

Australian Government Australian Fisheries Management Authority R04/1072 | 29/06/2007

Ecological Risk Assessment for Effects of Fishing

REPORT FOR THE NORTH WEST SLOPE TRAWL FISHERY

Authors

Sally Wayte Jo Dowdney Alan Williams Mike Fuller Cathy Bulman Miriana Sporcic Alistair Hobday

www.afma.gov.au

Protecting our fishing future

AFMA Direct 1300 723 621

This work is copyright. Except as permitted under the *Copyright Act 1968* (*Commonwealth*), no part of this publication may be reproduced by any process, electronic or otherwise, without prior written permission from either CSIRO Marine and Atmospheric Research or AFMA. Neither may information be stored electronically in any form whatsoever without such permission.

This fishery ERA report should be cited as

Wayte, S., J. Dowdney, A.Williams, C.Bulman, M.Sporcic, M.Fuller, and A.Hobday (2007) Ecological Risk Assessment for the Effects of Fishing: Report for the North West Slope Trawl Fishery. Report for the Australian Fisheries Management Authority, Canberra.

Notes to this document:

This fishery ERA report contains figures and tables with numbers that correspond to the full methodology document for the ERAEF method:

(Hobday, A. J., A. Smith, H. Webb, R. Daley, S. Wayte, C. Bulman, J. Dowdney, A. Williams, M. Sporcic, J. Dambacher, M. Fuller, T. Walker. (2007) Ecological Risk Assessment for the Effects of Fishing: Methodology. Report R04/1072 for the Australian Fisheries Management Authority, Canberra)

Thus, table and figure numbers within the fishery ERA report are not sequential as not all are relevant to the report results.

Additional details on the rationale and the background to the methods development are contained in the ERAEF Final Report:

Smith, A., A. Hobday, H. Webb, R. Daley, S. Wayte, C. Bulman, J. Dowdney, A. Williams, M. Sporcic, J. Dambacher, M. Fuller, D. Furlani, T. Walker. (2007) Ecological Risk Assessment for the Effects of Fishing: Final Report R04/1072 for the Australian Fisheries Management Authority, Canberra.

Executive Summary

This assessment of the ecological impacts of the North West Slope Trawl fishery was undertaken using the ERAEF method version 9.2. ERAEF stands for "Ecological Risk Assessment for Effect of Fishing", and was developed jointly by CSIRO Marine and Atmospheric Research, and the Australian Fisheries Management Authority. ERAEF provides a hierarchical framework for a comprehensive assessment of the ecological risks arising from fishing, with impacts assessed against five ecological components – target species; by-product and by-catch species; threatened, endangered and protected (TEP) species; habitats; and (ecological) communities.

ERAEF proceeds through four stages of analysis: scoping; an expert judgement based Level 1 analysis (SICA – Scale Intensity Consequence Analysis); an empirically based Level 2 analysis (PSA – Productivity Susceptibility Analysis); and a model based Level 3 analysis. This hierarchical approach provides a cost-efficient way of screening hazards, with increasing time and attention paid only to those hazards that are not eliminated at lower levels in the analysis. Risk management responses may be identified at any level in the analysis.

Application of the ERAEF methods to a fishery can be thought of as a set of screening or prioritization steps that work towards a full quantitative ecological risk assessment. At the start of the process, all components are assumed to be at high risk. Each step, or Level, potentially screens out issues that are of low concern. The Scoping stage screens out activities that do not occur in the fishery. Level 1 screens out activities that are judged to have low impact, and potentially screens out whole ecological components as well. Level 2 is a screening or prioritization process for individual species, habitats and communities at risk from direct impacts of fishing. The Level 2 methods do not provide absolute measures of risk. Instead they combine information on productivity and exposure to fishing to assess potential risk - the term used at Level 2 is risk. Because of the precautionary approach to uncertainty, there will be more false positives than false negatives at Level 2, and the list of high risk species or habitats should not be interpreted as all being at high risk from fishing. Level 2 is a screening process to identify species or habitats that require further investigation. Some of these may require only a little further investigation to identify them as a false positive; for some of them managers and industry may decide to implement a management response; others will require further analysis using Level 3 methods, which do assess absolute levels of risk.

This assessment of the North West Slope Trawl fishery (NWSTF) includes the following:

- Scoping
- Level 1 results for all components
- Level 2 results for target species and habitats

Fishery Description

Gear:	Prawn trawl (minimum 50mm cod-end)
Area:	North West coast of Western Australia
Depth range:	200 to 600 m
Fleet size:	7 fishing permits
Effort:	Approximately 1,000 shots per year
Landings:	Approximately 70 t per year
Discard rate:	Unknown
Main target species:	3 species of scampi
Management:	7 transferable fishing permits
Observer program:	AFMA observers on 2 trips

Ecological Units Assessed

Target species:	7
Byproduct species:	16
Discard Species:	13
TEP species:	121
Habitats:	77 (76 benthic, 1 pelagic)
Communities:	11 (9 demersal, 2 pelagic)

Level 1 Results

The byproduct/bycatch and TEP species components were eliminated at Level 1. There was at least one risk score of 3 - moderate - or above for each of the other components.

Most hazards (fishing activities) were eliminated at Level 1 (risk scores 1 or 2). The hazards remaining were:

- capture by fishing (impact on target species, habitats and communities);
- indirect impact of fishing on habitats; and
- disturbance of physical processes by fishing (impact on target species, habitats and communities).

The only significant external hazard was other extractive activities (oil and gas exploration and extraction).

Risks rated as major or above (risk scores 4) were all related to direct or indirect impacts on habitats from primary fishing operations. No severe impacts (risk score 5) were identified in the analysis.

Impacts from fishing on target species and on habitats were assessed in more detail at Level 2.

Level 2 Results

Species

The seven target species were assessed at Level 2 using the PSA analysis. No expert over rides were used, and no species had more than three missing attributes. Scarlet prawn is the only species assessed to be at high risk in the NWSTF. It is the largest commercial crustacean targeted, and thus has the highest selectivity score, leading to a high susceptibility score. However current catches of scarlet prawn are very low in the NWSTF (<100 kg per year), so it is unlikely to be at risk from the fishery at present. It would be commercially attractive if found in larger quantities. Worldwide, this species has been recorded in depths to 1800m, so it is conceivable that further resources may be discovered if the deeper waters of the North West slope are explored (Wadley, 1992).

Australian scampi, Boschmai scampi and velvet scampi are currently the main target species in the NWSTF. They are assessed at medium risk in the PSA analysis. These species have been assessed in more detail in other analyses (Lynch and Garvey, 2005). Although catch rates have declined, they are not considered to be over-exploited at current catch levels

There is no information available for any of the target species on the overlap of their range with effort in the fishery. Fishing for scampi in the NWSTF has been confined to relatively small areas, and there is no evidence of serial depletion of scampi in the fishery (Lynch and Garvey, 2005).

Habitats

The poor knowledge and lack of data availability of seabed habitats in this large fishery area required a list of habitats to be generated based on Scoping Method 2 which incorporates (1) the presence of known coarse-scale habitat types (geomorphic features) and (2) the presence of fine-scale habitats inferred from better known adjacent or similar fishery areas. As effort in this fishery occurs between 200-700m, only upper shelf habitats are considered in the PSA. A precautionary approach is taken, in which all upper slope habitats of geomorphic features were included: canyons, trenches, troughs, seamounts, pinnacles, plateaus and terrace (Geoscience Australia, National Bioregionalization). In addition, seabed habitat data from a recent (late-2005) CSIRO survey of deep benthic biodiversity off the western WA coast were also considered. Rankings are consistent with the same habitat types from other Commonwealth fisheries utilizing similar gear in upper slope depths (i.e. SET OT, WDWT, GABT).

This alternative scoping method generated a conservatively large list of potentially encounterable upper slope habitats, 76 of which were assessed at Level 2 using the habitat PSA analysis, and included many habitat types in each risk category. However, these detailed habitat types can be readily aggregated into a smaller number of general categories for interpretation. This is because many types are similar, differing in only one respect of substratum or geomorphology or dominant fauna, and therefore attracting similar PSA scores and the same risk rankings. For example, one general type will group together the habitats of a depth zone characterized by similar substratum and geomorphology but different large fauna (sponges, crinoids, octocorals or mixed communities).

Of the 76 habitat types, 22 were assessed to be at high risk, 20 medium, and 34 low.

High risk habitats on the upper slope include several hard bottom types, in this case dominated by large sponges not seen on the mid slope. There are also several soft bottom habitats based on bryozoan communities which are restricted to a narrow zone near the shelf break. Habitats of canyon features also occur at this depth zone.

Communities

The community component was not assessed at Level 2 for this sub-fishery, but should be considered in future assessments when the methods to do this are fully developed.

Summary

Both target species and benthic habitats were identified as potentially at risk in the North West Slope Fishery. However the single high risk target species is rarely caught at present, and although trawling is likely to impact a variety of benthic habitats, the current scale of the fishery relative to its overall area suggests that habitats are not currently at high actual risk.

Managing identified risks

Using the results of the ecological risk assessment, the next steps for each fishery will be to consider and implement appropriate management responses to address these risks. To ensure a consistent process for responding to the ERA outcomes, AFMA has developed an Ecological Risk Management (ERM) framework.

TABLE OF CONTENTS

Executive summary	
1. Overview	1
Ecological Risk Assessment for the Effects of Fishing (ERAEF) Framework	1
The Hierarchical Approach	1
Conceptual Model	1
ERAEF stakeholder engagement process	
Scoping	
Level 1. SICA (Scale, Intensity, Consequence Analysis)	
Level 2. PSA (Productivity Susceptibility Analysis)	
Level 3	
Conclusion and final risk assessment report	
Subsequent risk assessment iterations for a fishery	
2. Results	
2.1 Stakeholder Engagement	
2.2 Scoping	
2.2.1 General Fishery Characteristics (Step 1).	
2.2.2 Unit of Analysis Lists (Step 2)	
2.2.3 Identification of Objectives for Components and Sub-components (Step 3)	
2.2.4 Hazard Identification (Step 4)	
2.2.5 Bibliography (Step 5)	
2.2.6 Decision rules to move to Level 1(Step 6)	
2.3 Level 1 Scale, Intensity and Consequence Analysis (SICA)	53
2.3.1 Record the hazard identification score (absence (0) presence (1) scores)	50
identified at step 3 in the scoping level onto the SICA Document (Step 1)	
2.3.2 Score spatial scale of activity (Step 2)	
2.3.3 Score temporal scale of activity (Step 3)	
2.3.4 Choose the sub-component most likely to be affected by activity (Step 4)	
2.3.5 Choose the unit of analysis most likely to be affected by activity and to hav	
highest consequence score (Step 5)	
2.3.6 Select the most appropriate operational objective (Step 6)	
2.3.7 Score the intensity of the activity for the component (Step 7)	
2.3.8 Score the consequence of intensity for that component (Step 8)	
2.3.9 Record confidence/uncertainty for the consequence scores (Step 9)	
2.3.10 Document rationale for each of the above steps (Step 10)	
2.3.11 Summary of SICA results	
2.3.12 Evaluation/discussion of Level 1	
2.3.13 Components to be examined at Level 2	
2.4 Level 2 Productivity and Susceptibility Analysis (PSA)	
2.4.1 Units excluded from analysis and document the reason for exclusion (Step	
2.4.2 and 2.4.3 Level 2 PSA (steps 2 and 3)	
2.4.4 PSA Plot for individual units of analysis (Step 4)	
2.4.5 Uncertainty analysis ranking of overall risk (Step 5) 1	
2.4.6 Evaluation of the PSA results (Step 6) 1	
2.4.7 Decision rules to move from Level 2 to Level 3 (Step 7) 1	

2.4.8 High/Medium risk categorisation (Step 8)	110
2.5 Level 3	
3. General discussion and research implications	
3.1 Level 1	
3.2 Level 2	
3.2.1 Species at risk	113
3.2.2 Habitats at risk	
3.2.3 Communities at risk	116
3.3. Key Uncertainties / Recommendations for Research and Monit	oring 116
References	
Glossary of Terms	
Appendix A: General summary of stakeholder feedback	
Appendix B: PSA results summary of stakeholder discussions	
Appendix C: SICA Scoring Table	

ERA report documents to be completed

List of Summary documents

2.1 Summary Document SD1. Summary of stakeholder involvement for North	h West	
Slope Trawl Fishery	(5

List of Scoping documents

Scoping Document S1 General Fishery Characteristics	
Scoping Document S2A Species	
Scoping Document S2B1. Benthic Habitats	
Scoping Document S2B2. Pelagic Habitats	
Scoping Document S2C1. Demersal communities	
Scoping Document S2C2. Pelagic communities	
Scoping Document S3 Components and Sub-components Identification of O	bjectives 40
Scoping Document S4. Hazard Identification Scoring Sheet	

List of Level 1 (SICA) documents

2.3.1 Level 1 (SICA) Documents L1.1 - Target Species Component	58
2.3.1 Level 1 (SICA) Documents L1.2 - Byproduct and Bycatch Component	
2.3.1 Level 1 (SICA) Documents L1.3 - TEP Species Component;	65
2.3.1 Level 1 (SICA) Documents L1.4 Habitat Component.	69
2.3.1 Level 1 (SICA) Documents L1.5 - Community Component	
Level 1 (SICA) Document L1.6. Summary table of consequence scores for all	
activity/component combinations.	83

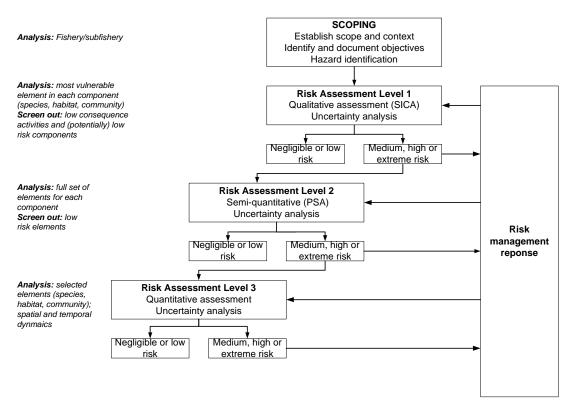
List of Level 2 (PSA) documents

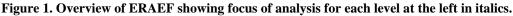
Level 2 (PSA) Document L2.1.	. Summary table of stake	eholder discussion r	regarding PSA
results		••••••••••••••••••••••••	

List of figures

Figure 1. Overview of ERAEF showing focus of analysis for each level	1
Figure 2. Generic conceptual model used in ERAEF.	2
Figure 13. The axes on which risk to the ecological units is plotted	
Figure 17. Overall risk values in the PSA plot.	

List of tables


Table 4. Examples of fishing activities. 49
Table 5A. Target Species. Description of consequences for each component and each
sub-component. Use table as a guide for scoring the level of consequence for target
species
Table 5B. Bycatch and Byproduct species. Description of consequences for each
component and each sub-component. Use table as a guide for scoring the level of
consequence for bycatch/byproduct species
Table 5C. TEP species. Description of consequences for each component and each sub-
component. Use table as a guide for scoring the level of consequence for TEP
species
Table 5D. Habitats. Description of consequences for each component and each sub-
component. Use table as a guide for scoring the level of consequence for habitats.
Note that for sub-components Habitat types and Habitat structure and function,
time to recover from impact scales differ from substrate, water and air. Rationale:
structural elements operate on greater timeframes to return to pre-disturbance
states
Table 5E. Communities. Description of consequences for each component and each
sub-component. Use table as a guide for scoring the level of consequence for
communities


1. Overview

Ecological Risk Assessment for the Effects of Fishing (ERAEF) Framework

The Hierarchical Approach

The Ecological Risk Assessment for the Effects of Fishing (ERAEF) framework involves a hierarchical approach that moves from a comprehensive but largely qualitative analysis of risk at Level 1, through a more focused and semi-quantitative approach at Level 2, to a highly focused and fully quantitative "model-based" approach at Level 3 (**Figure 1**). This approach is efficient because many potential risks are screened out at Level 1, so that the more intensive and quantitative analyses at Level 2 (and ultimately at Level 3) are limited to a subset of the higher risk activities associated with fishing. It also leads to rapid identification of high-risk activities, which in turn can lead to immediate remedial action (risk management response). The ERAEF approach is also precautionary, in the sense that risks will be scored high in the absence of information, evidence or logical argument to the contrary.

