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Executive summary 

Historically, Black tiger prawns (Penaeus monodon) have not been directly targeted in the Northern Prawn 

Fishery (NPF). They are retained with the main commercial target species when incidentally captured. 

Separate from the fishing operations, the development of pond-based aquaculture in recent years has 

created a broodstock collection targeting live Black tiger prawns in the NPF. The total annual removal of 

individuals by broodstock collection (retained live catch plus discard mortality) has increased by an average 

about 68% annually since 2013. During this period, the removal of Black tiger prawns by broodstock 

collection is about 14% of the total fisheries removals. The broodstock catches have been capped at various 

levels as there is uncertainty as to setting harvest rates that will not impede the long-term sustainability of 

the stock. Increasing demand for broodstock has raised the need for an evaluation of the productivity of 

this stock, and an assessment is required to ensure the species’ sustainability.  

This report presents the first attempt to conduct quantitative assessments of Black tiger prawns in the NPF. 

The study includes five major components.  

1. CPUE standardisation for the broodstock collection 

AFMA has collected and collated eight years of fishery data from the broodstock collection (2005, 2013-

2019). A relatively low fishing effort and catch occurred in the first year (2005), while more intensive fishing 

has continued since 2013. A substantial proportion of Black tiger prawns (over 25%) were discarded in this 

live-capture fishery. Discards were rarely reported before 2017. Hence, catch-per-unit-effort (CPUE) 

analysis can only be performed on the most recent three years of data (2017 to 2019).  

In this study five CPUE standardisation models were applied to the available data: (i) a generalized linear 

model (GLM) with a lognormal distribution, (ii) a generalized additive model (GAM) with a lognormal 

distribution, (iii) a GAM with a negative binomial distribution, (iv) a GAM with a Tweedie distribution (GAM-

Tw), and (v) a Bayesian spatial geostatistical model (GSM). Model covariates included live-capture fishery 

variables, environmental variables, and vessel technical variables.  

Cross-validation analysis indicated that GAM-Tw and GSM were more accurate in terms of prediction error 

so the results of these two models were considered further for CPUE standardisation. However, model fits 

were poor, even with the best model, in comparison to other co-generic species whereby models were 

applied for the biennial NPF stock assessment. The standardised CPUE was higher in 2018 and lowest in 

2017.  

There are several possible reasons for the poor model fits. While it is possible that more relevant and 

better predictors may have been missed, the data quality is the main concern. Low fishing effort (number 

of fishing days and shots) and the short time period of available data, as well as many missing values or 

errors in the fishery data, have increased the difficulties with applying these models. The spatial coverage 

of the broodstock fishing effort is small compared to both the geographic range of the species and the 

spatial extent of the commercial fishery. It is possible that within the limited target fishing area for 

broodstock live-capture, Black tiger prawn distribution and density do not clearly link to any environmental 

and fishery covariates included in the models.  

For the purpose of stock assessment, three years of an abundance index, even if reliable, has little value. It 

is recommended to continue the collection of accurate live-capture fishery data. In the meantime and in 

the near future, focusing on data-limited approaches for stock assessment is potentially more beneficial 

than trying to improve the CPUE standardisation. 
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2. Standardising CPUE data for the NPF commercial fishery 

The NPF commercial logbooks have recorded Black tiger prawn catch since 1998 and the fishing activities 

extend to the entire NPF region where fishing has targeted common Banana prawns, Grooved tiger prawns, 

Brown tiger prawns, and Endeavour prawns. However, in fishing grounds (defined by 0.1*0.1 degree spatial 

grids) where Black tiger prawns have been recorded, more than 98% of the fishing days have recorded zero 

catch of this species. To deal with this type of data we developed delta-lognormal models for the CPUE 

analysis. The catch and effort data with excessive zero values were modelled in two parts: a binomial 

distribution model for modelling the probability of non-zero events, and a log-normal distribution model 

for modelling the positive catch events. In addition, the extremely low probability of catching Black tiger 

prawns in many grids and the highly skewed distribution of the positive catch presented a challenge for the 

reliable standardisation of the CPUE data. Consequently, we conducted additional analyses within two 

spatially limited levels, not using all the records where black tiger prawns were caught. At Level 1, we 

excluded grids where the rate of positive catch (fishing days with positive catch divided by the total fishing 

days in that grid) was smaller than 0.01; and at Level 2, we excluded grids where the rate of positive catch 

was smaller than 0.1 and had less than 10 fishing days during the 22 years of data that were analysed for 

the commercial fishery (i.e. 1998 to 2019).  

The delta-lognormal models showed a reasonably good fit to the three levels of data, although the 

standardised index has a high degree of uncertainty. The results indicate an increasing trend of 

standardized CPUE since 2010 (or abundance if CPUE is related monotonically to abundance). It is difficult 

to interpret such a trend, because catch also increased during the same period. We hypothesize that one or 

more combined factors may have caused an increase in CPUE, including (i) possible changes in fishing 

behaviour and catch reporting over time, (ii) missed important variables that affect fishing power, (iii) 

heavy depletion of the stock before 1998, and (iv) possible ecosystem changes. Further investigation of the 

fishery data may be warranted, although it is worth noting that because Black tiger prawns are incidentally 

captured in the commercial fishing, attempts to standardize CPUE for a bycatch-like species could be 

fruitless and subject to bias.  

As there is not a valid reason for spatially truncating the data, it is recommended that the standardized 

index from the full dataset be used for stock assessments for the time being. However, caution is needed 

when interpreting the increasing CPUE trend. 

3. Stock assessment of the whole NPF region using a Bayesian state-space biomass dynamics model 

(BBDM) 

The lack of age, size, and life-history information for Black tiger prawns prevented the application of age-

structured models for their assessment. Given this restriction, we opted to apply less data demanding 

models, i.e. a biomass dynamics model (BDM). A Bayesian state-space biomass dynamics model (BBDM) 

was implemented in the R package JABBA. Since the abundance index from commercial fishing is highly 

uncertain, we used an informative prior on one of the key parameters—intrinsic population growth rate r. 

We constructed this prior based on the estimated r for Grooved and Brown tiger prawns. Various sensitivity 

tests on the initial depletion level, the intrinsic population growth rate, and the carrying capacity 

parameters were investigated. In addition to using observed discard mortality rate based on an on-vessel 

experiment, we tested the model sensitivity to assumed 100% discard mortality rate. 

The final model yielded the following estimates for the posterior means (Table ES): (i) unfished biomass K of 
approximately 41.3 tonnes, (ii) Fmsy of about 0.23 yr-1, (iii) Bmsy of about 20.7 tonnes, and (iv) MSY of about 
4.6 tonnes. The model indicated that the total catches during 2014, 2015, and 2018 were greater than the 
estimated mean MSY, and that the estimated fishing mortality in 2018 (F2018) was slightly greater than 
mean Fmsy, and the estimated mean biomass in all years was above mean Bmsy. Hence, according to the 
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model estimates the Black tiger prawn stock has not been overfished but overfishing may have occurred in 
2018. 

Since the Black tiger prawn stock in the NPF region as a single unit is unlikely overfished, and since the total 
catch continues to increase, the model may have underestimated the carrying capacity and MSY. To detect 
the full stock size and its production potential, a range of fishing mortality levels (including heavily fished) 
may better inform the assessment models. It is recommended that the current catch level be maintained 
for one or two years to see whether the stock can support this level of harvest and to assist the model 
identifying the maximum potential of production. However, because the total catch may have possibly 
exceeded the MSY level and fishing mortality exceeded Fmsy in recent years (noting their high uncertainty), a 
dramatic increase of catch (e.g. from the live-capture broodstock) should be avoided to prevent severe 
overfishing. A re-run of the BBDM is warranted in the coming years when new catch (and possibly 
standardized CPUE) data become available. 

4. Stock assessment of the whole stock using catch-only method (COM) 

Catch-only models do not require a time series of an abundance index (which is unreliable for Black tiger 

prawn as described above). The optimized catch-only method (OCOM) used in this study is based on the 

same biomass dynamics model as used in the Bayesian framework. Again, the r prior was constructed from 

estimated values of Grooved and Brown tiger prawns. The effect of various stock depletion levels was 

tested by using the BBDM output and an assumed very low level, as a sensitivity test. 

The OCOM model estimated median K was about 33.2 tonnes, the estimated median MSY about 3.4 
tonnes, and the estimated median Bmsy about 16.6 tonnes (Table ES). These estimates are lower than the 
BBDM output. The model predictions indicated that the total annual catch was likely greater than model 
estimated MSY in 2014, 2015, and 2018, and model-estimated fishing mortality was greater than model-
estimated Fmsy in 2018. Nevertheless, the model-estimated median biomass had never been below the 
median Bmsy reference point. Hence, the general conclusions that the stock has not been overfished but 
overfishing may have occurred in recent years concur with the BBDM outputs. 
 

5. Stocks assessments of a putative sub-stock in the broodstock live-capture high fishing effort area 

In recent years, the substantial removals of Black tiger prawns by the broodstock collection from relatively 

small areas compared to the large geographic range of the species has raised concerns over the 

sustainability of a possible local population if these prawns belong to a separate sub-stock. For this analysis, 

the assumption is that high live-capture fishing effort has occurred on a sub-stock, and the putative sub-

stock area encompasses Cape Van Diemen (CVD) and Joseph Bonaparte Gulf (JBG) as about 98% of the 

broodstock fishing effort took place in this region. The BBDM and OCOM were applied to data from this 

region to assess this putative sub-stock.    

The BBDM yielded a model-estimated mean unfished biomass K of about 12.9 tonnes, a mean Bmsy of about 

6.4 tonnes, and a mean MSY of about 1.5 tonnes (Table ES). The output of the model indicated that the 

total catch was greater than the model-estimated mean MSY in 2018. Estimated fishing mortality in 2019 

(F2019) was slightly greater than the mean Fmsy, but the mean biomass in all years was above the mean Bmsy.  

The OCOM estimated a lower median carrying capacity about 8.9 tonnes, the median Bmsy about 4.4 

tonnes, and the median MSY about one tonne (Table ES). The total catch was greater than the model-

estimated median MSY since 2012 except 2013 and 2017. This model indicates that the median biomass is 

slightly below median Bmsy in 2019 and overfishing may have happened in 2018 and 2019. 

Overall, the stock assessments using both the BBDM and OCOM approaches demonstrate similar 

conclusions when the entire NPF was treated as a single stock. Estimated total fishery removals are more 

than model-estimated MSY in recent years, the stock has not been overfished, but overfishing may have 

occurred in 2018. However, if we focus on the high broodstock fishing effort areas in CVD and JBG as a sub-
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stock, the results from the BBDM and OCOM do not fully agree each other. The BBDM indicates that this 

putative sub-stock has not been overfished, but overfishing may have occurred in 2018. In contrast, the 

catch-only model suggests that the median biomass in 2019 is slightly below median Bmsy and overfishing 

may have happened in both 2018 and 2019. The estimated quantities (Table ES) are highly uncertain, 

particularly due to the very limited data and questionable CPUE, and partially due to relatively light fishing 

intensity in the available time series. On the basis of the results herein, it is proposed to keep the catch at 

the current level for one or two years, which could facilitate the process of acquiring a longer time series 

and assist models to identify the production potential with lower uncertainty than present assessment. 

CPUE standardisation is challenging for non-target species and the resulting abundance index is unreliable. 

The two assessment approaches (i.e. the Bayesian state-space biomass dynamics model and the catch-only 

method) could be re-run every year in the next couple of years when new catch data become available.  

   

Table ES. Summary of the point estimates for key management parameters for Black tiger prawns. The 

high effort region includes Cape Van Diemen (CVD) and Joseph Bonaparte Gulf (JBG) with about 98% of 

fishing effort in broodstock collection. The Bayesian biomass dynamics model (BBDM) is implemented in 

JABBA package. OCOM (optimized catch-only method) does not use CPUE data. 

  
Full NPF   High effort region 

Param BBDM OCOM   BBDM OCOM 

K          41,341  33,245       12,865          8,855  

Fmsy              0.23            0.21   0.23           0.41  

Bmsy          20,670  16,623          6,432          4,428  

MSY            4,624  3,447          1,464             953  

B2019/Bmsy              1.40            1.19   1.35           0.92  

F2019/Fmsy              0.41            0.66    0.75           1.72  
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1 Introduction  

Black tiger prawn (Penaeus monodon) is a minor species in the Northern Prawn Fishery (NPF) where the 

vessels target the main commercial species, i.e., Grooved and Brown tiger prawns, Endeavour prawns and 

Banana prawns. Recently Black tiger prawn has also become a target for broodstock collection for prawn 

aquaculture production. The status of the stock is unknown and a quantitative stock assessment is required 

due to the increasing demand for P. monodon spawners. However, it is a challenge to conduct a 

quantitative stock assessment due to a lack of biological and fisheries data. This report is the first attempt 

to conduct quantitative analyses of Black tiger prawn abundance and population dynamics in the NPF.  

Given the sporadic fishery information, a short-time period of broodstock catch history, and inconsistent 

data types between years and vessels, it was envisioned that any assessment would be highly uncertain. To 

increase the likelihood of a useful outcome, multiple approaches were proposed at the onset of this 

research. Five major analyses are carried out in this study: (1) standardising catch-per-unit-effort (CPUE) 

data for the broodstock collection; (2) standardising CPUE data for the NPF commercial fishery; (3) a stock 

assessment of the whole NPF region using a Bayesian state-space biomass dynamics model; (4) a stock 

assessment of the whole stock using a catch-only method; and (5) stocks assessments of a hypothetical 

sub-stock in the broodstock collection area where fishing effort is higher. 

To provide a relative abundance index over time, standardising CPUE is necessary in many fisheries because 

catch rate can be affected by many variables beside abundance. The NPF commercial logbooks contain 

catch and effort data going back to the 1970s with most records reported as daily totals. Boats fishing for 

broodstock have also collected shot-by-shot catch data in 2005 and since 2013, although there have been 

considerable inconsistencies in types of data collected and spatial coverage. Information associated with 

catch data could be used to estimate relative abundance and density distributions. Several models for CPUE 

standardisation are explored in this study. Since different types of information have been collected in the 

NPF by both commercial fishing and broodstock collection, CPUE standardisation has to be performed 

separately for the two datasets (i.e., CPUE standardisation using logbook records and separately CPUE 

standardisation on broodstock collection fishing trips). 

Black tiger prawn is a data-poor species with little targeting by the commercial fishing. The lack of age, size, 

and life history information restricts any application of mathematically sophisticated age-structured 

modelling approaches. Thus, the assessments in this study adopt less data demanding methods, the widely 

used biomass dynamics model (i.e. a surplus production model). This is the initial attempt at applying a 

quantitative assessment to the Black tiger prawn stock in the Northern Prawn Fishery which potentially 

could have immediate management implications, as well as provide a baseline analysis for this species for 

future studies.  
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2 CPUE standardisation for broodstock catch 
data 

2.1 Materials and methods 

2.1.1 Data description 

AFMA provided broodstock catch data for all the records which were available in the format of an excel file. 
The data contain various types of information, including: Vessel ID, Date, Shot No., Depth, Shot Start Time, 
Location, Latitude, Longitude, Shot End Time, Male (Total No. in shot), Female, Retained, and Discarded. 
Catch of other species (prawns, bugs, squid, and bycatch species) were occasionally recorded. 

The data covered eight years (2005 and 2013 to 2019). Some of the vessels reported daily catch, which was 
problematic to use together with the majority of the dataset that were shot-by-shot records (e.g., trawling 
hours varied from 1 to over 14 hours per day and the catch could be either by number or by weight). It was 
common to have missing (blank) information in many fields, such as location (latitude or longitude), depth, 
shot-end-time, and vessel code. The most important issue was incomplete records of discards. Fisheries 
assessment, including CPUE standardisation, requires total catches, that is recorded landed catch plus 
discards. In this case, total catch = retained + discarded prawns. Unfortunately, discards were not reported 
in most events (Table 2-1), which would affect CPUE estimation and stock assessment. Records of discards 
in the eight years (2005 and 2013 to 2019) ranged from 0 to 46% with an annual mean of 16%%. The ratio 
of the number of discards to the number of retained prawns (when recorded) was substantial (ranging from 
0.01 to 0.47 with a mean of 0.23). Attempts to roughly estimate non-reported discards failed because there 
was no relationship between the number of discards and the number of retained prawns (Figure 2-1). The 
combined numbers of Male and Female also did not agree well with either Retained or Retained + 
Discarded (Figure 2-2).  

After discussions with AFMA and Industry it was revealed that discards were reported for all shots by all 
vessels since 2017 so blank cells for discards in 2017 to 2019 implied zero discard. However, before 2017 it 
is unknown how many blank cells for discards were actually zero discards. For this reason, our analysis 
focuses on the data from the most recent three years (2017 to 2019).  

Fisheries catch rate is a function of abundance and catchability (Campbell, 2015; Campbell et al., 2017). 
These two variables in turn are affected by many environmental and fishery variables (Maunder and Punt, 
2004; Hoyle et al., 2014). We assembled and tested a range of potential covariates which can be grouped 
into three categories: 

• Fishery covariates: vessel_id, year, month, date, season, shot_phase, shot_no, shot.start_time, 

shot.end_time, shot.hr.  

• Geographical covariates: Location, latitude, longitude, stock_region. 

• Vessel tech covariates:plotter, pc_sat, echocol, hullg, nav_accg, brdn, d_gps, gps, satnav, plotsoft, 

dgps, sonar, hullmat, vessel_ length. 

