some of these are based on good information, whereas others are merely sensible default values.

Summary of the success of obtaining information on the set of productivity and susceptibility attributes for the species. Where information on an attribute was missing the highest score was used in the PSA. Results from PSA workbook ranking worksheet (species only).

Productivity Attributes	Average age at maturity	Average max age	Fecundity	Average max size	Average size at Maturity	Reproductive strategy	Trophic level (fishbase)
Total species scores for attribute	212	200	223	234	234	235	
n species scores with attribute unknown, (conservative score used)							136
\% unknown information	11%	16%	6%	1%	1%	100%	
Susceptibility Attributes	Availability	Encounter ability		Selectivity	PCM		
		Bathymetry overlap	Habitat				
Total species scores for attribute	235	235		235	235		
n species scores with attribute unknown, (conservative score used)	0	0		0	0		
$\%$ unknown information	0.0	0.0					

Each species considered in the analysis had information for an average of 6.23/7, (89\%) productivity attributes and all susceptibility attributes. This meant that, on average, conservative scores were used for less than 5% of the attributes for a single species. Species had missing information for between 1 and 4 of the combined 12 productivity and susceptibility attributes.

Species: Overall uncertainty distribution - frequency of missing information for the combined productivity and susceptibility attributes for the species components

Correlation between attributes: Species component:

The attributes selected for productivity were often strongly correlated (as per correlation matrix below for productivity). The strongest productivity attribute correlation was between average maximum size and average size at maturity (0.85). This is why the attributes for productivity are averaged, as they are all in turn correlated with the
intrinsic rate of increase (see ERAEF: Methodology document for more details). In contrast the susceptibility attributes were less correlated, which is to be expected as they measure independent aspects of this dimension, and are multiplied to obtain the overall susceptibility score. The strongest susceptibility correlation was between availability and encounterability, while the rest were very weak (see matrix below).

Correlation matrix for the species productivity attributes. The correlation (r) is based on the scores within each attribute pair. Results from PSA workbook ranking graphs worksheet.

Correlation Matrix	Average age at maturity	Average max age	Fecundity	Average max size	Average size at Maturity	Reproductive strategy	Trophic level (fishbase)	
Average age at maturity	X							
Average max age	0.66	X						
Fecundity	0.51	0.66	X					
Average max size	0.35	0.48	0.35	X		X		
Average size at Maturity	0.44	0.65	0.54	0.85	X			
Reproductive strategy	0.49	0.67	0.89	0.37	0.57	X		
Trophic level (fishbase)	0.54	0.81	0.75	0.41	0.62	0.78	X	

Correlation matrix for the four species susceptibility attributes. The correlation (r) is based on the scores within each attribute pair. Results from PSA workbook ranking graphs worksheet.
Correlations with the post-capture mortality could not be calculated, as this attribute was scored as 3 for all species.

	Availability	Encounterability	Selectivity	Post-capture mortality
Availability	X			
Encounterability	0.50	x		
Selectivity	0.27	-0.04	X	
Post-capture mortality	NA	NA	NA	X

Productivity and susceptibility values for species

The average productivity score for all species was 2.09 ± 0.11 (mean \pm SD of scores calculated using n-1 attributes) and the mean susceptibility score was 1.94 (as per summary of average productivity and susceptibility scores as below). Individual scores are shown in Summary of Species PSA results (Section 2.4.2). The small variation in the average of the boot-strapped values (using n-1 attributes), indicates the productivity scores are robust to elimination or mis-estimation of a single attribute. Information for a single attribute does no have a disproportionately large effect on the productivity scores. Uncertainty cannot be calculated in the same way for susceptibility, as this is a multiplicative approach, and so dropping one variable to estimate uncertainty is less straight-forward.

Overall Risk Values for Species

The overall risk values (Euclidean distance on the PSA plot) could fall between 1 and 4.24 (scores of $1 \& 1$ and $3 \& 3$ for both productivity and susceptibility respectively). The mean observed overall risk score was 2.89, with a range of 1.8-4.2. The actual values for each species are shown in Summary of PSA results (above). A total of 108 species (46\%) were classed as high risk, 94 (40\%) were in the medium risk category, and 33 (14\%) as low risk.

Results: Frequency distribution of the overall PSA risk values
Frequency distribution of the overall risk values generated for the 235 species in the SPF purseseine PSA.

The distribution of the overall risk values of all species is shown on the PSA plot below. The species are distributed in the lower left and lower right parts of the plot, indicating that there are clusters of low susceptibility, high productivity species (lower left), low susceptibility, low productivity (lower right) and high susceptibility, low productivity (upper right) in the purse-seine sub-fishery.

PSA plot for all species in the SPF purse-seine sub-fishery. Species in the upper right of the plot are at highest risk.

The number of attributes with missing information is of particular interest, because the conservative scoring means these units may be scored at higher risk than if all the information was known. This relationship between the overall risk score and the number of missing attributes shows that an increase in the number of missing attributes (and hence conservative scores used) results in a skew to higher risk values. This suggests that as information becomes available on those attributes, the risk values may decline for some units.

All attributes are treated equally in the PSA; however, information on some attributes may be of low quality. The migration patterns of pelagic teleosts, whales, birds, and large sharks are poorly understood therefore their availability is difficult to assess. Trophic level is unknown for many birds.

2.4.6 Evaluation of the PSA results (Step 6)

Species Components:

Overall

Of the 235 species assessed at Level 2 using the PSA analysis, expert/observer overrides were used on 4 species. A total of 108 species were found to be at high risk. Of these, 2 species had more than 3 missing attributes.

For most species there was little missing data. The average number of missing attributes was 0.79 out of a possible 12 attributes. The distribution of risk scores was skewed towards high and low. There were 108 high risk species and 94 low risk species. There were only 31 species evaluated as medium risk.

None of the target, byproduct of bycatch species was estimated as high risk because there is very little effort in the fishery at present, and only a small proportion of the range of these species is fished. For TEP species with good distributional information, risk scores were generally low. Without observer data or independent field surveys, risk scores for TEP species with poorly understood foraging distributions, risk scores tended to default to high.

Summary of average productivity, susceptibility and overall risk scores.

Component	Measure	
All species	Number of species	235
	Average of productivity total	2.09
	Average of susceptibility total	1.94
	Average of overall risk value (2D)	2.90
	Average number of missing attributes	0.79
Target species	Number of species	5
	Average of productivity total	1.34
	Average of susceptibility total	1.67
	Average of overall risk value (2D)	2.14
	Average number of missing attributes	0.20
Byproduct species	Number of species	9
	Average of productivity total	1.52
	Average of susceptibility total	1.54
	Average of overall risk value (2D)	2.20
	Average number of missing attributes	0.00

Bycatch species	Number of species	3
	Average of productivity total	1.57
	Average of susceptibility total	1.44
	Average of overall risk value (2D)	2.15
	Average number of missing attributes	0.67
TEP species	Number of species	218
	Average of productivity total	2.14
	Average of susceptibility total	1.97
	Average of overall risk value (2D)	2.96
	Average number of missing attributes	0.83

PSA 2D (productivity and susceptibility) risk categories for each species component.

Risk category	High	Medium	Low	Total
Target species			5	9
Byproduct species			9	3
Bycatch species			3	5
TEP species	108	33	77	218
Total	108	33	94	235

PSA 2D (productivity and susceptibility) risk categories for each taxa.

Risk category	High	Medium	Low	Total
Chondrichthyan	1	2		3
Marine bird	78			78
Marine mammal	29	20		49
Marine reptile		9	1	10
Teleost	108	2	93	95
Total	31	94	235	

Discussion

Target species
All five of the target species were classified as low risk. The low risk scores reflect the distribution of these species that occur widely outside the range of low current effort levels in the sub-fishery. However, some caution is needed and the low risk scores may not apply if the fishery expands. The analysis assumes most of the populations are outside the range of effort at any given time. For some migratory schooling species, there is the potential for the range of a stock to be restricted in its range during seasonal migrations, resulting higher than expected availability to targeting.

Byproduct and bycatch species

The 9 byproduct species taken were all evaluated as low risk. They include a mixture of pelagic and demersal species. The pelagic species are widely distributed outside the range of effort in the fishery. Most of the demersal species are managed by quota in the SESS. With exception of silver trevally, the quantities caught are trivial. The annual silver trevally catch averages of 6t annually. Silver trevally is a SESS species but may be caught in state waters with state pilchard catches which are recorded in Commonwealth logbooks

All three bycatch species examined were at low risk. These species are demersal or benthopelagic and are caught in much higher quantities in other demersal fisheries. For example, 507 t of chinaman leatherjacket were taken in the GAB Trawl Fishery in 2005.

TEP species

All of the high risk species were TEP species which included one of the chondrichthyans, all of the 78 marine birds and most (29) of the marine mammals (mainly small cetaceans). Conversely, none of the marine reptile species or teleosts examined was considered to be at high risk.

This contrast largely reflects our knowledge of distribution of these groups. Broadly speaking, marine reptiles are tropical and outside the range of current effort in the fishery. For TEP teleosts, detailed mapping shows that these inshore species occur shallower than the fishery. On the other hand, marine birds, and marine mammals are highly migratory species and their ranges are poorly known. Interactions with the fishery and species identification are poorly documented.

Similarly, the movement patterns of the large sharks examined are not well understood, and thus the overlap with the fishery is hard to estimate. White sharks have been observed among salmon schools in SA and southwest WA as well as among sardine schools off South Africa, and there are records of sardines in the stomach contents of white sharks. (Klimely 1985; Malcolm et al 2001). In Future, observer data may reduce the risk score for white sharks.