Conceptual Model

The approach makes use of a general conceptual model of how fishing impacts on ecological systems, which is used as the basis for the risk assessment evaluations at each level of analysis (Levels 1-3). For the ERAEF approach, five general ecological

components are evaluated, corresponding to five areas of focus in evaluating impacts of fishing for strategic assessment under EPBC legislation. The five *components* are:

- Target species
- By-product and by-catch species
- Threatened, endangered and protected species (TEP species)
- Habitats
- Ecological communities

This conceptual model (**Figure 2**) progresses from *fishery characteristics* of the fishery or sub-fishery, \rightarrow *fishing activities* associated with fishing and *external activities*, which may impact the five ecological components (target, byproduct and bycatch species, TEP species, habitats, and communities); \rightarrow *effects of fishing and external activities* which are the <u>direct</u> impacts of fishing and external activities; \rightarrow *natural processes and resources* that are affected by the impacts of fishing and external activities; \rightarrow *subcomponents* which are affected by impacts to natural processes and resources; \rightarrow *components*, which are affected by impacts to the sub-components. Impacts to the subcomponents and components in turn affect achievement of management objectives.

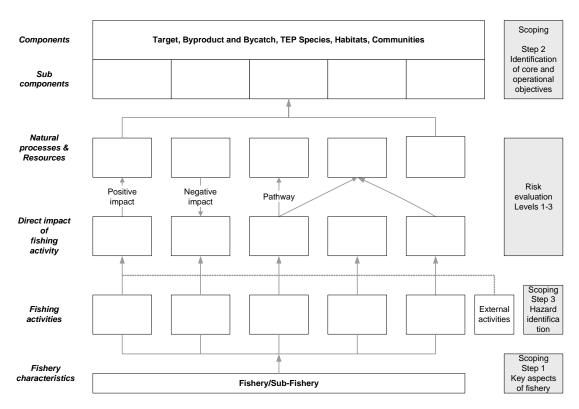


Figure 2. Generic conceptual model used in ERAEF.

The external activities that may impact the fishery objectives are also identified at the Scoping stage and evaluated at Level 1. This provides information on the additional impacts on the ecological components being evaluated, even though management of the external activities is outside the scope of management for that fishery.

The assessment of risk at each level takes into account current management strategies and arrangements. A crucial process in the risk assessment framework is to document the rationale behind assessments and decisions at each step in the analysis. The decision to proceed to subsequent levels depends on

- Estimated risk at the previous level
- Availability of data to proceed to the next level
- Management response (e.g. if the risk is high but immediate changes to management regulations or fishing practices will reduce the risk, then analysis at the next level may be unnecessary).

A full description of the ERAEF method is provided in the methodology document (Hobday *et al* 2007). This fishery report contains figures and tables with numbers that correspond to this methodology document. Thus, table and figure numbers within this fishery ERAEF report are not sequential, as not all figures and tables are relevant to the fishery risk assessment results.

ERAEF stakeholder engagement process

A recognized part of conventional risk assessment is the involvement of stakeholders involved in the activities being assessed. Stakeholders can make an important contribution by providing expert judgment, fishery-specific and ecological knowledge, and process and outcome ownership. The ERAEF method also relies on stakeholder involvement at each stage in the process, as outlined below. Stakeholder interactions are recorded.

Scoping

In the first instance, scoping is based on review of existing documents and information, with much of it collected and completed to a draft stage prior to full stakeholder involvement. This provides all the stakeholders with information on the relevant background issues. Three key outputs are required from the scoping, each requiring stakeholder input.

- 1. <u>Identification of units of analysis</u> (species, habitats and communities) potentially impacted by fishery activities (section 2.2.2; Scoping Documents S2A, S2B and S2C).
- 2. <u>Selection of objectives</u> (section 2.2.3; Scoping Document S3) is a challenging part of the assessment, because these are often poorly defined, particularly with regard to the habitat and communities components. Stakeholder involvement is necessary to agree on the set of objectives that the risks will be evaluated against. A set of preliminary objectives relevant to the sub-components is selected by the drafting authors, and then presented to the stakeholders for modification. An agreed set of objectives is then used in the Level 1 SICA analysis. The agreement of the fishery management advisory body (e.g. the MAC, which contains representatives from industry, management, science, policy and conservation) is considered to represent agreement by the stakeholders at large.
- 3. <u>Selection of activities</u> (hazards) (section 2.2.4; Scoping Document S4) that occur in the sub-fishery is made using a checklist of potential activities provided. The checklist was developed following extensive review, and allows repeatability between fisheries. Additional activities raised by the stakeholders can be

included in this checklist (and would feed back into the original checklist). The background information and consultation with the stakeholders is used to finalise the set of activities. Many activities will be self-evident (e.g. fishing, which obviously occurs), but for others, expert or anecdotal evidence may be required.

Level 1. SICA (Scale, Intensity, Consequence Analysis)

The SICA analysis evaluates the risk to ecological components resulting from the stakeholder-agreed set of activities. Evaluation of the temporal and spatial scale, intensity, sub-component, unit of analysis, and credible scenario (consequence for a sub-component) can be undertaken in a workshop situation, or prepared ahead by the draft ERA report author and debated at the stakeholder meeting. Because of the number of activities (up to 24) in each of five components (resulting in up to 120 SICA elements), preparation before involving the full set of stakeholders may allow time and attention to be focused on the uncertain or controversial or high risk elements. The rationale for each SICA element must be documented and this may represent a challenge in the workshop situation. Documenting the rationale ahead of time for the straw-man scenarios is crucial to allow the workshop debate to focus on the right portions of the logical progression that resulted in the consequence score.

SICA elements are scored on a scale of 1 to 6 (negligible to extreme) using a "plausible worst case" approach (see ERAEF Methods Document for details). Level 1 analysis potentially result in the elimination of activities (hazards) and in some cases whole components. Any SICA element that scores 2 or less is documented, but not considered further for analysis or management response.

Level 2. PSA (Productivity Susceptibility Analysis)

The semi-quantitative nature of this analysis tier should reduce but not eliminate the need for stakeholder involvement. In particular, transparency about the assessment will lead to greater confidence in the results. The components that were identified to be at moderate or greater risk (SICA score > 2) at Level 1 are examined at Level 2. The units of analysis at Level 2 are the agreed set of species, habitat types or communities in each component identified during the scoping stage. A comprehensive set of attributes that are proxies for productivity and susceptibility have been identified during the ERAEF project. Where information is missing, the default assumption is that risk will be set high. Details of the PSA method are described in the accompanying ERAEF Methods Document. Stakeholders can provide input and suggestions on appropriate attributes, including novel ones, for evaluating risk in the specific fishery. The attribute values for many of the units (e.g. age at maturity, depth range, mean trophic level) can be obtained from published literature and other resources (e.g. scientific experts) without full stakeholder involvement. This is a consultation of the published scientific literature. Further stakeholder input is required when the preliminary gathering of attribute values is completed. In particular, where information is missing, expert opinion can be used to derive the most reasonable conservative estimate. For example, if the species attribute values for annual fecundity have been categorized as low, medium and high on the set [<5, 5-500, >500], estimates for species with no data can still be made. Estimated fecundity of a species such as a broadcast-spawning fish with unknown fecundity, is still likely greater than the cutoff for the high fecundity categorization (>500).

Susceptibility attribute estimates, such as "fraction alive when landed", can also be made based on input from experts such as scientific observers. The final PSA is completed by scientists because access to computing resources, databases, and programming skills is required. Feedback to stakeholders regarding comments received during the preliminary PSA consultations is considered crucial. The final results are then presented to the stakeholder group before decisions regarding Level 3 are made. The stakeholder group may also decide on priorities for analysis at Level 3.

Level 3

This stage of the risk assessment is fully-quantitative and relies on in-depth scientific studies on the units identified as at medium or greater risk in the Level 2 PSA. It will be both time and data-intensive. Individual stakeholders are engaged as required in a more intensive and directed fashion. Results are presented to the stakeholder group and feedback incorporated, but live modification is not considered likely.

Conclusion and final risk assessment report

The conclusion of the stakeholder consultation process will result in a final risk assessment report for the individual fishery according to the ERAEF methods. It is envisaged that the completed assessment will be adopted by the fishery management group and used by AFMA for a range of management purposes, including to address the requirements of the EPBC Act as evaluated by Department of the Environment and Heritage.

Subsequent risk assessment iterations for a fishery

The frequency at which each fishery must revise and update the risk assessment is not fully prescribed. As new information arises or management changes occur, the risks can be reevaluated, and documented as before. The fishery management group or AFMA may take ownership of this process, or scientific consultants may be engaged. In any case the ERAEF should again be based on the input of the full set of stakeholders and reviewed by independent experts familiar with the process.

Each fishery ERA report will be revised at least every four years or as required by Strategic Assessment. However, to ensure that actions in the intervening period do not unduly increase ecological risk, each year certain criteria will be considered. At the end of each year, the following trigger questions should be considered by the MAC for each sub-fishery.

- Has there been a change in the spatial distribution of effort of more than 50% compared to the average distribution over the previous four years?
- Has there been a change in effort in the fishery of more than 50% compared to the four year average (e.g. number of boats in the fishery)?
- Has there been an expansion of a new gear type or configuration such that a new sub-fishery might be defined?

Responses to these questions should be tabled at the relevant fishery MAC each year and appear on the MAC calendar and work program. If the answer to any of these trigger questions is yes, then the sub-fishery should be reevaluated.

2. Results

The focus of analysis is the fishery as identified by the responsible management authority. The assessment area is defined by the fishery management jurisdiction within the AFZ. The fishery may also be divided into sub-fisheries on the basis of fishing method and/or spatial coverage. These sub-fisheries should be clearly identified and described during the scoping stage. Portions of the scoping and analysis at Level 1 and beyond, is specific to a particular sub-fishery. The fishery is a group of people carrying out certain activities as defined under a management plan. Depending on the jurisdiction, the fishery/sub-fishery may include any combination of commercial, recreational, and/or indigenous fishers.

The results presented below are for the North West Slope Trawl Fishery.

2.1 Stakeholder Engagement

ERA	Type of	Date of	Composition of	Summary of outcome
report	stakeholder	stakeholder	stakeholder group (names	
stage	interaction	interaction	or roles)	
Scoping	Phone calls and email	03.02.04	Ross Gould, Supervising Fishery Manager, Department of Fisheries, Government of Western Australia	Request for information concerning interactions with State Fisheries.
		09.02.04	David Guillot, WESTMAC industry representative. WDWTF operator.	Clarification of catching trends, major issues with fishery.
		17.02.04	Greg Nelson, NWSTF Fleet Manager	Clarification of discarding practices, incidental behaviour, waste management
		17.02.04	Michael Obrien, WESTMAC industry representative. WDWTF operator.	Clarification of discarding practices, incidental behaviour, waste management
	Verbal, face to face; Consultation within AFMA	Continual, March to May 2004	Data management Section, relevant managers.	Consolidate fisheries data clarify fishery overview details
	Email: Document distributed to stakeholders for comment (Wade Whitlaw letter)	2 April 2004	WESTMAC Members, File Reference: F2004/0269	Response from Victoria Wilkinson Assistant Director Sustainable Fisheries Section, <i>DEH</i> (14 April 2004). Clarified and edited inconsistencies in

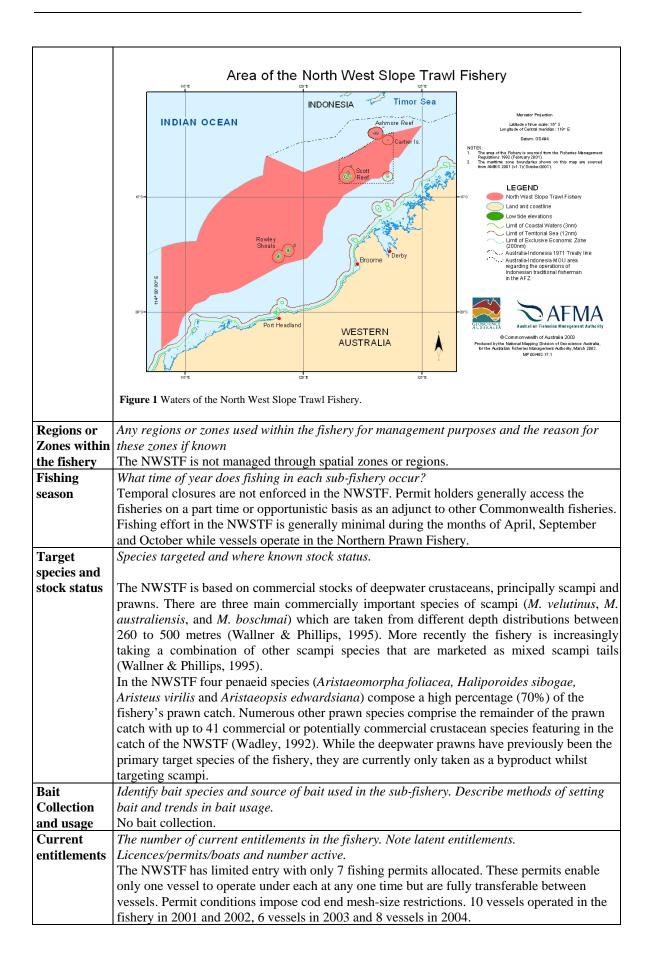
2.1 Summary Document SD1. Summary of stakeholder involvement for *North West Slope Trawl Fishery*.

ERA report stage	Type of stakeholder interaction	Date of stakeholder interaction	Composition of stakeholder group (names or roles)	Summary of outcome
	Meeting/Works hop	May 27, 2004, to AFMA manager	Document distributed to WESTMAC members ahead of meeting. To be discussed at meeting.	draft
	Review by fishers		e.g. Executive Officer of fishery distributed to fishers	e.g. April 24, feedback on preferred objectives was provided Hazards agreed on.
Level 1 (SICA)	Phone discussion	10 October 2005	John Garvey, AFMA	Provided general information as well as answers to specific questions about the fishery
	Phone discussion	11 October 2005	Adrianne Burke, AFMA	Discussion of Level 1 analysis
	Workshop	18 October 2005	WESTMAC members Ron Edwards (chair), Wade Whitelaw (AFMA), Justine Johnston (AFMA), Richard Elvin (industry), Greg Ferguson (industry), David Guillot (industry), Michael O'Brien (Industry), Tony Koslow (CSIRO), Ross Gould (WA State Fisheries), Clinton Chambers (DEH), Tim Smith (AFMA)	Review species lists and Level 1 analysis.
	Email	September 2005	WESTMAC members as above	Revised copy of ERA report sent to all meeting participants for comment
Level 2 (PSA)	Meeting	7 March 2006	WESTMAC members Ron Edwards (chair), Wade Whitelaw (AFMA), Justine Johnston (AFMA), Richard Elvin (industry), Greg Ferguson (industry), David Guillot (industry), Michael O'Brien (Industry), Tony Koslow (CSIRO), Ross Gould (WA State Fisheries), Andrew Prendergast (industry), Clayton Neilson (industry), Ross Wood (industry), Tim Smith (AFMA)	Presented Level 2 results

2.2 Scoping

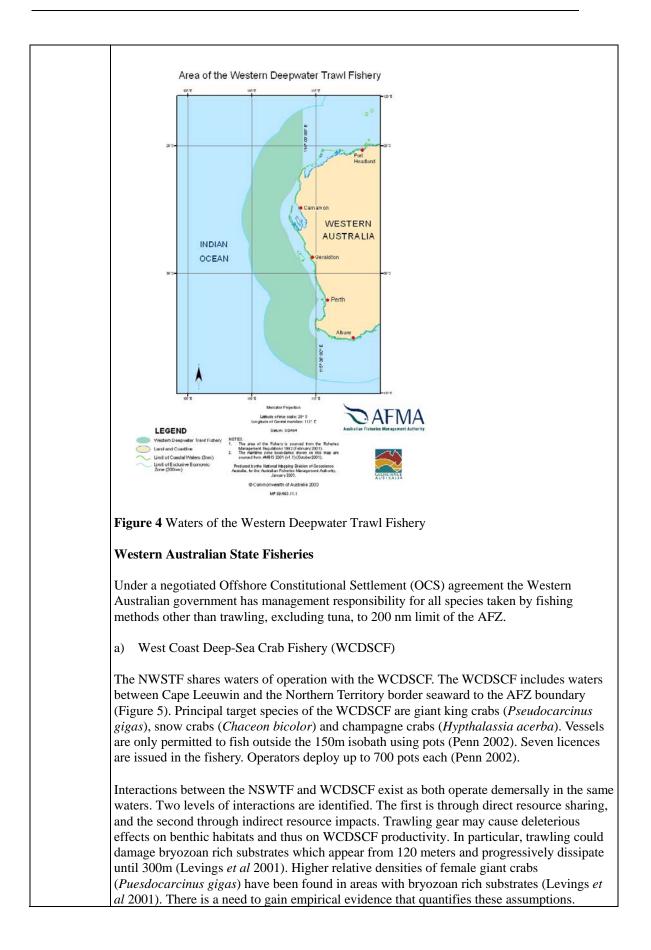
The aim in the Scoping stage is to develop a profile of the fishery being assessed. This provides information needed to complete Levels 1 and 2 and at stakeholder meetings. The focus of analysis is the fishery, which may be divided into sub-fisheries on the basis of fishing method and/or spatial coverage. Scoping involves six steps:

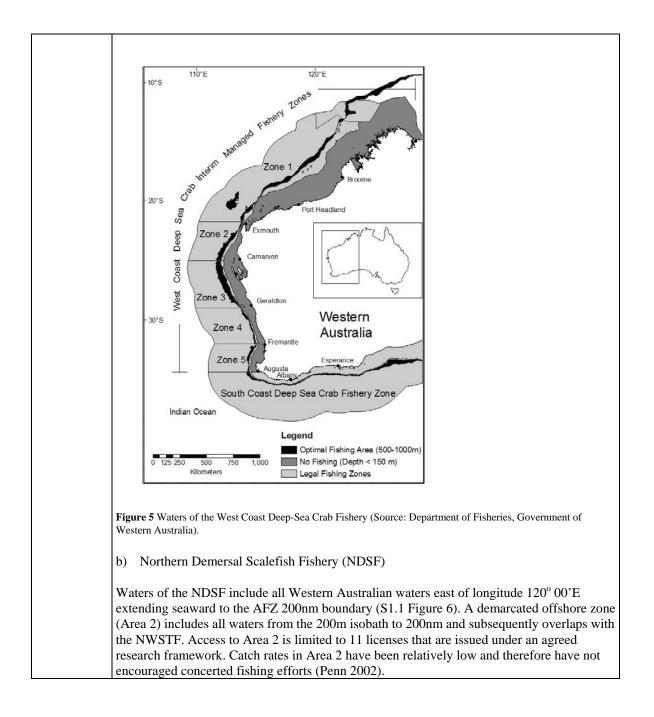
Step 1 Documenting the general fishery characteristics
Step 2 Generating "unit of analysis" lists (species, habitat types, communities)
Step 3 Selection of objectives
Step 4 Hazard identification
Step 5 Bibliography
Step 6 Decision rules to move to Level 1

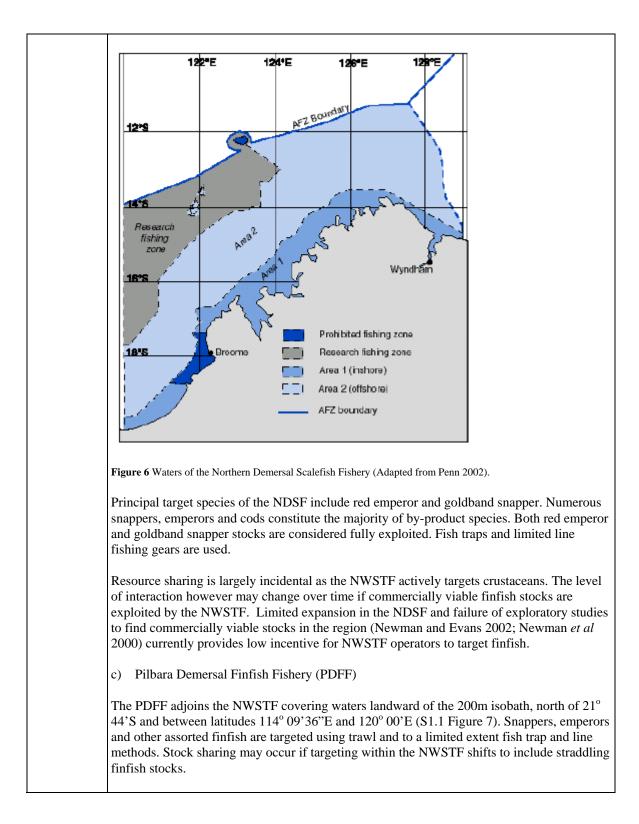

2.2.1 General Fishery Characteristics (Step 1).

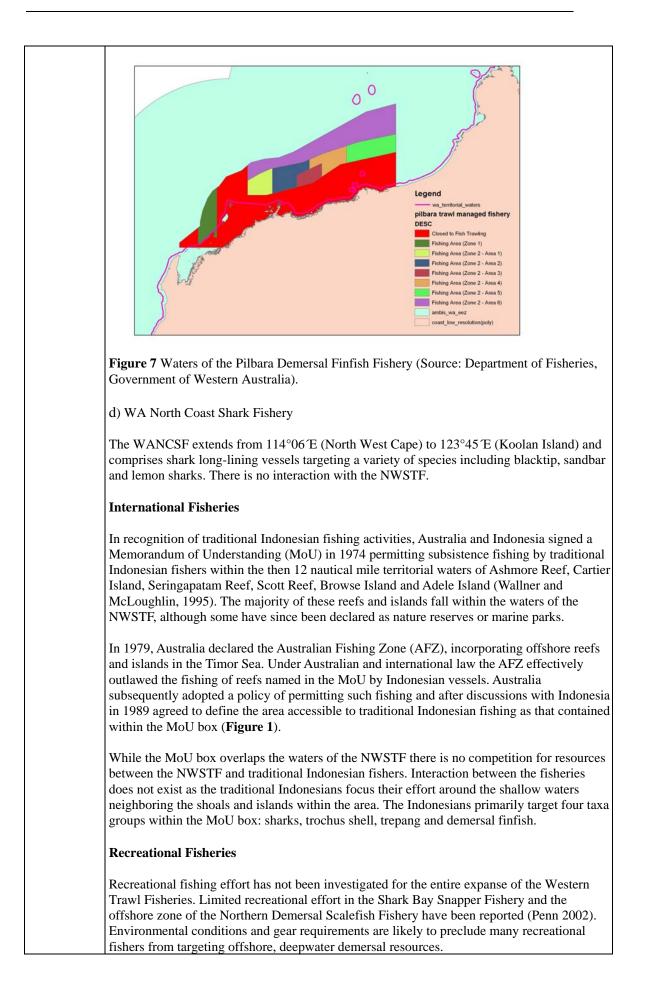
The information used to complete this step may come from a range of documents such as the Fishery's Management Plan, Assessment Reports, Bycatch Action Plans, and any other relevant background documents. The level and range of information available will vary. Some fisheries/sub-fisheries will have a range of reliable information, whereas others may have limited information.

Scoping Document S1 General Fishery Characteristics


<u>Fishery Name</u>: North West Slope Trawl Fishery <u>Date of assessment</u>: October 2005 <u>Assessor</u>: Sally Wayte


General Fishe	ry Characteristics
Fishery	North West Slope Trawl Fishery (NWSTF)
Name	
Sub-fisheries	Identify sub-fisheries on the basis of fishing method/area.
	none
Sub-fisheries	The sub-fisheries to be assessed on the basis of fishing method/area in this report.
assessed	The whole fishery
Start	Provide an indication of the length of time the fishery has been operating.
date/history	The NWSTF was brought under the management of the Australian Fisheries Service (now
	AFMA) on 15 March 1985. Commercial interest in the area began following the
	confirmation of promising scampi and deepwater prawn stocks by research cruises conducted
	in 1978, 1982 and 1984 and by an independent industry survey in 1983 (Jernakoff 1988).
Geographic extent of fishery	The geographic extent of the managed area of the fishery. Maps of the managed area and distribution of fishing effort should be included in the detailed description below, or appended to the end of this table.
	The North West Slope Trawl Fishery (NWSTF) is located in deepwater off north-western coast of Western Australia and operates seaward from a management boundary approximating the 200m isobath to the edge of the Australian Fishing Zone (AFZ) (Figure 1). The fishery's western boundary adjoins the Western Deepwater Trawl Fishery at longitude 114°E. The eastern boundary forms at roughly 125°E but does not extend to the outer limit of the AFZ due to arranged Australian-Indonesian maritime boundaries in the Timor Sea.




Current and	The most recent catch quota levels in the fishery by fishing method (sub-fishery). Summary of								
recent		-		-fishery).In table form	5 5				
TACs, quota	No TACs								
trends by									
method									
Current and	The most recent estimate of effort levels in the fishery by fishing method (sub-fishery).								
recent		0 00			•				
fishery effort	Summary of the recent effort trends in the fishery by fishing method (sub-fishery). In table								
trends by	Year	active vessels	Effort (hours)						
method	(financial)	active vessels	Enort (nours)						
memou	2000-01	10	7,480						
	2000-01	10							
			8,147						
	2002-03	5	4,936						
	2003-04	8	5,379						
		lorsements are annua		d WDWTF. In both sub example only 6 permit					
	Ann	ual trawl hours re	corded in the Wes	tern Trawl					
			isheries						
	20000 -								
	15000 -			∎NWSTF					
				□WDWTF					
	b 10000 - 5000 - 0 -								
	1.985 N	981.48 1989. 1991.91	1983 , 1985 , 1987 , 198	199900 200102					
			Year						
	Fisheries (WDWTF).	Zero trawl hours are due to		TF) and Western Deepwater nen fewer than five vessels ha					
Current and	The most recent of	estimate of catch leve	ls in the fishery by fis	hing method (sub-fishe	ry) (total				
recent	and/or by target	species). Summary of	the recent catch tren	ds in the fishery by fish	ing method				
fishery catch	(sub-fishery). In	table form							
trends by									
method	Year	Total Catch (t)	Prawn catch (t)	Scampi catch (t)					
	2000-01	114	6	103					
	2001-02	103	17	82					
	2002-03	63	16	45					
	2003-04	60	0.8	57					
	being dominated be attributed to; i vessels actively f	Since the start of the fishery in 1985, catch composition of the NWSTF has changed from being dominated by deepwater prawn to scampi. Changes in relative catch composition can be attributed to; i) seasonal variations in species abundance, ii) variation in the number of vessels actively fishing between years, iii) market demands and iii) a real decrease in							
l	usundunce us exp	abundance as exploitation has reduced surplus standing stocks (Wallner & Phillips, 1995).							

Current and	Note current and	recent value trends b	w suh-fi	shery In tah	ole form
recent value	Year	Value (\$million)	y sub-ji	shery. In iab	ie jorm
of fishery (\$)	2000-01	1.3			
	2001-02	1.1			
	2002-03	unavailable			
	2003-04	1.1			
		3 to 2001/02 the avera	nge GVF	was \$ 1 07	7 000
Relationship					ional fisheries List other fisheries
with other		same region any inter			j
fisheries	Commonweal	• •			
	,	una and Billfish Fish		,	
	the NWSTF. The	WTBF targets pelagi	ic specie	s using long	0'S) operates in the same region as lines, purse seines and minor lines a contrast, targets demersal
		interaction with the V			i contrast, targets demersar
			WIDI I.	s negligible.	
		AUSTRALIA		Area of the	e Southern Tuna and Billfish Fishery
	LEGEND Und ac catafie Und ac catafie Und ac Catafie Und at Catafie Und at Statute Economic Zore (2004) Und at Statute Economic Zore (2004) Theory / Medianile	Norman Service	FMA Integrated Latitudiy 1000 Socialized Australia.	LEGEND Sothern Turu and Stiftish Fashery Land and costitive Unit of the State Unit of the State Unit of Exclusive Economic Zone (200m) Unit of Exclusive Economic Zone (200m)	And the Array an
		the Southern and West		and Billfish Fi	isheries
	The WDWTF is line approximatin fishery's northern where it runs adju- boundary of the Australian Bight	ng the 200m isobath on n most point is formed acent to the waters of AFZ with longitude 1	off Wes outwards d by the the NW 15°08'E WDWT	to the edge boundary of STF. The so where the f	a operating from a management of the AFZ (Figure 4). The f the AFZ to longitude 114°E outhern extremity lies on the ishery runs adjacent to the Great some scampi, otherwise there is

Gear	
Fishing gear	Description of the methods and gear in the fishery, average number days at sea per trip.
and methods	Vessels operating in the NWSTF are composed of all-steel construction 20–25m prawn trawlers modified for deepwater trawling. Modification of demersal prawn trawling gear for deepwater trawling includes large capacity winches, stern-towed twin or triple nets and product handling equipment (hoppers) capable of rapidly processing large volumes of fragile deepwater species (Evans 1992). All vessels operating in the NWSTF freeze catch on board and typically have the capacity to store 30 – 50 tonnes of product. Fishing duration is usually four to five weeks and is limited by freezer space, fuel and freshwater reserves (Evans 1992). No restriction on net headrope length exists in the NWSTF however a maximum mesh size (50mm) does apply in order to discourage any targeting of demersal finfish. Generally 'Florida flyer' type nets are standard for both scampi and deepwater prawn fishing (Evans 1992). These nets are based on NPF banana prawn nets with extended wing panels and slightly different seaming (Evans 1992). Vessels tow nets in either dual or triple arrays giving a total headrope length of between 47 and 75 metres depending on vessel power (Evans 1992). Wing mesh size is typically 60mm for prawns and 90mm for scampi with codends generally a heavier gauge 45mm mesh regardless of the target species (Evans 1992).
	Footropes are wire cored 'combination rope' preceded by chain link for the ground gear. Drop chains connect the two, with their lengths affecting the amount of bite into the substrate. Tickler chains are also often used to stimulate crustaceans off the sea floor. The chains are strung between the trawl wing corners and lead the whole assembly.
Fishing gear restrictions	Any restrictions on gear Cod-end mesh size may not exceed 50 mm.
Selectivity of	Description of the selectivity of the sub-fishery methods
gear and	In comparison with other fishing gears trawling is non-selective. In this fishery mesh size is
fishing methods	the only regulated part of the trawl gear. No other design and use specifications exist.
Spatial gear zone set	Description where gear set i.e. continental shelf, shelf break, continental slope (range nautical miles from shore) The NWSTF is located in deepwater off north-western coast of Western Australia and operates seaward from a management boundary approximating the 200m isobath to the edge of the Australian Fishing Zone (AFZ).
Depth range gear set	Depth range gear set at in metres 200m to 600m
How gear set	Description how set, pelagic in water column, benthic set (weighted) on seabed The nets are typically towed at 3 knots along relatively flat mud or silt substrates. Hard bottom areas or rocky outcrops are avoided as these areas are not ideal scampi habitat and also lead to snaring and damage of nets. Shot duration is typically 3-5 hours with a combined shoot-away and haul-up time of around one hour at 500 metres (Evans 1992). In order to minimise product damage, shot duration is reduced when targeting deepwater prawns due to their more fragile nature (Evans 1992). Trawling usually occurs around the clock.
Area of gear impact per set or shot	Description of area impacted by gear per set (square metres) Not estimated
Capacity of gear	Description number hooks per set, net size weight per trawl shot Not available
Effort per	Description effort per annum of all boats in fishery by shots or sets and hooks, for all boats
annum all boats	See above
Lost gear	Description of how gear is lost, whether lost gear is retrieved, and what happens to gear that
and ghost	is not retrieve, and impacts of ghost fishing
fishing	See SICA analysis

Issues	
Target	List any issues, including biological information such as spawning season and spawning
species	location, major uncertainties about biology
issues	NWSTF
	Scampi
	Three species account for the majority of scampi (metanephropid) catch taken in the NWSTF (<i>Metanephrops australiensis, M. velutinus and M. boschmai</i>). Life history traits of Australian scampi are characterised by low fecundity, a prolonged incubation period, abbreviated larval development and take 3-5 years to mature and recruit to the fishery (Wallner and Phillips 1995). These attributes are indicative of a low carry capacity or resilience to exploitation.
	1999). These duributes are indicative of a fow early capacity of resilicities to exploration.
	Declines in relative stock abundance have been reported (Lynch and Garvey 2005). Analysis of CPUE between 1985-2003 indicated that CPUE values for the last few years are the lowest ever recorded if increases in fishing power are taken into account. Fishery independent surveys would improve the robustness of the assessment.
	Scampi abundance is closely linked to depth and sediment type (Wallner and Phillips 1995; McLoughlin <i>et al</i> 1988; Carter <i>et al</i> 1983). Distinct areas of high productivity interspersed by areas of low catch rates in the NWSTF have been recorded (Wadley 1992). Scampi composition has also shown variation between major fishing grounds (Wallner and Phillips 1995). Patchy distributions driven by habitat availability may increase risk to localised depletion. Detailed analysis of scampi distributions (including areas lightly or non-fished areas), biology and habitat affiliations may provide a sound basis to assess the viability of spatial closures to alleviate depletion risks.
	Pre-recruits may co-exist with fishery recruited individuals due to having an abbreviated pelagic phase (Wallner and Phillips 1995). Trawling could indirectly affect pre-recruit survivorship through habitat disturbance (i.e. burrows) and food supply (Wassenberg and Hill 1989). Trawling induced changes in benthic composition and topography are yet to be quantified for the NWSTF. Qualitative and quantitative evidence of benthic impacts are listed in below section ' <i>Habitat issues</i> '. To date pre-recruit scampi stocks have not been surveyed thus potential fishery impacts are unknown.
	In the case of <i>M. velutinus</i> susceptibility to overexploitation may be further augmented by significantly higher relative catch rates of females during periods of increased prevalence of berried females. In October 1987 up to 72% of the total <i>M. velutinus</i> catch consisted of berried females (Wallner and Phillips 1995). A higher propensity for berried <i>M. velutins</i> females to emerge from their burrows could occur, thus increasing catchability. Emergence from burrows may aid in oxygenating broods or to provide opportunities to forage and build depleted energy reserves after spawning (Wallner and Phillips 1995). Significant departures from equal sex ratios in <i>M. australiensis</i> and <i>M. velutins</i> catches were not detected (Wallner and Phillips 1995). In an earlier study however, 28.3% of 573 females caught during the month of September were berried (Carter <i>et al</i> 1983).
	It is thought that female metanephropids are reproductively active throughout the year, although the timing and patterns of recruitment are not yet defined, making management responses difficult to construct.
	Deep water prawns
	Biological characteristics of deepwater prawns caught in NWSTF are largely unknown. Distribution trends do indicate a susceptibility to localised depletion through efficient
	targeting. When targeted, specific prawn grounds have been fished. Over 90% of total red prawn (A <i>ristaemorpha foliacea</i>) catches between 1985-90 were taken from fishing grounds south of the Rowley Shoals (Wadley 1992). <i>A. foliacea</i> possess a highly aggregated distribution and substrate preference (soft mud and muddy sandy) within the NWSTF