 

2.1.2 Selecting covariates and model building 

We used a stepwise variable selection approach as a preliminary step to choose the explanatory variables 
(covariates) that have potential effect on the catch based on experience in other species (i.e., Grooved tiger 
prawn fishing power study). The selected variables in this step were validated by the p-value of each 
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estimated coefficient. In addition to existing data, we created some new variables. For example we 
postulated that the time of fishing may affect catchability (or availability) so the “phase of the day” was 
created from the shot time as: 

Phase 1 from 7:00PM to 5:00AM (night),  

Phase 2 from 5:00AM to 7:00AM (dawn),  

Phase 3 from 7:00 AM to 5:00PM (day),  

Phase 4 from 5:00PM to 7:00PM (dusk).  

“Phase” here was intended to be a set time period during a 24 hour period. Stock region was based on the 
common banana prawn stock area. There were four stock regions with records of Black tiger prawns in the 
broodstock fishery: 1 for CM (Coburg-Melville), 2 for FB (Fog Bay), 3 for JB (Joseph Bonaparte Gulf), and 4 
for WA (Weipa).  

We attempted to calculate hours trawled in each shot from shot start and end times. However, there were 
many missing records, with many cases where trawl duration was less than 0.5 hr or greater than 5 hr, 
indicating possibly errors. We replaced these missing and potentially error values with 1 hr (the average 
trawling duration from assumed correct records). Unfortunately, models that included trawl duration 
(including imputed values) were less reliable than models without this variable. Hence, in this analysis 
catch-per-unit-effort refers to number of prawns captured per shot rather than per hour. 

The broodstock fishery has a short time series of eight years (2005, 2013-2019). During this period, 
especially from 2017 to 2019, we observed that the technology used on fishing vessels remained relative 
stable, and as such technology variables cannot be used as predictors. 

Unlike the NPF commercial fishery, most shots in the broodstock fishery have positive catch of Black tiger 
prawns as it is the primary target species. Only 13.5% of shots ends up with zero catch. Hence, it is 
unnecessary to apply zero-inflated models to this dataset (see modelling and issues with excessive zeros in 
the data in the next chapter). 

Generalized linear models and generalized additive models 

We first used generalized linear models (GLM) to link catch per shot to various predictors and used a 
stepwise selection process to select the important influential variables. The general form of the model is: 

𝜼𝒊 = 𝒈(𝝁𝒊) = 𝜷𝟎 +∑ 𝜷𝒏𝒙𝒏𝒊𝒏 + 𝜺𝒊       Equ 2-1  

where mean i is the expected catch (number of prawns) on shot i and is linked to the linear predictor i, 0 

is the intercept, n is a coefficient for the explanatory variable xn, which is considered a fixed effect, and i is 

unstructured random error with N(0, 2). We assumed that the expected catch is log-normally distributed 

(Figure 2-3). Since some shots have zero catch we added a small value ( = 0.05) to the recorded catch in 
each shot to avoid error when taking the log-transformation for these records. 

The stepwise regression excluded many insignificant variables. The final GLM has eight predictors: 

M1: GLM with lognormal distribution 

𝐥𝐨𝐠(𝑪𝑷𝑼𝑬+ 𝜹) = 𝒚𝒆𝒂𝒓 ∗ 𝒔𝒕𝒐𝒄𝒌 + 𝒗𝒆𝒔𝒔𝒆𝒍 + 𝒔𝒆𝒂𝒔𝒐𝒏 +𝒎𝒐𝒏𝒕𝒉 + 𝒑𝒉𝒂𝒔𝒆 + 𝒍𝒂𝒕 ∗ 𝒍𝒐𝒏 

 Equ 2-2 

CPUE ~ LN(, 2), where year and stock region are interaction terms. Since the standardized CPUE is 

obtained from model prediction (see below), the process is straightforward even when the interaction 

terms lead to different temporal trends by stock area. All co-variates are treated as categorical variable 

except lat and lon. 
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A similar process was used for building the generalized additive models (GAM). We explored three 
alternative distributions, but all the models have the same covariates. The predictors that made a 
significant contribution to the model (p < 0.1) may differ between models. 

M2: GAM-LN with lognormal distribution 

𝐥𝐨𝐠(𝑪𝑷𝑼𝑬+ 𝜹) = 𝒚𝒆𝒂𝒓 ∗ 𝒔𝒕𝒐𝒄𝒌 + 𝒗𝒆𝒔𝒔𝒆𝒍 + 𝒔𝒆𝒂𝒔𝒐𝒏 +𝒎𝒐𝒏𝒕𝒉 + 𝒑𝒉𝒂𝒔𝒆 + 𝒕𝒆(𝒍𝒐𝒏, 𝒍𝒂𝒕)   

           Equ 2-3  

CPUE ~ LN(, 2).te is tensor product smooth function. 

M3: GAM-NB with negative binomial distribution  

𝑪𝑷𝑼𝑬 = 𝒚𝒆𝒂𝒓 ∗ 𝒔𝒕𝒐𝒄𝒌 + 𝒗𝒆𝒔𝒔𝒆𝒍 + 𝒔𝒆𝒂𝒔𝒐𝒏 +𝒎𝒐𝒏𝒕𝒉 + 𝒑𝒉𝒂𝒔𝒆 + 𝒕𝒆(𝒍𝒐𝒏, 𝒍𝒂𝒕)  Equ 2-4 

CPUE ~ NB(, ), where  = E(CPUE) (E is expectation), and var[CPUE] =+2/.  

M4: GAM-Tw with Tweedie distribution  

𝑪𝑷𝑼𝑬 = 𝒚𝒆𝒂𝒓 ∗ 𝒔𝒕𝒐𝒄𝒌 + 𝒗𝒆𝒔𝒔𝒆𝒍 + 𝒔𝒆𝒂𝒔𝒐𝒏 +𝒎𝒐𝒏𝒕𝒉 + 𝒑𝒉𝒂𝒔𝒆 + 𝒕𝒆(𝒍𝒐𝒏, 𝒍𝒂𝒕)  Equ 2-5 

CPUE ~ Tw(,  p), where  = E(CPUE), and var[CPUE] =p.  

The catch was over-dispersed (variance to mean ratio was about 27) so it is necessary to use statistical 
distributions that can deal with over-dispersed data such as negative binomial and Tweedie distributions. 
The power parameter p is estimated in the tw function in R package mgcv. Note both the GAM-NB and 

GAM-Tw can handle zeros so there is no need to include a small value . 

Geostatistical model (GSM) 

In the geostatistical models, the catch at specific location C(s) is a realization of a spatial process 
characterized by a spatial index s which varies continuously in the fixed domain D (i.e. the NPF area here). 
The vector of catches is assumed to follow a multivariate normal distribution with mean 𝝁 = [𝜇(s1),…, 𝜇(sn)] 
and spatially structured covariance matrix 𝚺. Such a multidimensional spatial process is called a Gaussian 
Random Field (GRF) (Blangiardo and Cameletti, 2015). The assumption is that prawn distribution and 
dynamics are an unobserved latent field, which is partially observed through catch data. Similar to the 
GAM, the GSM can be expressed as follows: 

M5: GSM-NB with negative binomial distribution  

𝑪𝑷𝑼𝑬 = 𝒚𝒆𝒂𝒓 ∗ 𝒔𝒕𝒐𝒄𝒌 + 𝒗𝒆𝒔𝒔𝒆𝒍 + 𝒔𝒆𝒂𝒔𝒐𝒏 +𝒎𝒐𝒏𝒕𝒉 + 𝒑𝒉𝒂𝒔𝒆 + 𝒇(𝒍𝒐𝒏, 𝒍𝒂𝒕) Equ 2-6 

CPUE ~ NB(, ), where  = E(CPUE), and var[CPUE] =+2/.  

This model differs from GAM Model 3 in that the term f(lon, lat) is a spatially structured nonlinear smooth 
function effect of continuous spatial covariates.  

The GRF model M5 was implemented in an integrated nested Laplace approximation (INLA) program which 
handled the continuous GRF by stochastic partial differential equations (SPDEs) and established explicit 
links between the parameters of each SPDE and the elements of precision matrices for weights in a discrete 
basis function representation (Lindgren and Rue, 2014).  

INLA is a full Bayesian approach where Bayesian geostatistical models require specifying priors for all 
parameters. In this study we assumed no knowledge about the model parameters so the default priors and 
hyper-parameters were adopted (Lindgren and Rue, 2014; Zhou et al., 2019). The default vague prior, 
Normal(0, 106), has a large variance so it has little impact on the posteriors, and the results are largely 
derived from the data. For the random effect component in the GRF model, the prior was specified for the 

two parameters in the Matérn function,  and , with the default Normal(0, 1).  
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The first step to implementing the GRF models is to build a spatial “mesh” based on latitude and longitude 
from all gear set locations in the data. The triangulated mesh provides a base for the GRF models to build 
spatial representations. The mesh was produced within the defined boundary. An example of the 
constructed mesh and boundary is shown in Figure 2-4.  

Thus, we have five separate models representing various assumptions about the data distributions and the 

modelling techniques to adapt to the limited data.  

 

2.1.3 Model fitting and model prediction 

The five models described above, i.e. GLM, GAM-LN, GAM-NB, GAM-Tw, and GSM-NB, were fitted to the 
broodstock fishery data, using the R program with packages mgcv and INLA. 

The purpose of CPUE standardisation is not only to estimate the expected catch rates in fished locations 
under various observed conditions, but more importantly to predict the catch rates using the standard 
predictors in all combinations of year and location, including those not fished in a particular year. For 
prediction, unlike during model fitting, variables that affected catch rate were kept constant across all 
locations and years. Under these circumstances the models predict the catch rate in all years and in all 
areas within the fishery boundary, with the predicted catch rate representing the latent relative 
abundance.  

To obtain the standardized CPUE we constructed a prediction dataset covering all 0.1*0.1 degree grids 
fished by the broodstock fleet (Figure 2-5). Each grid and year have the same structure and identical 
covariates as in Models M1 to M5. As the prediction covered all grids that have been fished while other 
predictors (except year) were fixed at the same value, the five models predicted catch rate and its variance 
at each location. The annual standardized CPUE was derived by dividing summed annual predicted catch 
rates by the mean catch rate over the time series considered. Similarly, the total annual variance of the 
predicted catch rate was the sum of variance over all grids in that year.  

2.1.4 Model evaluation and comparison 

We examined both fitted catch rate estimates and predicted indices for the five models. Model prediction 
is often evaluated by predictive information criteria (e.g., AIC, DIC, WAIC, etc.) when the true underlying 
parameters are unknown. In our case since data and model structures differ among these models (e.g., raw 
catch vs. log-scaled catch), we cannot use these common statistics for model comparison. Instead, we used 
cross validation where 90% of data were used for model fitting and the remaining 10% of data were used 
for model prediction. This was repeated 10 times for each model. Errors (residuals) between the model-
fitted catch rates and the observed CPUE for each shot were examined visually and their values compared 
among the models. Two measurements, the mean squared predictive error MSPEM and the mean predictive 
error MPEM for model M, were used to compare model performance:  

𝑴𝑺𝑷𝑬𝑴 =
𝟏

𝒏
∑ (𝑪𝑷𝑼𝑬̂𝒊,𝑴 − 𝑪𝑷𝑼𝑬𝒊)

𝟐
𝒏 ,       Equ 2-7 

𝑴𝑷𝑬𝑴 =
𝟏

𝒏
∑ (𝑪𝑷𝑼𝑬̂𝒊,𝑴 − 𝑪𝑷𝑼𝑬𝒊𝒏 ),        Equ 2-8 

where n is the number of shots in the prediction dataset (i.e. 10% of the total records), 𝐶𝑃𝑈𝐸̂𝑖,𝑀 is 
predicted CPUE for shot i by model M, and CPUEi is the observed catch rate for shot i.  

The annual standardized index for model M in year y, SIM,y, was scaled so that the mean of the annual index 
over the time-series considered was equal to 1: 
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𝑺𝑰𝑴,𝒚 =
𝑪𝑷𝑼𝑬̂𝑴,𝒚

𝑪𝑷𝑼𝑬𝑴̂̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅
         Equ 2-9  

 

2.2 Results 

2.2.1 Comparing models using cross validation 

The cross-validation using 10% of data and repeated for 10 times reveals varying levels of prediction 
accuracy amongst the five models (Table 2-2). The GLM (M1) has the highest MSPE and MPE, indicating its 
poor performance. Within the three GAM models, M2 is only slightly better than the GLM while NB and Tw 
distributions are similar. The spatial model M5 has the lowest MPE and its MSPE is close to GAM NB and Tw 
models.  

2.2.2 Modelling catch rate 

We applied the five models to the shot-by-shot records in the broodstock fishery data. However, since 
models M1 and M2 performed poorly, we did not focus on these two models. Both GAM-NB and GAM-Tw 
yielded similar results with GAM-Tw results being slightly better in terms of mean squared predictive error 
so we presented M4 output only (Table 2-3).  

The estimated parameters from M4 indicated that CPUE in 2018 and 2019 was significantly higher than in 
2017 while CPUE in 2018 was higher than in 2019 (Table 2-3). Stock region 3 (JB) had a lower catch rate 
than other regions. The catch rate was highest at dawn (Phase 2, 5 AM – 7 AM) but lowest at dusk (Phase 4, 
5 PM – 7 PM). The smooth term of spatial location was significant. However, even with this best model 
(relative to others) within the GLM and GAM group, it only explained 20.1% of the deviance (adjust R2 = 
0.22). The model diagnosis also showed a lack of fit for the data (Figure 2-6). 

The spatial model (GSM-NB M5) yielded similar results. The estimated parameters from M5 also indicated 
that CPUE in 2018 and 2019 was higher than in 2017 and CPUE in 2018 was higher than in 2019 (Table 2-3). 
The catch rate was also highest at dawn and lowest at dusk. However, Stock region 4 (WA) had a lower 
catch rate than other regions. The smooth term of spatial location was significant. Again, although M5 was 
the best model (relative to others) in the cross validation test, the model diagnosis also showed a lack of fit 
to the data (Figure 2-7). 

2.2.3 Prediction of catch rate (CPUE standardisation) 

The prediction of catch rate was estimated for all grids where Black tiger prawns have been captured by the 

broodstock fishery since 2005, which includes 102 0.1*0.1 degree grids. The standard predictors were 

chosen as follows. For the categorical variables (e.g. Phase), the most frequent category (the mode) was 

used. Year, stock region, and location (lon, lat) were always included in the predictors. 

The GAM-Tw model (M4) predicted a higher CPUE (Figure 2-8) than the GSM-NB model (M5) (Figure 2-9). 

However, the relative CPUE over space appeared to be similar. It is worth noting that the predicted CPUE 

by M5 had much higher uncertainty than M4. The mean values of the standardised indices were similar 

between the GAM-NB and GSM-NB (Figure 2-10, Table 2-5). However, M4 (GAM-Tw) produced much wider 

difference between years. GSM-NB also resulted in wider confidence intervals than M3 and M4, probably 

because it deals better with spatial variation. 

We did not focus on the whole time series from 2005 to 2019 because it was known that before 2017 the 

field data collected from broodstock collection were incorrect due to reporting of discards not being 

required. However, we included nominal CPUE from 2013 to 2019 in Figure 2-10. 



 

19 

 

2.3 Discussion 

We have used multiple models, including a GLM, 3 GAM models with alternative assumptions of various 

statistical distributions, and a geostatistical model, to analyse CPUE in the broodstock collection. We have 

explored the effect of a range of covariates, from fishery-dependent to geographical factors. Due to the 

known data paucity and flaws before 2017 (i.e. with regard to discards), the analysis focuses on the most 

recent three years (2017-2019). Comparison across all models by cross-validation reveals that the spatial 

geostatistical model has the lowest prediction error. Within the GLM and GAM group, the GAM with a 

negative binomial distribution or the GAM with a Tweedie distribution outperforms GLM and GAM with a 

lognormal distribution. The trends of the standardised index are similar between GAM-NB, GAM-Tw, and 

GSM-NB. However, GSM-NB results in a higher uncertainty than the two GAM models, which appears to be 

unusual (Zhou et al., 2019). 

Even though we are able to derive standardised CPUE, model fitting is poor for all models. Maunder and 

Punt (2004) noted that when the data are highly disaggregated (e.g. ‘tow-by-tow’ data), the explanatory 

power is generally low and can be ‘increased’ by aggregating the data. It may therefore not be appropriate 

to compare the level of variation explained among different analyses, and analysts should not base their 

perceptions about the reliability of their index of abundance on the extent of the variation explained (i.e., 

20.1% for M4). We hypothesize several possible reasons for the low model fit: 

1. Best predictors missed. We have explored a few dozen covariates that are typically used for CPUE 

standardisation (c.f. Campbell, 2004; Maunder and Punt, 2004; Bishop, 2006; Bishop et al., 2008). 

Spatial and temporal variables are often sufficient to capture the major pattern in fish distribution and 

relative density, while vessel characteristics and technical equipment largely affect catchability (Hoyle 

et al., 2014). It is unlikely that other more important predictors than those we have explored are not 

included.  

2. Data deficiency. It is not uncommon to have errors or missing values in fishery data. We have carefully 

checked the raw data and corrected or excluded records with obvious errors. However, it is challenging 

to validate data that appear to be suspicious. For example, there are many missing and obviously 

wrong shot starting time entries and shot ending time entries in the data provided, resulting in about 

one third of trawling hours not being calculated. Modelling CPUE trends generally requires many 

observations. The total number of fishing days (687) and shots (6,615) in eight years are regarded as 

quite low, which increases the challenges with the modelling undertaken in this research. 

3. Random distribution over space and time. The broodstock fishery targets Black tiger prawns. Fishing 

takes place in relatively small areas compared to the commercial NPF fishery. Only 78 0.1*0.1 degree 

grids (or 12 1*1 degree grids) have been fished between 2017 and 2019. It is possible that within these 

fished areas, Black tiger prawn distribution and density do not clearly link to any of the environmental 

and fishery covariates that we have examined. If this is the case, few predictors work well. 