On a species-by-species basis, some results appear counter-intuitive, and likely represent false positives. For example, one would not expect leopard seals or elephant seals to encounter fishing gear in temperate regions. However, both species have been captured in other fisheries around Tasmania and elephant seals have been killed. Without observer data or some other independent field observations, it is not possible to determine the likelihood that these species occur on the current fishing grounds. Thus, the precautionary principle embodied in the ERAEF results in a high number risk species than would probably occur if more information was available. It remains a challenge for this fishery to collect the information to eliminate these species as high risk.

2.4.7 Decision rules to move from Level 2 to Level 3 (Step 7)

For the PSA overall risk values, units that fall in the upper third (risk value >3.18) and middle third (2.64 < risk value <3.18) of the PSA plots are deemed to be at high and medium risk respectively. These need to be the focus of further work, either through
implementing a management response to address the risk to the vulnerable species or be further examined for risk within the particular ecological component at Level 3. Units at low risk, in the lower third (risk value <2.64), will be deemed not at risk from the subfishery and the assessment is concluded for these units.

For example, if in a Level 2 analysis of habitat types, two of seven habitat types were determined to have vulnerability from the sub-fishery, only those two habitat types would be considered at Level 3.

The output from the Level 2 analysis will result in four options:

- The risk of fishing on a unit of analysis within a component (e.g. single species or habitat type) is not high, the rationale is documented, and the impact of the fishing activity on this unit need not be assessed at a higher level unless management or the fishery changes.
- The risk of fishing on a unit is high but management strategies are introduced rapidly that will reduce this risk, this unit need not be assessed further unless the management or the fishery changes.
- The risk of fishing on a unit is high but there is additional information that can be used to determine if Level 3, or even a new management action is required. This information should be sought before action is taken
- The risk of fishing on a unit is high and there are no planned management interventions that would remove this risk, therefore the reasons are documented and the assessment moves to Level 3.

At level 2 analysis, a fishery can decide to further investigate the risk of fishing to the species via a level 3 assessment or implement a management response to mitigate the risk. To ensure all fisheries follow a consistent process in responding to the results of the risk assessment, AFMA has developed an ecological risk management framework. The framework (see Figure x below) makes use of the existing AFMA management structures to enable the ERAs to become a part of normal fisheries management, including the involvement of fisheries consultative committees. A separate document, the ERM report, will be developed that outlines the reasons why species are at high risk and what actions the fishery will implement to respond to the risks.

*TSG - Technical Support Group - currently provided by CSIRO.

2.4.8 High/Medium risk categorisation (Step 8)

Following the Level 2 PSA scoring of target, bycatch and byproduct, and TEP species, the high and medium risk species have been divided into five categories that highlight potential reasons for the higher risk scores. These categories should also help identify areas of uncertainty and assist decisions regarding possible management responses for these species. The categories are independent and species are allocated to each category in the order the categories are presented below. Thus, while in principle a species could qualify for both Category 1 and 2, it will only appear in Category 1 because that was scored first. The five categories are programmed into the PSA excel spreadsheets for each fishery according to the following algorithms:

- Category 1: Missing data (>3 missing attributes in either Productivity or Susceptibility estimation). Rationale: A total of more than 3 missing attributes (out of 12 possible) could lead to a change in risk score if the information became known. This is because where information is missing for an attribute, that attribute is automatically scored as high risk. The choice of 3 attributes was identified using sensitivity analysis.
- Category 2: Spatial overlap
- 2A. Widely distributed (More than 80% of the full range of a species is outside the jurisdictional boundary of the fishery). Rationale: These species may have refuge outside the fishery.
- 2B. Low overlap ($<20 \%$ overlap between effort and the species distribution inside the fishery). Refers to the preferred Availability attribute used to calculate Susceptibility. Rationale: This cutoff (20\%) has no strong
rationale, other than being a low percentage overlap. Additional work to determine what threshold might be applicable is required. However, the categories are to be used as a guide for management, and additional effort to decide on cutoffs may be misplaced if the categories are just used as a guide. A similar analysis could be undertaken for the encounterability and selectivity attributes, but there is more information available for availability (overlap) for most species and overlap may be more informative about risk. A subtle change in fishing practice could modify encounterability or selectivity, while to change availability requires a major change in fleet location, which will be easier to detect.
- Category 3: Low (susceptibility) attribute score (One of the susceptibility attribute scores = 1). Rationale: These species may be scored high risk based on productivity risk alone, even if their susceptibility is very low.
- Category 4: Spatial uncertainty (No detailed distributional data available) Availability was calculated using less reliable mapping data or distributional categories: Global/Southern Hemisphere/Australia, with stock likelihood overrides where necessary. Rationale: the absence of fine scale catch and species distribution data (e.g. TEP species) means that the substitute attribute (precautionary) was used. Spatial data should be sought.
- Category 5 Other: risk score not affected by 1-4 considered above

Categorisation results - High risk species

Detailed species by species results of the categorisation are presented for medium and high risk species in the Tables in section 2.4.2 of this report. The following is a brief summary of the results for species classified as high risk from the PSA analyses.

Of the 108 species classified as high risk in the SPF PS fishery, 2 had missing data (Category 1), 49 were scored low for one susceptibility attribute (Category 3), and 57 had spatial uncertainty (Category 4). There were no Other high risk species.

Risk Category	Description	Total
Category 1	High risk - Missing data	2
Category 2A	High risk - Widely distributed outside fishery	0
Category 2B	High risk - Low overlap inside fishery	0
Category 3	High risk - One susceptibility attribute scored low	49
Category 4	High risk - Spatial uncertainty	57
Category 5	High risk - Other	0
	Total High risk	108

It is important to stress that this categorization does not imply a down-grading of risk. It is intended as a tool to focus subsequent discussions on risk treatment and identify needs for further data. Sensitivity analysis to the particular cutoffs has not been undertaken in a formal sense, and may not be required, as these categories are intended as guides to focus further consideration of the high risk species. These categories may also indicate the presence of false positives in the high risk species category, but only further analysis or data can determine this.

2.5 Level 3

A number of studies have been undertaken that might support Level 3 analyses, however, at present these are only suggested for species identified at high risk at Level 2. These species were all in the TEP component. For completeness, some other Level 3 type information for species that were not at risk is also available, will be summarized here. In particular, for the community component that has not been evaluated, there are some pertinent studies. This research is also relevant to the other SPF sub-fishery, the purse seine fishery. Full citations for these studies are provided at the end of the references section.

With regard to the biology of the target species, there has been a synopsis of the small pelagic fishery (purse seine and mid-water trawl) and biological data (Welsford and Lyle 2003). In the southeast a number of studies in the late 1980's documented the influence of the environment on the recruitment and distribution of some of the target species (e.g. Harris et al. 1987, Harris et al. 1988, Harris et al. 1991; Harris et al. 1992.

Although the community component was not assessed at Level 2 in this report there is some relevant information that would inform both Level 3 and Level 2 analysis of this component. These studies include

- Diet of redbait - Meyer and Smale1991
- Trophic links to shy albatross - Hedd and Gales 2001
- Trophic links to fur seals - Gales and Pemberton 1994
- Trophic links to seabirds - Brothers et al. 19931994
- Trophic links to commercial teleosts - Meyer and Smale 1991
- Trophic role of redbait - Young and Davis (1992), Young et al (1993, 1997), Bulman et al 2001

With regard to the TEP species and direct impacts, there are no studies that can estimate the sustainable level of take, although this may be important if there are demonstrated interactions that result in the death of the TEP species identified at Level 2.

White sharks are known to feed among schools of pelagic fishes. White sharks have been observed among salmon schools in SA and southwest WA as well as among sardine schools off South Africa, and there are records of sardines in the stomach contents of white sharks. (Klimely 1985; Malcolm et al 2001).

3. General discussion and research implications

This sub-fishery is relatively minor at present, despite large catches in the past. At the present level of effort, few risks are likely to remain after refinement of the TEP species risks.

3.1 Level 1

The results of the Level 1 analysis for the purse seine sub-fishery were discussed in Section 2.3.12. A total of 19 out of 32 impact activities were considered across the five components, and only four scenarios generated risk scores of moderate (3). There were no major risks identified at Level 1 (scores of 4 or above). The Level 1 SICA showed that the impacts of this fishery as it is currently practiced are limited to the direct effect of fishing, and this activity was identified across four components. Habitat was the only component eliminated.

The small level of recent effort in this fishery is such that this Level 1 evaluation was as expected, and there were no surprises raised.

3.2 Level 2

The Level 2 results were presented in detail in Section 2.4.6., results are briefly recapped here. The three species components that Level 1 analyses suggested were at risk from fishing were target species, bycatch and byproduct and TEP species. This assessment then considered 235 species in the Level 2 analyses, and only species in the TEP component were found to be at high risk.

3.2.1 Species at risk

Of the list of species rated as high risk from the PSA analyses, the authors consider that observer data is essential for evaluation of the TEP species- dolphins/beaked whales in particular.

Species	Risk Category	Role
Marine Mammals		
\bullet Dolphin/beaked whales	* Other	TEP

Of the large number of TEP species found to be at high risk, few were in the high risk category because of insufficient biological information. The high risk species were either seabirds or marine mammals and the information with which to assess the susceptibility was poor. As a result, estimates of encounterability and selectivity were not able to be refined, and relied on the default scoring procedure. The large set of seabirds was based on the animals present in the area, rather than any documented interactions. The high risk marine mammals that may be false positives are the larger whales and beaked whales, while the smaller mammals may remain as high risk even after further reduction of the uncertainty. Mortality of the smaller dolphins and seals has been reported in similar small pelagic fisheries in Australia and elsewhere. That said
this sub-fishery suffers from a lack of observer data. It is worth considering that if the fishery is to continue, that observer data be collected. This should quickly eliminate many of the high risk species in the TEP component.