	(Wadley 1992). Disparity in depth preference between species has also been found (Wadley 1992).								
Byproduct and bycatch issues and interactions	<i>List any issues, as for the target species above</i> NWSTF byproduct has regularly included squid along with intermittent catches of deep sea bugs (slipper lobsters), whip and spear lobsters, fish such as ling and silver dory and precious shells (Evans, 1992). Cephalopods (squid) form the most important byproduct in the NWSTF in terms of both tonnage and value (Phillips, 1992). At least four species of squid are taken in the fishery with <i>Nototodarus hawaiiensis</i> dominating the squid catches.								
	prawn groun This is comp target fish (.	Given that the fleet targets crustaceans and has avoided exploratory fishing away from the prawn grounds, there has been little occurrence of commercial fish catches being reported. This is compounded by the fact that the fleet is using prawn nets which are not designed to target fish (Jernakoff, 1988). Fish that are captured are seldom kept as byproduct as they are generally unmarketable, unpalatable or too small (Evans, 1992).							
	NWSTF. Th the bycatch NWSTF uti	e diversity of is also noted lises non-sel reduced in	of bycatch is rep l to be highly va ective trawling t comparison to o	g the composition utedly high but al riable (pers. com. cechniques the byo ther tropical traw	so variable. Si John Garvey) catch volume a	milarly the volum Although the and composition i	s		
				between a third a ars most of the di					
	year	Total kept (t)	Total discarded (t)	Discarded unidentified (t)	% catch discarded	% discards unidentified			
	2001	116	42	12	27	29			
	2002	64	58	39	48	67			
	2003	67	52	33	44	63			
	2004	42	20	20	32	100			
TEP issues and interactions	List any issues. This section should consider all TEP species groups: marine mammals, chondrichthyans (sharks, rays etc.), marine reptiles, seabirds, teleosts (bony fishes), include any key spawning/breeding/aggregation locations that might overlap with the fishery/sub- fishery. The recording of interactions with protected wildlife was introduced into NWSTF logbooks on the 27 th April 2001. Since the introduction of this mechanism, no interactions with listed wildlife has been recorded within the fishery. A need exists in this fishery to better record interactions with TEP species. Bycatch								
		neasures, ob	servers and crew	training could al					
	Dogfish (Family: Squalidae) have been identified as a high conservation concern due to documented declines off south-eastern Australia (Pogonoski <i>et al</i> 2002). Two species of dogfish considered to be of high conservation concern are known to occur within the NWSTF region (gulper shark, <i>Centrophorus granulosus</i> ; black shark; <i>Dalatias licha</i>) (Williams <i>et al</i> 1996). Occasional catches of dogfish can be expected in the NWSTF, although none have been recorded to date.								
Habitat issues and interactions	<i>include refe</i> Detailed stu Trawl Fishe	rence to any dies of fishi ries. Limited	<i>protected, three</i> ng induced habit d qualitative and	ts identified in Sc attened or listed have at impacts have n quantitative data hos. Major results	abitats ot been condu provides some	cted for the West e insight into			

-								
	• Benthic taxa were the dominant (23.1%) bycatch category by weight of exploratory trawls conducted in the NWSTF in 1998-00 (Newman & Evans 2002)							
	• Concern has been raised regarding trawling impacts on bryozoan rich substrates which appear from 120 meters and progressively dissipate until 300m (Levings <i>et al</i> 2001).							
	Distribution patterns of female giant crabs (<i>Pseudocarcinus gigas</i>) may be correlated with bryozoan rich substrates. Giant crabs form a major part of catches taken in the West Coast Deep-Sea Crab Fishery (Penn 2002).							
	 Reduced observations of hexactinellid sponges have been made from heavily trawled areas in the NWSTF (Wallner and Phillips 1995) 							
	10% of sessile fauna is reportedly detached annually from the Pilbara Demersal Finfish Fishery (Penn 2002)							
Community issues and interactions	<i>List any issues for any of the community units identified in</i> Scoping Document S1.2 . No community issues have been identified							
Discarding	Summary of discarding practices by sub-fishery, including bycatch, juveniles of target species, high-grading, processing at sea.							
	There is a lack of knowledge surrounding the composition and volume of bycatch in the NWSTF. The diversity of bycatch is reputedly high but also variable. Similarly the volume of the bycatch is also noted to be highly variable (pers. com. John Garvey).							
	High bycatch variability arises as a result of the composition and volume altering dependent on the catch species being targeted and their associated depth distributions. When targeting red prawns catch can be relatively clean with low volumes of bycatch. Alternatively, when targeting <i>M. boschmai</i> , the scampi with the shallowest depth distribution, bycatch increases and can include tropical snappers (pers. com. John Garvey). In addition to bycatch composition varying with depth profile, the broad expanse of the fishery can result in bycatch gradients associated with latitude and longitude.							
	Fish that are captured are usually discarded as they are generally unmarketable, unpalatable or too small (Evans, 1992).							
	planned and those implemented							
Managemen t Objectives	 The management objectives from the most recent management plan A Management Plan is yet to be formalised for the NWSTF. A limited entry policy is currently implemented. A statement of management arrangements is being developed to articulate AFMA's management strategy. AFMA's fisheries management approach is guided by the following objectives: a) implementing efficient and cost-effective management on behalf of the commonwealth; and b) ensuring that the exploitation of fisheries resources and the carrying on of any related activities are conducted in a manner consistent with the principles of ecologically sustainable development and the exercise of the precautionary 							
	principle, in particular the need to have regard to the impact of fishing activities on non-target species and the long term sustainability of the marine environment; and							
	 c) maximising economic efficiency in the exploitation of fisheries resources; and d) ensuring accountability to the fishing industry and the Australian community in the Authority's management of fisheries resources; and 							
	e) achieving Government targets in relation to the recovery of the costs of the Authority.							
	 f) ensuring, through proper conservation and management measures, that the living resources of the Australian Fishing Zone (AFZ) are not endangered by over- exploitation; and 							
	CAPIOIUMON, unu							

	• achieving the optimum utilisation of the living resources of the AFZ.
Fishery	Is there a fisheries management plan is it in the planning stage or implemented what are the
management	
plan	The NWSTF does not have a statutory management plan. Instead it has a Statement of
I ···	Management Arrangements, describing the arrangements in place for the fishery. The
	NWSTF is currently managed by limited entry input.
Input	Summary of any input controls in the fishery, e.g. limited entry, area restrictions (zoning),
controls	vessel size restrictions and gear restrictions. Primarily focused on target species as other
	species are addressed below.
	1. Limited entry. A total of 7 fishing permits are currently allocated to the NWSTF.
	2. Gear restriction. Codend mesh size may not exceed 50 millimetres for trawl gear used in
	the NWSTF. This measure was implemented to discourage the targeting of demersal finfish.
Output	Summary of any output controls in the fishery, e.g. quotas. Effort days at sea. Primarily
controls	focused on target species as other species are addressed below.
	none
Technical	Summary of any technical measures in the fishery, e.g. size limits, bans on females, closed
measures	areas or seasons. Gear mesh size, mitigation measures such as TEDs. Primarily focused on
	target species as other species are addressed below.
	Codend mesh size may not exceed 50 millimetres for trawl gear used in the NWSTF. This
	measure was implemented to discourage the targeting of demersal finfish.
Regulations	Regulations regarding species (bycatch and byproduct, TEP), habitat, and communities;
	Marpol and pollution; rules regarding activities at sea such as discarding offal and/or
	processing at sea.
	1. Species (bycatch, byproduct and TEP):
	Mesh size regulations enforced in the NWSTF are designed to limit the catch of non-target,
	demersal finfish.
	Due to low catch frequency of TEP species, specific regulations have not been implemented
	to preclude their capture. A 'Code of fishing ethics: The capture of sea turtles' is attached to
	NWSTF logbooks and provides 'Turtle Recovery Procedures' and identification guide as a
	precautionary measure, acknowledging that the likelihood of turtle capture is minimal in any
	case.
	2. Habitat and communities
	Disturbance to habitats and communities is minimised through restricted access
Initiatives	BAPs; TEDs; industry codes of conduct, MPAs, Reserves
and	The following marine protected areas occur within the area of operation of the NWSTF.
strategies	Commercial fishing is prohibited in these zones.
strategies	Commercial fishing is promoted in these zones.
	 Cartier Island Marine Reserve,
	 Ashmore Reef Marine National Nature Reserve and.
	 Mermaid Reef Marine National Park
Enabling	Monitoring (logbooks, observer data, scientific surveys); assessment (stock assessments);
processes	performance indicators (decision rules, processes, compliance; education; consultation
T	process
	A shot by shot catch and effort logbook was introduced at the beginning of the fishery.
	The Western Travil Fisheries Management Advisory Committee (WESTMAC) is the
	The Western Trawl Fisheries Management Advisory Committee (WESTMAC) is the principal forum where issues relating to the WDWTE are discussed problems identified and
	principal forum where issues relating to the WDWTF are discussed, problems identified and
	possible solutions developed. It also provides an avenue for consultation between industry,
	managers, researchers, environment/ conservation and State government officers.
	WESTMAC holds an annual public meeting and a committee meeting each year in Perth.

Other	State national on international conventions on approximate that impact on the management of
	State, national or international conventions or agreements that impact on the management of
	the fishery/sub-fishery being evaluated. Offshore Constitutional Settlement
agreements	A current Offshore Constitutional Settlement (OCS) was negotiated between the
	Commonwealth and Western Australian Governments for the management of the WTF. The
	OCS arrangement was dated 19 th December 1994 (Commonwealth of Australia Gazette No.
	GN 4. 1 Feb 1995). Under this arrangement AFMA has management responsibilities for all
	species taken by trawl in waters between the 200 m isobath and the 200 nm Australian
	Fishing Zone limit. The Western Australian Government has management responsibility for
	all other species taken by non-trawl methods, excluding tuna's, to the seaward boundary of
	the AFZ.
	Other key documents that have impacted on management include UNCLOS, Convention on
	Biodiversity, Straddling Stocks Agreement, FAO (various), MARPOL, National Bycatch
	Policy and Turtle Recovery Plan.
Data	
Logbook data	Verified logbook data; data summaries describe programme
	A shot by shot catch and effort logbook was introduced at the beginning of the fishery
Observer data	Observer programme describe parameters as below
	Purpose:
	1. Keep records of all hauls, commercial catch, bycatch and discarded catch.
	 Collect information on the vessel's details and its fishing gear. Record all interactions and sightings of marine mammals, cetaceans and seabirds.
	 Collect biological data for commercially important species such as Mirror Dory, <i>Zenopsis</i>
	<i>nebulosis</i> and Pink Ling, <i>Genypterus blacodes</i> .
	neouosis and Thik Enig, Genypierus olucoues.
	Data collection:
	AFMA observers have taken part in 2 trips on the NWSTF – in June 2004 and June 2005.
	Data collation:
	Data is stored at AFMA.
	Data communication:
	A (confidential) report has been produced for each observer cruise.
	r (comidential) report has been produced for each observer erabe.
	Data checking:
Other data	Studies, surveys
	In 1988 CSIRO undertook a research project to investigate the population biology of the
	deepwater crustacea caught in the NWSTF. The results of the studies carried out under the
	project are reported in the FRDC Project 1988/74: The fisheries biology of deepwater
	crustacea and finfish on the continental slope of Western Australia.
	<i>NWSTF</i> – A FRDC funded commercial survey of the finfish resources within the grounds of
	the NWSTF was endorsed for three years from 1998 (FRDC 1998/152). The project was
	designed to establish an understanding of the finfish resources inhabiting the grounds and to
	provide an information base from which a sustainable finfish fishery could be established.
	For the purposes of the project previously unendorsed operators were given access to the
	finfish trawl fishery by means of a scientific permit. However no operators fished in excess
	of one week and the project concluded a year earlier than initially expected due to the lack of
	interest caused by the high economic costs and poor catch returns.

2.2.2 Unit of Analysis Lists (Step 2)

The units of analysis for the sub-fishery are listed by component:

- Species Components (target, byproduct/discards and TEP components). [Scoping document S2A Species]
- Habitat Component: habitat types. [Scoping document S2B Habitats]
- Community Component: community types. [Scoping document S2C Communities]

The number of units of analysis examined in this report is shown by component in the following Table.

Target	By-product	By-catch	TEP	Habitats	Communities
7	16	12	121	77	11

Scoping Document S2A Species

Each species identified during the scoping is added to the ERAEF database used to run the Level 2 analyses. A CAAB code (Code for Australian Aquatic Biota) is required to input the information. The CAAB codes for each species may be found at http://www.marine.csiro.au/caab/

Target species North West Slope Trawl Fishery

This list is obtained by reviewing all available fishery literature, including logbooks, observer reports and discussions with stakeholders. Target species are as agreed by the fishery.

ERA						
species						
number	Taxa	Family name	Scientific name	Common name	CAAB code	Reference
15	Invertebrate	Aristaeidae	Aristaeomorpha foliacea	Giant red prawn	28712001	From AFMA logbook data
16	Invertebrate	Aristaeidae	Aristaeopsis edwardsiana	Scarlet Prawn	28712008	
17	Invertebrate	Solenoceridae	Haliporoides sibogae	Royal Red Prawn	28714005	
1326	Invertebrate	Aristaeidae	Aristeus virilis	Pink striped prawn	28712003	
			Metanephrops			
1332	Invertebrate	Nephropidae	australiensis	Australiensis scampi	28786001	
1333	Invertebrate	Nephropidae	Metanephrops boschmai	Boschmai scampi	28786002	
1335	Invertebrate	Nephropidae	Metanephrops velutinus	Velvet scampi	28786005	

Byproduct species North West Slope Trawl Fishery

Byproduct refers to any part of the catch which is kept or sold by the fisher but which is not a target species. This list is obtained by reviewing all available fishery literature, including logbooks, observer reports and discussions with stakeholders.

ERA						
species					CAAB	
number	Taxa	Family name	Scientific name	Common name	code	Reference
			Heterocarpus			From AFMA logbook data
1331	Invertebrate	Pandalidae	woodmasoni	Red carid	28770007	
1334	Invertebrate	Nephropidae	Metanephrops neptunus	Neptune scampi	28786003	
2212	Invertebrate	Nephropidae	Metanephrops sibogae	Siboga scampi	28786004	
2287	Invertebrate	Nephropidae	Nephrosis serrata	Deep-sea scampi	28786007	
2288	Invertebrate	Nephropidae	Nephrosis stewarti	Stewart's scampi	28786008	
		Order	Order Teuthoidea -			
1998	Invertebrate	Teuthoidea	undifferentiated	squid	23615000	
			Palinuridae -			
2022	Invertebrate	Palinuridae	undifferentiated	spiny lobsters	28820000	
24	Invertebrate	Scyllaridae	Thenus orientalis	BUG	28821008	
				Ruby snapper;		
600	Teleost	Lutjanidae	Etelis carbunculus	Northwest Ruby Fish	37346014	
933	Teleost	Ophidiidae	Genypterus blacodes	Ling	37228002	
888	Teleost	Trachichthyidae	Gephyroberyx darwinii	darwin's roughy	37255004	
683	Teleost	Lutjanidae	Lutjanus erythropterus	Saddle-tailed Sea Perch	37346005	
				Scarlet Sea Perch /		
684	Teleost	Lutjanidae	Lutjanus malabaricus	Large Mouth Nannygai	37346007	
158	Teleost	Sparidae	Pagrus auratus	Snapper/Squirefish	37353001	
1088	Teleost	Carangidae	Trachurus declivis	Jack Mackerel	37337002	
1097	Teleost	Zeidae	Zenopsis nebulosus	Mirror Dory	37264003	

Discard species North West Slope Trawl Fishery

List the discard (bycatch) species (excluding TEP species) of the sub-fishery. Bycatch as defined in the Commonwealth Policy on Fisheries Bycatch 2000 refers to:

- that part of a fisher's catch which is returned to the sea either because it has no commercial value or because regulations preclude it being retained; and
- that part of the 'catch' that does not reach the deck but is affected by interaction with the fishing gear

However, in the ERAEF method, the part of the target or byproduct catch that is discarded is included in the assessment of the target or byproduct species. The list of bycatch species is obtained by reviewing all available fishery literature, including logbooks, observer reports and discussions with stakeholders.