Considering these potential issues, we believe that the data deficiency is the most concerning. This 

postulation suggests that the broodstock collection fishery should improve data accuracy, fish a wide range 

of areas, and have a longer time series. Possible alternative methods could also be applied in the future 

when a longer time series exists. Several new techniques for CPUE standardisation have appeared in recent 

years. One of these new techniques is machine learning, which includes a range of methods, e.g., neural 

networks, regression trees, random forest, and boosted regression trees. The application of machine 

learning for CPUE studies is still limited (Pons et al., 2009; Adibi et al., 2020). Further research is needed to 

investigate its advantages and accuracy. Bayesian modelling has been another relatively new approach in 

CPUE standardisation (Federal et al., 2009; Zhang and Holmes, 2009; Cao et al., 2011). The Bayesian 

approach has several advantages. Through the specification of prior distributions, the Bayesian method 
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allows the formal inclusion of information from previous studies, expert opinion, or similar studies in other 

areas and fisheries. From the Bayesian posterior distribution we can obtain the probability of a parameter 

in relation to certain threshold. However, although the Bayesian approach is very flexible, it has a major 

drawback – slow computing speed because it generally uses the Markov Chain Monte Carlo (MCMC) 

technique. In fact, the geostatistical model implemented in INLA is a Bayesian approach. More informative 

priors may be provided from other studies instead of the default non-informative priors. The first-hand 

knowledge from fishers about the most likely factors that may affect the catch rate could also be very 

helpful.  

From the stock assessment point of view, a short time series of CPUE, such as only three years in the 

broodstock case, has little use in population dynamics modelling, even if these CPUEs accurately reflect the 

abundance trend. This is because a very limited time series of CPUE cannot reveal an abundance trend over 

time. It is important to continue the collection of accurate fishery data. However, we recommend focusing 

on data-limited approaches for stock assessment in the time being and in near future until a sufficient 

period of fishery data become available. 
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Table 2-1. Summary of broodstock data. Mean catch rate = number of P. monodon per shot; Record% = 

Percent shots with discards recorded (Non-missing); Ratio = number discards/number retained. 

 Retained   Discarded    

Year No.shot 
Mean 
catch rate No.shot 

Mean  
catch rate Record% Ratio 

2005 77 7.3     0%  
2013 344 6.0  41 6.3  12% 0.13 

2014 176 6.3     0%  
2015 663 5.9  11 4.9  2% 0.01 

2016 1,186 4.7  38 2.0  3% 0.01 

2017 1,024 3.5  403 3.3  39% 0.37 

2018 893 4.3  195 7.3  22% 0.37 

2019 2,188 4.7  1012 4.7  46% 0.47 

Mean 819 5.3  283 4.7  16% 0.23 

 

 

Table 2-2. Ten cross validation tests to compare prediction accuracy for the five models. MSPE: mean 

squared predictive error; MPE: mean predictive error. M1 = GLM lognormal distribution; M2 = GAM-LN 

lognormal distribution; M3 = GAM-NB negative binomial distribution; M4 = GAM-Tw Tweedie 

distribution; M5 = GSM-NB geostatistical model with negative binomial distribution. 

Cross     MSPE           MPE     

valid M1 M2 M3 M4 M5   M1 M2 M3 M4 M5 

1 39.1 37.0 33.4 36.0 39.2  -2.63 -2.40 -0.14 -0.09 -0.16 

2 43.5 41.3 34.2 33.5 31.3  -2.51 -2.38 -0.20 -0.17 0.04 

3 36.9 35.7 30.1 29.4 35.1  -2.23 -2.16 0.03 0.04 0.55 

4 43.7 41.8 33.3 32.3 42.4  -3.01 -2.83 -0.61 -0.60 -0.34 

5 40.6 38.5 32.8 32.1 27.7  -2.28 -2.20 0.04 0.05 0.28 

6 46.8 44.8 36.5 35.5 30.3  -2.85 -2.70 -0.48 -0.45 0.08 

7 47.1 44.8 35.3 34.1 30.3  -2.84 -2.77 -0.55 -0.50 0.06 

8 43.3 41.2 34.0 32.7 34.6  -2.43 -2.41 -0.25 -0.23 -0.04 

9 35.9 34.2 28.7 28.4 33.7  -2.33 -2.26 -0.11 -0.09 0.01 

10 49.6 48.3 40.8 40.1 31.5   -2.68 -2.65 -0.46 -0.41 -0.12 

Mean 42.6 40.8 33.9 33.4 33.6  -2.58 -2.48 -0.27 -0.25 0.04 
  



22 

 

Table 2-3. Results from fitting GAM model with Tweedie distribution (GAM-Tw, M4).  

Param Estimate SE Pr(>|t|) 

(Intercept) 2.947 0.700 0.000 

year2018 1.337 0.086 < 2e-16 

year2019 1.273 0.085 < 2e-16 

stockFB 0.000 4.213 1.000 

stockJB -23.803 8.669 0.006 

stockWA 76.543 39.645 0.054 

season2 -0.598 0.133 < 2e-5 

month5 -0.639 0.068 < 2e-16 

month6 -0.591 0.079 < 2e-13 

month7 0.000 0.131 1.000 

month8 0.599 0.127 < 2e-5 

month9 0.609 0.123 < 2e-5 

month10 0.426 0.125 0.001 

month11 0.310 0.120 0.010 

month12 -0.603 0.000 < 2e-16 

phase2 0.099 0.048 0.037 

phase3 -0.082 0.040 0.040 

phase4 -0.472 0.075 < 2e-9 

vessel_id8643 -0.838 0.071 < 2e-16 

vessel_id11609 0.000 0.000 NA 

vessel_id12396 -0.994 0.092 < 2e-16 

year2018:stockFB -4.384 0.000 < 2e-16 

year2019:stockFB 0.000 0.000 NA 

year2018:stockJB -0.833 0.179 < 2e-5 

year2019:stockJB -1.740 0.174 < 2e-16 

year2018:stockWA 0.000 0.000 NA 

year2019:stockWA 0.000 0.000 NA 
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Table 2-4. Results from fitting geostatistical model (GSM-NB, M5). 

Param Mean SD 2.5%CI Median 97.5%CI 

(Intercept 0.341 0.378 -0.465 0.345 1.162 

year2018 0.465 14.142 -27.301 0.464 28.207 

year2019 0.352 14.142 -27.414 0.351 28.095 

stockID2 -0.701 22.372 -44.625 -0.702 43.186 

stockID3 0.047 1.5 -3.626 0.219 2.661 

stockID4 -4.614 1.762 -8.544 -4.472 -1.433 

vessel_id8643 0.083 14.142 -27.683 0.082 27.826 

vessel_id11609 0.778 14.142 -26.988 0.778 28.522 

vessel_id12396 -0.045 14.142 -27.811 -0.045 27.698 

season2 -0.332 11.952 -23.799 -0.332 23.115 

month5 -0.587 0.081 -0.746 -0.587 -0.428 

month6 -0.541 0.09 -0.718 -0.541 -0.364 

month7 -0.255 11.952 -23.722 -0.256 23.192 

month8 0.319 11.952 -23.147 0.319 23.766 

month9 0.377 11.952 -23.09 0.376 23.824 

month10 0.169 11.952 -23.298 0.168 23.616 

month11 -0.016 11.952 -23.483 -0.017 23.431 

month12 -0.926 11.953 -24.393 -0.926 22.521 

phase2 0.087 0.056 -0.023 0.087 0.198 

phase3 -0.089 0.046 -0.179 -0.089 0.001 

phase4 -0.433 0.078 -0.586 -0.434 -0.278 

year2018:stockID2 -0.701 22.372 -44.625 -0.702 43.186 

year2019:stockID2 0 31.623 -62.086 -0.001 62.034 

year2018:stockID3 -1.008 0.201 -1.401 -1.009 -0.613 

year2019:stockID3 -1.826 0.197 -2.213 -1.826 -1.439 

year2018:stockID4 0 31.623 -62.086 -0.001 62.034 

year2019:stockID4 0 31.623 -62.086 -0.001 62.034 

 

Table 2-5. CPUE and standardised CPUE (SI, standardised Index). lci = lower confidence interval (i.e., 

0.025 quantile), uci = upper confidence interval (i.e., 0.975 quantile).  

Year Nominal SI 2.5%CI 97.5%CI 

GAM-NB, M3    

2017 0.82 0.99 0.42 1.51 

2018 1.00 1.06 0.37 1.60 

2019 1.17 0.95 0.22 1.50 

GAM-Tw, M4    

2017 0.82 0.50 0.17 0.75 

2018 1.00 1.38 0.49 2.14 

2019 1.17 1.12 0.24 1.87 

GSM-NB, M5    

2017 0.82 0.94 0.00 >10 

2018 1.00 1.12 0.00 2.38 

2019 1.17 0.93 0.00 1.96 
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Figure 2-1. A lack of relationship between the number of discards and the number of retained prawns. To 

avoid overlaying data points, a small random number between [-0.5, 0.5] was added to each data point.  

 

Figure 2-2. Data errors. Ideally, the sum of the recorded male and female should equal the number of 

retained prawns. 
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Figure 2-3. Frequency distribution of total catch per shot in 2017-2019. 

 

 

Figure 2-4. Construction of mesh as a base for Gaussian random field models to analyse spatial 

correlation across the entire region. The colours represent the four stock regions. 
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Figure 2-5. Mean observed CPUE from broodstock fishery in 2017-2019. 
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Figure 2-6. Diagnostics for the GAM-Tw model (M4). 
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Figure 2-7. Diagnostics for the geostatistical model (GSM-NB M5). 
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Figure 2-8. Predicted CPUE from GAM-Tw model (M4) for 2017-2019. 
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Figure 2-9. Predicted CPUE from spatial GSM-NB model (M5) for 2017-2019. 
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Figure 2-10. Standardised CPUE (number per shot) for Black tiger prawn in broodstock fishery. The grey 

band is the 95% CI for GAM-Tw model (M4). 
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3 CPUE standardisation for NPF commercial 
logbook catch data 

3.1 Materials and methods 

3.1.1 Data source and description 

The NPF logbooks contain catch and effort data going back to the 1970s, with most records reported as 
daily totals. Black tiger prawn is a minor species in the NPF and is retained and recorded in the logbooks 
only since 1998.  

Black tiger prawn is rarely caught in the NPF commercial fishery not only because of its low abundance but 
also because it is similar to other by-product species that are incidentally captured by trawls targeting the 
main prawn species. We limit the logbook data to grids (at a resolution of 0.1 * 0.1 degree) where Black 
tiger prawns have ever been recorded since 1998, such that we end up with a total of 266 grids (Table 3-1, 
Figure 3-1). The number of grids with positive catch varies among the common banana (P. 
merguiensis) stock regions. We used common banana stock regions because 78.7% of Black tiger prawns 
were captured in the banana prawn sub-fishery. As shown in Table 3-1, the mean catch per boat-day in 
each region (nominal CPUE) is very low, ranging from 0.01 kg/boat-day to 1.19 kg/boat-day with an average 
of 0.27 kg/boat-day. 

We can attribute the low catch mainly to zero catch of Black tiger prawn in more than 98% of fishing days 
that were recorded (Table 3-2). The average nominal CPUE by year over the entire NPF region is 0.31 
kg/boat-day. The probability of catching any Black tiger prawns in a boat-day (= a Fishing day with any 
positive catch/Total fishing days) is very low, ranging from 0.2% to 7.7%. For those trips with positive 
catches, the amount of catch is highly variable, ranging from 1 kg to 468 kg (average 19.9 kg) (Table 3-2, 
Figure 3-2). Note that the catch is recorded as weight rather than in number of prawns unlike the 
broodstock collection data and the minimum recorded positive catch is 1 kg. It is unclear whether catch 
that is below 1 kg is recorded as 1 kg or not reported. This approximation will affect the modelling process 
below, particularly for the probability of non-zero catch events. Fishers indicated that 1 kg Black tiger 
prawns could be cumulated over several days from a low catch in each haul so it is not necessary a daily 
catch.  

Considerable effort has been devoted to model fishing power in the tiger prawn sub-fishery in the NPF 
(Bishop, 2006; Bishop et al., 2008). We attempted to use the data from tiger prawn fishing power research. 
However, the majority of Black tiger prawns are caught during the banana prawn sub-fishery and the 
specific information collected within the various tiger prawn fishing power research projects is not 
necessarily adequately applicable to this case. We sought data from various sources including the NPF basic 
grid data in which the major environmental information for each of the 0.1*0.1 degree grids are stored. 
Separately we obtained the NPF vessel information (i.e. their technical characteristics) from the fishing 
power project database. The information listed below is linked to the logbook either by VCODE or Latitude 
and Longitude. In general, the common vessel information acquired from the fishing power project was 
extracted and matched with the Black tiger prawn fishery. 

We included the following variables in the dataset as potential predictors of changes in relative abundance. 

• Fishery covariates: vcode, dd (day of month), month, year, banana (catch), tiger (catch), 

hours_trawled, stock_region, target, and trygear. 

• Geographical covariates: latitude, longitude. 
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• Vessel technical covariates: plotter, pc_sat, hullg, o_brdn, nav_accg, d_gps, gps, satnav, plotsoft, 

satig, stress_av, length, and bredth. 

 

3.1.2 Selecting covariates and model building 

The logbooks contain over 110,000 boat-day records compared to less than 1,000 boat-days in the 
broodstock collection fishery (about 164 times greater number of records in magnitude compared to the 
broodstock data we analysed above). With this amount of data, models that include various covariate 
interactions, smoothing terms, and spatial random fields take a great deal of computer memory and CPU. 
The time taken to run these models ranged from several hours to several days. It is impractical to compare 
models using cross-validation. We opted to build the models in two steps. First, we constructed “full” 
models by including about 20 variables (covariates) that are likely significant predictors. After model fitting, 
we excluded those non-significant predictors and kept the significant ones (where p < 0.1) for the final 
model.  

The large proportion of zero catch made modelling challenging. Although the Tweedie distribution 

assumption is flexible and can accommodate excess zeros, the fits to the logbook data were very poor (e.g., 

negative R-square), perhaps due to >98% of zeros. It became apparent that it is necessary to model the 

data in two parts: the probability of non-zero catch and the catch rate for trips with positive catch only. We 

tested a zero-inflated negative binomial distribution, but the results were unrealistic. In addition, the 

logbooks recorded catch in weight (kg) rather than number of prawns. Strictly, using a model of discrete 

distribution for continuous data may be questionable. Hence, we opted to use delta-lognormal models to 

model logbook catch data.  

Generalized additive models 

We focused on GAM because of its capability to handle non-linear relationship between catch and various 
predictors. The delta-lognormal model has two components: 

𝐏𝐫(𝑪 = 𝒄) = {
𝟏 − 𝝅, 𝒄 = 𝟎
𝝅𝒇(𝒄)𝒄 > 𝟎

        Equ 3-1 

where  is the probability of positive catch c, and f(c) is the distribution of positive catch, which we assumed 

to be a lognormal distribution: log(c) ~ N(, 2) (Figure 3-2). The general form of the model is: 

𝜼𝒊 = 𝒈(𝝁𝒊) = 𝜷𝟎 +∑ 𝜷𝒏𝒙𝒏𝒊𝒏 + ∑ 𝒔(𝒙𝒎𝒊)𝒎 + 𝜺𝒊     Equ 3-2  

where mean i is the expected catch (kg of prawns) on boat-day i and is linked to the predictor i, 0 is the 

intercept, n is a coefficient for the linear explanatory variable xn, which is considered a fixed effect, s(xmi) is 

the smoother function for nonlinear predictor xmi, and i is an error term.  

The probability of non-zero catch is modelled as a binomial distribution with a logit link:  

𝐥𝐨𝐠 (
𝝅

𝟏−𝝅
) = 𝜷𝟎 + ∑ 𝜷𝒏𝒙𝒏𝒊𝒏 + ∑ 𝒔(𝒙𝒎𝒊)𝒎 + 𝜺𝒊      Equ 3-3 

The link function for the positive catch subset data is a log function: 
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𝐥𝐨 𝐠(𝒄) = 𝜷𝟎 + ∑ 𝜷𝒏𝒙𝒏𝒊𝒏 + ∑ 𝒔(𝒙𝒎𝒊)𝒎 + 𝜺𝒊      Equ 3-4 

Geostatistical model (GSM) 

We also explored GSM using the INLA program. INLA currently has built-in zero-inflated negative binomial 
distribution, but the results were unrealistic, similar to the NB distribution in GAM. The extremely large 
proportion of zeros is likely to be the main problem. In addition, GSM requires high computer power. 
Regular computers do not have sufficient memory so we used high performing computers. Running one 
spatial model using CSIRO’s super computers took several days to complete. The results were poor and 
thus are not included in this report, but we report here that the task was undertaken to reflect that it was 
considered. 

3.1.3 Catch prediction and CPUE standardisation 

We used two components of the delta-lognormal model to predict the catch rates using the standard 
predictors. The prediction dataset covered all 0.1*0.1 degree grids where Black tiger prawns have been 
caught during 1998-2019. Each grid and year had the same structure and identical covariates as in Equ 3-3 
and Equ 3-4. Apart from year and location, other predictors were fixed at the standard values, either the 
mean or mode of the observed data. The annual standardized CPUE was derived by dividing annual 
predicted catch rates by the mean catch rate over the 1998-2019 period. The variance of the predicted 
catch per boat-day was calculated as per other studies(Zhou, 2002; Brodziak and Walsh, 2013): 

𝒗𝒂𝒓[𝑪𝑷𝑼𝑬] = 𝒗𝒂𝒓[𝝅]𝒄𝟐 + 𝒗𝒂𝒓[𝒄]𝝅𝟐       Equ 3-5 

The variance of the standardized annual indices was derived from this per boat-day variance in the similar 
manner and standardising CPUE per se.  