None of the target or bycatch/byproduct species were found to be at high risk at Level 2. For the target species, this was due in part to the high productivity of these species, and the wide distribution. With regard to the byproduct and bycatch species, low susceptibility scores placed them in the low or medium risk categories.

Residual risk

As discussed elsewhere in this report (Section 1), the ERAEF methods are both hierarchically structured and precautionary. The Level 1 (SICA) analyses are used to identify potential hazards associated with fishing and which broad components of the ecological system they apply to. The Level 2 (PSA) analyses consider the direct impacts of fishing on individual species and habitats (rather than whole components), but the large numbers of species that need to be assessed and the nature of the information available for most species in the PSA analyses limits these analyses in several important respects. These include that some existing management measures are not directly accounted for, and that no direct account is taken of the level of mortality associated with fishing. Both these factors are taken into account in the ERAEF framework at Level 3, but the analyses reported here stop at Level 2. This means that the risk levels for species must be regarded as identifying potential rather than actual risk, and due to the precautionary assumptions made in the PSA analyses, there will be a tendency to overestimate absolute levels of risk from fishing.

In moving from ERA to ERM, AFMA will focus scarce resources on the highest priority species and habitats (those likely to be most at risk from fishing). To that end, and because Level 3 analyses are not yet available for most species, AFMA (with input from CSIRO and other stakeholders) has developed guidelines to assess "residual risk" for those species identified as being at high potential risk based on the PSA analyses. The residual risk guidelines will be applied on a species by species basis, and include consideration of existing management measures not currently accounted for in the PSA analyses, as well as additional information about the levels of direct mortality. These guidelines will also provide a transparent process for including more precise or missing information into the PSA analysis as it becomes available.

CSIRO and AFMA will continue to work together to include the broad set of management arrangements in Level 2 analyses, and these methods will be incorporated in future developments of the ERAEF framework. CSIRO has also undertaken some preliminary Level 3 analyses for bycatch species for several fisheries, and these or similar methods will also form part of the overall ERAEF framework into the future.

3.2.2 Habitats at risk

Not relevant; eliminated at Level 1

3.2.3 Communities at risk

Communities not evaluated as methods not complete.

3.3 Key Uncertainties / Recommendations for Research and Monitoring

In assessing risk to these TEP species, it is not possible to assess absolute risk without supplementary information on either abundance or total mortality rates, and such data are not available for the vast majority of such species. However it may be possible to draw inferences from information that may be available for some species, either from catch records of occurrence from other fisheries, from fishery independent survey data, or from examination of trends in CPUE from observer data. Such data should be sought and examined for the high risk species identified in this analysis.

Research needs

Specific recommendations arising from this assessment include:

- Implement independent field observations, paying particular attention to the interaction with seabirds and marine mammals.
- Once that data is available, re-evaluate the high risk species in the TEP component
- Develop trophic models to ensure that removal of current catches of small pelagics will have a sustainable impact on predatory birds and mammals including shy albatross, Australasian gannet, and Australian fur seal. This would be relevant to the other sub-fishery in the SPF, the midwater trawl fishery.

References

Ecological Risk Assessment References (specific for SPF sub-fishery)

Anon (1991). Small Pelagic Fishery Management Zones (map). Australian Fisheries Management Authority, Canberra.

Anon. (2001). FAO Yearbook of Fishery Statistics - Capture Production 1999. FAO Fishery Information, Data and Statistics Unit, Rome.

Anon. (2001). Management policy for the Commonwealth Small Pelagics Fishery)For zones B, C, and D). Australian Fisheries Management Authority, Canberra

Anon (2002). Jack Mackerel Assessment Workshop 2002 minutes. Australian Fisheries Management Authority, Canberra

Brothers, N., Gales, R. and Pemberton , D. (1993). Prey harvest of the Australasian Gannet (Sula serrator) in Tasmania. Wildlife Research, 20: 777-773.

Bulman, C., Althaus, F., He, X., Bax, N. and Williams, A. (2001). Diets and trophic guilds of demersal fishes of the south-eastern Australian shelf. Marine and Freshwater Research: 52, 537-548.

Caton, A. (2001). Fishery Status Reports. Bureau of Rural Sciences., Canberra. 252 pp.
Commonwealth Baitfish management objectives. Provided to NSW Fisheries Baitfish Working Group.

Gales, R. and Pemberton, D. (1994). Diet of the Australian fur seal in Tasmania. Australian Journal of Marine and Freshwater Research 45, 653-664.

Glaister, J. P., and J. H. Diplock. (1993). Baitfish and the East Coast Tuna and Billfish Fishery - Species, status and situation .

Harris, G. P., Davies, P., Nunez, M. and Meyers, G. (1988). Interannual variability in climate and fisheries in Tasmania. Nature 333, 754-757.

Harris, G. P., Griffiths, F. B., Clementson, L. A. Climate and the Fisheries off Tasmania - Interactions of Physics, food chains and fish. IN Payne, A. A. L., Brink, K. H., Mann, K. H. and Hilborn, R. (Eds.) (1992). Benguela Trophic Functioning, South African Journal of Marine Science, 12: 585-587.

Harris, G. P., Griffiths, F. B., Clementson, L. A., Lyne, V. and Van der Doe, H. (1991). Seasonal and interannual variability in physical processes, nutrient cycling and the structure of the food chain in Tasmanian shelf waters. Journal of Plankton Research 13 Supplement S, 109-131.

Harris, G., Nilsson, C., Clementson, L. and Thomas, D. (1987). The water masses of the east coast of Tasmania: seasonal and interannual variability and the influence on phytoplankton biomass and productivity. Australian Journal of Marine and Freshwater Research 38, 569-590.

Hedd, A. and Gales, R. (2001). The diet of shy albatrosses (Thalassarche cauta) at Albatross Island, Tasmania. Journal of Zoology 253, 69-90.
Heemstra, P. C. and Randall, J. E. (1977). A revison of the Emmelichthyidae (Pisces: Perciformes). Australian Journal of Marine and Freshwater Research 28, 361-396.

Hsieh, C.-H. and Chiu, T.-S. (2002). Summer spatial distribution of copepods and fish larvae in relation to hydrography in the northern Taiwan Strait. Zoological Studies 41, 85-98.

Jordan, A. R. (1994). Age, growth and back-calculated birthdate distributions of larval jack mackerel, Trachurus declivis (Pisces: Carangidae), from eastern Tasmanian coastal waters. Australian Journal of Marine and Freshwater Research 45, 19-33.

Jordan, A. R., Pullen, G., Marshall, J. A. and Williams, H. (1995). The temporal and spatial patterns of spawning in jack mackerel, Trachurus declivis (Pisces: Carangidae), during 1988-1991 in eastern Tasmanian waters. Marine and Freshwater Research 46, 831-842.

Jordan, A. R., Pullen, G. and Williams, H. (1992). Jack mackerel resource assessment in south eastern Australian: Final report to the Fishing Industry and Development Council, Project DFT2Z. Tasmanian Department of Primary Industry, Fisheries and Energy. Sea fisheries Research Laboratories, Crayfish Point, Taroona.

Kailola, P., Williams, M. J., Stewart, P. C., Reichelt, R. E., McNee, A. and Grieve, C. eds.). (1993). Australian Fisheries Resources. Bureau of Resource Sciences, Department of Primary Industries and Energy and the Fisheries Research and Development Corporation, Canberra.

Klimely, A. P. (1985). The areal distribution and autoecology of the white shark, Carcharodon carcharias, off the west coast of North America. Memoirs of the California Academy of Science Vol 9: 15-40.

Last, P. R., Scott, E. O. G. and Talbot, F. H. (1983). Fishes of Tasmania. Tasmanian Fisheries Development Authority, Hobart.

Lyle, J. M., K. Krusic-Golub, and A. K. Morison. 2000. Age and growth of jack mackerel and the age structure of the jack mackerel purse seine catch. 49 p FRDC project 1995/034. Hobart, Tas.: Tasmanian Aquaculture and Fisheries Institute, University of Tasmania.

Malcolm, H., Bruce, B.D. and Stevens, J.D.S. (2001). A review of the biology and status of white sharks in Australian waters. Final report to Environment Australia, Marine Species Protection Program. CSIRO Hobart. 114 pp

Markina, N. P. and Boldryev, V. Z. (1980). Feeding of the redbait on the underwater elevations of the Southwest Pacific. Marine Biology Vladivostok 4, 40-45.

Marshall, J. A., Pullen, G. and Jordan, A. R. (1993). Reproductive biology and sexual maturity of female jack mackerel, Trachurus declivis (Jenyns) in eastern Tasmanian waters. Australian Journal of Marine and Freshwater Research 44, 799-809.

May, J. L. and Maxwell, J. G. H. (1986). Field guide to trawl fish from temperate waters of Australia. CSIRO Division of Fisheries Research.

Meléndez, R. C. and Céspedes, R. M. (1986). Emmelichthys nitidus cyanescens (Guichenot, 1848) in the Chilean southern fisheries. Investigacion Pesquera (Chile) 33, 111-114.

Mel'nikov, Y. S. and Ivanin, H. A. (1995). Age-size composition and mortality of Plagiogeneion rubiginosum (Emmelichthyidae) in west Indian submarine ridge. Journal of Ichthyology 35, 20-27.

Meyer, M. and Smale, M. J. Predation patterns of demersal teleost from the cape south and west coasts of south Africa. 1. Pelagic predators. South African Journal of Marine Science, 10: 173-191.

Nor, L. A., Kykharev, N. N. and Zaytiev, A. K. (1985). The biology of Erythrocles schlegelii (Richardson)(Emmelichthyidae) of the south China Sea. Journal of Ichthyology 25, 146-149.