ERA						
species number	Taxa	Family name	Scientific name	Common name	CAAB code	Reference
286	Chondrichthyan	Callorhinchidae	Callorhinchus milii	Elephantfish	37043001	From AFMA
534	Chondrichthyan	Chimaeridae	Chimaera sp. E	Marbled Ghostshark	37042009	logbook data
2046	Chondrichthyan	Dasyatidae	Dasyatidae - undifferentiated	stingrays	37035000	
956	Chondrichthyan	Chimaeridae	Hydrolagus ogilbyi	Ogilbys Ghost Shark	37042001	
2042	Chondrichthyan	Squalidae	Squalidae - undifferentiated	dogfishes	37020000	
2026	Invertebrate	infraorder Brachyura	Brachyura - undifferentiated	crabs	28850000	
2010	Invertebrate	Class Asteroidea	Class Asteroidea - undifferentiated	starfish	25102000	
1330	Invertebrate	Pandalidae	Heterocarpus sibogae	White carid	28770005	
1981	Invertebrate		Porifera - undifferentiated	sponges	1000000	
1983	Invertebrate	Class Scyphozoa	Scyphozoa spp - undifferentiated	jellyfish	11120000	
332	Teleost	Berycidae	Centroberyx affinis	Redfish	37258003	
195	Teleost	Uranoscopidae	Pleuroscopus pseudodorsalis	blue stargazer	37400005	
86	Teleost	Trachipteridae	Trachipterus arawatae	Ribbon or Dealfish	37271001	

TEP species North West Slope Trawl Fishery

List the TEP species that occur in the area of the sub-fishery. Highlight species that are known to interact directly with the fishery. TEP species are those species listed as Threatened, Endangered or Protected under the EPBC Act.

TEP species are often poorly listed by fisheries due to low frequency of direct interaction. Both direct (capture) and indirect (e.g. food source captured) interaction are considered in the ERAEF approach. A list of TEP species has been generated for each fishery and is included in the PSA workbook species list. This list has been generated using the DEH Search Tool from DEH home page <u>http://www.deh.gov.au/</u>

For each fishery, the list of TEP species is compiled by reviewing all available fishery literature. Species considered to have potential to interact with fishery (based on geographic range & proven/perceived susceptibility to the fishing gear/methods and examples from other similar fisheries across the globe) should also be included.

ERA					
species					CAAB
number	Taxa	Family name	Scientific name	Common name	code
313	Chondrichthyan	Odontaspididae	Carcharias taurus	grey nurse shark	37008001
315	Chondrichthyan	Lamnidae	Carcharodon carcharias	white shark	37010003
1067	Chondrichthyan	Rhincodontidae	Rhincodon typus	whale shark	37014001
1438	Marine bird	Laridae	Anous minutus	Black Noddy	40128001
203	Marine bird	Laridae	Anous stolidus	Common noddy	40128002
67	Marine bird	Laridae	Anous tenuirostris	Lesser noddy	40128003
2272	Marine bird	Laridae	Anous tenuirostris melanops	Australian Lesser Noddy	
1580	Marine bird	Procellariidae	Calonectris leucomelas	streaked shearwater	40041002
829	Marine bird	Fregatidae	Fregata ariel	Lesser frigatebird	40050002
1435	Marine bird	Fregatidae	Fregata minor	Great Frigatebird	40050003
974	Marine bird	Laridae	Larus novaehollandiae	Silver Gull	40128013
73	Marine bird	Procellariidae	Macronectes giganteus	Southern Giant-Petrel	40041007
1431	Marine bird	Laridae	Phaethon lepturus	White-tailed Tropicbird	40045001
1432	Marine bird	Phaethontidae	Phaethon rubricauda	Red-tailed Tropicbird	40045002
1048	Marine bird	Procellariidae	Pterodroma mollis	Soft-plumaged Petrel	40041032
1059	Marine bird	Procellariidae	Puffinus pacificus	Wedge-tailed Shearwater	40041045
1015	Marine bird	Laridae	Sterna anaethetus	Bridled Tern	40128023

ERA					
species					CAAB
number	Taxa	Family name	Scientific name	Common name	code
1017	Marine bird	Laridae	Sterna bergii	Crested Tern	40128025
1018	Marine bird	Laridae	Sterna caspia	Caspian Tern	40128026
1019	Marine bird	Laridae	Sterna dougallii	Roseate tern	40128027
1020	Marine bird	Laridae	Sterna fuscata	Sooty tern	40128028
1433	Marine bird	Sulidae	Sula dactylatra	Masked Booby	40047004
881	Marine bird	Sulidae	Sula leucogaster	Brown boobies	40047005
1434	Marine bird	Sulidae	Sula sula	Red-footed Booby	40047006
256	Marine mammal	Balaenopteridae	Balaenoptera acutorostrata	Minke Whale	41112001
1439	Marine mammal	Balaenidae	Balaenoptera bonaerensis	Antarctic Minke Whale	41112007
261	Marine mammal	Balaenopteridae	Balaenoptera borealis	Sei Whale	41112002
262	Marine mammal	Balaenopteridae	Balaenoptera edeni	Bryde's Whale	41112003
265	Marine mammal	Balaenopteridae	Balaenoptera musculus	Blue Whale	41112004
612	Marine mammal	Delphinidae	Delphinus delphis	Common Dolphin	41116001
813	Marine mammal	Dugongidae	Dugong dugon	Dugong	41206001
902	Marine mammal	Delphinidae	Feresa attenuata	Pygmy Killer Whale	41116002
934	Marine mammal	Delphinidae	Globicephala macrorhynchus	Short-finned Pilot Whale	41116003
937	Marine mammal	Delphinidae	Grampus griseus	Risso's Dolphin	41116005
1440	Marine mammal	Ziphiidae	Indopacetus pacificus	Longman's Beaked Whale	41120003
968	Marine mammal	Physeteridae	Kogia breviceps	Pygmy Sperm Whale	41119001
969	Marine mammal	Physeteridae	Kogia simus	Dwarf Sperm Whale	41119002
970	Marine mammal	Delphinidae	Lagenodelphis hosei	Fraser's Dolphin	41116006
984	Marine mammal	Balaenopteridae	Megaptera novaeangliae	Humpback Whale	41112006
986	Marine mammal	Ziphiidae	Mesoplodon densirostris	Blainville's Beaked Whale	41120005
987	Marine mammal	Ziphiidae	Mesoplodon gingkodens	Gingko Beaked Whale	41120006
860	Marine mammal	Delphinidae	Orcaella brevirostris	Irrawaddy dolphin	41116010
1002	Marine mammal	Delphinidae	Orcinus orca	Killer Whale	41116011
1007	Marine mammal	Delphinidae	Peponocephala electra	Melon-headed Whale	41116012
1036	Marine mammal	Physeteridae	Physeter catodon	Sperm Whale	41119003
1044	Marine mammal	Delphinidae	Pseudorca crassidens	False Killer Whale	41116013
1076	Marine mammal	Delphinidae	Sousa chinensis	Indo-Pacific Humpback Dolphin	41116014

ERA					
species					CAAB
number	Taxa	Family name	Scientific name	Common name	code
1080	Marine mammal	Delphinidae	Stenella attenuata	Spotted Dolphin	41116015
1081	Marine mammal	Delphinidae	Stenella coeruleoalba	Striped Dolphin	41116016
1082	Marine mammal	Delphinidae	Stenella longirostris	Long-snouted Spinner Dolphin	41116017
1083	Marine mammal	Delphinidae	Steno bredanensis	Rough-toothed Dolphin	41116018
1494	Marine mammal	Delphinidae	Tursiops aduncus	Indian Ocean bottlenose dolphin	41116020
1091	Marine mammal	Delphinidae	Tursiops truncatus	Bottlenose Dolphin	41116019
1098	Marine mammal	Ziphiidae	Ziphius cavirostris	Cuvier's Beaked Whale	41120012
1408	Marine reptile	Hydrophiidae	Acalyptophis peronii	Horned Seasnake	39125001
1409	Marine reptile	Hydrophiidae	Aipysurus apraefrontalis	Short-nosed Seasnake	39125002
1410	Marine reptile	Hydrophiidae	Aipysurus duboisii	Dubois' Seasnake	39125003
1411	Marine reptile	Hydrophiidae	Aipysurus eydouxii	Spine-tailed Seasnake	39125004
1412	Marine reptile	Hydrophiidae	Aipysurus foliosquama	Leaf-scaled Seasnake	39125005
1413	Marine reptile	Hydrophiidae	Aipysurus fuscus	Dusky Seasnake	39125006
1414	Marine reptile	Hydrophiidae	Aipysurus laevis	Olive Seasnake, Golden Seasnake	39125007
1415	Marine reptile	Hydrophiidae	Aipysurus tenuis	Brown-lined Seasnake	39125008
254	Marine reptile	Hydrophiidae	Astrotia stokesii	Stokes' seasnake	39125009
324	Marine reptile	Cheloniidae	Caretta caretta	Loggerhead	39020001
541	Marine reptile	Cheloniidae	Chelonia mydas	Green turtle	39020002
613	Marine reptile	Dermochelyidae	Dermochelys coriacea	Leathery turtle	39021001
1530	Marine reptile	Hydrophiidae	Disteira kingii	spectacled seasnake	39125010
1416	Marine reptile	Hydrophiidae	Disteira major	Olive-headed Seasnake	39125011
1417	Marine reptile	Hydrophiidae	Emydocephalus annulatus	Turtle-headed Seasnake	39125012
1418	Marine reptile	Hydrophiidae	Enhydrina schistosa	Beaked Seasnake	39125013
1419	Marine reptile	Hydrophiidae	Ephalophis greyi	North-western Mangrove Seasnake	39125014
822	Marine reptile	Cheloniidae	Eretmochelys imbricata	Hawksbill turtle	39020003
1420	Marine reptile	Hydrophiidae	Hydrelaps darwiniensis	Black-ringed Seasnake	39125015
1421	Marine reptile	Hydrophiidae	Hydrophis coggeri	Slender-necked Seasnake	39125019
1531	Marine reptile	Hydrophiidae	Hydrophis czeblukovi	fine-spined seasnake	39125020
957	Marine reptile	Hydrophiidae	Hydrophis elegans	Elegant seasnake	39125021
1422	Marine reptile	Hydrophiidae	Hydrophis mcdowelli	seasnake	39125025

ERA					
species					CAAB
number	Taxa	Family name	Scientific name	Common name	code
1423	Marine reptile	Hydrophiidae	Hydrophis ornatus	seasnake	39125028
1424	Marine reptile	Hydrophiidae	Lapemis hardwickii	Spine-bellied Seasnake	39125031
857	Marine reptile	Cheloniidae	Natator depressus	Flatback turtle	39020005
1005	Marine reptile	Hydrophiidae	Pelamis platurus	yellow-bellied seasnake	39125033
319	Teleost	Syngnathidae	Acentronura larsonae	Helen's Pygmy Pipehorse	37282036
				Corrugated Pipefish, Barbed	
56	Teleost	Syngnathidae	Bhanotia fasciolata	Pipefish	37282104
				Braun's Pughead Pipefish, Pug-	
53	Teleost	Syngnathidae	Bulbonaricus brauni	headed Pipefish	37282037
546	Teleost	Syngnathidae	Campichthys tricarinatus	Three-keel Pipefish	37282040
200	T 1	a		Pacific Short-bodied Pipefish,	25202042
388	Teleost	Syngnathidae	Choeroichthys brachysoma	Short-bodied pipefish	37282042
387	Teleost	Syngnathidae	Choeroichthys latispinosus	Muiron Island Pipefish	37282044
389	Teleost	Syngnathidae	Choeroichthys suillus	Pig-snouted Pipefish Fijian Banded Pipefish, Brown-	37282046
563	Teleost	Syngnathidae	Corythoichthys amplexus	banded Pipefish Yellow-banded Pipefish, Network	37282047
566	Teleost	Syngnathidae	Corythoichthys conspicillatus	Pipefish Australian Messmate Pipefish,	37282032
52	Teleost	Syngnathidae	Corythoichthys intestinalis	Banded Pipefish	37282049
452	Teleost	Syngnathidae	Corythoichthys schultzi	Schultz's Pipefish	37282052
401	Teleost	Syngnathidae	Cosmocampus banneri	Roughridge Pipefish	37282053
55	Teleost	Syngnathidae	Doryrhamphus janssi	Cleaner Pipefish, Janss' Pipefish	37282059
568	Teleost	Syngnathidae	Doryrhamphus malus	Flagtail Pipefish, Negros Pipefish	37282060
569	Teleost	Syngnathidae	Doryrhamphus melanopleura Dunckerocampus	Bluestripe Pipefish	37282058
361	Teleost	Syngnathidae	dactyliophorus	Ringed Pipefish	37282057
386	Teleost	Syngnathidae	Dunckerocampus pessuliferus	Many-banded Pipefish	37282108
321	Teleost	Syngnathidae	Festucalex scalaris	Ladder Pipefish	37282063
914	Teleost	Syngnathidae	Filicampus tigris	Tiger Pipefish	37282064
54	Teleost	Syngnathidae	Halicampus brocki	Brock's Pipefish	37282065

ERA					
species					CAAB
number	Taxa	Family name	Scientific name	Common name	code
				Red-hair Pipefish, Duncker's	
359	Teleost	Syngnathidae	Halicampus dunckeri	Pipefish	37282066
938	Teleost	Syngnathidae	Halicampus grayi	Mud Pipefish, Gray's Pipefish	37282030
57	Teleost	Syngnathidae	Halicampus nitidus	Glittering Pipefish	37282069
454	Teleost	Syngnathidae	Halicampus spinirostris	Spiny-snout Pipefish	37282070
				Ribboned Seadragon, Ribboned	
360	Teleost	Syngnathidae	Haliichthys taeniophorus	Pipefish	37282007
				Beady Pipefish, Steep-nosed	
945	Teleost	Syngnathidae	Hippichthys penicillus	Pipefish	37282075
549	Teleost	Syngnathidae	Hippocampus angustus	Western Spiny Seahorse	37282005
453	Teleost	Syngnathidae	Hippocampus jugumus	Spiny Seahorse	37282112
951	Teleost	Syngnathidae	Hippocampus planifrons	Flat-face Seahorse	37282078
318	Teleost	Syngnathidae	Hippocampus spinosissimus	Hedgehog Seahorse	
949	Teleost	Syngnathidae	Hippocampus taeniopterus Micrognathus	Spotted Seahorse, Yellow Seahorse	37282033
547	Teleost	Syngnathidae	micronotopterus	Tidepool Pipefish	37282088
32	Teleost	Eleotridae	Milyeringa veritas	Blind Gudgeon	37429032
362	Teleost	Syngnathidae	Phoxocampus belcheri	Rock Pipefish	37282109
			-	Indonesian Pipefish, Gunther's	
320	Teleost	Syngnathidae	Solegnathus guentheri Solegnathus sp. 1 [in Kuiter,	Pipehorse	37282003
1071	Teleost	Syngnathidae	2000]	Pipehorse	37282099
		5.0	5	Blue-finned Ghost Pipefish, Robust	
1074	Teleost	Solenostomidae	Solenostomus cyanopterus	Ghost	37281001
			~ 1	Double-ended Pipehorse, Alligator	
1029	Teleost	Syngnathidae	Syngnathoides biaculeatus	Pipefish	37282100
				Bend Stick Pipefish, Short-tailed	
1089	Teleost	Syngnathidae	Trachyrhamphus bicoarctatus	Pipefish	37282006
				Long-nosed Pipefish, Straight Stick	
322	Teleost	Syngnathidae	Trachyrhamphus longirostris	Pipefish	37282101

Scoping Document S2B1. Benthic Habitats

Risk assessment for benthic habitats considers both the seafloor structure and its attached invertebrate fauna. Because data on the types and distributions of benthic habitat in Australia's Commonwealth fisheries are generally sparse, and because there is no universally accepted benthic classification scheme, the ERAEF methodology has used the most widely available type of data – seabed imagery – classified in a similar manner to that used in bioregionalization and deep seabed mapping in Australian Commonwealth waters. Using this imagery, benthic habitats are classified based on an SGF score, using sediment, geomorphology, and fauna. Where seabed imagery is not available, a second method (Method 2) is used to develop an inferred list of potential habitat types for the fishery. For details of both methods, see Hobday *et al* (2007).