3.1.4 Subset data 

Modelling the logbook data was challenging due to extremely low positive catch events and highly skewed 
distribution of the catch data. Many of the 266 0.1*0.1 degree grids have been fished hundreds or over a 
thousand of boat-days but Black tiger prawns were only encountered a couple of times. Besides using all 
the data, we investigated an alternative approach by eliminating grids with extremely low occasions of 
positive catch. We sub-set the logbook data in two levels. 

Level 1: We excluded grids where the rate of positive catch was smaller than 0.01 (i.e. one positive catch 
out of 100 boat-days fished in that grid during 1998-2019). This restriction reduced the number of grids 
from 266 to 153 (a 42% reduction), and sample size (boat-day) from over 113,000 to 34,389 (a 70% 
reduction). The average rate of positive catch increased from 1.4% to 3.8%, which is still quite low. The 
total catch of Black tiger prawns was reduced from 30,716 kg to 27,618 kg (10% reduction), and the positive 
catch fishing days reduced from 1,540 to 1,310 (a 15% reduction).  

Level 2: We excluded grids where the rate of positive catch was smaller than 0.1 (i.e. one positive catch out 
of 10 boat-days fished in that grid during 1998-2019). In addition, we excluded grids that had been fished 
less than 10 days during the 22 years. This restriction further reduced the number of grids to 15 (a 94% 
reduction), and sample size (boat-day) to 1,395 (a 99% reduction). The average probability of positive catch 
increased to 13.2%. The total catch of Black tiger prawns was reduced from 30,716 kg to 5,688 kg (a 81% 
reduction), and the positive fishing days was reduced from 1,540 to 184 (a 88% reduction). This level of 
subset essentially uses data from the highest catch grids for CPUE standardisation. 
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3.2 Results 

3.2.1 Modelling catch rate and CPUE standardisation using data from all grids  

Binomial model 

The binomial model included following significant covariates:  

𝐥𝐨𝐠 (
𝝅

𝟏−𝝅
) = 𝒇𝒂𝒄𝒕𝒐𝒓(𝒚𝒆𝒂𝒓) ∗ 𝒇𝒂𝒄𝒕𝒐𝒓(𝒔𝒕𝒐𝒄𝒌𝑰𝑫) + 𝒇𝒂𝒄𝒕𝒐𝒓(𝒔𝒆𝒂𝒔𝒐𝒏) + 𝒇𝒂𝒄𝒕𝒐𝒓(𝒈𝒕𝒚𝒑𝒆) +

𝒇𝒂𝒄𝒕𝒐𝒓(𝒕𝒂𝒓𝒈𝒆𝒕) + 𝒔(𝒉𝒐𝒖𝒓. 𝒕𝒓𝒂𝒘𝒍𝒆𝒅) + 𝒕𝒆(𝒍𝒐𝒏, 𝒍𝒂𝒕) + 𝒔(𝒃𝒂𝒏𝒂𝒏𝒂) + 𝒔(𝒕𝒆𝒈𝒆𝒓) + 𝒇𝒂𝒄𝒕𝒐𝒓(𝒑𝒄. 𝒔𝒂𝒕) +

𝒇𝒂𝒄𝒕𝒐𝒓(𝒅.𝒈𝒑𝒔)           Equ 3-6 

         

All covariates were significant at p ≤ 0.05. The model explained 31.1% of the deviance and the adjusted R2 
was 0.116.  

Lognormal model 

The model of positive catch C have some different significant predictors from the binomial model: 

𝐥𝐨𝐠(𝑪) = 𝒇𝒂𝒄𝒕𝒐𝒓(𝒚𝒆𝒂𝒓) ∗ 𝒇𝒂𝒄𝒕𝒐𝒓(𝒔𝒕𝒐𝒄𝒌𝑰𝑫) + 𝒇𝒂𝒄𝒕𝒐𝒓(𝒕𝒂𝒓𝒈𝒆𝒕) + 𝒔(𝒉𝒐𝒖𝒓. 𝒕𝒓𝒂𝒘𝒍𝒆𝒅) + (𝒃𝒂𝒏𝒂𝒏𝒂) +

𝒇𝒂𝒄𝒕𝒐𝒓(𝒉𝒖𝒍𝒍𝒈) + 𝒇𝒂𝒄𝒕𝒐𝒓(𝒐. 𝒃𝒓𝒅𝒏) + 𝒇𝒂𝒄𝒕𝒐𝒓(𝒗𝒄𝒐𝒅𝒆)     Equ 3-7 

 

All covariates were significant at p ≤ 0.05 except hours.trawled which had p = 0.068. The model explained 
60.9% of the deviance, with an adjusted R2 of 0.545 which is much better than the binomial component 
(Figure 3-3). 

CPUE standardisation 

The fitted binomial model and the lognormal model were applied to create a prediction dataset that 
included all years and all grids where Black tiger prawns have been captured from 1998 to 2019. The 
standardised daily catch rates were the product of the two components. This led to the standardized 
annual abundance index (Table 3-3). The standardised index SIM,y roughly follows the nominal CPUE trend, 
but is less variable than the nominal CPUE, particularly in the recent years (Figure 3-4).  

3.2.2 Modelling catch rate and CPUE standardisation by excluding grids with 
extremely low probability of positive catch 

Level 1 data subset 

Binomial model: By excluding grids where the probability of positive catch is smaller than 0.01, we reduced 

the data from about 113,000 boat-days to about 34,389 boat-days, among which Black tiger prawns were 

captured in 1,310 boat-days, i.e., about 96% of boat-days ended with zero catch.  

Using the Level 1 subset of data, all covariates used in full grids model were significant except gear_type, 
i.e.:  

𝐥𝐨𝐠 (
𝝅

𝟏−𝝅
) = 𝒇𝒂𝒄𝒕𝒐𝒓(𝒚𝒆𝒂𝒓) ∗ 𝒇𝒂𝒄𝒕𝒐𝒓(𝒔𝒕𝒐𝒄𝒌𝑰𝑫) + 𝒇𝒂𝒄𝒕𝒐𝒓(𝒔𝒆𝒂𝒔𝒐𝒏) + 𝒇𝒂𝒄𝒕𝒐𝒓(𝒕𝒂𝒓𝒈𝒆𝒕) +

𝒔(𝒉𝒐𝒖𝒓_𝒕𝒓𝒂𝒘𝒍𝒆𝒅) + 𝒕𝒆(𝒍𝒐𝒏, 𝒍𝒂𝒕) + 𝒔(𝒃𝒂𝒏𝒂𝒏𝒂) + 𝒔(𝒕𝒆𝒈𝒆𝒓) + 𝒇𝒂𝒄𝒕𝒐𝒓(𝒑_𝒔𝒂𝒕) + 𝒇𝒂𝒄𝒕𝒐𝒓(𝒅_𝒈𝒑𝒔)  



36 

 

           Equ 3-8 

  

All predictors were significant at p ≤ 0.05. The model explained 24.9% of the deviance, which is not an 
improvement over the full dataset.  

Lognormal model: The same predictors in the lognormal model applied to the full dataset were included in 

the model for the reduced dataset. However, hours.trawled was not significant: 

𝐥𝐨 𝐠(𝒄) = 𝒇𝒂𝒄𝒕𝒐𝒓(𝒚𝒆𝒂𝒓) ∗ 𝒇𝒂𝒄𝒕𝒐𝒓(𝒔𝒕𝒐𝒄𝒌𝑰𝑫) + 𝒇𝒂𝒄𝒕𝒐𝒓(𝒕𝒂𝒓𝒈𝒆𝒕) + 𝒔(𝒃𝒂𝒏𝒂𝒏𝒂) + 𝒇𝒂𝒄𝒕𝒐𝒓(𝒉𝒖𝒍𝒍𝒈) +

𝒇𝒂𝒄𝒕𝒐𝒓(𝒐. 𝒃𝒓𝒅𝒏) + 𝒇𝒂𝒄𝒕𝒐𝒓(𝒗𝒄𝒐𝒅𝒆)        Equ 3-9 

The results were nearly identical to the model used for the full dataset. All covariates were significant at p ≤ 
0.05 and the model explained 60.6% of the deviance (Figure 3-5). The similar results between the full data 
model and reduced data model may be due to the similar data: although the full data set was reduced by 
70% (from about 113,000 boat-days to 34,389), the total catch of Black tiger prawns was only reduced by 
10% (from 30,716 kg to 27,618 kg), and the positive catch fishing days only reduced by 15% (from 1,540 to 
1,310).  

Standardized index: The standardised abundance index (SI) appears to similar to the SI using the full 

dataset, but slightly more variable (Figure 3-4). The standard deviation and confidence intervals are 

relatively narrower than that from the full dataset (Table 3-4).  

Level 2 data subset 

There is an overall trend of increasing CPUE from both the full dataset and limited areas where the 

probability of positive catch is greater than 0.01 (Figure 3-4). Since both datasets have a high proportion of 

zero catches (98.6% and 96.2%, respectively), the catch rate, even after standardisation, may be unreliable. 

Therefore, we further restrict areas to grids with highest catch rate. However, it is difficult to define and 

use the “highest catch rate” grids. No single grid has a 100% of probability of positive catch. Focusing on 

too few grids leads to no data in some years. We opted to restrict grids with the probability of positive 

catch greater than 10% and the number of positive catch days from 1998 to 2019 to be greater than 10. 

This condition results in 15 grids. However, there was no catch of Black tiger prawn in these grids in 2008. 

The nominal CPUE (kg/boat-day) looks flat over the period of 1998-2019 except four years (2000, 2004, 

2014, and 2015) whether we used full fishing days or only positive fishing days (Figure 3-7). Experience 

from CSIRO staff on the monitoring surveys indicated that occasionally the vessel would come across a 

“patch” of the species.  

Binomial model: Level 2 data subset greatly reduced the number of grids, fishing days, and positive catch.  

Using the Level 2 subset of data, the binomial model involved the following significant covariates:  

𝐥𝐨𝐠 (
𝝅

𝟏−𝝅
) = 𝒇𝒂𝒄𝒕𝒐𝒓(𝒚𝒆𝒂𝒓) + 𝒇𝒂𝒄𝒕𝒐𝒓(𝒔𝒆𝒂𝒔𝒐𝒏) + 𝒔(𝒉𝒐𝒖𝒓𝒔. 𝒕𝒓𝒂𝒘𝒍𝒆𝒅) + 𝒔(𝒃𝒂𝒏𝒂𝒏𝒂) +

𝒇𝒂𝒄𝒕𝒐𝒓(𝒅_𝒈𝒑𝒔)         Equ 3-10 

  

Several covariates were not significant here: stockID, target, longitude and latitude, tiger catch, and pc.sat. 
The remaining predictors were significant at p ≤ 0.05. The model only explained 10.1% of the deviance, 
which is worse than the models using the full dataset or Level 1 subset.  

Lognormal model: The same predictors in the lognormal model applied to the full dataset were included in 

the model for the greatly reduced dataset and the significant predictors were as follows:  
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𝐥𝐨𝐠(𝐜) = 𝒇𝒂𝒄𝒕𝒐𝒓(𝒚𝒆𝒂𝒓) ∗ 𝒇𝒂𝒄𝒕𝒐𝒓(𝒔𝒕𝒐𝒄𝒌𝑰𝑫) + 𝒇𝒂𝒄𝒕𝒐𝒓(𝒉𝒖𝒍𝒍𝒈) + 𝒇𝒂𝒄𝒕𝒐𝒓(𝒐. 𝒃𝒓𝒅𝒏) +

𝒇𝒂𝒄𝒕𝒐𝒓(𝒅.𝒈𝒑𝒔) + 𝒇𝒂𝒄𝒕𝒐𝒓(𝒏𝒂𝒗. 𝒂𝒄𝒄𝒈)      Equ 3-11 

The results were very different from the models used for the full dataset or Level 1 subset. All covariates 
were significant at p ≤ 0.05 and the model explained 65.9% of the deviance (Figure 3-6).  

Standardized index: The standardised abundance index (SI) differed from the SI using the full dataset or 

Level 1 subset, particularly for years 2000 and 2004 (Figure 3-7). The standard deviation and confidence 

intervals were much narrower than that from the full dataset or Level 1 subset (Table 3-4). Within such a 

small area, the nominal CPUE can roughly reflect the standardized CPUE. However, given that so few grids 

(only 6% of grids where Black tiger prawns have been caught) were analysed, the ability to extrapolate to 

the entire NPF region is questionable.  

3.3 Discussion 

3.3.1 Comparison between results of full dataset and reduced dataset 

The difference between the three datasets (i.e., full data set and two reduced data sets) was the probability 

of catching any Black tiger prawn in one boat-day. The full dataset included all grids that have a probability 

of positive catch greater than zero, and the Level 1 and Level 2 reduction datasets only included grids with 

a probability of positive catch not smaller than 0.01 (1%) or not smaller than 0.1 (10%), respectively. 

Although the Level 1 subset excluded a large proportion of grids and logbook records, the proportion of 

zeros was still very high (96.2%). The slightly increased positive catch events from 1.4% to 3.8% did not 

substantially improve model fitting. The reduced sample size may also have a negative impact on the 

binomial and lognormal models. The predicted abundance index trends were similar between the full and 

the Level 1 subset data. Interestingly, using only 6% of grids that contained 1% of logbook records with the 

highest catch (Level 2 subset) did not substantially change the CPUE index either, except in two years. We 

suggest focusing on the result from the full dataset and use this standardized index in stock assessments. 

However, caution is needed when interpreting the resulting CPUE trend. 

Until recently, Black tiger prawns have been a non-targeted by-product over most of the NPF history. Non-

targeted fishing behaviour may often miss high abundant areas. In addition, Black tiger prawn is a rare 

species compared to other prawn species in the NPF. Together, extremely high frequency of zero catches 

makes CPUE analysis very difficult. The results indicate a general trend of abundance increase, particularly 

since 2010 (Figure 3-4). There may be four hypotheses for this pattern.  

First, the trend results from changes in fishing behaviour (toward targeting Black tiger prawn in recent 

years) and does not represent a true abundance index for the whole stock (Maunder et al 2006; Quirijns et 

al. 2008). CPUE standardisation struggles to capture changes in catchability (in regard with the whole stock) 

when fishers do not try to find the species. If this is the main reason, the standardised CPUE cannot be used 

as an abundance index.  

Second, fishing power has increased over time but not captured by our models. We have examined a range 

of technological factors and included them as predictors. However, most of these variables did not make a 

significant contribution to the model fit while others have not changed over time during this period.  

Third, Black tiger prawns could have been fished down in early years when their catches were not reported. 

The increasing trend could be signalling a slow recovery. The CPUE trend appears to mimic the abundance 

of Grooved and Brown tiger prawns (Hutton et al., 2018). Fishing on the two most studied prawn species 

started in 1970. Stock assessments show that their spawning biomass rapidly declined from early 1970s to 

the mid-1980s. The spawning biomass of the two tiger prawns remained approximately stable between the 
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mid-1980s and early 2000s, and a slightly increasing trend was observed since early 2000s. Unfortunately, 

there are no catch records of Black tiger prawn before 1998 to allow this hypothesis to be investigated. It is 

therefore unclear whether incidental catch could have led to a substantial decline in stock size in the early 

years. So far there is not enough information to refute or substantiate this hypothesis. However, stock 

assessments in the next chapters suggest that even if the stock had been fished down in early years it could 

have recovered by 2013.  

Finally, the ecosystem is changing because of ecological interactions among species and environmental 

effect. For example, if Black tiger prawn is a competitor with other prawn species (e.g., banana prawns, 

tiger prawns, and endeavour prawns), a large amount of removal of these other species every year may 

have reduced competition and led to a greater ecological niche to Black tiger prawns. As a result, 

environmental carrying capacity for Black tiger prawn may have increased. Testing and proving these 

hypotheses will require additional data and research. Considering the nominal CPUE trend from the 15 

highest catch grids (Figure 3-7), it is more likely that the abundance has remained stable over the 22-year 

period. 

From these hypotheses, further investigation of the fishery data may be warranted. However, because 

Black tiger prawns have been incidentally captured by vessels targeting other prawn species, attempts to 

standardize CPUE for such a non-target species could be possibly fruitless. It could be more fruitful to 

improve and invest in data collection in the targeted fishing (i.e. the broodstock collection) in the future, 

recognising that broodstock fishing also has limitations (e.g., small spatial coverage). 