O'Grady, A. 2002. Assessing the ecological sustainability of the Northern Territory Spanish Mackerel Fishery. A report prepared for Environment Australia as required for assessment under the Environment Protection and Biodiversity Conservation Act 1999, Northern Territory. Dept. of Business, Industry \& Resource Development.

Oyarzún, C. and Arriaza, M. (1993). Emmelichthys nitidus nitidus Richardson, 1845 and Emmelichthys nitidus cyanescens (Guichenot, 1848), (Perciformes; Emmelichthyidae). Are they really different subspecies? Revista de Biologia Marina 28, 341-348.

Pullen, G. (1994a). Fishery status report: Purse seine (The Tasmanian jack mackerel fishery). Internal Report 13.Department of Primary Industry and Fisheries, Tasmania.

Pullen, G. (1994b). Jack mackerel (Trachurus declivis). In: Species status report: Key scalefish species, (ed. Anonymous). Internal Report 14. Department of Primary Industry and Fisheries, Tasmania.

Roschin, E. A. (1985). Some biological properties of redbait, Emmelichthys nitidus (Emmelichthyidae), from a seamount in the notal zone of the Indian Ocean. Journal of Ichthyology 25, 44-50.

Smith, K. [2001]. 2001. Purse Seine Fishery report. NSW Fisheries Status Report 2000/01: pp 120-127

Smith, M. M. and Heemstra, P. C. (eds.). (1986). Smith's Sea Fishes. MacMillan.
Staunton-Smith, J., and T. Ward. 2000. Stock assessment of pelagic bait fishes in Southern Queensland with reference to pilchards (Sardinops sagax). 126 p FRDC projects 95/043 \& 98/130. Brisbane, Qld.: Queensland. Dept. of Primary Industries/FRDC.

Staunton-Smith, J., and T. Ward. 2000. Stock assessment of pelagic bait fishes in Southern Queensland with reference to pilchards (Sardinops sagax). 126 p FRDC projects 95/043 \& 98/130. Brisbane, Qld.: Queensland. Dept. of Primary Industries/FRDC.

Tasmania. Dept. of Primary Industries, Water and Environment. 2002. Zone A Mackerel Fishery discussion paper .

Ward, P., T. Timmiss, and B Wise. [2000]. A review of biology and fisheries for mackerel. Updated report to the Fisheries Resources Research Fund, Australia. Bureau of Rural Sciences, Kingston, ACT.

Wassenberg, T. J., Salini, J. P., Heatwole, H. and Kerr, J. D. (1994). Incidental capture of sea-snakes (Hydrophiidae) by Prawn Trawlers in the Gulf of Carpentaria, Australia. Australian Journal of Marine and Freshwater Research 45: 429-443.

Welsford, D. C. and Lyle, J. M. 2003. Redbait (Emmelichthys nitidus): synopsis of fishery and biological data. TAFI Technical Report Series 20, Tasmanian Aquaculture and Fisheries Institute Tasmania, Hobart

Williams, H. and Pullen, G. (1986). A synopsis of biological data on the jack mackerel Trachurus declivis Jenyns. Technical Report 10. Department of Sea Fisheries, Tasmania.

Williams, H. and Pullen, G. (1993). Schooling behaviour of jack mackerel, Trachurus declivis (Jenyns), observed in the Tasmanian purse seine fishery. Australian Journal of Marine and Freshwater Research 44, 577-587.

Williams, H., Pullen, G., Kucerans, G. and Waterworth, C. (1987). The jack mackerel purse seine fishery in Tasmania, 1986-87. Technical Report 19. Department of Sea Fisheries, Tasmania.

Young, J. W. and Davis, T. L. O. (1992). Feeding ecology, and interannual variations in diet of larval jack mackerel, Trachurus declivis (Pisces: Carangidae) from coastal waters of eastern Tasmania. Marine Biology 113, 11-20.

Young, J. W, Jordan, A. R., Bobbi, C., Johannes, R. E., Haskard, K. and Pullen, G. (1993). Seasonal and interannual variability in krill (Nyctiphanes australis) stocks and their relationship to the fishery for jack mackerel (Trachurus declivis) off eastern Tasmania, Australia. Marine Biology 116, 9-18.
Young, J. W., Lamb, T. D., Le, D., Bradford, R., Whitelaw, A. W. (1997) Feeding ecology and interannual variations in diet of southern bluefin tuna, Thunnus maccoyii, in relation to coastal and oceanic waters off eastern Tasmania, Australia. Environmental Biology of Fishes 50(3): 275-291

General Methodology References

Fletcher, W. (2005) The application of qualitative risk assessment methodology to prioritize issues for fisheries management. ICES Journal of Marine Science 62:1576-1587.

Fletcher, W. J., Chesson, J., Fisher, M., Sainsbury, K. J., Hundloe, T., Smith, A.D.M. and Whitworth, B. 2002. National ESD reporting framework for Australian Fisheries: The how to guide for wild capture fisheries. FRDC Report 2000/145, Canberra, Australia.

Hobday, A. J., A. Smith and I. Stobutzki (2004). Ecological risk Assessment for Australian Commonwealth Fisheries. Final Report Stage 1. Hazard identification and preliminary risk assessment. Report Number R01/0934, CSIRO Marine Research.

Stobutzki, I., Miller, M., Brewer, D., 2001. Sustainability of fishery bycatch: a process for assessing highly diverse and numerous bycatch. Environmental Conservation 28 (2), 167-181.

Walker, T. (2004). Elasmobranch fisheries management techniques. Chapter 13. Management measures. Technical manual for the management of elasmobranchs. J. A. Musick and R. Bonfil, Asia Pacific Economic Cooperation: (in press).

Species Methodology References

Bax, N. J. and Knuckey, I. 1996. Evaluation of selectivity in the South-East fishery to determine its sustainable yield. Final Report to the Fisheries Development Corporation. Project 1996/40.

Daley, R. K., last, P. R., Yearsley, G. K. and Ward, R. D. 1997. South East Fishery Quota Species - an Identification Guide. CSIRO Division of Marine Research, Hobart. 91 pp.

Gomon, M. F., Glover, J. C. M. and Kuiter, R. H. (Eds.) 1994. The Fishes of Australia’s South Coast. State Print, Adelaide. 992 pp.

Last, P., V. Lyne, G. Yearsley, D. Gledhill, M. Gomon, T. Rees and W. White. (2005). Validation of national demersal fish datasets for the regionalisation of the Australian continental slope and outer shelf (>40 m depth). Final Report to the National Oceans Office. National Oceans Office, Hobart. 99pp.

Milton, D. A. 2000. Assessing the susceptibility to fishing of rare trawl bycatch: sea snakes caught by Australia's Northern Prawn Fishery. Biological Conservation. 101: 281 - 290.

Walker, T. I., Hudson, R. J. and Gason, A. S. 2005. Catch evaluation of target, byproduct and bycatch species taken by gillnets and longlines in the shark fishery of south-eastern Australia. Journal of Northwest Atlantic Fisheries Science. 35: 505-530.

Yearsley, G. K., Last, P. R. and Ward, R. D. 1999. Australian Seafood Handbook Domestic species. CSIRO Marine Research, Hobart. 461 pp.

Habitat Methodology References

Althaus F.A. and Barker B. 2005. Lab Guide to Habitat scoring (unpublished).
Bax N., Kloser R., Williams A., Gowlett-Holmes K., Ryan T. 1999. Seafloor habitat definition for spatial management in fisheries: a case study on the continental shelf of southeast Australia. Oceanologica Acta 22 (6) 705-719

Bax N. and Williams A. 2001. Seabed habitat on the south-eastern Australian continental shelf: context, vulnerability and monitoring. Marine and Freshwater Research 52: 491-512

Bulman C., Sporcic M., Dambacher J. 2005 (in prep). Ecological Risk Assessment for Communities Methodology Report.

Commonwealth of Australia 2005. National Marine Bioregionalisation of Australia. Summary. Department of Environment and Heritage, Canberra, Australia.

Greene H.G., Yoklavich M.M., Starr R.M., O’Connell V.E., Wakefield W.W., Sullivan D.E., McRea J.E. Jr., Cailliet G.M. 1999. A classification scheme for deep seafloor habitats. Oceanologica Acta 22: 663-678

Heap A.D., Harris P.T., Last P., Lyne V., Hinde A., Woods M. 2005. Draft Benthic Marine Bioregionalisation of Australia’s Exclusive Economic Zone. Geoscience Australia Report to the National Oceans Office. Geoscience Australia, Canberra.

Harris P., Heap A.D., Passlow V., Sbaffi L., Fellows M., Porter-Smith R., Buchanan C., Daniell J (2003). Geomorphic Features of the Continental Margin of Australia. Geoscience Australia, Canberra.

Kloser R., Williams A., Butler A. 2000. Assessment of Acoustic Mapping of Seabed Habitats: Phase 1 Surveys April-June 2000, Progress Report 1. Marine Biological and Resource Surveys South-East Region.

Kostylev V.E., Todd B.J., Fader G.B.J., Courtney R.C., Cameron G.D.M., Pickrill R.A. 2001. Benthic habitat mapping on the Scotian Shelf based on multibeam bathymetry, surficial geology and sea floor photographs. Marine Ecology Progress Series 219: 121-137

Roff J.C., and Taylor M.E. 2000. National Frameworks for marine conservation - a hierarchical geophysical approach. Aquatic Conservation: Marine and Freshwater Ecosystems 10: 209-223

Community Methodology References

Condie, S., Ridgway, K., Griffiths, B., Rintoul, S. and Dunn, J. (2003). National Oceanographic Description and Information Review for National Bioregionalisation. Report for National Oceans Office.(CSIRO Marine Research: Hobart, Tasmania, Australia.)