A derived list of Benthic habitats for the North West Slope Trawl Fishery. Due to the lack of habitat image data for this region, this list of habitats is inferred using the Habitat Scoping Method 2. Scoping Steps involved:

- inclusion of existing WDWTF habitat data. Ideally the data from the adjacent fisheries would inform the bulk of this list, however data was accessible for only the WDWTF on the Southern most NWSTF boundary. A benthic habitat list for the NPF which adjoins the Northeastern edge of the NWSTF was not yet completed.
- mapping the Geomorphic Units (GU), or features occurring within the jurisdictional boundary of the fishery. Some subsequent rationalization of all Geomorphic Units identified, was done to provide consistency with particular features previously identified by survey, recorded in the ERAEF database of Commonwealth Fishery habitats. In line with a precautionary approach, all ERAEF habitats associated with specific upper slope (200-700m) features were added. These included, Canyons (which included upper slope GU areas identified as canyons, trenches, and troughs), Seamounts (considered representative of types that may occur on the NWS GU features identified as pinnacles and plateaus), shelf break (the section extending into the upper edge of the upper slope), terraces, and the slope, and four types considered likely to occur (# 1-4).
- Inclusion of all soft sediment habitats, as this fishery targets these types of terrain. Effort does not occur in <200m, or rarely, > 700m, therefore is considered only for the upper slope of the NWS.

Inevitably, this alternative scoping method generates a conservatively large list of potentially encounterable habitats, many of which are similar to each other, varying in only one aspect of substratum, geomorphology or fauna. Shading denotes habitats occurring within the jurisdictional boundary of the fishery that are not subject to effort from crustacean trawling.

	ERA Habitat #	Sub-biome	Footuro		SGF Score	Dopth (m)	mage available	Reference image location
3683			Feature	ERA Habitat type	000	Depth (m) 200- 700	<u> </u>	—
3663 3663	202 143	upper slope upper slope	Terrace, Slope	mud, unrippled, no fauna	000	200-700 200-700	r N	Habitat Image Collection TBC
3663 3662	143	upper slope upper slope	slope	mud, unrippled, large sponges	001	200-700 200-700	N Y	-
3664	142	upper slope	slope Canyon, Slope	mud, unrippled, encrustors Mud, Unrippled, Sedentary	008	200-700	Y	Habitat Image Collection Habitat Image Collection
3664 3661	144	upper slope	Slope	mud, unrippled, bioturbators	007	200-700	r Y	Habitat Image Collection
3660	141	upper slope	slope	mud, umppled, bioturbators mud, irregular, bioturbators	009	200-700	Y	Habitat Image Collection
3620	046	upper slope	slope	fine sediments, unrippled, no fauna	100	200-700	Y	Habitat Image Collection
3697	227	upper slope	Slope	Fine sediments, unrippled, large sponges	100	200-700	Ý	Habitat Image Collection
3657	137	upper slope	slope	fine sediments, unrippled, small sponges	101	200-700	Ý	Habitat Image Collection
3656	136	upper slope	slope	fine sediments, unrippled, encrustors	102	200-700	Ý	Habitat Image Collection
3644	078	upper slope	Canyon, Terrace, Slope	Fine sediments, unrippled, Solitary epifauna	100	200-700	2	Habitat Image Collection
3618	044	upper slope	slope, canyon, terrace	fine sediments, unrippled, bioturbators	109	200-700	Ý	Habitat Image Collection
3654	133	upper slope	Slope	Fine sediments, current rippled, no fauna	100	200-700	Ý	Habitat Image Collection
3641	073	upper slope	Canyon, Terrace	Fine sediments, irregular, Small encrustors / erect forms (including bryozoans)	136	200-700	Ŷ	Habitat Image Collection
3700	231	upper slope	Slope	Fine sediments, irregular, glass sponge (stalked)	137	200- 700	Y	Habitat Image Collection
3616	041	upper slope	Slope	Fine sediments, irregular, bioturbators	139	200-700	3	Habitat Image Collection
3655	134	upper slope	slope	fine sediments, subcrop, large sponges	151	200-700	Ň	TBC
3643	077	upper slope	canyon, slope	fine sediments, subcrop, small sponges	152	200-700	Y	Habitat Image Collection
3615	040	upper slope	slope	fine sediments, subcrop, sedentary	157	200-700	Y	Habitat Image Collection
3728	284	upper slope	slope	Coarse sediments, unrippled, large sponges	201	200-700	Y	Habitat Image Collection
3729	285	upper slope	slope	Coarse sediments, unrippled, octocorals	205	200- 700	Y	Habitat Image Collection
3617	043	upper slope	slope	coarse sediments, unrippled, low mixed encrustors	206	200-700	Y	Habitat Image Collection
3619	045	upper slope	slope	coarse sediments, unrippled, sedentary	207	200- 700	Y	Habitat Image Collection
3702	235	upper slope	Slope	Coarse sediments, rippled, no fauna	210	200- 700	Y	Habitat Image Collection
3703	236	upper slope	Slope	Coarse sediments, rippled, solitary epifauna	217	200- 700	Y	Habitat Image Collection
3704	237	upper slope	Slope	Coarse sediments, wave rippled, bryozoan turf	226	200- 700	Y	Habitat Image Collection
3705	238	upper slope	Slope	Coarse sediments, irregular, octocorals (matrix of solsomalia)	235	200- 700	Y	Habitat Image Collection
3642	076	upper slope	canyon, slope	coarse sediments, irregular, low mixed encrustors	236	200- 700	Y	Habitat Image Collection

	ERA Habitat #	Sub-biome	Feature	ERA Habitat type	SGF Score	Depth (m)	c Image available	Reference image location
3640	072	upper slope	Slope	Coarse sediments, rippled, bioturbators	239	200-700	Y	Habitat Image Collection
3706 3707	239	upper slope	Slope	Coarse sediments, subcrop, large sponges	251 655	200- 700 200- 700	Y Y	Habitat Image Collection
3707 3708	240 241	upper slope upper slope	Slope	Sedimentary rock, subcrop, octocorals	655 256	200-700 200-700	r Y	Habitat Image Collection
3658	138	upper slope	Slope slope	Coarse sediments, subcrop, low encrusting community gravel, debris flow, encrustors	236 346	200-700	Y	Habitat Image Collection Habitat Image Collection
3651	130	upper slope	slope	cobble, debris flow, no fauna	440	200-700	Ý	Habitat Image Collection
3653	132	upper slope	slope	cobble, debris flow, small sponges	442	200-700	Ý	Habitat Image Collection
3652	131	upper slope	slope	cobble, debris flow, octocorals	445	200-700	N	Habitat Image Collection
3650	129	upper slope	slope	cobble, debris flow, encrustors	446	200-700	Ŷ	Habitat Image Collection
3730	286	upper slope	slope	Cobble/ boulder, debris, sedentary	447	200-700	Ŷ	Habitat Image Collection
3637	069	upper slope	canyon	cobble, low outcrop, crinoids	464	200-700	Ŷ	Habitat Image Collection
3712	247	upper slope	Slope	boulders, low outcrop, no fauna	470	200-700	Ŷ	Habitat Image Collection
3731	287	upper slope	slope	slabs and boulders, low outcrop, octocorals	475	200-700	Y	Habitat Image Collection
3732	288	upper slope	slope	Igneous Rock (?), low outcrop, octocorals	565	200-700	Y	Habitat Image Collection
3733	289	upper slope	slope	Igneous Rock (?), low outcrop, mixed faunal community	573	200- 700	Y	Habitat Image Collection
3734	290	upper slope	slope	Igneous Rock (?), high outcrop, no fauna	590	200- 700	Y	Habitat Image Collection
3735	291	upper slope	slope	Igneous Rock (?), high outcrop, mixed faunal community	593	200- 700	Y	Habitat Image Collection
3716	251	upper slope	Slope	Sedimentary rock, subcrop, no fauna	650	200- 700	Y	Habitat Image Collection
3636	067	upper slope	canyon, slope	Sedimentary rock, subcrop, large sponges	651	200- 700	Y	Habitat Image Collection
3638	070	upper slope	canyon	Sedimentary rock, subcrop, small sponges	652	200- 700	Y	Habitat Image Collection
3610	033	upper slope	slope	Sedimentary rock, subcrop, mixed faunal community	653	200- 700	Y	Habitat Image Collection
3667	148	upper slope	Terrace, Slope	Sedimentary rock, Subcrop, Octocorals (gold corals / seawhips)	655	200-700	Y	Habitat Image Collection
3613	036	upper slope	Slope	Sedimentary rock, subcrop, small encrustors	656	200- 700	Y	Habitat Image Collection
3736	292	upper slope	slope	Sedimentary Rock (?), subcrop, sedentary	657	200- 700	Y	Habitat Image Collection
3719	256	upper slope	Slope	Sedimentary rock, low outcrop, octocorals	665	200- 700	Y	Habitat Image Collection
3612	035	upper slope	Slope	Sedimentary rock, low outcrop, small encrustors	666	200- 700	Y	Habitat Image Collection
3720	257	upper slope	Shelf break	Sedimentary rock, low outcrop, no fauna	670	200- 700	3	Habitat Image Collection
3665	145	upper slope	Canyon	Sedimentary rock, low outcrop, large sponges	671	200- 700	2	Habitat Image Collection

	ERA Habitat #	Sub-biome	Feature	ERA Habitat type	SGF Score	Depth (m)	Image available	Reference image location
3666	146	upper slope	slope	Sedimentary rock, low outcrop, small sponges	672	200- 700	Y	Habitat Image Collection
3692	216	upper slope	Canyon	Sedimentary rock, low outcrop, Octocorals (gold corals / seawhips)	675	200-700	Y	Habitat Image Collection
3639	071	upper slope	Shelf break	Sedimentary rock, low outcrop, small encrustors	676	200- 700	3	Habitat Image Collection
3721	261	upper slope	Slope	Sedimentary rock, low outcrop, sedentary	677	200- 700	Y	Habitat Image Collection
3723	264	upper slope	Slope	Sedimentary rock, high outcrop, octocorals	683	200- 700	Y	Habitat Image Collection
3614	039	upper slope	slope	Sedimentary rock, high outcrop, crinoids	684	200-700	Y	Habitat Image Collection
3693	217	upper slope	Canyon	Sedimentary rock, High Outcrop, Small encrustors / erect forms	686	200-700	Y	Habitat Image Collection
3694	218	upper slope	Canyon	Sedimentary rock, High Outcrop, Sedentary: e.g. seapens	687	200-700	Y	Habitat Image Collection
3724	265	upper slope	Slope	Sedimentary rock, high outcrop, no fauna	690	200- 700	3	Habitat Image Collection
3725	267	upper slope	Slope	Sedimentary rock, high outcrop, small sponges	692	200- 700	Y	Habitat Image Collection
3635	066	upper slope	canyon	Sedimentary rock, high outcrop, crinoids	694	200- 700	Y	Habitat Image Collection
3726	269	upper slope	Slope	Sedimentary, high outcrop, octocorals	695	200- 700	Y	Habitat Image Collection
3611	034	upper slope	slope	Sedimentary rock, high outcrop, encrustors	696	200- 700	Y	Habitat Image Collection
3727	270	upper slope	Slope	Sedimentary, high outcrop, solitary epifauna	697	200- 700	Y	Habitat Image Collection
3737	293	upper slope	slope	Rock/ biogenic matrix, low outcrop, mixed faunal community	763	200- 700	Y	Habitat Image Collection
3649	128	upper slope	slope	Bryozoan based communities	XX6	200- 700	Y	Habitat Image Collection
#1	TBC	upper slope	slope	Likely: fine seds, subcrop, mixed faunal community (corals)	153	200- 700	Ν	ТВС
#2	TBC	upper slope	slope	Likely: fine seds, low outcrop, mixed faunal community (corals)	173	200- 700	Ν	ТВС
#3	TBC	upper slope	slope	Likely: coarse seds, subcrop, mixed faunal community (corals)	253	200- 700	Ν	TBC
#4	TBC	upper slope	slope	Likely: coarse seds, low outcrop, mixed faunal community (corals)	273	200- 700	N	ТВС
3621	049	mid-slope	slope	Igneous rock, high outcrop, crinoids	594	700- 1500	Y	Habitat Image Collection
3622	050	mid-slope	slope	cobble, debris flow, encrustors	446	700- 1500	Y	Habitat Image Collection
3623	051	mid-slope	slope	cobble, outcrop, no fauna	460	700- 1500	Y	Habitat Image Collection
3624	052	mid-slope	slope	Sedimentary rock, outcrop, octocorals	675	700- 1500	Y	Habitat Image Collection
3625	053	mid-slope	slope	Igneous rock, low outcrop, sedentary	567	700- 1500	Y	Habitat Image Collection
3626	054	mid-slope	slope slope, canyons,	Sedimentary rock, outcrop, crinoids	694	700- 1500	Y	Habitat Image Collection
3627	056	mid-slope	seamounts	Sedimentary rock, outcrop, mixed faunal community	673	700- 1500	Y	Habitat Image Collection
3628	057	mid-slope	slope	fine sediments, subcrop, bioturbators	150	700- 1500	Y	Habitat Image Collection

	ERA Habitat #	Sub-biome	Feature	ERA Habitat type	SGF Score	Depth (m)	Image available	Reference image location
3629	058	mid-slope	slope	cobble, unrippled, small sponges	402	700- 1500	Y	Habitat Image Collection
3630	059	mid-slope	Seamount	Coarse sediments, Highly irregular, Small encrustors / erect forms (including bryozoans)	236	700-1500	Y	Habitat Image Collection
3631	061	mid-slope	slope	fine sediments, irregular, bioturbators	139	700- 1500	Y	Habitat Image Collection
3632	062	mid-slope	slope	coarse sediments, unrippled, octocorals	205	700- 1500	Y	Habitat Image Collection
3633	063	mid-slope	slope	fine sediments, unrippled, octocorals	105	700- 1500	Ŷ	Habitat Image Collection
3634	064	mid-slope	slope	Sedimentary slab and mud boulders, outcrop, crinoids	464	700- 1500	Ŷ	Habitat Image Collection
3645	080	mid-slope	Terrace, Seamount	Sedimentary rock, Low Outcrop, Small encrustors	676	700-1500	Ŷ	Habitat Image Collection
3646	081	mid-slope	seamount	Sedimentary rock, unrippled, no fauna	600	700- 1500	Y	Habitat Image Collection
3647	084	, mid-slope	Canyon, Seamount	Sedimentary rock, Low Outcrop, Sedentary: e.g. seapens	677	700-1500	Y	Habitat Image Collection
3648	085	mid-slope	seamount	Sedimentary rock, unrippled, encrustors	606	700- 1500	Y	Habitat Image Collection
3668	150	mid-slope	slope	coarse sediments, current rippled, no fauna	210	700- 1500	Ν	Habitat Image Collection
3669	151	mid-slope	slope	coarse sediments, current rippled, octocorals	215	700- 1500	Ν	Habitat Image Collection
3670	152	mid-slope	slope	Coarse sediments, current rippled, sedentary	217	700- 1500	Y	Habitat Image Collection
3671	153	mid-slope	slope	coarse sediments, unrippled, no fauna	200	700- 1500	Ν	Habitat Image Collection
3672	154	mid-slope	slope	cobble, debris flow, crinoids	444	700- 1500	Ν	Habitat Image Collection
3673	155	mid-slope	slope	slabs/ boulders, debris flow, octocorals	445	700- 1500	Y	Habitat Image Collection
3674	156	mid-slope	Terrace, Slope	Fine sediments, Unrippled, No fauna	100	700-1500	Y	Habitat Image Collection
3675	157	mid-slope	Slope	Igneous rock, high outcrop, octocoral	595	700-1500	Y	Habitat Image Collection
3676	158	mid-slope	slope	mud, current rippled, bioturbators	019	700- 1500	Ν	Habitat Image Collection
3677	159	mid-slope	Slope	Mud, irregular, bioturbators	039	700-1500	Y	Habitat Image Collection
3678	160	mid-slope	slope	mud, irregular, sedentary	037	700- 1500	Ν	Habitat Image Collection
3679	161	mid-slope	slope	mud, unrippled, small sponges	002	700- 1500	Ν	Habitat Image Collection
3680	163	mid-slope	Terrace, Slope	Sedimentary rock, High Outcrop, Octocorals (gold corals / seawhips)	695	700-1500	Y	Habitat Image Collection
3681	164	mid-slope	slope	Sedimentary rock, subcrop, crinoids	654	700- 1500	Y	Habitat Image Collection
3682	165	mid-slope	Slope	Sedimentary, subcrop, octocoral Coarse sediments, Current rippled / directed scour, Small encrustors /	655	700-1500	Y	Habitat Image Collection
3684	207	mid-slope	Terrace	erect forms (including bryozoans) Coarse sediments, Highly irregular, Mixed faunal community (sponges,	216	700-1500	Y	Habitat Image Collection
3685	208	mid-slope	Seamount	seawhips, ascidians)	233	700-1500	Y	Habitat Image Collection