3.3.2 Comparison between broodstock collection and commercial fishing 

The two fisheries have different issues in terms of data quality and quantity. The broodstock fishery has a 

very small sample size, questionable records of the total catch in many years, missing fishing hours, and 

limited spatial ranges. On the other hand, the NPF does not target Black tiger prawns when conducting 

normal fishing practices targeting banana prawns or tiger prawns, thus the logbooks contain extremely 

large number of zeros, and the positive catches are highly variable. We attempted to overcome these 

challenges, explored multiple approaches, and produced standardized CPUE indices. However, the results 

are not ideal compared to analyses for data-rich target species. Having said that, we can give a preliminary 

comparison of the two index trends. The broodstock collection has reliable catch data from 2017 to 2019, 

while 2019 data was not available in the NPF logbooks at the time we extracted the data. AFMA provided 

2019 data in July 2020 with some correction of earlier data. The results in this report are produced from 

new model runs using all data including 2019. Hence, there are three common years (2017, 2018 and 2019) 

in the two sub-fisheries. For the broodstock data, all models indicate that abundance is lowest in 2017 and 

highest in 2018. For the commercial logbook data, the delta-lognormal models using three alternative 

datasets (all grids and two levels of reduced grids) also indicate the same pattern: highest index in 2018 and 

lowest in 2017. However, the commercial collection shows a much large variation in CPUE between years 

than the broodstock collection, i.e., very high CPUE in 2018. This may be mainly due to a lack of fishing 

activity overlap (Figure 3-8). The broodstock fleet did not fish in the Weipa region in 2018 and 2019. The 

logbook records show that this region had a very high catch of Black tiger prawns in 2018. The limited 

spatial extent of the broodstock fishery is also likely the major cause of the poor model fit. For these 

reasons, the standardised CPUE index from the commercial logbooks is recommended to be used for the 

stock assessment, although we acknowledge this is problematic given the non-targeting aspect of this data. 
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3.3.3 Comparing with the Tiger prawn study 

The Tiger prawn sub-fishery targets two species of tiger prawns, Penaeus esculentus, the Brown tiger 

prawn, and P. semisulcatus, the Grooved tiger prawn. Extensive research has been conducted to model 

tiger prawns CPUE and fishing power. The relative fishing power of each vessel is based on the catch rates 

relative to a hypothetical standard vessel, if all vessels were fishing under controlled availability and 

abundance conditions (i.e. fixed location, year, month, depth, and moon phase) (Bishop et al., 2008). For 

Black tiger prawn, a range of models using various covariates have been explored. It was found that 

realistic values could not always be obtained, because the regression factors were not orthogonal, and data 

on the presence of technology were sometimes unreliable or systematically incomplete. There was no 

single best estimation model for CPUE standardisation. Different modelling approaches (e.g., the so-called 

prediction models and the estimation models) could reveal different trends in relative fishing power and 

relative abundance. The estimated trends R2 from the final five models varied between 0.325 and 0.534 

(Bishop et al., 2008). Although directly comparison of different studies and species is difficult, looking at the 

data-rich tiger prawn models, our binary model explained 31.1% of the deviance and the lognormal model 

explained 60.9% of the deviance, which seem to be within the expected range given the limitations in the 

data. 
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Table 3-1. The NPF logbook summary of fished area, fishing effort, catch, and nominal CPUE in each of 

the common banana prawn stock region since 1998. 

Stock ID No. grids No. boat-day Total catch CPUE 

1 47  12,871   3,115  0.242 

2 66  18,904   8,040  0.425 

3 10  3,616   240  0.066 

4 13  17,538   254  0.014 

5 8  5,597   179  0.032 

6 31  18,941   1,170  0.062 

7 19  11,640   920  0.079 

8 11  3,295   208  0.063 

9 39  9,792   3,771  0.385 

10 22  10,740   12,819  1.194 

Total 266  112,934   30,716  0.272 

 

Table 3-2. Summary of annual catch, fishing effort, and nominal CPUE in NPF logbooks.  

  All fishing days   CPUE in positive catch days 

Year 
Total 
catch 

No. boat-
day CPUE Prob  

No. boat-
day Mean Min Max 

1998  311   9,091  0.03 0.4%  33 9.42 1 14 

1999  302   8,030  0.04 0.3%  27 11.19 1 26 

2000  530   7,031  0.08 0.2%  16 33.13 10 120 

2001  825   7,318  0.11 0.5%  40 20.63 2 200 

2002  216   5,849  0.04 0.5%  30 7.20 1 14 

2003  376   6,011  0.06 0.7%  44 8.55 1 20 

2004  814   5,604  0.15 1.0%  57 14.28 1 96 

2005  198   5,210  0.04 0.8%  40 4.95 1 20 

2006  1,068   4,708  0.23 1.4%  67 15.94 5 60 

2007  292   3,582  0.08 0.4%  16 18.25 5 50 

2008  545   4,196  0.13 0.6%  24 22.71 12 50 

2009  873   4,112  0.21 0.9%  38 22.97 8 70 

2010  421   3,857  0.11 1.0%  40 10.53 2 85 

2011  722   4,143  0.17 1.2%  48 15.04 5 54 

2012  1,505   4,147  0.36 2.5%  103 14.61 5 65 

2013  1,134   3,905  0.29 1.6%  63 18.00 5 80 

2014  4,946   4,872  1.02 3.5%  170 29.09 5 260 

2015  4,712   3,748  1.26 3.0%  111 42.45 5 468 

2016  498   3,899  0.13 0.8%  32 15.56 1 56 

2017  544   4,388  0.12 0.9%  39 13.95 5 60 

2018  8,402   4,643  1.81 7.7%  357 23.54 5 364 

2019  1,482   4,590  0.32 3.2%   145 10.22 1 45 

Sum or 
mean  30,716   112,934  0.31 1.5%   1,540  17.37 3.95 103.50 
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Table 3-3. Logbook predicted CPUE and standardized abundance index (SI) using all grids where any Black 

tiger prawns were captured from 1998 to 2019. 

Year Nominal SI sd[SI] 5%CI 95%CI 

1998 0.11 0.08 0.15 -0.17 0.33 

1999 0.12 0.05 0.08 -0.09 0.18 

2000 0.24 0.41 0.66 -0.69 1.50 

2001 0.37 1.22 2.35 -2.66 5.07 

2002 0.12 0.24 0.62 -0.79 1.26 

2003 0.20 0.24 0.40 -0.41 0.89 

2004 0.47 0.66 1.18 -1.29 2.60 

2005 0.12 0.43 0.76 -0.83 1.67 

2006 0.74 0.70 1.10 -1.12 2.50 

2007 0.26 0.29 0.94 -1.25 1.83 

2008 0.42 0.31 0.92 -1.22 1.82 

2009 0.69 0.43 1.09 -1.37 2.22 

2010 0.35 0.83 1.42 -1.52 3.17 

2011 0.56 1.18 1.77 -1.74 4.09 

2012 1.18 2.14 3.35 -3.39 7.63 

2013 0.94 1.82 2.81 -2.81 6.42 

2014 3.29 3.02 4.05 -3.67 9.67 

2015 4.08 1.93 5.67 -7.44 11.23 

2016 0.41 0.48 0.81 -0.86 1.81 

2017 0.40 0.85 1.12 -1.00 2.70 

2018 5.87 3.79 4.32 -3.34 10.88 

2019 1.05 0.91 1.13 -0.96 2.76 
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Table 3-4. Logbook predicted CPUE and standardized abundance index (SI) using grids where the 

probability of catching any Black tiger prawns is greater than or equal to 0.01 from 1998 to 2019. 

Year Nominal SI sd[SI] 5%CI 95%CI 

1998 0.10 0.07 0.09 -0.08 0.21 

1999 0.13 0.05 0.07 -0.06 0.16 

2000 0.30 0.35 0.34 -0.22 0.90 

2001 0.51 1.19 1.60 -1.45 3.82 

2002 0.13 0.21 0.49 -0.59 1.01 

2003 0.21 0.18 0.23 -0.20 0.56 

2004 0.56 0.53 0.62 -0.48 1.54 

2005 0.17 0.34 0.43 -0.37 1.04 

2006 0.75 0.55 0.91 -0.96 2.05 

2007 0.31 0.18 0.46 -0.59 0.94 

2008 0.48 0.24 0.46 -0.53 1.00 

2009 0.80 0.37 0.60 -0.61 1.35 

2010 0.30 0.69 1.17 -1.24 2.61 

2011 0.51 1.06 1.19 -0.90 3.01 

2012 1.26 1.93 2.03 -1.43 5.27 

2013 0.72 1.09 0.93 -0.45 2.62 

2014 3.27 6.17 19.67 -26.28 38.44 

2015 4.41 1.89 3.78 -4.36 8.09 

2016 0.58 0.45 0.57 -0.48 1.38 

2017 0.30 0.54 0.49 -0.27 1.35 

2018 5.39 3.22 2.10 -0.26 6.67 

2019 0.83 0.70 1.29 -1.42 2.81 
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Table 3-5. Logbook predicted CPUE and standardized abundance index (SI) using grids where the 

probability of catching any Black tiger prawns is greater than or equal to 0.1 and the total fishing days is 

equal to or greater than 10 days during 1998 and 2019. 

Year Nominal SI sd[SI] 5%CI 95%CI 

1998 0.17 0.34 0.07 0.23 0.45 

1999 0.07 0.27 0.05 0.18 0.36 

2000 2.98 1.80 0.35 1.22 2.38 

2001 0.47 0.59 0.12 0.40 0.78 

2002 0.12 0.30 0.07 0.18 0.41 

2003 0.16 0.25 0.05 0.17 0.34 

2004 2.70 5.03 0.98 3.41 6.63 

2005 0.23 0.25 0.05 0.17 0.32 

2006 0.32 0.38 0.07 0.26 0.49 

2007 0.16 0.11 0.03 0.05 0.16 

2008      

2009 0.25 0.22 0.05 0.14 0.30 

2010 0.41 0.54 0.26 0.11 0.97 

2011 0.56 0.53 0.12 0.33 0.73 

2012 0.99 1.66 0.43 0.96 2.36 

2013 1.00 1.07 0.18 0.77 1.37 

2014 4.22 2.69 1.90 -0.44 5.80 

2015 4.04 1.32 0.80 0.00 2.63 

2016 0.41 0.49 0.09 0.34 0.63 

2017 0.34 0.39 0.11 0.21 0.57 

2018 1.97 1.94 0.49 1.12 2.74 

2019 0.42 0.84 0.21 0.49 1.19 
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Figure 3-1. Spatial distribution of average Black tiger prawn catch per boat-day in NPF logbooks from 

1998 to 2019. 

 

 

Figure 3-2. Frequency distribution of non-zero catch records in NPF logbooks from 1998 to 2019. 

 



 

45 

 

 

 

Figure 3-3. Diagnostics of the lognormal model for modelling positive catch using data from all 0.1*0.1 

grids that had recorded catch during 1998-2019. 
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Figure 3-4. Standardized annual abundance index (SI) based on logbook data. All grids refer to all grids in 

the logbooks where Black tiger prawns were captured during 1998-2019 period. P0.01 and P0.1 grids use 

data from grids where the probability of positive catch is greater or equal to 0.01 and 0.1, respectively.  
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Figure 3-5. Diagnostics of the lognormal model for modelling the positive catch using data from grids that 

had a probability of positive catch greater or equal to 0.01. 
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Figure 3-6. Diagnotscis of the lognormal model for modelling the positive catch using data from grids that 

had a probability of positive catch greater or equal to 0.1 and the total fishing days is greater or equal to 

10 days during 1998-2019. 
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Figure 3-7. CPUE from in highest catch area (15 0.1*0.1 grids) where the probability of positive catch is 

greater than 0.1 and the total fishing days with positive catch is greater than 10 days between 1998 and 

2019. 
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Figure 3-8. Comparison of fishing location in 2018. Red “B” are the grids fished by broodstock collection, 

green “L” are grids in the commercial logbook with CPUE greater than 50kg (in a single day), and blue “L” 

are grids in the logbook with probability of positive catch greater than 0.1 between 1998 and 2019. 
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4 Stock assessment using Bayesian state-space 
biomass dynamics model 

 

As a rare commercial species in the NPF, Black tiger prawn has very limited data on its biology and 

population dynamics as well as data from the fishery. In these circumstances it is challenging to apply a 

size- or age-structured model for stock assessment. We opted to use a less data demanding population 

model—a biomass dynamics model (BDM, aka surplus production model, SPM). A BDM can estimate key 

biological and management parameters, including unfished biomass, intrinsic population growth rate, 

maximum sustainable yield (MSY), biomass and fishing mortality at MSY, current stock status, and time 

series of biomass and fishing mortality. Although BDMs have several limitations and have been criticised for 

their simplicity (Maunder, 2003), they are widely used within data-limited and data-moderate fisheries 

(Dichmont et al., 2016). A major weakness of BDM is its aggregated of age-structure so it does not account 

for age or size-specific gear selectivity. A BDM also does not specifically model time lagged stock-

recruitment relationships. However, for short-lived species, studies show that BDMs can produce nearly 

identical results as more data-intensive methods (Zhou et al., 2009).  

The standardized CPUE, together with catch records, may allow a simple population model, such as 

biomass dynamics model to be fit. However, the traditional maximum likelihood technique may have 

difficulties for the species with sporadic low catch data. Consequently, we used a Bayesian state-space 

model that can handle both observation and process errors and can easily incorporate prior knowledge 

about the species. The Bayesian state-space formulations of BDMs have been recommended over 

observation or process error estimators because such formulations are better able to represent uncertainty 

(Punt et al., 2015). 

4.1 Methods and input data 

There are several off the shelf software packages that can implement Bayesian production models. We first 

explored the suitability of JABBA (Just Another Bayesian Biomass Assessment) (Winker et al., 2018). JABBA 

formulates the surplus production function with the generalized three parameter SPM by Pella and 

Tomlinson (1969), i.e.:  

  

𝑺𝑷𝒕 =
𝒓

𝒎−𝟏
𝑩𝒕 [𝟏 − (

𝑩𝒕

𝑲
)
𝒎−𝟏

]         Equ 4-1    

 

where r is the intrinsic rate of population increase, K is the carrying capacity, B is stock biomass, t is time 

step, and m is a shape parameter that determines at which B/K ratio maximum surplus production is 

attained. If the shape parameter m = 2, the model reduces to the standard Schaefer production model, 

with the surplus production (SP) attaining MSY at exactly K/2. If 0 < m < 2, SP attains MSY at biomass levels 

smaller than K/2; the converse applies for values of m greater than 2. A potential problem with this three-

parameter model is the difficulty to estimate shape parameter m, particularly for data-limited stocks. As 

this parameter is close to 2 for most stocks in the RAM legacy database (http://ramlegacy.org), we assume 

m = 2 for Black tiger prawn to avoid the difficulties of estimation. The formulation of the Pella-Tomlinson 

leads to a rapid increase of surplus production as m decreases for any fixed input values of r and K because 
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of the inclusion of m-1 as the denominator of r. The surplus production model can overestimate biomass 

growth at lower biomass levels. To avoid this potential issue JABBA provides an option of combining the 

surplus production with linear growth function when biomass drops below a threshold Plim = Blim/K, where 

Plim ranges of 0.2–0.25, which have been adopted as thresholds for recruitment overfishing (Sainsbury, 

2008). We adopted Plim = 0.25 for Black tiger prawns here. JABBA is formulated using the Bayesian state-

space estimation framework proposed by Meyer and Millar (1999). The biomass Bt in year t is expressed as 

a proportion of K (i.e. Pt=Bt/K, which is referred to as saturation St in this report) to improve the efficiency 

of the estimation algorithm. The initial biomass in the first year of the time series is scaled by S0, an 

assumed initial saturation represented as model parameter  in JABBA. Note that the commonly called 

depletion is d = 1 – S = 1 – Bt/K. The stochastic form of the process equation is given by:  

 𝑷𝒕 =

{
 
 

 
 𝝋𝒆𝜺 𝒕 = 𝟏

[𝑷𝒕−𝟏 +
𝒓

𝒎−𝟏
𝑷𝒕−𝟏(𝟏 − 𝑷𝒕−𝟏

𝒎−𝟏) −
∑ 𝑪𝒇,𝒕−𝟏𝒇

𝑲
] 𝒆𝜺 𝑷𝒕−𝟏 ≥ 𝑷𝒍𝒊𝒎

[𝑷𝒕−𝟏 +
𝒓

𝒎−𝟏
𝑷𝒕−𝟏(𝟏 − 𝑷𝒕−𝟏

𝒎−𝟏)
𝑷𝒕−𝟏

𝑷𝒍𝒊𝒎
−
∑ 𝑪𝒇,𝒕−𝟏𝒇

𝑲
] 𝒆𝜺 𝑷𝒕−𝟏 < 𝑷𝒍𝒊𝒎

   Equ 4-2  

 

where  is the process error, with  ∼ Normal(0, ) and Cf,t is catch from fleet f in time t. 

The standardised CPUE is considered as “observed data” and the observation model is: 

𝑰𝒕 = 𝒒𝑩𝒕𝒆
𝝐          Equ 4-3 

It is the abundance index, a fraction of biomass Bt scaled by catchability q. The random observation error is 

assumed to be 𝜖 ~ Normal(0, 𝜎𝜖).  

The inputted fishery data included annual catch by fleet f, Cf,t and standardised CPUE SIt. Catch from the 

NPF commercial fleet are fully retained, but some of the catch in the broodstock fleet are discarded. An on-

vessel survival experiment was conducted during a survey in February-March 2020 (G. Fry, CSIRO, personal 

communication). A total of 20 Black tiger prawns (13 males and 7 females) were held in tank for up to 2 

hours. At the end of the experiment, 6 prawns were dead while 14 survived and were released, resulting in 

a survival rate of 0.7. This rate was used to calculate survival rate for the discarded Black tiger prawns in the 

broodstock fishery. 

JABBA can fit to multiple time series of abundance indices from different fleets. We used standardised SIt 

for the NPF commercial fleet from the previous chapter, but we did not fit to the CPUE for broodstock fleet 

because it had only three years of reliable CPUE within the time frame of the available NPF commercial 

logbook data and the fished areas were small compared to the full geographic range of the fishery.  

Bayesian models require prior information. In Equ 4-1 and Equ 4-2, one of the key parameters (hence the 

major consideration) is the intrinsic rate of population growth r. To our best knowledge, this parameter has 

not been estimated for Black tiger prawns. This species has similar life-history as Grooved tiger prawn 

(Gribble et al., 2003). Grooved tiger prawns in the NPF have been assessed using Bayesian state-spatial 

hierarchical models surplus production models (Zhou et al., 2009). That study demonstrates that simple a 

BDM implemented in Bayesian state-space formulation can produce nearly identical results as more data-

intensive weekly-delay difference model. The technique used for the Grooved tiger prawn is reminiscent of 

JABBA.  

In this chapter, we constructed r prior by borrowing the posterior distribution of the Grooved tiger prawns 

which has mean r = 0.43 (Table 4-1). For the other parameters, including carrying capacity K and 

initialsaturation  the default priors built in JABBA were used (Table 4-1, Figure 4-1), so this exploration is 

referred to as the “base case” or “default case”. The default K prior is a lognormal distribution with a mean 
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of 8 times of the maximum catch in the history and a coefficient of variation of 1. The prior for the initial 

saturation  was beta(0.9, 0.25), which has a mean about 0.78 and a median about 0.93.  