Interim Marine and Coastal Regionalisation for Australia Technical Group (1998). Interim Marine and Coastal Regionalisation for Australia: an ecosystem-based classification for marine and coastal environments. Version 3.3 (Environment Australia, Commonwealth Department of the Environment: Canberra, Australia.)

Last, P., Lyne, V., Yearsley, G., Gledhill, D., Gomon, M., Rees, T., and White, W. (2005). Validation of national demersal fish datasets for the regionalisation of the Australian continental slope and outer shelf ($>40 \mathrm{~m}$ depth). (National Oceans Office, Department of Environment and Heritage and CSIRO Marine Research, Australia.)

Lyne, V. and Hayes, D. (2004). Pelagic Regionalisation. National Marine Bioregionalisation Integration Project. 137 pp. (CSIRO Marine Research and NOO: Hobart, Australia.)

Meyer, L., Constable, A. and Williams, R. (2000). Conservation of marine habitats in the region of Heard Island and McDonald Islands. Final Report to Environment Australia. (Australian Antarctic Division, Kingston, Tasmania.)

Rees, A.J.J., Yearsley, G.K., and Gowlett-Holmes, K. (2005). Codes for Australian Aquatic Biota (on-line version). CSIRO Marine Research, World Wide Web electronic publication, 1999 onwards. Available at:
http://www.marine.csiro.au/caab/.

Glossary of Terms

\(\left.$$
\begin{array}{ll}\text { Assemblage } & \begin{array}{l}\text { A subset of the species in the community that can be } \\
\text { easily recognized and studied. For example, the set of } \\
\text { sharks and rays in a community is the Chondricythian } \\
\text { assemblage. }\end{array}
$$

A general term for a set of properties relating to the

productivity or susceptibility of a particular unit of

analysis.\end{array}\right]\)| A non-target species captured in a fishery, usually of low |
| :--- |
| value and often discarded (see also Byproduct). |
| A non-target species captured in a fishery, but it may have |
| Bycatch species |
| value to the fisher and be retained for sale. |
| Byproduct species |
| A complete set of interacting species. |
| Community |
| A major area of relevance to fisheries with regard to |
| ecological risk assessment (e.g. target species, bycatch and |

Operational objective	A measurable objective for a component or subcomponent (typically expressed as "the level of X does not fall outside acceptable bounds")
Precautionary approach	The approach whereby, if there is uncertainty about the outcome of an action, the benefit of the doubt should be given to the biological entity (such as species, habitat or community).
PSA	Productivity-Susceptibility Analysis. Used at Level 2 in the ERAEF methodology.
Scoping	A general step in an ERA or the first step in the ERAEF involving the identification of the fishery history, management, methods, scope and activities.
SICA	Scale, Impact, Consequence Analysis. Used at Level 1 in the ERAEF methodology.
Sub-component	A more detailed aspect of a component. For example, within the target species component, the sub-components include the population size, geographic range, and the age/size/sex structure.
Sub-fishery	A subdivision of the fishery on the basis of the gear or areal extent of the fishery. Ecological risk is assessed separately for each sub-fishery within a fishery.
Sustainability	Ability to be maintained indefinitely
Target species	A species or group of species whose capture is the goal of a fishery, sub-fishery, or fishing operation.
Trophic position	Location of an individual organism or species within a foodweb.
Unit of analysis	The entities for which attributes are scored in the Level 2 analysis. For example, the units of analysis for the Target Species component are individual "species", while for Habitats, they are "biotypes", and for Communities the units are "assemblages".

Appendix A: General summary of stakeholder feedback

Date	Format received	Comment from stakeholder	Action/explanation
$\begin{aligned} & \text { Sept } 28 \\ & 2006 \end{aligned}$	Written comment 1 from AFMA specific to purse seine	Informally Managed Fishery (IMF) data appears to have been included which has skewiffed the results.	Action 1: Agreed. Would have analysed the data separately if they had been provided in that way
$\begin{aligned} & \hline \text { Sept } 28 \\ & 2006 \end{aligned}$	Written comment 2 from AFMA	Very large whales have been included even though they can not realistically be caught because nets are much smaller than species. This should be overridden.	Action 2: Selectivity cut-offs were checked Selectivity cut-offs are set at 5 m and 6 m . Commercial nets are $1,000 \mathrm{~m}$ long. Agreed that some results are surprising. E.g. Humpback whale grows to a maximum size of 17 m but the size at maturity is 4 m . Other small whales have been caught in other purse-seine fisheries. Would consider over-ride of selectivity score if independent observational data was available to support the argument.
$\begin{aligned} & \hline \text { Sept } 28 \\ & 2006 \end{aligned}$	Written comment 3 from AFMA	Purse seine - 3 birds at risk in first tables. 5 referred in the discussion.	Not applicable here - mixed up with MWT sub-fishery
$\begin{aligned} & \hline \text { Sept } 28 \\ & 2006 \end{aligned}$	Written comment 4 from AFMA	Executive summary refers to 2 birds interacting with fishery; then 2.4.6 says no birds interacted with.	Not applicable here - mixed up with MWT sub-fishery
$\begin{aligned} & \hline \text { Sept } 28 \\ & 2006 \end{aligned}$	Written comment 5 from AFMA	Executive summary: Blue Mackerel (Scomber Australisicus ????) is the primary target of the PS sector	Action 5: Recent switch to blue mackerel noted in exec summary and scoping (but over the history of the fishery most of the catch has been Jack mackerel by far).
$\begin{aligned} & \text { Sept } 28 \\ & 2006 \end{aligned}$	Written comment 6 from AFMA	Executive summary:"Risk to the one chondrichthyan species, white shark, arises in part from the low productivity, rather than a high susceptibility). Association of this shark with schools of baitfish is reported, as is occasional capture in the South Australian purse seine fishery." We have been here before. \qquad think this was actually related to the SBT tow cage operation not SPF or tuna purse seine activityneeds clarification (of data source) ????	Action 6: Replaced by the following in the executive summary and in level 3: White sharks are also considered at high potential risk and are known to feed among schools of pelagic fishes. White sharks have been observed among salmon schools in SA and southwest WA as well as among sardine schools off South Africa, and there are records of sardines in the stomach contents of white sharks. (Klimely 1985; Malcolm et al 2001). In future, observer data may reduce this risk score.
$\begin{aligned} & \hline \text { Sept } 28 \\ & 2006 \end{aligned}$	Written comment 7 from AFMA	Executive summary:"The issue with fur seals is one of capturing a protected species, not one of sustainability. Dolphins have been captured in the south Australian purse seine fishery, resulting in a temporary shut-down in 2005. Lack of information in the SPF fishery means these species	Action 7: For consideration by AFMA in Ecological Risk Management. Action 8: comment added to General Fishery Characteristics/TEP issues: Operators report that the mortality for mammals in the fishery is negligible

		may also be an issue here". I understand the comment but the issue is overstated......... I believe the issue is really mortalities associated with interactions not the interactions themselves.. \qquad active SPF PS operators have been very proactive in this area with CoP and mitigation actions......... mortalities NIL \qquad interactions negligible.	
$\begin{aligned} & \hline \text { Sept } 28 \\ & 2006 \end{aligned}$	Written comment 8 from AFMA	Key Uncertainties / Recommendations for Research and Monitoring The issue here is that the data is available within industry, but independent data is required by the process. It does not seem to matter how proactive industry is in these matters our information is not considered valid, leading to a plethora of false positives and a significant cost to address the alleged data deficiency, whilst a cloud hangs over industry's head in the meantime. Industry is disadvantaged by the lack of fishery independent observations despite (in the case of the East Coast operations) availability of seats in planes and on boats for decades but hardly any takers. ($1 \times$ BRS and 1 x NSWF in my knowledge in more than the last decade).	No Action.
$\begin{aligned} & \hline \text { Sept } 28 \\ & 2006 \end{aligned}$	Written general comment 1 from AFMA on SPF	Check for grammatical errors and readability. Eg Scoping doc S1 General Fishery characteristics under "How gear is set" gear is spelt gar. Under Community issues and interactions it says "The fishery has removed 34 kt of redbait. This unit requires fixing.	Action G1: Document checked. 'how gar set' not found in purse seine case study. Redbait relates specifically to midwater trawl fishery. Spelling/grammatical errors checked and corrected as appropriate
$\begin{aligned} & \hline \text { Sept } 28 \\ & 2006 \end{aligned}$	Written general comment 2 from AFMA on SPF	Why are slipper lobsters in the assessment? Report refers to them being included to demonstrate the different results you get when at the family level. If this is correct - this should not be in the report and should be removed.	Action G2: See mid-water trawl fishery report. No record of slipper lobsters in the purse seine
$\begin{aligned} & \hline \text { Sept } 28 \\ & 2006 \end{aligned}$	Written general comment 3 from AFMA on SPF	The results do not pick up on seasonal variations or diurnal migrations. This should be included somewhere to put fishery into context.	No Action G3: Assessment of temporal variation is part of level 3 assessment process
$\begin{aligned} & \text { Sept } 28 \\ & 2006 \end{aligned}$	Written general comment 4 from AFMA on SPF	Blue Mackerel attributes not correct	No action G4: No alternative values or sources provided.
$\begin{aligned} & \hline \text { Sept } 28 \\ & 2006 \end{aligned}$	Written general comment 5 from AFMA on SPF	Species list incomplete - many more byproduct/bycatch species in trawl sector	No Action G5: The assessment considers all species included in data for the fishery that could be obtained from BRS. AFMA was not able to directly supply observer data at the time of the analysis.