	ERA Habitat #	Sub-biome	Feature	ERA Habitat type	SGF Score	Depth (m)	Image available	Reference image location
3686	210	mid-slope	Seamount	Cobble/ boulder, Debris flow / rubble banks, Sedentary: e.g. seapens	447	700-1500	Y	Habitat Image Collection
3687	211	mid-slope	Seamount	Igneous / metamorphic rock, Subcrop, Small encrustors	556	700-1500	Y	Habitat Image Collection
3688	212	mid-slope	Seamount	Igneous / metamorphic rock, Subcrop, Sedentary: e.g. seapens	557	700-1500	Y	Habitat Image Collection
3689	213	mid-slope	Seamount	Igneous rock (?), outcrop, octocoral	575	700-1500	Y	Habitat Image Collection
3690	214	mid-slope	Seamount	Igneous / metamorphic rock, Low Outcrop, Small encrustors	576	700-1500	Y	Habitat Image Collection
3691	215	mid-slope	Seamount	Igneous / metamorphic rock, Low Outcrop, Sedentary: e.g. seapens	577	700-1500	Y	Habitat Image Collection
3695	221	mid-slope	Slope	Mud, irregular (bioturbators), crinoids/ featherstars on whip	005	700-1500	Y	Habitat Image Collection
3696	222	mid-slope	Slope	Mud, flat, solitary	007	700-1500	Y	Habitat Image Collection
3698	228	mid-slope	Slope	Fine, unrippled, solitary	107	700-1500	Y	Habitat Image Collection
3699	230	mid-slope	Slope	fine sediments, irregular, no fauna	130	700-1500	Y	Habitat Image Collection
3701	232	mid-slope	Slope	Fine sediments, subcrop, octocorals	155	700-1500	Y	Habitat Image Collection
3709	243	mid-slope	Slope	Gravel, irregular, low encrustings	336	700-1500	2	Habitat Image Collection
3710	244	mid-slope	Slope	Igneous rock/boulder, rubble bank, none	440	700-1500	Y	Habitat Image Collection
3711	245	mid-slope	Slope	boulders and slabs, subcropping, octocorals	455	700-1500	Y	Habitat Image Collection
3713	248	mid-slope	Slope	Igneous rock, rubble bank, no fauna	540	700-1500	Y	Habitat Image Collection
3714	249	mid-slope	Seamount	Igneous rock, rubble bank, octocorals	545	700-1500	Y	Habitat Image Collection
3715	250	mid-slope	Seamount	Igneous rock, low outcrop, no fauna	570	700-1500	Y	Habitat Image Collection
3717	252	mid-slope	Slope	Sedimentary, subcrop, small encrustors	656	700-1500	2	Habitat Image Collection
3718	253	mid-slope	Slope	rock (conglomerate/sedimentary), subcrop, bioturbators	659	700-1500	Y	Habitat Image Collection
3722	262	mid-slope	Slope	sedimentary/mudstone, high outcrop, no fauna	680	700-1500	Y	Habitat Image Collection
3738	294	mid-slope	slope	Fine sediments, unrippled, bioturbators	109	700- 1500	Y	Habitat Image Collection
3739	295	mid-slope	slope	Fine sediments, subcrop, encrustors	156	700- 1500	Y	Habitat Image Collection
3740	296	mid-slope	slope	Coarse sediments, irregular, no fauna	230	700- 1500	Y	Habitat Image Collection
3741	297	mid-slope	slope	Coarse sediments, subcrop, no fauna	250	700- 1500	Y	Habitat Image Collection
3742	298	mid-slope	slope	Coarse sediments, low outcrop, no fauna	260	700- 1500	Y	Habitat Image Collection

Scoping Document S2B2. Pelagic Habitats

A list of the pelagic habitats for the North West Slope Trawl Fishery.

ERAEF Habitat Number	Pelagic Habitat type	Depth (m)	Comments	Reference
Taumber	i clagio i labitat type	Doput (III)	Comments	Reference
P6	North Western Pelagic Province - Oceanic	0 -> 800	this is a compilation of the range covered by Oceanic Community (1) and (2)	dow167A1, A2, A4

Scoping Document S2C1. Demersal communities

In ERAEF, communities are defined as the set of species assemblages that occupy the large scale provinces and biomes identified from national bioregionalisation studies. The biota includes mobile fauna, both vertebrate and invertebrate, but excludes sessile organisms such as corals that are largely structural and are used to identify benthic habitats. The same community lists are used for all fisheries, with those selected as relevant for a particular fishery being identified on the basis of spatial overlap with effort in the fishery. The spatial boundaries for demersal communities are based on IMCRA boundaries for the shelf, and on slope bioregionalisations for the slope (IMCRA 1998; Last *et al.* 2005). The spatial boundaries for the pelagic communities are based on pelagic bioregionalisations and on oceanography (Condie *et al.* 2003; Lyne and Hayes 2004). Fishery and region specific modifications to these boundaries are described in detail in Hobday *et al.* (2007) and briefly outlined in the footnotes to the community Tables below.

Demersar communities in which i		5 4011 11	<u>, , , , , , , , , , , , , , , , , , , </u>	uis mit.			st blope	/ uuwi i	Juonsne	<u> </u>	Siluaca	cons m	ulcule ull c	Jonnina	incles wi		provin		
Demersal community	Cape	North Eastern Transition	North Eastern	Central Eastern Transition	Central Eastern	South Eastern Transition	Central Bass	Tasmanian	Western Tas Transition	Southern	South Western Transition	Central Western	Central Western Transition	North Western	North Western Transition	Timor	Timor Transition	Heard & McDonald Is	Macquarie Is
Inner Shelf 0 – 110m ^{1,2}																			
Outer Shelf 110 – 250m ^{1,2,}																			
Upper Slope 250 – 565m ³														х	x	х			
Mid–Upper Slope 565 – 820m ³														х	х	х			
Mid Slope 820 – 1100m ³														х	х	х			
Lower slope/ Abyssal > 1100m ⁶																			
Reef 0 -110m ^{7, 8}																			
Reef 110-250m ⁸																			
Seamount 0 – 110m																			
Seamount 110- 250m																			
Seamount 250 – 565m																			
Seamount 565 – 820m																			
Seamount 820 – 1100m																			
Seamount 1100 – 3000m																			
Plateau 0 – 110m																			
Plateau 110- 250m ⁴																			
Plateau 250 – 565m ⁴																			
Plateau 565 – 820m ⁵																			
Plateau 820 – 1100m ⁵																			

Demersal communities in which fishing activity occurs in the North West Slope trawl subfishery (x). Shaded cells indicate all communities within the province.

1 Four inner shelf communities occur in the Timor Transition (Arafura, Groote, Cape York and Gulf of Carpentaria) and three inner shelf communities occur in the Southern (Eyre, Eucla and South West Coast). At Macquarie Is: 2inner & outer shelves (0-250m), and 3upper and midslope communities combined (250-1000m). At Heard/McDonald Is: 4outer and upper slope plateau communities combined to form four communities: Shell Bank, inner and outer Heard Plateau (100-500m) and Western Banks (200-500m), 5mid and upper plateau communities combined into 3 trough, southern slope and North Eastern plateau communities (500-1000m), and 6 3 groups at Heard Is: Deep Shell Bank (>1000m), Southern and North East Lower slope/abyssal, 7Great Barrier Reef in the North Eastern Province and Transition and 8 Rowley Shoals in North Western Transition.

Scoping Document S2C2. Pelagic communities

Pelagic communities that overlie the demersal communities in which fishing activity occurs in the North West Slope trawl subfishery (x). Shaded cells indicate all communities that exist in the province.

Province	North Eastern	Eastern	Southern	Western	Northern	North Western	Heard and McDonald Is ²	Macquarie Is
Coastal pelagic 0-200m ^{1,2}								
Oceanic (1) 0 – 600m]							
Oceanic (2) >600m								
Seamount oceanic (1) 0 - 600m								
Seamount oceanic (2) 600-3000m]							
Oceanic (1) 0 – 200m								
Oceanic (2) 200-600m								
Oceanic (3) >600m								
Seamount oceanic (1) 0 - 200m								
Seamount oceanic (2) 200 - 600m								
Seamount oceanic (3) 600-3000m								
Oceanic (1) 0-400m								
Oceanic (2) >400m								
Oceanic (1) 0-800m						х		
Oceanic (2) >800m						х		
Plateau (1) 0-600m								
Plateau (2) >600m								
Heard Plateau 0-1000m ³								
Oceanic (1) 0-1000m								
Oceanic (2) >1000m								
Oceanic (1) 0-1600m								
Oceanic (2) >1600m								

¹ Northern Province has five coastal pelagic zones (NWS, Bonaparte, Arafura, Gulf and East Cape York) and Southern Province has two zones (Tas, GAB). ² At Macquarie Is: coastal pelagic zone to 250m. ³ At Heard and McDonald Is: coastal pelagic zone broadened to cover entire plateau to maximum of 1000m.

2.2.3 Identification of Objectives for Components and Sub-components (Step 3)

Objectives are identified for each sub-fishery for the five ecological components (target, bycatch/byproduct, TEP, habitats, and communities) and sub-components, and are clearly documented. It is important to identify objectives that managers, the fishing industry, and other stakeholders can agree on, and that scientists can quantify and assess. The criteria for selecting ecological operational objectives for risk assessment are that they:

- be biologically relevant;
- have an unambiguous operational definition;
- be accessible to prediction and measurement; and
- that the quantities they relate to be exposed to the hazards.

For fisheries that have completed ESD reports, use can be made of the operational objectives stated in those reports.

Each 'operational objective' is matched to example indicators. **Scoping Document S3** provides suggested examples of operational objectives and indicators. Where operational objectives are already agreed for a fishery (Existing Management Objectives), those should be used (e.g. Strategic Assessment Reports). The objectives need not be exactly specified, with regard to numbers or fractions of removal/impact, but should indicate that an impact in the sub-component is of concern/interest to the sub-fishery. The rationale for including or discarding an operational objective is a crucial part of the table and must explain why the particular objective has or has not been selected for in the (sub) fishery. Only the operational objectives selected for inclusion in the (sub)fishery are used for Level 1 analysis (Level 1 SICA Document L1.1).

Scoping Document S3 Components and Sub-components Identification of Objectives

Table (Note: Operational objectives that are eliminated should be shaded out and a rationale provided as for the retained operational objectives)

Component	Core Objective		Operational	Example Indicators	Rationale
	"What is the general goal?"	As shown in sub- component model diagrams at the beginning of this section.	specifically trying to achieve"	going to use to measure performance"	Rationale flagged as 'EMO' where Existing Management Objective in place, or 'AMO' where there is an existing AFMA Management Objective in place for other Commonwealth fisheries (assumed that squid fishery will fall into
Target Species	Avoid recruitment failure of the target species Avoid negative consequences for species or population sub-components	size	in biomass	Biomass, numbers, density, CPUE, yield	<i>line</i>). 1.1 add in rationale for each objective 1.2 1.3 1.4
		range	2.1 Geographic range of the population, in terms of size and continuity does not change outside acceptable bounds	population across the GAB	2.1
		3. Genetic structure	3.1 Genetic	Frequency of genotypes in the population, effective population size (N _e), number of spawning units	3.1

Component	5	component	Operational	Example Indicators	Rationale
		4. Age/size/sex structure	Age/size/sex structure does not change outside	proportion in age/size/sex classes	4.1
		5.	5.1 Fecundity	Mean size, sex ratio Egg production	5.1 5.2
		e Capacity	population does not change outside acceptable bounds (e.g. more than X% of reference population fecundity) 2 Recruitment to the	of population Abundance of recruits	5.2
			population does not change outside acceptable bounds		
		/Movement	patterns of the population do not change outside	Presence of population across space, movement patterns within the population (e.g. attraction to bait, lights)	6.1
and Bycatch	Avoid recruitment failure of the byproduct and bycatch species Avoid negative consequences for species or population sub-components	1. Population size	1.1 No trend		1.1 1.2 1.3 1.4

component	Core Objective	Sub- component	Example Operational Objectives	Example Indicators	Rationale
		2.	2.1	Presence of	2.1
		Geographic	Geographic	population across	
		range	range of the	space	
		0	population, in	· ·	
			terms of size		
			and continuity		
			does not		
			change		
			outside		
			acceptable		
			bounds		
		3. Genetic		Frequency of	3.1
		structure		genotypes in the	
			not change	population,	
			outside	effective	
			acceptable	population size	
			bounds	(N _e), number of	
				spawning units	
		4.	4.1	Biomass,	4.1
		Age/size/sex		numbers or	
		structure	structure does	relative	
			not change	proportion in	
			outside	age/size/sex	
			acceptable	classes	
				Biomass of	
			more than X%		
			from reference	Mean size, sex	
			structure)	ratio	
		5		001	5.1
		-	of the	of population	
		e Capacity	population	Abundance of	
			does not	recruits	
			change		
			outside		
			acceptable		
			bounds (e.g.		
			more than X%		
			of reference		
			population		
			fecundity)		
			Recruitment		
			to the		
			population		
			does not		
			change		
			outside		
			acceptable		
		(D-h'	bounds	Dragon og -f	<i>c</i> 1
			6.1 Behaviour		6.1
		/Movement	and movement	population across	
				space, movement	
				patterns within	
			not change	the population	
			outside acceptable	(e.g. attraction to bait, lights)	
				near nomest	

		component	Operational Objectives	Example Indicators	Rationale
TEP species	Avoid recruitment failure of TEP species Avoid negative consequences for TEP species or population sub-components Avoid negative impacts on the population from fishing	1. Population size		numbers, density, CPUE, yield	1.1 1.2 1.3 1.4
		Geographic	2.1 Geographic range of the population, in terms of size and continuity does not change outside acceptable bounds	Presence of population across space, i.e. the GAB	2.1
			diversity does not change outside	Frequency of genotypes in the population, effective population size (N _e), number of spawning units	3.1
		structure	Age/size/sex structure does not change outside acceptable bounds (e.g. more than X% from reference	Biomass, numbers or relative proportion in age/size/sex classes Biomass of	4.1

Component	Core Objective	Sub-	Example	Example	Rationale
ponont		component		Indicators	
		5.		Egg production	5.1
		Reproductiv		of population	
		e Capacity	population	Abundance of	
				recruits	
			change		
			outside		
			acceptable		
			bounds (e.g.		
			more than X%		
			of reference		
			population		
			fecundity)		
			Recruitment		
			to the		
			population		
			does not		
			change		
			outside		
			acceptable		
			bounds		
		Behaviour	6.1 Behaviour		6.1
		/Movement		population across	
				space, movement	
				patterns within	
				the population	
				(e.g. attraction to	
			acceptable	bait, lights)	
			bounds		
		7.			7.1
		Interactions		species after	7.2
		with fishery	interactions is maximised	interactions	
				Number of	
			7.2	interactions,	
			Interactions	biomass or	
			do not affect	numbers in	
			the viability of	population	
			the population		
			or its ability to		
			recover		
Iabitats		1. Water		Water chemistry,	1.1
	the environment	quality		noise levels,	
				debris levels,	
	Avoid reduction in the amount and quality			turbidity levels,	
	of habitat		1	pollutant	
				concentrations,	
				light pollution	
				from artificial	
		- + ·		light	0.1
		2. Air	2.1 Air quality		2.1
		quality		noise levels,	
				visual pollution,	
				pollutant	
				concentrations,	
				light pollution	
				from artificial	
	1		1	light	1

Component	Core Objective	Sub-	Example	Example	Rationale
•	5			Indicators	
			Objectives		
				Sediment	3.1
		quality		chemistry,	
				stability, particle	
				size, debris,	
			1	pollutant	
		4 11 1 1 1	bounds	concentrations	4.1
					4.1
				of habitat types,	
				% cover, spatial pattern.	
				landscape scale	
			acceptable	landscape scale	
			bounds		
				Size structure,	5.1
		structure and		species	5.1
		function	condition of	composition and	
				morphology of	
			• •	biotic habitats	
			outside		
			acceptable		
			bounds		
	Avoid negative impacts on the	1. Species	1.1 Species	Species	1.1
	composition/function/distribution/structur	composition	composition	presence/absence	
	e of the community		of	, species numbers	
			communities	or biomass	
			does not vary	(relative or	
				absolute)	
			1	Richness	
				Diversity indices	
				Evenness indices	
			2.1 Functional		2.1
			0 1	functional .	
		composition		groups, species	
				per functional	
			change outside	group	
				(e.g. autotrophs,	
			·	filter feeders, herbivores,	
				omnivores,	
				carnivores)	
		3.	3.1	Geographic range	3.1
				of the	5.1
			range does not		
				continuity of	
				range, patchiness	
			bounds	0.11	
		4.		Size spectra of	4.1
			Community	the community	
		structure		Number of	
			spectra/trophi	octaves,	
				Biomass/number	
				in each size class	
				Mean trophic	
			acceptable	level	
				Number of	
				trophic levels	
			5.1 Cycles do		5.1
				cycles, salinity,	
		chemical	outside	carbon, nitrogen,	
			acceptable bounds	phosphorus flux	

2.2.4 Hazard Identification (Step 4)

Hazards are the activities undertaken in the process of fishing, and any external activities, which have the potential to lead to harm.