To test the model sensitivity to the assumed priors, several alternations were made to the priors.  

To implement the MCMC samples, the model was set up with two chains, 30,000 iterations, saving the 

results of every 5 iterations and discarding the first 5,000 iterations. The retained 10,000 samples were 

used to construct the posterior distributions for the parameters and variable of interest. 

 

4.2 Results 

4.2.1 Base case 

The Bayesian state-space model can be applied without needing further adjustment of priors or initial 

values. However, the posterior distributions for most of the parameters are quite wide (Figure 4-1). The 

variability measured by the ratio of posterior CV2 to prior CV2 (PPVR) is not much smaller than 1, indicating 

similar uncertainty between the priors and posteriors. This high uncertainty can also be seen from the 

numerical output (Table 4-2). The ratios of mean posterior to mean prior value (PPMR) indicate that r prior 

matches its posterior quite closely.  

The large variance likely links to the information content of abundance index SI, at least partially. Even with 

the flexible Bayesian state-space model that takes both process and observation errors into account, the 

model fails to capture the increasing trend of SI over time (Figure 4-2, CPUE panel at the top left). The 

posterior abundance index is approximately stable over the entire period from 1998 to 2019. 

The results suggest that the total annual catch of Black tiger prawn is below MSY level for most years 

except in 2018 (Figure 4-2, catch panel at the top right). However, the estimated MSY is highly uncertain, 

with a 95% CI of 3,773 to 17,083kg (Table 4-2). The total annual catches in 2014, 2015, and 2018 are all 

larger than the lower MSY credible interval. 

The estimated annual fishable biomass is also quite uncertain (Figure 4-2, biomass panel at the middle left). 

The mean biomass is above the posterior mean Bmsy in all years, indicating that the stock is not overfished. 

However, if we take the large variance of By and Bmsy into consideration, the lower 95% CI for biomass 

trajectory is way below the upper 95% CI for Bmsy. 

The posterior for Fmsy has a relatively smaller variance compared to that for the other parameters, partially 

due to informative prior assigned to r. The posterior mean annual fishing mortalities (F) are below mean 

Fmsy (Figure 4-2, fishing mortality panel at the middle right). However, if both uncertainties around the 

estimated F and Fmsy are considered, overfishing may be occurring in 2014, 2015, and 2018. 

Focusing on the point estimates, biomass in all the 22 years are above Bmsy while the fishing mortality is 

below Fmsy, inferring that the stock has never been overfished and overfishing is not occurring (Figure 4-2, 

surplus production panel at the bottom right). Again, when taking uncertainty into consideration, there is a 

low probability of overfishing in the most recent years (Figure 4-2, Kobe plot at the bottom left). 

It is possible to construct alternative models with different assumption and priors. However, model 

comparison based on commonly used criteria such as the deviation information criteria, residuals, root 

mean squared error, etc., can be misleading because of the questionable CPUE data. Sensitivity testing, 

however, remains a valid approach. 
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4.2.2 Testing model sensitivity to priors  

Several sensitivity tests were performed. 

Initial saturation. The increasing biomass at the start of the time series (Figure 4-2, biomass panel at the 

middle left) suggests that the stock may be recovering from a low level. There were no records of retained 

Black tiger prawn in logbooks prior to 1998. However, as a non-directed catch species with very low catch 

from 1998 to 2010, it seems unlikely that the stock was noticeably fished down in the early years. Hence, 

we first tested the sensitivity to the initial saturation set in the base-case model as  = beta(a = 0.9, b = 

0.25), which has a mean of 0.78 and a median of 0.93. We assumed an alternative prior  = beta(a =0.99, b 

= 0.01), i.e. nearly unfished stock (mean  = 0.99). The change had little effect on the biological and 

management parameters in Tables 4.2, except for  itself (posterior mean = 0.98) (Table 4-3). This 

modification removes the slightly uprising biomass trajectories in Figure 4-2, biomass panel at the middle 

left, so the biomass remains roughly stable until the present.  

We further tested the hypothesis that the stock was substantially depleted at the start of 1998. We 

assumed  = beta(a = 0.5, b = 0.5), which has a mean and median of 0.5). This scenario led to a large 

change to the posterior for initial depletion with a mean  = 0.16 in 1998 (Table 4-3). Biomass increased 

over the following years because of low annual catch, and recovered to a saturation S = 0.94 (i.e., the stock 

was only depleted by 0.06) in 2013 (Figure 4-3, biomass panel). Increased catch during the most recent 

years drove the stock to a lower level and the biomass was about 80% of unfished carrying capacity in 

2019. However, assuming a low initial depletion again had little effect on other parameters. The stock 

status (both biomass and fishing mortality) were very similar to the base case. 

Intrinsic growth rate. Two alternative models (a classic Graham-Shaefer surplus production model and a 

modified stock-recruitment model) have been applied to the NPF Grooved tiger prawns in four stock 

regions, resulting in eight estimates of intrinsic population growth rate r (Zhou et al., 2009). The estimated 

values range from 0.231 to 0.792 (mean = 0.432, sd = 0.136). There is a stock assessment for Torres Strait 

Brown tiger prawn (Penaeus esculentus) (O'Neill and Turnbull, 2006). One of the models used is the 

Graham-Shaefer surplus production model, which yields three estimates of r: 0.448, 0.768, 0.479. The 

results from the two studies, one on Grooved tiger prawns in the NPF and one in Torres Strait on Brown 

tiger prawns are comparable. 

Instead of using the mean r from tiger prawns, we examined effect of this parameter by using the minimum 

(0.231) and maximum (0.792) values estimated from Grooved and Brown tiger prawns. With these two very 

different r priors, the posteriors for K, Bmsy, S2019, and B2019/Bmsy remain similar. If Black tiger prawn had a 

very low productivity, the total annual catch in years 2014, 2015, and 2018 could have been greater than 

MSY level and F2018 could also be above Fmsy (Figure 4-4). However, the stock biomass had always been 

above the mean Bmsy reference point in recent years. In contrast, if Black tiger prawns were very 

productive, the annual catch would have always been less than mean MSY, biomass greater than mean 

Bmsy, and fishing mortality smaller than mean Fmsy (Figure 4-5).  

It is worth noting that the posterior for initial saturation in 1998 was very uncertain even with the same 

prior. However, the model results were insensitive to this parameter, because even if the estimated  was 

very low, biomass can always recover to a high level before 2014 due to low catch between 1998 and 2013.  

Carrying capacity. It is very difficult to provide reliable prior for parameter K because it is largely 
determined by a species’ habitat and surrounding environment. We tested multiple priors, the mean values 
of which ranges from the maximum observed catch (meaning all Black tiger prawns could have been 
harvested), to 10 times the maximum observed catch (approximately 10% of unfished biomass could have 
been taken in one year). Varying this multiplier from 1 to 10 had clear impact on several key parameters 
(Figure 4-6). Larger K priors led to larger posterior mean for K, MSY, saturation, biomass relative to Bmsy but 
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smaller r and lower F to Fmsy ratio. In the case of Black tiger prawn, if the unfished biomass is at least 2.5 
times of the maximum catch, then the stock is unlikely to be overfished by 2019 and overfishing may have 
not occurred.  

The difference between the prior and posterior distributions decreased and then increased again when K 

prior increased from 1 to 10 times of max(C)(Figure 4-7). To determine a reliable K prior, we changed the K 

prior gradually till the mean posterior equals the mean prior. This procedure yielded a mean K prior = 

4.4*max(C), which was used in the final model. Simulation tests using data-rich stocks in the RAM Legacy 

Database confirm that this is a feasible approach (results unpublished). 

The variance of the K prior also has a major effect on the posteriors. We used the similar procedure to 

determine likely value of the parameter. We changed cv[K.prior] from 0.1 to 1 and found that the CV for 

the K prior was about 0.7 when the mean of the K posterior was close to the mean of its prior.  

Regardless the values of K prior (mean and CV), i.e., whether using the default values in the JABBA program 

or the values we chose for the final model, the general conclusions about the stock status remain the same: 

the point estimates suggest that Black tiger prawn has not been overfished and overfishing didn’t occur in 

2019. 

In addition to the three key model parameters, we also tested model sensitivity to process error and 
observation error. JABBA allows these two types of errors either to be fixed or estimated. Assuming large 

errors (e.g.,  = 1) or letting the model estimate them has little impact on the general conclusions.  

4.2.3 Final model and conclusion 

The final model used the same priors as in the base case, except that K.prior = LN(mean = max(C)*4.4, = 

0.63) and  = beta(a = 0.9, b = 0.1). Again, the fit of this final model to the standardized index SI was poor 
(Table 4-4, Figure 4-8). The posterior mean for unfished biomass K was about 41.3 tonnes, that for Fmsy was 
about 0.23 yr-1, that for Bmsy about 20.7 tonnes, and that for MSY about 4.6 tonnes (Table 4-5, Table 4-6). 
The posteriors are quite uncertain. For example, the coefficient of variations (CVs) for K, Bmsy, and MSY are 
all greater than 60% (Table 4-6). The output of the model indicates that the total catch during 2014, 2015, 
and 2018 may have been greater than the posterior mean MSY and F2018 greater than the posterior mean 
Fmsy, but biomass in all years was above Bmsy (Figure 4-8). Given the assumptions, the model estimates 
indicate that the stock has never been overfished but overfishing may have occurred in the 2018 (Table 4-5, 
Table 4-6). Compared to the base case, final model is more conservative.  

4.2.4 Sensitivity test of survival rate of discarded prawns in broodstock collection  

During the 30 November NPRAG meeting, RAG members questioned the survival rate of discarded Black 

tiger prawn in the broodstock fishery. The mortality rate of 30% observed on an onboard experiment was 

considered too low because it did not take into account of potential mortality due to predation after the 

prawns are returned to the water but before they sink to the bottom. It was recommended that a 

sensitivity test should be conducted by assuming 100% mortality for the discarded prawns. 

This sensitivity test shows that assuming 100% mortality for the discarded prawns has a minor effect on the 

results (Table 4-7). The relative change (=
𝜃100%−𝜃30%

𝜃30%
× 100, where 100% and 100% are median parameter 

values for models assuming a 100% or 30% discard mortality rate) ranges from -4% to 9%. Note that these 

changes also include the stochastic effect in the Bayesian process. The general conclusion about the stock 

status, i.e., the stock was not overfished and overfishing did occur in 2019 remains unchanged. The minor 

effect is expected because discarded prawns only made up between 0 and 16% (mean 5%) of the total 

catches (broodstock collection and commercial fishing combined). It is also worth noting that discards were 

not fully reported before 2017. 
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4.3 Discussion 

The Bayesian biomass dynamics models can incorporate various sources of information and types of 
uncertainties, including prior knowledge, information from other species, measurement error, and process 
error. It is a flexible tool for assessment of data-poor fisheries. However, even with such a powerful tool the 
model still cannot track the standardized CPUE well. The model cannot explain the recent increase in CPUE, 
noting that the CPUE has a very large uncertainty in most years. The increased CPUE in recent years also 
contradicts the observed catch pattern. If the stock’s productivity has not changed substantially, increasing 
catch would be expected to reduce abundance, which is correctly modelled by the Bayesian biomass 
dynamics model implemented in JABBA. Assuming very large process error or observation error does not 
change the point trajectory of posterior biomass.  

Although the CPUE data are not informative, the Bayesian model can still produce reasonable results. The 

success depends on the assumption that Black tiger prawn has an intrinsic productivity similar to that of 

Grooved tiger prawn or Brown tiger prawn in the Northern Australia. Longevity is the most significant 

predictor for intrinsic population growth rate (Liu et al., in review). Adult life span of Black tiger prawn 

ranges from 6 to 24 months (Gribble et al., 2003). The Grooved tiger prawn, P. semisulcatus, can live for 

about 2 years, but a study shows that very few survive beyond 18 months in the north-western Gulf of 

Carpentaria (Somers and Kirkwood, 1991). The average lifespan of Black tiger prawn in many regions is 2 

years (https://animaldiversity.org/accounts/Penaeus_monodon), though it has been suggested that 

individuals introduced into the Gulf of Mexico have a lifespan closer to 3 years (Dall et al., 1991). Given the 

similar longevity and life history, the assumption of similar intrinsic population growth rate between the 

three tiger prawn species (Grooved, Brown, and Black) may be reasonable. We believe that productivity of 

Black tiger prawn should be at least within the large range that we tested (i.e., between the minimum and 

maximum r values from the other two tiger prawn species). 

All models and sensitivity tests indicate that stock biomass is above Bmsy. However, the total catch may have 

been greater than MSY in some years. Fishing mortality may be close or greater than Fmsy in recent years. 

Since the increasing catch trend tends to continue upwards and the stock has never been below Bmsy, the 

output from this assessment may not hold in the future. To detect the full stock size and its production 

potential, a range of fishing mortality and biomass levels (including overfished) can better inform the 

assessment models. It is recommended that the current catch level could be maintained for one or two 

years to see whether the stock can support this level of production and to assist the model identifying the 

maximum stock size and potential productivity. However, a dramatic increase of catch should be avoided to 

prevent severe overfishing. A quick re-run of the Bayesian biomass dynamics model is warranted in the 

coming years when new catch data become available. 

The NPF region is a large area. It is unknown whether Black tiger prawn is a single stock or has multiple sub-

stocks in the entire region. The catch varies considerably between Banana prawn stock regions. When more 

data become available, it is worth analysing the data at the sub-region level to ensure the species is 

sustainably fished if indeed there exist multiple stocks.   

https://animaldiversity.org/accounts/Penaeus_monodon
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Table 4-1. Input and priors for the base case Bayesian state-space production model. Unit: catch in kg, 

CPUE in kg/day, r yr-1, K in kg, catchability in day-1. Default refers to the use of the default value in JABBA 

program.  

Variables Description 

Year 1998—2019 

Catch NPF + broodstock1, CV = 0.1 

CPUE Standardised from NPF commercial logbook 

r (based on NPF Grooved tiger) r.prior = LN(median = 0.432, sd = 0.136,  = 0.307) 

K (default) K.prior = LN(median = max(C)*8 = 81,987, = 0.3) 

Initial saturation (default)  = beta(a = 0.9, b = 0.25) 

Process error (default)  = unif(sqrt(1/100), sqrt(1/20)) 

Observation error (default) 𝜎𝜖 = inv-gamma(0.001, 0.001) 

Catchability (default)  q = unif(min(SI)/max(C), mean(SI)/max(C)) 

Biomass threshold Plim = 0.25 

Shape parameter m = 2 

1 The broodstock catch are in number of prawns, which includes the retained and discarded prawns. The 

removal by broodstock collection is total weight in kg where the mean weight per prawn is assumed to be 

100g and the mortality rate of 30% for the discards is based on an onboard experiment. 

 

Table 4-2. Results from the base case Bayesian state-space biomass dynamics model for the Black tiger 

prawn. Syear is the stock saturation (= Byear/K = 1 – Depletionyear). Unit: F in yr-1, B and MSY in kg. Units for 

other parameters are the same as in Table 4-1. 

Param Mean 2.5% 97.5% 

K  68,866   39,834   120,072  

r 0.46 0.27 0.80 

Fmsy  0.23   0.13   0.40  

Bmsy  34,433   19,917   60,036  

MSY  7,877   3,773   17,083  

S1998  0.13   0.07   0.30  

S2019  0.82   0.59   0.98  

B2019/Bmsy  1.63   1.19   1.97  

F2019/Fmsy  0.21   0.09   0.56  
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Table 4-3. Posteriors means from the sensitivity tests that vary initial saturation  and the intrinsic 

population growth rate r. The lowest and highest r estimates from the Grooved and Brown tiger prawns 

studies were assumed for Black tiger prawns. The mean of the K prior was assumed to be 8*max[C]. 

Units are the same as in Tables 4-1 and 4-2. 

Param  = 0.9  = 0.5 r = 0.23 
r = 0.43 

(base-case) r = 0.79 

K 68,720 68,780 71,148 68,866 67,940 

r 0.44 0.47 0.28 0.46 0.79 

Fmsy 0.22 0.23 0.14 0.23 0.39 

Bmsy 34,360 34,390 35,574 34,433 33,970 

MSY 7,608 8,054 5,050 7,877 13,249 

S1998 0.98 0.16 0.16 0.13 0.12 

S2019 0.82 0.82 0.75 0.82 0.85 

B2019/Bmsy 1.65 1.65 1.49 1.63 1.70 

F2019/Fmsy 0.21 0.20 0.35 0.21 0.12 

 

 

Table 4-4. Comparison of standardized index (SI) from commercial logbook and posterior abundance 

index for the final model. 

Year SI Estimated 2.50% 97.50% Residual 

1998 0.083 0.280 0.052 1.815 -1.217 

1999 0.047 0.297 0.057 1.877 -1.847 

2000 0.409 0.314 0.039 2.784 0.265 

2001 1.218 0.320 0.002 44.639 1.338 

2002 0.242 0.323 0.041 2.730 -0.289 

2003 0.242 0.326 0.053 2.194 -0.296 

2004 0.661 0.330 0.018 5.648 0.694 

2005 0.427 0.327 0.033 3.298 0.268 

2006 0.697 0.326 0.023 5.570 0.761 

2007 0.291 0.327 0.026 4.033 -0.115 

2008 0.305 0.338 0.028 3.925 -0.103 

2009 0.432 0.333 0.022 5.524 0.259 

2010 0.832 0.323 0.013 9.385 0.946 

2011 1.185 0.337 0.007 15.662 1.259 

2012 2.137 0.337 0.000 303.263 1.846 

2013 1.817 0.334 0.001 93.314 1.693 

2014 3.021 0.335 0.000 1176.534 2.199 

2015 1.928 0.258 0.000 23776.032 2.013 

2016 0.479 0.270 0.025 2.778 0.573 

2017 0.854 0.296 0.019 5.141 1.059 

2018 3.790 0.309 0.000 1520.398 2.505 

2019 0.905 0.227 0.013 3.821 1.385 
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Table 4-5. Results from the final model with the prior for r constructed from the mean and variance of 

estimated r for Grooved tiger prawn, and the prior for K constructed using a mean of 4.4 times the 

maximum catch and a sd of 0.63, and the mean 1998 biomass of about 0.9B0.  