Sept 28 2006	Written general comment 6 from AFMA on SPF	I believe there are far too many "high" risk species left in after stage 2 of the assessment. I believe a panel of experts should have been consulted during stage 2, to help eliminate all species that were "obviously" not highly endangered by fishing. Confidence in the process may be lessened by leaving many species in beyond stage 2, when they are there because of obvious false positives. We should not rely on a management process at a later date to eliminate them, when it could be simply done at stage 2, by experts.	No Action G6: As recommended by AFMA

Appendix B: PSA results summary of stakeholder discussions

Level 2 (PSA) Document L2.1. Summary table of stakeholder discussion regarding PSA results.
The following species were discussed at the INSERT FISHERY GROUP NAME meeting on INSERT DATE and LOCATION. ALL or SELECTED high risk species were discussed.

Taxa name	Scientific name	Common name	Role in fishery	PSA risk ranking $(H / M / L)$	Comments from meeting, and follow-up	Action	Outcome

Appendix C: SICA consequence scores for ecological components

Table 5A. Target Species. Description of consequences for each component and each sub-component. Use table as a guide for scoring the level of consequence for target species. (Modified from Fletcher et al. 2002)

Sub-component	Score/level					6 Intolerable
	1 Negligible	$\begin{array}{\|l\|} \hline 2 \\ \text { Minor } \\ \hline \end{array}$	3 Moderate	4 Major	5 Severe	
Population size	1. Population size Insignificant change to population size/growth rate (r). Unlikely to be detectable against background variability for this population.	1. Population size Possible detectable change in size/growth rate (r) but minimal impact on population size and none on dynamics.	1. Population size Full exploitation rate but long-term recruitment dynamics not adversely damaged.	1. Population size Affecting recruitment state of stocks and/or their capacity to increase	1. Population size Likely to cause local extinctions if continued in longer term	1. Population size Local extinctions are imminent/immediate
Geographic range	2. Geographic range No detectable change in geographic range. Unlikely to be detectable against background variability for this population.	2. Geographic range Possible detectable change in geographic range but minimal impact on population range and none on dynamics, change in geographic range up to 5% of original.	2. Geographic range Change in geographic range up to 10% of original.	2. Geographic range Change in geographic range up to 25% of original.	2. Geographic range Change in geographic range up to 50% of original.	2. Geographic range Change in geographic range > 50 \% of original.
Genetic structure	3. Genetic structure No detectable change in genetic structure. Unlikely to be detectable against background variability for this population.	3. Genetic structure Possible detectable change in genetic structure. Any change in frequency of genotypes, effective population size or number of spawning units up to	3. Genetic structure Change in frequency of genotypes, effective population size or number of spawning units up to 10%.	3. Genetic structure Change in frequency of genotypes, effective population size or number of spawning units up to 25%.	3. Genetic structure Change in frequency of genotypes, effective population size or number of spawning units, change up to 50%.	3. Genetic structure Change in frequency of genotypes, effective population size or number of spawning units > 50%.

Sub-component	Score/level					6 Intolerable
	1 Negligible	$\begin{array}{\|l\|} \hline 2 \\ \text { Minor } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 3 \\ \text { Moderate } \end{array}$	$\begin{array}{\|l\|} \hline 4 \\ \text { Major } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 5 \\ \text { Severe } \\ \hline \end{array}$	
		5\%.				
Age/size/sex structure	4. Age/size/sex structure No detectable change in age/size/sex structure. Unlikely to be detectable against background variability for this population.	4. Age/size/sex structure Possible detectable change in age/size/sex structure but minimal impact on population dynamics.	4. Age/size/sex structure Impact on population dynamics at maximum sustainable level, long-term recruitment dynamics not adversely affected.	4. Age/size/sex structure Long-term recruitment dynamics adversely affected. Time to recover to original structure up to 5 generations free from impact.	4. Age/size/sex structure Long-term recruitment dynamics adversely affected. Time to recover to original structure up to 10 generations free from impact.	4. Age/size/sex structure Long-term recruitment dynamics adversely affected. Time to recover to original structure > 100 generations free from impact.
Reproductive capacity	5. Reproductive capacity No detectable change in reproductive capacity. Unlikely to be detectable against background variability for this population.	5. Reproductive capacity Possible detectable change in reproductive capacity but minimal impact on population dynamics.	5. Reproductive capacity Impact on population dynamics at maximum sustainable level, long-term recruitment dynamics not adversely affected.	5. Reproductive capacity Change in reproductive capacity adversely affecting long-term recruitment dynamics. Time to recovery up to 5 generations free from impact.	5. Reproductive capacity Change in reproductive capacity adversely affecting long-term recruitment dynamics. Time to recovery up to 10 generations free from impact.	5. Reproductive capacity Change in reproductive capacity adversely affecting long-term recruitment dynamics. Time to recovery > 100 generations free from impact.
Behaviour/movement	6. Behaviour/ movement No detectable change in behaviour/ movement. Unlikely to be detectable against background variability for this population. Time taken to recover to pre-disturbed state on the scale of hours.	6. Behaviour/ movement Possible detectable change in behaviour/ movement but minimal impact on population dynamics. Time to return to original behaviour/ movement on the scale of days to weeks.	6. Behaviour/ movement Detectable change in behaviour/ movement with the potential for some impact on population dynamics. Time to return to original behaviour/ movement on the scale of weeks to months.	6. Behaviour/ movement Change in behaviour/ movement with impacts on population dynamics. Time to return to original behaviour/ movement on the scale of months to years.	6. Behaviour/ movement Change in behaviour/ movement with impacts on population dynamics. Time to return to original behaviour/ movement on the scale of years to decades.	6. Behaviour/ movement Change to behaviour/ movement. Population does not return to original behaviour/ movement.

Table 5B. Bycatch and Byproduct species. Description of consequences for each component and each sub-component. Use table as a guide for scoring the level of consequence for bycatch/byproduct species (Modified from Fletcher et al. 2002)

Sub-component	Score/level					
	1 Negligible	$\begin{array}{\|l\|} \hline 2 \\ \text { Minor } \\ \hline \end{array}$	$\begin{aligned} & \hline 3 \\ & \text { Moderate } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4 \\ & \text { Major } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 5 \\ \text { Severe } \\ \hline \end{array}$	6 Intolerable
Population size	1. Population size Insignificant change to population size/growth rate (r). Unlikely to be detectable against background variability for this population.	1. Population size Possible detectable change in size/growth rate (r) but minimal impact on population size and none on dynamics.	1. Population size No information is available on the relative area or susceptibility to capture/ impact or on the vulnerability of life history traits of this type of species Susceptibility to capture is suspected to be less than 50% and species do not have vulnerable life history traits. For species with vulnerable life history traits to stay in this category susceptibility to capture must be less than 25%.	1. Population size Relative state of capture/susceptibility suspected/known to be greater than 50% and species should be examined explicitly.	1. Population size Likely to cause local extinctions if continued in longer term	1. Population size Local extinctions are imminent/immediate
Geographic range	2. Geographic range No detectable change in geographic range. Unlikely to be detectable against background variability for this	2. Geographic range Possible detectable change in geographic range but minimal impact on population range and none on dynamics, change in	2. Geographic range Change in geographic range up to 10% of original.	2. Geographic range Change in geographic range up to 25% of original.	2. Geographic range Change in geographic range up to 50% of original.	2. Geographic range Change in geographic range > 50% of original.

Sub-component	Score/level					6 Intolerable
	1 Negligible	$\begin{array}{\|l\|} \hline 2 \\ \text { Minor } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 3 \\ \text { Moderate } \\ \hline \end{array}$	$\begin{aligned} & 4 \\ & \text { Major } \end{aligned}$	$\begin{array}{\|l\|} \hline 5 \\ \text { Severe } \\ \hline \end{array}$	
	population.	geographic range up to 5% of original.				
Genetic structure	3. Genetic structure No detectable change in genetic structure. Unlikely to be detectable against background variability for this population.	3. Genetic structure Possible detectable change in genetic structure. Any change in frequency of genotypes, effective population size or number of spawning units up to 5\%.	3. Genetic structure Detectable change in genetic structure. Change in frequency of genotypes, effective population size or number of spawning units up to 10\%.	3. Genetic structure Change in frequency of genotypes, effective population size or number of spawning units up to 25\%.	3. Genetic structure Change in frequency of genotypes, effective population size or number of spawning units up to 50%.	3. Genetic structure Change in frequency of genotypes, effective population size or number of spawning units > 50%.
Age/size/sex structure	4. Age/size/sex structure No detectable change in age/size/sex structure. Unlikely to be detectable against background variability for this population.	4. Age/size/sex structure Possible detectable change in age/size/sex structure but minimal impact on population dynamics.	4. Age/size/sex structure Detectable change in age/size/sex structure. Impact on population dynamics at maximum sustainable level, long-term recruitment dynamics not adversely damaged.	4. Age/size/sex structure Long-term recruitment dynamics adversely affected. Time to recover to original structure up to 5 generations free from impact.	4. Age/size/sex structure Long-term recruitment dynamics adversely affected. Time to recover to original structure up to 10 generations free from impact.	4. Age/size/sex structure Long-term recruitment dynamics adversely affected. Time to recover to original structure > 100 generations free from impact.
Reproductive capacity	5. Reproductive capacity No detectable change in reproductive capacity. Unlikely to be detectable against background variability for this population.	5. Reproductive capacity Possible detectable change in reproductive capacity but minimal impact on population dynamics.	5. Reproductive capacity Detectable change in reproductive capacity, impact on population dynamics at maximum sustainable level, long-term	5. Reproductive capacity Change in reproductive capacity adversely affecting long-term recruitment dynamics. Time to recovery up to 5 generations free from	5. Reproductive capacity Change in reproductive capacity adversely affecting long-term recruitment dynamics. Time to recovery up to 10	5. Reproductive capacity Change in reproductive capacity adversely affecting long-term recruitment dynamics. Time to recovery > 100 generations free from impact.