Param Mean 2.5% 97.5% 

K  41,341   19,670   108,302  

r 0.45 0.25 0.81 

Fmsy  0.23   0.13   0.40  

Bmsy  20,670   9,835   54,151  

MSY  4,624   2,042   13,761  

S1998  0.86   0.49   1.04  

S2019  0.70   0.29   0.95  

B2019/Bmsy  1.40   0.57   1.89  

F2019/Fmsy  0.41   0.11   2.21  

 

 

Table 4-6. Key parameters and uncertainty from the final model. is the log-scale standard error. 

 K Bmsy Fmsy MSY 

Mean  41,341   20,670   0.23   4,624  

  0.45   0.45   0.30   0.50  

SD  27,693   13,846   0.14   3,174  

CV 67% 67% 63% 69% 

 

 

Table 4-7. Model sensitivity to survival rate of discarded prawns in broodstock collection. All discards are 

assumed to be dead. Rel change is the relative change between the model that assumes 100% discard 

mortality and the final model in Table 4-5. 

Param Mean 2.5% 97.5% Rel change 

K 41,926 19,196 121,532 1% 

r 0.45 0.25 0.81 0% 

Fmsy 0.23 0.13 0.41 0% 

Bmsy 20,963 9,598 60,766 1% 

MSY 4,767 1,922 15,370 3% 

S1998 0.83 0.38 1.04 -4% 

S2019 0.70 0.21 0.96 1% 

B2019/Bmsy 1.41 0.41 1.92 1% 

F2019/Fmsy 0.45 0.11 3.58 9% 
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Figure 4-1. Posterior distributions for key parameters for the base case scenario. PPMR: ratio of posterior 

mean to the prior mean; PPVR: ratio of posterior CV2 to prior CV2. Psi is the initial stock saturation S1998 (= 

B1998/K), and sigma2 is the variance of process error 𝝈𝜺
𝟐. Unit for K is kg. 
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Figure 4-2. Output from the base case Bayesian state-space surplus production model (JABBA) for the 

Black tiger prawns. The y-axis labels denote the posteriors in each panel. The error bars and the grey or 

red bands are 95% credible intervals while three levels of CIs are shown in the Kobe plot. 
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Figure 4-3. Sensitivity to the initial saturation in 1998 with an assumed prior mean for  of 0.5. Other 

priors remain the same as in the base case. The error bars and the grey or red bands are 95% credible 

intervals while three levels of CIs are shown in the Kobe plot. 
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Figure 4-4. Sensitivity to setting the mean of the prior for r to the minimum estimate of r for Grooved and 

Brown tiger prawns (r = 0.231). The prior for initial biomass B1998 was set to Beta(0.9, 0.25). The error bars 

and the grey or red bands are 95% credible intervals while three levels of CIs are shown in the Kobe plot. 
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Figure 4-5. Sensitivity to setting the mean of the prior for r to the maximum estimate of r for Grooved 

and Brown tiger prawns (r = 0.792). The prior for initial biomass B1998 was set to Beta(0.9, 0.25). The error 

bars and the grey or red bands are 95% credible intervals while three levels of CIs are shown in the Kobe 

plot. 
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Figure 4-6. Sensitivity of key parameters to the prior for K. The plot in each panel is the posterior means. 

The x-axis is the multiplier to the maximum catch max(C), i.e., from 1 to 10 time of the maximum catch.  
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Figure 4-7. Prior and posterior K density distributions for four K priors: mean K from 1 to 9 times of 

max(C) and sd = 0.3. The prior r was based on mean for Grooved and Brown tiger prawns (r = 0.432). The 

prior for initial biomass B1998 was assumed to be Beta(0.9, 0.25). 
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Figure 4-8. Results of the final model. Priors used: K ~ LN(4.4*max(C), 0.63); r ~ LN(0.432, 0.31); initial 

saturation  ~ beta(0.9, 0.1). The error bars and the grey or red bands are 95% credible intervals while 

three levels of CIs are shown in the Kobe plot. 
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5 Stock assessment using catch-only methods 

The standardized NPF commercial fleet CPUE exhibits an increase over time, especially during recent years. 

This unexpected pattern can be hard to interpret based on biological and population dynamics theory. 

Analysis using a Bayesian state-space surplus production model further substantiates the dilemma of using 

this index. Since Black tiger prawn is not a major target species in the NPF, CPUE data, even after 

standardisation, may not fully represent the trends in abundance. As discussed in the previous chapters, 

catchability and availability may have changed due to unknown variables not included in the model (such as 

a shift in targeting behaviour), leading to an increase in CPUE. Stock assessment based on such a distorted 

index can be misleading.  

Compared to using CPUE as abundance index, catch data are more accurate and reliable, noting that there 

are reporting issues, particularly during the early years. It is useful to apply catch-only methods to compare 

and validate the model fitting approach (i.e., the Bayesian biomass dynamics model).  

The idea of conducting stock assessments using primarily catch data is not new. This type of analysis was 

called Stock Reduction Analysis (SRA) and first explored in the 1980s (Kimura and Tagart, 1982; Kimura et 

al., 1984). There has been an increased development of SRA-type methods in recent years and several 

methods based on this concept have be developed (Walters et al., 2006; MacCall, 2009; Dick and MacCall, 

2011; Martell and Froese, 2013; Froese et al., 2017).  

The optimized catch-only method (OCOM) belongs to the SRA class of methods (Zhou et al., 2018). It uses 

an optimization algorithm rather than stochastic “thread the needle” approaches as in other SRAs and can 

be more efficient in finding feasible parameters. OCOM focuses on catch data and does not need 

information required by classic stock assessment models (e.g., age, length, sex, maturity, gear selectivity, 

fishing effort). The OCOM method can be enhanced by incorporating limited CPUE data to improve model 

performance.  

5.1 Catch-only method and input data 

The optimized catch-only method is based on the Graham-Schaefer surplus production model, which 

simplifies the Pella-Tomlinson (1969) 3-parameter generic production model (Equ 4-1) to a simple 

population dynamics model with only two parameters: 

𝑩𝒕+𝟏 = 𝑩𝒕 + 𝒓𝑩𝒕 (𝟏 −
𝑩𝒕

𝑲
) − ∑ 𝑪𝒇,𝒕𝒇        Equ 5-1   

Catch-only methods do not try to “fit” a model to the data. Hence, there is no need to scale the biomass by 

K as in Equ 4-2. OCOM requires priors on r and stock saturation Slast = Blast/K at the end of the catch time 

series. When information on r is not available, OCOM derives a prior distribution for r from life-history 

parameters such as natural mortality (M) and maximum lifespan (Tmax), which in turn can be estimated 

from other life-history parameters. The prior distribution for the saturation parameter Slast is derived from 

the catch trend over the history of the fishery (Zhou et al., 2017). With these two priors, K in equation 5-1 

can be solved for by using an optimisation algorithm. Note that the so-called “prior” for r and S here is 

essentially the range or distribution of possible values and it differs from the prior in Bayesian models. 

For the prior of the stock saturation level at the end of the time series, the existing OCOM uses skewed 

normal distributions separately for two ranges of estimated saturation from boosted regression tree (BRT) 

models, SBRT,last≤ 0.5 and SBRT,last > 0.5. The BRT model uses the RAM Legacy database and correlates 
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depletion with a range of predictors calculated from catch data. The most important predictors are catch 

trends obtained from linear regressions of scaled catch on time, including regression coefficients for the 

whole catch time series, the sub-series before and after the maximum catch, and that for recent years. This 

model is used to predict SBRT,last for new fisheries such as Black tiger prawn in this report. Additional analysis 

has shown that using two skewed normal distributions does not necessary improve accuracy for most 

species tested (study unpublished). Hence, in this report, the prior for the saturation in the final year is 

modelled as beta distribution: Sprior,2019 ~ beta(, ), where parameters  and  are estimated such that the 

mean of Sprior,2019 equals SBRT,2019 from the BRT model and the variance of Sprior,2019 equals the variance of 

predicted SBRT from the RAMLD, which is 0.182 (Table 5-1). The beta distribution ensure non-negative 

samples, the S prior is constrained within the range of [0, 1], and the distribution is skewed toward left 

when SBRT,2019 < 0.5 but skewed toward right when SBRT,2019 > 0.5 (similar to the result based on RAM Legacy 

Database). 

Total annual catch data were the primary input required by OCOM. Again, the survival rate assumed for 

discarded prawns was based on an on-vessel experiment, which resulted in a mortality rate of 30%. CPUE 

can be included, but contrast between its increasing trend and the expected decreasing biomass due to 

fishing, prevents the model from converging. As such, the standardised index was not used in the final 

analyses. We again constructed the r prior by borrowing the estimate from the NPF Grooved tiger prawn 

assessment (Zhou et al., 2009).  

Implementation of the surplus production model (Equ 5-1) in the OCOM approach was efficient. 

Specifically, model implementation involved: (i) drawing a large number (e.g. n = 10,000 in this study) of 

values for r and S2019 from their priors; (ii) deriving K (from equation 5-1) by solving Blast/K = S using an 

optimization algorithm (function “optimize” in R), and (iii) computing any output quantities of interest such 

as reference points Fmsy, Bmsy, and the time series of Bt and Ft. 

To test the model sensitivity to the prior for saturation level based on SBRT,2019, we explored two alternative 

priors: (i) based on S2019 estimated by JABBA in the previous chapter, i.e., Sprior,2019 ~ unif(0.29, 0.95), (ii) 

assuming the stock was severely depleted, i.e., Sprior,2019 ~ unif(0, 0.1). The former test was to see whether 

using the same input should lead to the same results, while the latter test was a worst case, which would 

reveal the worst possible stock status.  

5.2 Results 

Implementing OCOM using catch data only (without CPUE) was straightforward. Data-poor assessments 

often produces highly variable results so we included a 60% confidence interval (20% and 80% fractals; 

Figure 5-1). The median estimated K was about 33,245 kg, MSY 3,447 kg, Bmsy 16,623 kg, and Fmsy 0.21 yr-1 

Table 5-1, Table 5-2). There were three years (2014, 2015, and 2018) where the total annual catch was 

greater than estimated MSY reference point (Figure 5-1, catch panel at the top left). The viable r-K pairs 

were widespread (Figure 5-1, top right panel), mainly due to highly uncertain depletion level particularly at 

the upper S range. For example, if the stock was lightly depleted (large S2019), carrying capacity K could be 

very high. This skewed uncertainty can also be observed in the estimated biomass trajectories (Figure 5-1, 

biomass panel at the middle left). Nevertheless, this model indicated that the estimated median biomass 

had never been below the median Bmsy reference point, and the lower 20% confidence interval for biomass 

was slightly below the Bmsy during the last four years. The estimated fishing mortality rate mimicked the 

catch trend (Figure 5-1, middle right panel). Fishing mortality during 2018 was very high, but declined in 

2019 with a median ratio F2019/Fmsy = 0.66. The Kobe plot (Figure 5-1, bottom left) suggested that Black tiger 

prawn was not overfished but overfishing occurred during 2018. 
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Stock depletion status is a leading indicator of sustainability and of primary interest in fishery management. 

However, depletion level is difficult to quantify even for many data-rich stocks. OCOM estimated that Black 

tiger had a median saturation of 59% in 2019, slightly larger than the BRT predicted 37%. The 80% 

confidence intervals of saturation ranged between 34% and 83% (Table 5-1, Table 5-2). The estimate was 

based on BRT model prediction from the catch history.  

To some extent, OCOM allows the likelihood of the estimated depletion to be validated. To investigate the 

reliability of the results, we manually provided Sprior,2019 based on JABBA output. Comparing Table 4-5 with 

Table 5-3, and Figure 4-8 with Figure 5-2, we can see that the results from the two methods were similar in 

terms of the stock status.  

We further assumed the stock was highly depleted and set Sprior,2019 = c(0, 0.1), a clearly unlikely 

assumption. OCOM searched K values that minimized the squared error between the BDM estimated final 

year S2019, given the known catch history and the r prior and S prior. The unrealistic S prior resulted in more 

pessimistic outcomes than those using BRT predicted saturation (Figure 5-3). The most obvious difference 

was the linear viable r-K pairs. This was because each viable K resulted from a random r and a S closest to 

the range of [0, 0.1]. The estimated parameters were very conservative. The estimated fishing mortality in 

2019 was 3.1 times of Fmsy, a seriously case of overfishing. The stock was below Bmsy level. In fact, when 

Sprior,2019 was set to such low level, the estimated 80% CI of S2019 ranged from 0.20 to 0.23 with a median of 

0.21. These values suggested that in the worst scenario Black tiger stock was unlikely to have been 

depleted below 20% of its unfished level, if their productivity was similar to Grooved or Brown tiger prawns 

(Figure 5-4).  

A sensitivity test was also carried out on the survival rate of discarded prawns in broodstock collection. 

Similar to the test using JABBA, we assumed a 100% mortality for the discarded prawns instead of the 

observed 30% mortality. The OCOM results confirm that assuming 100% mortality for the discarded prawns 

has a minor effect (Table 5-5). The relative change (=
𝜃100%−𝜃30%

𝜃30%
× 100) ranges from 0 to 7%. OCOM 

involves stochastic process so these changes also include the stochastic effect in modelling process. Again, 

the general conclusion about the stock status (i.e., the stock was not overfished and overfishing did occur in 

2019) remains unchanged.  

5.3 Discussion 

Compared to the Bayesian state-space model, the catch-only method produces more conservative results. 
The estimated median carrying capacity is lower (33.2 tonnes vs. 41.3 tonnes), which also leads to a lower 
MSY (3.4 tonnes vs. 4.6 tonnes). However, the overall conclusions about the stock status are similar 
between the two assessment methods. Both models concur that the median biomass has always been 
above the Bmsy level, and overfishing may have taken place in 2018. Again, to detect the maximum stock 
size and production potential, a stock has to be overfished in some years. We have not seen this in the 
available time series. It is worth noting that the total fishery removal (catch plus discard mortality) in 2019 
is lower than in 2018. Whether this is due to a reduced abundance or due to commercial fishing simply not 
catching this species has a significant consequence on stock status. It is very important to vigilantly monitor 
both the broodstock collection and commercial fishing in the next one or two years.  
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Table 5-1. Input and priors for the optimized catch-only method. 

Variables Description 

Year 1998—2019 

Catch NPF + broodstock 

CPUE NPF commercial logbook 

r (based on NPF Grooved tiger) r.prior = LN(median = 0.432, sd = 0.136, sigma = 0.307) 

K range (required by optimization 

function) 

max(C) to max(C)*80 

Initial saturation S0 = 1 

Saturation prior 

𝑆𝑝𝑟𝑖𝑜𝑟 = 𝐵𝑒𝑡𝑎

(

 
 

𝛼 =
(1 − 𝑆𝐵𝑅𝑇)𝑆𝐵𝑅𝑇

2

0.182
− 𝑆𝐵𝑅𝑇 ,

𝛽 = [
(1 − 𝑆𝐵𝑅𝑇)𝑆𝐵𝑅𝑇

2

0.182
− 𝑆𝐵𝑅𝑇]

1 − 𝑆𝐵𝑅𝑇
𝑆𝐵𝑅𝑇 )

 
 

 

Biomass threshold Blim = 0.25 K 

 

 

 

 

 

Table 5-2. Key biological and management parameters estimated by OCOM. Saturation Sprior,2019 is based 

on BRT model prediction. The %s are the percentiles of the 10,000 stochastic samples. Parameter units 

are the same as in Table 4-1. 

Param 10% 20% 50% 80% 90% 

K  21,212   24,082   33,245   52,234   71,439  

r  0.28   0.32   0.42   0.54   0.62  

MSY  2,207   2,524   3,447   5,475   7,569  

S2019  0.34   0.43   0.59   0.75   0.83  

Bmsy  10,606   12,041   16,623   26,117   35,719  

Fmsy  0.14   0.16   0.21   0.27   0.31  

B2019  7,398   10,347   19,597   38,995   58,403  

F2019  0.05   0.07   0.13   0.26   0.36  

B2019/Bmsy  0.69   0.86   1.19   1.51   1.65  

F2019/Fmsy  0.21   0.33   0.66   1.23   1.70  
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Table 5-3. Sensitivity of the OCOM results to setting the prior for saturation Sprior,2019 from JABBA output 

of 95%CI (i.e., 0.29—0.95). 50% is the median value of the 10,000 stochastic samples. 

 

Param 10% 20% 50% 80% 90% 

K  21,992   24,719   35,379   68,750  109,866  

r  0.28   0.32   0.41   0.53   0.61  

MSY  2,248   2,546   3,647   7,177   11,062  

S2019  0.36   0.43   0.62   0.82   0.88  

Bmsy  10,996   12,360   17,689   34,375   54,933  

Fmsy  0.14   0.16   0.21   0.27   0.31  

B2019  8,046   10,495   21,799   56,605   96,577  

F2019  0.03   0.05   0.12   0.25   0.33  

B2019/Bmsy  0.72   0.85   1.24   1.64   1.77  

F2019/Fmsy  0.14   0.22   0.59   1.23   1.60  

 
 
 

Table 5-4. Testing worst scenario by assuming unrealistically low saturation Sprior,2019 of [0, 0.1], a highly 

depleted status. 

Param 10% 20% 50% 80% 90% 

K  16,381   17,401   19,535   21,569   22,566  

r  0.28   0.32   0.41   0.54   0.61  

MSY  1,585   1,717   2,009   2,342   2,510  

S2019  0.20   0.20   0.21   0.22   0.23  

Bmsy  8,191   8,700   9,767   10,785   11,283  

Fmsy  0.14   0.16   0.21   0.27   0.31  

B2019  3,702   3,857   4,149   4,386   4,487  

F2019  0.59   0.60   0.64   0.69   0.71  

B2019/Bmsy  0.40   0.41   0.42   0.44   0.45  

F2019/Fmsy  2.33   2.55   3.10   3.79   4.20  
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Table 5-5. Model sensitivity to survival rate of discarded prawns in broodstock collection. All discards are 

assumed to be dead. Rel change is the relative change between the model that assumes 100% discard 

mortality and the OCOM model in Table 5-2. 

Param 10% 20% 50% 80% 90% Rel change 

K 21,961 24,854 34,233 54,658 75,180 3% 

r 0.28 0.32 0.42 0.54 0.61 0% 

MSY 2,232 2,586 3,549 5,688 7,725 3% 

S2019 0.35 0.44 0.60 0.76 0.83 2% 

Bmsy 10,981 12,427 17,116 27,329 37,590 3% 

Fmsy 0.14 0.16 0.21 0.27 0.31 0% 

B2019 7,868 10,865 20,603 41,409 62,005 5% 

F2019 0.05 0.07 0.14 0.27 0.38 7% 

B2019/Bmsy 0.71 0.87 1.21 1.52 1.66 2% 

F2019/Fmsy 0.23 0.35 0.70 1.31 1.87 7% 
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Figure 5-1. Output from the optimized catch-only method. The Sprior,2019 is derived from BRT model 

prediction. 
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Figure 5-2. Sensitivity of the application of the optimized catch-only method to the Black tiger prawn by 

using Sprior,2019 from JABBA output (S2019 = 0.29-0.95). 
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Figure 5-3. Testing the worse scenario by assuming that Sprior,2019 is unrealistically low, i.e., between 0 and 

0.1. 
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Figure 5-4. Comparison of saturation distribution between priors based on BRT prediction and assumed 

low values. Left panel: prior based on BRT model prediction; right panel: assuming Sprior,2019 range 

between 0 and 0.1 (highly depleted stock). 
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6 Stock assessment of high broodstock fishing 
effort area 

The total removal of Black tiger prawns by the broodstock collection (retained catch plus dead discards) has 

increased by an average about 68% annually since 2013. During 2013-2019, the removal of Black tiger 

prawns by broodstock collection is about 14% of the total fisheries removals. Fishing effort in the 

broodstock collection has been concentrated off Cape Van Dieme (about 66% of the total tows) and the 

JBG (about 33% of the total tows). The dramatic increase of catch and constrained fishing area (i.e. 

localised) have become a concern for the sustainability of the local population if these prawns belong to a 

separate sub-stock. In this chapter, we assumed that the population in the broodstock high fishing effort 

area is a unique sub-stock and conducted stock assessments for this sub-stock. 

6.1 Defining high fishing effort area 

Between 2005 and 2019 approximately 98% of fishing effort in the broodstock collection took place in two 

stock regions: Cape Van Diemen (CVD) and the Joseph Bonaparte Gulf (JBG). The total catch (including 

discards) in these two stock regions summed to almost all of the total catch over all regions (69.7% from 

CVD and 29.9% from JBG). Although CVD had a highest effort and catch, it may be inappropriate to exclude 

the JBG. In addition, these two regions are relatively close to each other, compared to the Gulf of 

Carpentaria. Hence, we considered the populations in the two areas as potentially a single stock. 

We first considered the grids where broodstock fishing effort was greater than the mean fishing effort 

across all grids fished by the broodstock collection (green box in Figure 6-1). We then examined all grids in 

the CVD and JBG fished by the broodstock collection. The area covering all these grids (box with the black 

line in Figure 6-1) wasn’t much larger than the green box. We chose this large box as the hypothetic sub-

stock region, which avoids the potential high catch by the commercial fishing outside the green box but 

within the black box. This larger box is defined by latitude between -13.6 and -10.0, and longitude between 

127.2 and 132.2. The data are all fisheries removals within this box, including retained catch and dead 

discards in the broodstock collection and catch in the commercial fishery. 

This hypothetic sub-stock area contained over 98% of black tiger prawns removal by the broodstock 

collection. The fraction of catch by the commercial fishing in this stock area ranged from 0 to 80% from 

1989 to 2019 with a mean of 41.2%. 

6.2 Assessment approaches 

The two stock assessment methods applied to the whole NPF region were applied to the hypothetical sub-

stock. As before, we assumed that the intrinsic population growth rate is similar to that for Grooved and 

Brown tiger prawns. The methodology, both the Bayesian state-space model and the optimized catch-only 

method were the same as described in the previous chapter. The main difference from the whole NPF 

assessment was the catch data in the limited area (Table 6-1).  
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6.3 Results 

6.3.1 Bayesian state-space biomass dynamics model 

We used the same technique to find the proper K prior, i.e., by varying the value of K prior and then 

comparing the posterior and prior distributions. This led to the median K prior of 4.9 times the maximum 

catch. Sensitivity tests showed that although changing the median of K prior from 3*max(C) (= 8,438 kg) to 

10*max(C) (= 28,13 kg) had an effect on some key management parameters, it did not change the overall 

conclusion on stock status (Figure 6-2).  

The final model used the following priors: K.prior = LN(mean = max(C)*4.4, = 0.63),  = beta(a = 0.9, b = 

0.1), and r.prior = LN(mean = 0.432, = 0.306), which are consistent with the models used for the whole 
NPF. One obvious difference from the whole NPF region assessment was the lower catch in this sub-stock 
region in 2014, 2015, and 2018 (Figure 6-3). However, the total removal in 2018 (about 2,813 kg) was still 
the highest during the 22 years, which is above the estimated MSY level. The high catch in 2018 was the 
direct driver for the high fishing mortality rate F2018, which is above the mean Fmsy (Figure 6-3). The 
posterior mean for unfished biomass K in this area was about 12.9 tonnes, Fmsy about 0.23 yr-1, Bmsy 6.4 
tonnes, and MSY 1.5 tonnes (Table 6-2). The output of the model indicated that since 2014 the total annual 
catch were greater than the lower 95% CI for MSY. Mean fishing mortality F2018 was greater than mean Fmsy, 
but mean biomass in all years was above mean Bmsy (Figure 6-3). The sub-stock may have not been 
overfished but overfishing may have occurred in 2018 (Table 6-2). 

As requested by the NPRAG in November 2020, we conducted additional sensitivity test on discard survival 
rate in broodstock collection in CVD and JBG regions. Assuming 100% mortality for discarded prawns leads 
to a relative change between -2% and 11% for the key parameters (Table 6-5). The overall conclusion about 
the stock status remains the same (i.e., not overfished and no overfishing in 2019), in spite of the  relative 
larger proportion of discards in the total catch within this confined region (between 0 and 26%, with mean 
of 8%).  

6.3.2 Optimized catch-only method 

OCOM does not require CPUE data and can use catch data only. The median estimated carrying capacity in 

the broodstock high fishing effort area was about 8.9 tonnes and the median MSY about 1 tonne (Table 

6-3). The total annual catch in this area was greater than the median MSY in 2014, 2015, 2018 and 2019 

(Figure 6-4, catch panel at the top left). The estimated K values were highly uncertain (Figure 6-4, top right 

panel), mainly due to highly uncertain depletion level particularly at the upper S range (if the stock is lightly 

depleted, carrying capacity K can be very large). OCOM estimates that Black tiger in the high fishing effort 

region has a median saturation of 46% in 2019, which translates to B2019/Bmsy = 0.92 (Table 6-3). The 

estimated fishing mortality rate mimics the catch trend (Figure 6-4, middle right panel). Fishing mortality in 

the last two years was very high and their median values were greater than median Fmsy. The Kobe plot 

(Figure 6-4, bottom left) suggests that Black tiger prawn has been slightly overfished and overfishing may 

have also occurred in 2018 and 2019. 

To investigate the reliability of the depletion estimate and the worst scenario, we assumed the stock was 

highly depleted and set Sprior,2019 = c(0, 0.1). This unrealistic S prior resulted in a median S2019 = 0.31 (Table 

6-4, Figure 6-5). This means that given the continuously increasing catch trend, it is possible that the 

population in the high fishing effort area could have been overfished (biomass below the Bmsy level). Under 

this unrealistic assumption, fishing mortality rates in 2018 and 2019 were very high – about 3 times Fmsy. 

The total annual removal of Black tiger was greater than MSY since 2012 except 2013 and 2017 (Figure 6-5). 

These results were for sensitivity test only and should not be considered as likely status. 
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We also used OCOM to conduct a sensitivity test on discard survival rate in broodstock collection in CVD 
and JBG regions. Assuming 100% mortality for discarded prawns results in a relative change between -1% 
and 19% for the key parameters (Table 6-6). The relative changes are larger than BBDM but the overall 
conclusion about the stock status remains the same (i.e., slightly overfished and overfishing occurred in 
2019). 

6.4 Discussion 

In this chapter we aim to address management concerns about the high fishing effort and catch by the 

broodstock collection in the recent years. Nearly 99% of broodstock fishing has taken place in Cape Van 

Dieme and Joseph Bonaparte Gulf areas. The total catch (including discard mortality) from this high effort 

region was over 2,800 kg in 2018 and over 1,400 kg in 2019. Is such a high fishing intensity sustainable if the 

population in this region is a unique stock? To answer this question, we assume that the population in this 

region is independent from other areas and developed a population dynamics model for this sub-stock 

only. We used both a Bayesian state-space production model and catch-only method. The results are 

somewhat different. The BBDM indicates that the mean biomass for this putative sub-stock has always 

been greater than Bmsy level (i.e., not overfished). However, the catch-only model suggests that the median 

biomass in 2019 is slightly below median Bmsy (i.e., possibly overfished). The BBDM suggests the fishing 

mortality may have been greater than Fmsy in 2018, but COM indicates overfishing may have happened in 

both 2018 and 2019. Catch status is similar between the two methods, both suggesting that the total 

removal by broodstock collection and commercial fishing may have been higher than MSY level in 2018 and 

2019.  

Given the short life span (adult 6 month to 2 years, Gribble et al., 2003) and the continuous increase of 

catch, fishery data so far may have not revealed the true production potential in this enclosed region, if the 

population inside is indeed a separate sub-stock. It is well-known that to find out the maximum potential 

stock size and productivity, the data should include some years when the exploited stock was overfished. 

Since both models suggest that the total catch has been higher than MSY and fishing mortality may have 

been higher than Fmsy in recent years, it is prudent not to increase catch substantially in the next couple of 

years. Ideally, the catch level in 2019 (about 1,500 kg) could be maintained for two years to see if this sub-

stock can support this level of production before increasing catch further. The rationale is that all catch is 

made up by recruits spawned within two years. If this level of catch can be maintained for three 

consecutive years, it indicates that the number of spawners left after fishing can produce enough recruits. 

However, if the stock cannot support such a level of harvest, recruitment overfishing will occur and catch 

will decline in the next one or two years. As such fishery removals should be reduced immediately.  
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Table 6-1. Catch of black tiger prawns in the hypothetical sub-stock area. The Retained and Discarded 

catch from the broodstock collection are numbers of prawns, and the Removal is total weight in kg 

where the mean weight per prawn is assumed to be 100g and the mortality rate for the discards is 

assumed to be 30%. 

 Logbook  Broodstock  
Year Catch(kg)  Retain(N) Discard(N) Dead(kg) Total(kg) 

1998 175     175 

1999 153     153 

2000 396     396 

2001 214     214 

2002 127     127 

2003 250     250 

2004 460     460 

2005 138  561  56 194 

2006 41     41 

2007 -     - 

2008 25     25 

2009 34     34 

2010 213     213 

2011 185     185 

2012 984     984 

2013 378  2,065 259 214 592 

2014 1,268  1,104  110 1,378 

2015 770  3,931 54 395 1,165 

2016 369  5,533 75 556 925 

2017 272  3,597 1,318 399 671 

2018 2,169  6,011 1,415 644 2,813 

2019 311  10,189 4,785 1,162 1,473 
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Table 6-2. Posteriors for the putative sub-stock in broodstock high fishing effort area. The r prior was 

constructed from the mean and variance of estimated r for Grooved tiger prawn, the K prior was 

constructed using a mean of 4.4 times of maximum catch and a sd of 0.63, and the mean of the prior for 

the biomass in 1998 was about 0.9B0. The units for each parameter are the same as in Table 4-1. 

Param Mean 2.5% 97.5% 

K  12,865   6,243   33,028  

r 0.46 0.25 0.82 

Fmsy  0.23   0.13   0.41  

Bmsy  6,432   3,121   16,514  

MSY  1,464   651   4,145  

S1998  0.86   0.47   1.04  

S2019  0.67   0.26   0.93  

B2019/Bmsy  1.35   0.51   1.85  

F2019/Fmsy  0.75   0.20   4.26  

 

Table 6-3. Key biological and management parameters estimated by OCOM for sub-stock in the 

broodstock high fishing effort area. The prior for saturation Sprior,2019 is based on BRT model prediction. 

Param 10% 20% 50% 80% 90% 

K  6,674   7,302   8,855   12,565   15,695  

r  0.28   0.32   0.42   0.54   0.63  

MSY  681   758   953   1,305   1,622  

S2019  0.31   0.33   0.46   0.63   0.71  

Bmsy  3,337   3,651   4,428   6,282   7,847  

Fmsy  0.14   0.16   0.21   0.27   0.31  

B2019  2,229   2,378   3,986   7,825   11,136  

F2019  0.13   0.19   0.37   0.62   0.66  

B2019/Bmsy  0.62   0.66   0.92   1.26   1.42  

F2019/Fmsy  0.65   0.91   1.72   2.78   3.34  
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Table 6-4. Key biological and management parameters estimated by OCOM for the sub-stock in the 

broodstock high fishing effort area. The prior for saturation Sprior,2019 is based on an assumed very low 

prior of [0, 0.1]. 

Param 10% 20% 50% 80% 90% 

K  6,136   6,560   7,314   8,046   8,452  

r  0.28   0.32   0.42   0.54   0.62  

MSY  595   651   761   881   953  

S2019  0.29   0.30   0.31   0.33   0.34  

Bmsy  3,068   3,280   3,657   4,023   4,226  

Fmsy  0.14   0.16   0.21   0.27   0.31  

B2019  2,091   2,167   2,292   2,401   2,456  

F2019  0.60   0.61   0.64   0.68   0.70  

B2019/Bmsy  0.58   0.60   0.63   0.66   0.68  

F2019/Fmsy  2.27   2.53   3.09   3.79   4.26  

 

Table 6-5. BBDM sensitivity to survival rate of discarded prawns in broodstock high fishing effort area. All 

discards are assumed to be dead. Rel change is the relative change between the model that assumes 

100% discard mortality and the model in Table 6-2. 

Param Mean 2.5% 97.5% Rel change 

K 14,095 7,247 34,324 10% 

r 0.45 0.24 0.81 -2% 

Fmsy 0.22 0.12 0.40 -2% 

Bmsy 7,048 3,624 17,162 10% 

MSY 1,571 703 4,343 7% 

S1998 0.85 0.39 1.04 -1% 

S2019 0.69 0.32 0.93 3% 

B2019/Bmsy 1.38 0.65 1.85 3% 

F2019/Fmsy 0.83 0.24 3.72 11% 

 

Table 6-6. OCOM sensitivity to survival rate of discarded prawns in broodstock high fishing effort area. All 

discards are assumed to be dead. Rel change is the relative change between the model that assumes 

100% discard mortality and the model in Table 6-3. 

Param 10% 20% 50% 80% 90% Rel change 

K 7,184 7,793 9,226 12,670 15,934 4% 

r 0.28 0.32 0.42 0.54 0.61 -1% 

MSY 723 798 991 1,316 1,619 4% 

S2019 0.35 0.37 0.46 0.62 0.70 -1% 

Bmsy 3,592 3,896 4,613 6,335 7,967 4% 

Fmsy 0.14 0.16 0.21 0.27 0.31 -1% 

B2019 2,746 2,876 4,110 7,689 11,017 3% 

F2019 0.16 0.24 0.44 0.63 0.66 19% 

B2019/Bmsy 0.70 0.73 0.92 1.25 1.40 -1% 

F2019/Fmsy 0.81 1.13 2.04 2.99 3.47 19% 
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Figure 6-1. Broodstock collection concentrated fishing locations (2005 to 2019). The blue circles are grids 

with fishing effort (number of tows) greater than the average, which is enveloped within the green box. 

The red crosses are all effort covered by the black-lined box.  
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Figure 6-2. Effect of varying the median of K prior values on key management quantities. The plot in each 

panel is the posterior mean from JABBA. The x-axis values are the multipliers on the maximum catch over 

1989-2019 period.  
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Figure 6-3. Bayesian biomass dynamics model results for the putative sub-stock in the broodstock high 

fishing effort area. Priors used: K ~ LN(4.4*max(C), 0.63); r ~ LN(0.432, 0.31); initial saturation  ~ 

beta(0.9, 0.1). The error bars and the grey or red bands are 95% credible intervals while three levels of 

CIs are shown in the Kobe plot. 
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Figure 6-4. Output from the optimized catch-only method for the putative sub-stock in broodstock high 

fishing effort area. The Sprior,2019 is derived from BRT model prediction. 
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Figure 6-5. Worst case scenario for the putative sub-stock in the broodstock high fishing effort area. The 

Sprior,2019 is assumed to be between 0 and 0.1. 
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