Sub-component	Score/level					6 Intolerable
	$\begin{aligned} & \hline 1 \\ & \text { Negligible } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \\ \text { Minor } \\ \hline \end{array}$	3 Moderate	$\begin{aligned} & 4 \\ & \text { Major } \end{aligned}$	$\begin{aligned} & \hline 5 \\ & \text { Severe } \\ & \hline \end{aligned}$	
			recruitment dynamics not adversely damaged.	impact.	generations free from impact.	
Behaviour/movement	6. Behaviour/ movement No detectable change in behaviour/ movement. Unlikely to be detectable against background variability for this population. Time taken to recover to pre-disturbed state on the scale of hours.	6. Behaviour/ movement Possible detectable change in behaviour/ movement but minimal impact on population dynamics. Time to return to original behaviour/ movement on the scale of days to weeks.	6. Behaviour/ movement Detectable change in behaviour/ movement with the potential for some impact on population dynamics. Time to return to original behaviour/ movement on the scale of weeks to months.	6. Behaviour/ movement Change in behaviour/ movement with impacts on population dynamics. Time to return to original behaviour/ movement on the scale of months to years	6. Behaviour/ movement Change in behaviour/ movement with impacts on population dynamics. Time to return to original behaviour/ movement on the scale of years to decades.	6. Behaviour/ movement Change to behaviour/ movement. Population does not return to original behaviour/ movement.

Table 5C. TEP species. Description of consequences for each component and each sub-component. Use table as a guide for scoring the level of consequence for TEP species (Modified from Fletcher et al. 2002)

Sub-component	Score/level					
	1 Negligible	$\begin{array}{\|l\|} \hline 2 \\ \text { Minor } \\ \hline \end{array}$	3 Moderate	4 Major	5 Severe	6 Intolerable
Population size	1. Population size Almost none are killed.	1. Population size Insignificant change to population size/growth rate (r). Unlikely to be detectable against background variability for this population.	1. Population size. State of reduction on the rate of increase are at the maximum acceptable level. Possible detectable change in size/ growth rate (r) but minimal impact on population size and none on dynamics of TEP species.	1. Population size Affecting recruitment state of stocks or their capacity to increase.	1. Population size Local extinctions are imminent/immediate	1. Population size Global extinctions are imminent/immediate
Geographic range	2. Geographic range No interactions leading to impact on geographic range.	2. Geographic range No detectable change in geographic range. Unlikely to be detectable against background variability for this population.	2. Geographic range Possible detectable change in geographic range but minimal impact on population range and none on dynamics. Change in geographic range up to 5% of original.	2. Geographic range Change in geographic range up to 10% of original.	2. Geographic range Change in geographic range up to 25% of original.	2. Geographic range Change in geographic range up to 25% of original.
Genetic structure	3. Genetic structure No interactions leading to impact on genetic structure.	3. Genetic structure No detectable change in genetic structure. Unlikely to be detectable against background variability for this population.	3. Genetic structure Possible detectable change in genetic structure but minimal impact at population level. Any change in frequency of genotypes, effective population size or	3. Genetic structure Moderate change in genetic structure. Change in frequency of genotypes, effective population size or number of spawning units up to 10%.	3. Genetic structure Change in frequency of genotypes, effective population size or number of spawning units up to 25%.	3. Genetic structure Change in frequency of genotypes, effective population size or number of spawning units up to 25\%.

Sub-component	Score/level					6 Intolerable
	$\begin{aligned} & \hline 1 \\ & \text { Negligible } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \\ \text { Minor } \end{array}$	3 Moderate	$\begin{aligned} & \hline 4 \\ & \text { Major } \\ & \hline \end{aligned}$	5 Severe	
			number of spawning units up to 5%.			
Age/size/sex structure	4. Age/size/sex structure No interactions leading to change in age/size/sex structure.	4. Age/size/sex structure No detectable change in age/size/sex structure. Unlikely to be detectable against background variability for this population.	4. Age/size/sex structure Possible detectable change in age/size/sex structure but minimal impact on population dynamics.	4. Age/size/sex structure Detectable change in age/size/sex structure. Impact on population dynamics at maximum sustainable level, long-term recruitment dynamics not adversely damaged.	4. Age/size/sex structure Severe change in age/size/sex structure. Impact adversely affecting population dynamics. Time to recover to original structure up to 5 generations free from impact	4. Age/size/sex structure Impact adversely affecting population dynamics. Time to recover to original structure > 10 generations free from impact
Reproductive capacity	5. Reproductive capacity No interactions resulting in change to reproductive capacity.	5. Reproductive capacity No detectable change in reproductive capacity. Unlikely to be detectable against background variability for this population.	5. Reproductive capacity Possible detectable change in reproductive capacity but minimal impact on population dynamics.	5. Reproductive capacity Detectable change in reproductive capacity, impact on population dynamics at maximum sustainable level, long-term recruitment dynamics not adversely damaged.	5. Reproductive capacity Change in reproductive capacity, impact adversely affecting recruitment dynamics. Time to recover to original structure up to 5 generations free from impact	5. Reproductive capacity Change in reproductive capacity, impact adversely affecting recruitment dynamics. Time to recover to original structure > 10 generations free from impact
Behaviour/movement	6. Behaviour/ movement No interactions resulting in change to behaviour/ movement.	6. Behaviour/ movement No detectable change in behaviour/ movement. Time to return to original behaviour/ movement	6. Behaviour/ movement Possible detectable change in behaviour/ movement but minimal impact on population dynamics.	6. Behaviour/ movement Detectable change in behaviour/ movement with the potential for some impact on population dynamics.	6. Behaviour/ movement Change in behaviour/ movement, impact adversely affecting population dynamics. Time to return to	6. Behaviour/ movement Change in behaviour/ movement. Impact adversely affecting population dynamics. Time to return to

Sub-component	Score/level					
	$\begin{aligned} & \hline 1 \\ & \text { Negligible } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \\ \text { Minor } \\ \hline \end{array}$	3 Moderate	$\begin{aligned} & \hline 4 \\ & \text { Major } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5 \\ & \text { Severe } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 6 \\ \text { Intolerable } \end{array}$
		on the scale of hours.	Time to return to original behaviour/ movement on the scale of days to weeks	Time to return to original behaviour/ movement on the scale of weeks to months	original behaviour/ movement on the scale of months to years.	original behaviour/ movement on the scale of years to decades.
Interaction with fishery	7. Interactions with fishery No interactions with fishery.	7. Interactions with fishery Few interactions and involving up to 5\% of population.	7. Interactions with fishery Moderate level of interactions with fishery involving up to 10% of population.	7. Interactions with fishery Major interactions with fishery, interactions and involving up to 25% of population.	7. Interactions with fishery Frequent interactions involving ~50\% of population.	7. Interactions with fishery Frequent interactions involving the entire known population negatively affecting the viability of the population.

Table 5D. Habitats. Description of consequences for each component and each sub-component. Use table as a guide for scoring the level of consequence for habitats. Note that for sub-components Habitat types and Habitat structure and function, time to recover from impact scales differ from substrate, water and air. Rationale: structural elements operate on greater timeframes to return to pre-disturbance states (Modified from Fletcher et al. 2002)

Sub-component	Score/level					$\begin{gathered} \hline 6 \\ \text { Intolerable } \end{gathered}$
	1 Negligible	$\begin{gathered} 2 \\ \text { Minor } \end{gathered}$	3 Moderate	$\begin{gathered} 4 \\ \text { Major } \\ \hline \end{gathered}$	5 Severe	
Substrate quality	1. Substrate quality Reduction in the productivity (similar to the intrinsic rate of increase for species) on the substrate from the activity is unlikely to be detectable. Time taken to recover to pre-disturbed state on the scale of hours.	1. Substrate quality Detectable impact on substrate quality. At small spatial scale time taken to recover to pre-disturbed state on the scale of days to weeks, at larger spatial scales recovery time of hours to days.	1. Substrate quality More widespread effects on the dynamics of substrate quality but the state are still considered acceptable given the percent area affected, the types of impact occurring and the recovery capacity of the substrate. For impacts on nonfragile substrates this may be for up to 50% of habitat affected, but for more fragile habitats, e.g. reef substrate, to stay in this category the \% area affected needs to be smaller up to 25%.	1. Substrate quality The level of reduction of internal dynamics of habitats may be larger than is sensible to ensure that the habitat will not be able to recover adequately, or it will cause strong downstream effects from loss of function. Time to recover from local impact on the scale of months to years, at larger spatial scales recovery time of weeks to months.	1. Substrate quality Severe impact on substrate quality with $50-90 \%$ of the habitat affected or removed by the activity which may seriously endanger its long-term survival and result in changes to ecosystem function. Recovery period measured in years to decades.	1. Substrate quality The dynamics of the entire habitat is in danger of being changed in a major way, or $>90 \%$ of habitat destroyed.
Water quality	2. Water quality No direct impact on water quality. Impact unlikely to be detectable. Time taken to recover to pre-disturbed state on	2. Water quality Detectable impact on water quality. Time to recover from local impact on the scale of days to weeks, at larger spatial scales	2. Water quality Moderate impact on water quality. Time to recover from local impact on the scale of weeks to months, at larger spatial scales	2. Water quality Time to recover from local impact on the scale of months to years, at larger spatial scales recovery time of weeks to months.	2. Water quality Impact on water quality with 50-90\% of the habitat affected or removed by the activity which may seriously endanger its	2. Water quality The dynamics of the entire habitat is in danger of being changed in a major way, or $>90 \%$ of habitat destroyed.

Sub-component	Score/level					$\begin{gathered} \hline 6 \\ \text { Intolerable } \end{gathered}$
	$\overline{1}$ Negligible	$\begin{gathered} 2 \\ \text { Minor } \end{gathered}$	3 Moderate	$\begin{gathered} 4 \\ \text { Major } \end{gathered}$	5 Severe	
	the scale of hours.	recovery time of hours to days.	recovery time of days to weeks.		long-term survival and result in changes to ecosystem function. Recovery period measured in years to decades.	
Air quality	3. Air quality No direct impact on air quality. Impact unlikely to be detectable. Time taken to recover to pre-disturbed state on the scale of hours.	3. Air quality Detectable impact on air quality. Time to recover from local impact on the scale of days to weeks, at larger spatial scales recovery time of hours to days.	3. Air quality Detectable impact on air quality. Time to recover from local impact on the scale of weeks to months, at larger spatial scales recovery time of days to weeks.	3. Air quality Time to recover from local impact on the scale of months to years, at larger spatial scales recovery time of weeks to months.	3. Air quality Impact on air quality with $50-90 \%$ of the habitat affected or removed by the activity .which may seriously endanger its long-term survival and result in changes to ecosystem function. Recovery period measured in years to decades.	3. Air quality The dynamics of the entire habitat is in danger of being changed in a major way, or $>90 \%$ of habitat destroyed.
Habitat types	4. Habitat types No direct impact on habitat types. Impact unlikely to be detectable. Time taken to recover to pre-disturbed state on the scale of hours to days.	4. Habitat types Detectable impact on distribution of habitat types. Time to recover from local impact on the scale of days to weeks, at larger spatial scales recovery time of days to months.	4. Habitat types Impact reduces distribution of habitat types. Time to recover from local impact on the scale of weeks to months, at larger spatial scales recovery time of months to < one year.	4. Habitat types The reduction of habitat type areal extent may threaten ability to recover adequately, or cause strong downstream effects in habitat distribution and extent. Time to recover from impact on the scale of $>$ one year to < decadal timeframes.	4. Habitat types Impact on relative abundance of habitat types resulting in severe changes to ecosystem function. Recovery period likely to be > decadal	4. Habitat types The dynamics of the entire habitat is in danger of being changed in a catastrophic way. The distribution of habitat types has been shifted away from original spatial pattern. If reversible, will require a long-term recovery period, on the scale of decades

Sub-component	Score/level					$\begin{gathered} \hline 6 \\ \text { Intolerable } \end{gathered}$
	$\overline{1}$ Negligible	$\begin{gathered} 2 \\ \text { Minor } \end{gathered}$	3 Moderate	$\begin{gathered} 4 \\ \text { Major } \end{gathered}$	5 Severe	
						to centuries.
Habitat structure and function	5. Habitat structure and function No detectable change to the internal dynamics of habitat or populations of species making up the habitat. Time taken to recover to predisturbed state on the scale of hours to days.	5. Habitat structure and function Detectable impact on habitat structure and function. Time to recover from impact on the scale of days to months, regardless of spatial scale	5. Habitat structure and function Impact reduces habitat structure and function. For impacts on non-fragile habitat structure this may be for up to 50% of habitat affected, but for more fragile habitats, to stay in this category the \% area affected needs to be smaller up to 20%. Time to recover from local impact on the scale of months to < one year, at larger spatial scales recovery time of months to < one year.	5. Habitat structure and function The level of reduction of internal dynamics of habitat may threaten ability to recover adequately, or it will cause strong downstream effects from loss of function. For impacts on nonfragile habitats this may be for up to 50\% of habitat affected, but for more fragile habitats, to stay in this category the \% area affected up to 25%. Time to recover from impact on the scale of > one year to $<$ decadal timeframes.	5. Habitat structure and function Impact on habitat function resulting from severe changes to internal dynamics of habitats. Time to recover from impact likely to be > decadal.	5. Habitat structure and function The dynamics of the entire habitat is in danger of being changed in a catastrophic way which may not be reversible. Habitat losses occur. Some elements may remain but will require a long-term recovery period, on the scale of decades to centuries.

Table 5E. Communities. Description of consequences for each component and each sub-component. Use table as a guide for scoring the level of consequence for communities (Modified from Fletcher et al. 2002)

Sub-component	Score/level					
	1 Negligible	$\begin{array}{\|l\|} \hline 2 \\ \text { Minor } \\ \hline \end{array}$	$\begin{aligned} & \hline 3 \\ & \text { Moderate } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4 \\ & \text { Major } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 5 \\ \text { Severe } \\ \hline \end{array}$	$\begin{aligned} & \hline 6 \\ & \text { Intolerable } \end{aligned}$
Species composition	1. Species composition Interactions may be occurring which affect the internal dynamics of communities leading to change in species composition not detectable against natural variation.	1. Species composition Impacted species do not play a keystone role - only minor changes in relative abundance of other constituents. Changes of species composition up to 5%.	1. Species composition Detectable changes to the community species composition without a major change in function (no loss of function). Changes to species composition up to 10%.	1. Species composition Major changes to the community species composition ($\sim 25 \%$) (involving keystone species) with major change in function. Ecosystem function altered measurably and some function or components are locally missing/declining/increasin g outside of historical range and/or allowed/facilitated new species to appear. Recovery period measured in years.	1. Species composition Change to ecosystem structure and function. Ecosystem dynamics currently shifting as different species appear in fishery. Recovery period measured in years to decades.	1. Species composition Total collapse of ecosystem processes. Long-term recovery period required, on the scale of decades to centuries
Functional group composition	2. Functional group composition Interactions which affect the internal dynamics of communities leading to change in functional group composition not detectable against natural variation.	2. Functional group composition Minor changes in relative abundance of community constituents up to 5%.	2. Functional group composition Changes in relative abundance of community constituents, up to 10% chance of flipping to an alternate state/ trophic cascade.	2. Functional group composition Ecosystem function altered measurably and some functional groups are locally missing/declining/increasin g outside of historical range and/or allowed/facilitated new species to appear. Recovery period measured in months to years.	2. Functional group composition Ecosystem dynamics currently shifting, some functional groups are missing and new species/groups are now appearing in the fishery. Recovery period measured in years to decades.	2. Functional group composition Ecosystem function catastrophically altered with total collapse of ecosystem processes. Recovery period measured in decades to centuries.

Sub-component	Score/level					6 Intolerable
	1 Negligible	$\begin{array}{\|l\|} \hline 2 \\ \text { Minor } \\ \hline \end{array}$	3 Moderate	$\begin{array}{\|l\|} \hline 4 \\ \text { Major } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 5 \\ \text { Severe } \\ \hline \end{array}$	
b	3. Distribution of the community Interactions which affect the distribution of communities unlikely to be detectable against natural variation.	3. Distribution of the community Possible detectable change in geographic range of communities but minimal impact on community dynamics change in geographic range up to 5% of original.	3. Distribution of the community Detectable change in geographic range of communities with some impact on community dynamics Change in geographic range up to 10% of original.	3. Distribution of the community Geographic range of communities, ecosystem function altered measurably and some functional groups are locally missing/declining/increasin g outside of historical range. Change in geographic range for up to 25% of the species. Recovery period measured in months to years.	3. Distribution of the community Change in geographic range of communities, ecosystem function altered and some functional groups are currently missing and new groups are present. Change in geographic range for up to 50% of species including keystone species. Recovery period measured in years to decades.	3. Distribution of the community Change in geographic range of communities, ecosystem function collapsed. Change in geographic range for $>90 \%$ of species including keystone species. Recovery period measured in decades to centuries.
Trophic/size structure	4. Trophic/size structure Interactions which affect the internal dynamics unlikely to be detectable against natural variation.	4. Trophic/size structure Change in mean trophic level, biomass/ number in each size class up to 5\%.	4. Trophic/size structure Changes in mean trophic level, biomass/ number in each size class up to 10%.	4. Trophic/size structure Changes in mean trophic level. Ecosystem function altered measurably and some function or components are locally missing/declining/increasin g outside of historical range and/or allowed/facilitated new species to appear. Recovery period measured in years to decades.	4. Trophic/size structure Changes in mean trophic level. Ecosystem function severely altered and some function or components are missing and new groups present. Recovery period measured in years to decades.	4. Trophic/size structure Ecosystem function catastrophically altered as a result of changes in mean trophic level, total collapse of ecosystem processes. Recovery period measured in decades to centuries.
Bio-geochemical	5. Bio- and	5. Bio- and	5. Bio- and	5. Bio- and geochemical	5. Bio- and	5. Bio- and

Sub-component	Score/level					
	1 Negligible	$\begin{aligned} & \hline 2 \\ & \text { Minor } \end{aligned}$	3 Moderate	$\begin{aligned} & \hline 4 \\ & \text { Major } \end{aligned}$	5 Severe	6 Intolerable
cycles	geochemical cycles Interactions which affect bio- \& geochemical cycling unlikely to be detectable against natural variation.	geochemical cycles Only minor changes in relative abundance of other constituents leading to minimal changes to bio- \& geochemical cycling up to 5%.	geochemical cycles Changes in relative abundance of other constituents leading to minimal changes to bio- \& geochemical cycling, up to 10%.	cycles Changes in relative abundance of constituents leading to major changes to bio- \& geochemical cycling, up to 25%.	geochemical cycles Changes in relative abundance of constituents leading to Severe changes to bio- \& geochemical cycling. Recovery period measured in years to decades.	geochemical cycles Ecosystem function catastrophically altered as a result of community changes affecting bio- and geo- chemical cycles, total collapse of ecosystem processes. Recovery period measured in decades to centuries.