The effects of fishery/sub-fishery specific hazards are identified under the following categories:

- capture
- direct impact without capture
- addition/movement of biological material
- addition of non biological material
- disturbance of physical processes
- external hazards

These fishing and external activities are scored on a presence/absence basis for each fishery/sub-fishery. An activity is scored as a zero if it does not occur and as a one if it does occur. The rationale for the scoring is also documented in detail and must include if/how the activity occurs and how the hazard may impact on organisms/habitat.

Scoping Document S4. Hazard Identification Scoring Sheet

This table is completed once for each sub-fishery. **Table 4** provides a set of examples of fishing activities for the effects of fishing to be used as a guide to assist in scoring the hazards.

Fishery Name: North West Slope Trawl Fishery Sub-fishery Name: Date: October 2005

Direct impact of Fishing	Fishing Activity	Score (0/1)	Documentation of Rationale
Capture	Bait collection	0	Bait collection is not required for methods used
	Fishing	1	Industry is based on the capture of marine animals.
	Incidental behaviour	1	Recreational fishing such as trolling may occur.
Direct impact	Bait collection	0	Bait collection is not required for methods used
without capture	Fishing	1	Organisms may be damaged or destroyed directly by contact with trawling gear or indirectly through ecosystem alteration.
	Incidental behaviour	1	Recreational fishing such as trolling may occur, some animals may escape without being landed, and later die.
	Gear loss	1	Fragments of trawl mesh damaged by certain substrates may cause damage or destroy marine organisms through direct contact, possible digestion and incidental capture (ghost fishing).
	Anchoring/	0	Vessels operating in the fishery do not anchor or
	mooring		moor in the fishing grounds.
	Navigation/stea ming	1	Direct impacts, without capture on organisms may occur while navigating/steaming.
Addition/	Translocation of	1	Hull fouling may translocate organisms within
movement of	species		sub-habitats of the NWSTF and between
biological material	(boat launching,		fisheries by vessels with permits in multiple
	reballasting)		fisheries (e.g. Northern Prawn Fishery).
	On board	1	Discards are returned to the ocean and may
	processing		result in the movement of biological material.
	Discarding catch	1	Unwanted catch is discarded at sea.
	Stock	0	The fishery depends solely on natural stock
	enhancement	0	levels.
	Provisioning	0	Bait or burley is not used in the fishery.
	Organic waste	1	Organic wastes such as food scraps and sewage
	disposal	1	are disposed of at sea.
Addition of non- biological material	Debris	1	Incidental discarding of material (cardboard, plastic, rope) may occur.
biological material	Chemical	1	Chemicals may be introduced to the water
	pollution	1	during vessel maintenance at sea. Emissions may
	Politicion		also occur during the operation of the vessel.
	Exhaust	1	Exhaust may by introduced to the atmosphere
	Gear loss	1	and water during vessel operation.
		1	Trawl mesh may be introduced to the water if damaged by rough substrates.
			damaged by fough substrates.

Direct impost	Fishing	Score	Documentation of Rationale
Direct impact	0		Documentation of Kationale
of Fishing	Activity Navigation/ steaming	(0/1) 1	Operation of a vessel will add noise and visual stimuli (e.g. light) to the surrounds. Echo-
	steaming		sounders used to locate suitable fishing grounds may also disrupt other species such as whales. Potential boat collisions may result in the
			sinking of vessels.
	Activity/ presence on	1	The operation and presence of a vessel will add noise and visual stimuli (e.g. light) to the
Disturb physical	water Bait collection	0	environment. Bait collection is not required for methods used
processes	Fishing	1	In operation, trawl gear may disturb water flow patterns and sediments when nets are dragged the along the seafloor.
	Boat launching	0	Vessels entering the fishery are from established ports.
	Anchoring/ mooring	0	Vessels operating in the fishery do not anchor or moor in the fishing grounds.
	Navigation/ steaming	1	Navigation/steaming may affect physical processes in the pelagic zone by generating turbulence and wash.
External Hazards (specify the particular example within each activity area)	Other capture fishery methods	1	Other Commonwealth fisheries and Western Australian State fisheries fish in overlapping areas. These are listed in the Scoping Document.
activity area)	Aquaculture	0	No aquaculture activities occur within the waters of NWSTF.
	Coastal development	0	The NWSTF extends from the 200 m isobath out to the edge of the AFZ. The distance from the coast means that coastal developments (e.g. runoff) would have little impact on the fishery.
	Other extractive activities	1	According to a Geoscience report as of March 2003, 59 exploration permits, 9 retention leases and 1 production license overlapped with the NWSTF
	Other non- extractive activities	1	Major ports in Western Australian service shipping channels throughout the Indian ocean. The main ports include:
			 The Pilbara ports of Dampier, Port Hedland and Cape Lambert are import mineral and gas exports. Bunbury, Esperance and Geraldton also handle mineral exports in addition to grain and manufactured goods Fremantle is the State's main general cargo and container port
	Other anthropogenic activities	1	Offshore reefs in the NWSTF are used for recreational activities such as fishing diving. Impacts may occur by boats in transit to the reefs.

Table 4. Examples of fishing activities.

(Modified from Fletcher *et al.* 2002)

Direct Impact of Fishing	Fishing Activity	Examples of Activities Include
Capture		Activities that result in the capture or removal of organisms. This includes cryptic mortality due to organisms being caught but dropping out prior to the gear's retrieval (i.e. They are caught but not landed)
	Bait collection	Capture of organisms due to bait gear deployment, retrieval and bait fishing. This includes organisms caught but not landed.
	Fishing	Capture of organisms due to gear deployment, retrieval and actual fishing. This includes organisms caught but not landed.
	Incidental behaviour	Capture of organisms due to crew behaviour incidental to primary fishing activities, possible in the crew's down time; e.g. crew may line or spear fish while anchored, or perform other harvesting activities, including any land-based harvesting that occurs when crew are camping in their down time.
Direct impact, without capture		This includes any activities that may result in direct impacts (damage or mortality) to organisms without actual capture.
	Bait collection	Direct impacts (damage or mortality) to organisms due to interactions (excluding capture) with bait gear during deployment, retrieval and bait fishing. This includes: damage/mortality to organisms through contact with the gear that doesn't result in capture, e.g. Damage/mortality to benthic species by gear moving over them, organisms that hit nets but aren't caught.
	Fishing	Direct impacts (damage or mortality) to organisms due to interactions (excluding capture) with fishing gear during deployment, retrieval and fishing. This includes: damage/mortality to organisms through contact with the gear that doesn't result in capture, e.g. Damage/mortality to benthic species by gear moving over them, organisms that hit nets but are not caught.
	Incidental behaviour	Direct impacts (damage or mortality) without capture, to organisms due to behaviour incidental to primary fishing activities, possibly in the crew's down time; e.g. the use of firearms on scavenging species, damage/mortality to organisms through contact with the gear that the crew use to fish during their down time. This does not include impacts on predator species of removing their prey through fishing.
	Gear loss	Direct impacts (damage or mortality), without capture on organisms due to gear that has been lost from the fishing boat. This includes damage/mortality to species when the lost gear contacts them or if species swallow the lost gear.
	Anchoring/ mooring	Direct impact (damage or mortality) that occurs and when anchoring or mooring. This includes damage/mortality due to physical contact of the anchor, chain or rope with organisms, e.g. An anchor damaging live coral.
	Navigation/ steaming	Direct impact (damage or mortality) without capture may occur while vessels are navigating or steaming. This includes collisions with marine organisms or birds.
Addition/ movement of biological material		Any activities that result in the addition or movement of biological material to the ecosystem of the fishery.
	Translocation of species (boat	The translocation and introduction of species to the area of the fishery, through transportation of any life stage. This transport can occur through movement on boat hulls or in ballast water as boats move throughout the fishery or from outside areas into

Direct Impact of Fishing	Fishing Activity	Examples of Activities Include
	movements, reballasting)	the fishery.
	On board processing	The discarding of unwanted sections of target after on board processing introduces or moves biological material, e.g. heading and gutting, retaining fins but discarding trunks.
		The discarding of unwanted organisms from the catch can introduce or move biological material. This includes individuals of
	Discarding catch	target and byproduct species due to damage (e.g. shark or marine mammal predation), size, high grading and catch limits. Also includes discarding of all non-retained bycatch species. This also includes discarding of catch resulting from incidental fishing by the crew. The discards could be alive or dead.
	Stock enhancement	The addition of larvae, juveniles or adults to the fishery or ecosystem to increase the stock or catches.
	Provisioning	The use of bait or burley in the fishery.
	Organic waste disposal	The disposal of organic wastes (e.g. food scraps, sewage) from the boats.
Addition of non- biological material		Any activities that result in non-biological material being added to the ecosystem of the fishery, this includes physical debris, chemicals (in the air and water), lost gear, noise and visual stimuli.
	Debris	Non-biological material may be introduced in the form of debris from fishing vessels or mother ships. This includes debris from the fishing process: e.g. cardboard thrown over from bait boxes, straps and netting bags lost. Debris from non-fishing activities can also contribute to this e.g. Crew rubbish – discarding or food scraps, plastics or other rubbish. Discarding at sea is regulated by MARPOL, which forbids the discarding of plastics.
	Chemical pollution	Chemicals can be introduced to water, sediment and atmosphere through: oil spills, detergents other cleaning agents, any chemicals used during processing or fishing activities.
	Exhaust	Exhaust can be introduced to the atmosphere and water through operation of fishing vessels
	Gear loss	The loss of gear will result in the addition of non-biological material, this includes hooks, line, sinkers, nets, otter boards, light sticks, buoys etc.
	Navigation /steaming	The navigation and steaming of vessels will introduce noise and visual stimuli into the environment. Boat collisions and/or sinking of vessels. Echo-sounding may introduce noise that may disrupt some species (e.g. whales, orange roughy)
	Activity /presence on water	The activity or presence of fishing vessels on the water will noise and visual stimuli into the environment.
Disturb physical processes		Any activities that will disturb physical processes, particularly processes related to water movement or sediment and hard substrate (e.g. boulders, rocky reef) processes.
	Bait collection	Bait collection may disturb physical processes if the gear contacts seafloor-disturbing sediment, or if the gear disrupts water

Direct Impact of Fishing	Fishing Activity	Examples of Activities Include
		flow patterns.
	Fishing	Fishing activities may disturb physical processes if the gear contacts seafloor-disturbing sediment, or if the gear disrupts water flow patterns.
	Boat launching	Boat launching may disturb physical processes, particularly in the intertidal regions, if dredging is required, or the boats are dragged across substrate. This would also include foreshore impacts where fishers drive along beaches to reach fishing locations and launch boats. Impacts of boat launching that occurs within established marinas are outside the scope of this assessment.
	Anchoring /mooring	Anchoring/mooring may affect the physical processes in the area that anchors and anchor chains contact the seafloor.
	Navigation /steaming	Navigation /steaming may affect the physical processes on the benthos and the pelagic by turbulent action of propellers or wake formation.
External hazards		Any outside activities that will result in an impact on the component in the same location and period that the fishery operates. The particular activity as well as the mechanism for external hazards should be specified.
	Other capture fishery methods	Take or habitat impact by other commercial, indigenous or recreational fisheries operating in the same region as the fishery under examination
	Aquaculture	Capture of feed species for aquaculture. Impacts of cages on the benthos in the region
	Coastal development	Sewage discharge, ocean dumping, agricultural runoff
	Other extractive activities	Oil and gas pipelines, drilling, seismic activity
	Other non- extractive activities	Defense, shipping lanes, dumping of munitions, submarine cables
	Other anthropogenic activities	Recreational activities, such as scuba diving leading to coral damage, power boats colliding with whales, dugongs, turtles. Shipping, oil spills

2.2.5 Bibliography (Step 5)

All references used in the scoping assessment are included in the References section.

Key documents can be found on the AFMA web page at <u>www.afma.gov.au</u> and include the following:

- Assessment Report
- Management Plan
- Management Regulations
- Management Plan and Regulation Guidelines
- AFMA At a glance web page

http://www.afma.gov.au/fisheries/etbf/at_a_glance.php

- Bycatch Action Plans
- Data Summary Reports (logbook and observer)

Other publications that may provided information include

- BRS Fishery Status Reports
- Strategic Plans

2.2.6 Decision rules to move to Level 1(Step 6)

Any hazards that are identified at Step 4 Hazard Identification as occurring in the fishery are carried forward for analysis at Level 1.

In this case, 18 out of 26 possible internal activities were identified as occurring in this fishery. Four out of 6 external activities were identified. Thus, a total of 22 activity-component scenarios will be considered at Level 1. This results in 110 total scenarios (of 160 possible) to be developed and evaluated using the unit lists (species, habitats, communities).

2.3 Level 1 Scale, Intensity and Consequence Analysis (SICA)

Level 1 aims to identify which hazards lead to a significant impact on any species, habitat or community. Analysis at Level 1 is for whole components (target; bycatch and byproduct; TEP species; habitat; and communities), not individual sub-components. Since Level 1 is used mainly as a rapid screening tool, a "worst case" approach is used to ensure that elements screened out as low risk (either activities or components) are genuinely low risk. Analysis at Level 1 for each component is accomplished by considering the most vulnerable sub-component and the most vulnerable unit of analysis (e.g. most vulnerable species, habitat type or community). This is known as credible scenario evaluation (Richard Stocklosa e-systems Pty Ltd (March 2003) Review of CSIRO Risk Assessment Methodology: ecological risk assessment for the effects of fishing) in conventional risk assessment. In addition, where judgments about risk are uncertain, the highest level of risk that is still regarded as plausible is chosen. For this reason, the measures of risk produced at Level 1 cannot be regarded as absolute.

At Level 1 each fishery/sub-fishery is assessed using a scale, intensity and consequence analysis (SICA). SICA is applied to the component as a whole by choosing the most vulnerable sub-component (linked to an operational objective) and most vulnerable unit of analysis. The rationale for these choices must be documented in detail. These steps are outlined below. Scale, intensity, and consequence analysis (SICA) consists of thirteen steps. The first ten steps are performed for each activity and component, and correspond to the columns of the SICA table. The final three steps summarise the results for each component.

- Step1: Record the hazard identification score (absence (0) presence (1) scores) identified at step 3 at the scoping level (Scoping Document S3) onto the SICA table
- Step 2: Score spatial scale of the activity
- Step 3: Score temporal scale of the activity
- Step 4: Choose the sub-component most likely to be affected by activity
- Step 5: Choose the most vulnerable unit of analysis for the component e.g. species, habitat type or community assemblage
- Step 6: Select the most appropriate operational objective
- Step 7: Score the intensity of the activity for that sub-component
- Step 8: Score the consequence resulting from the intensity for that sub component
- Step 9: Record confidence/uncertainty for the consequence scores
- Step 10. Document rationale for each of the above steps
- Step 11. Summary of SICA results
- Step 12. Evaluation/discussion of Level 1
- Step 13. Components to be examined at Level 2

2.3.1 Record the hazard identification score (absence (0) presence (1) scores) identified at step 3 in the scoping level onto the SICA Document (Step 1)

Record the hazard identification score absence (0) presence (1) identified at Step 3 at the scoping level onto the SICA sheet. A separate sheet will be required for each component (target, bycatch and byproduct, and TEP species, habitat, and communities). Only those activities that scored a 1 (presence) will be analysed at Level 1

2.3.2 Score spatial scale of activity (Step 2)

The greatest spatial extent must be used for determining the spatial scale score for each identified hazard. For example, if fishing (e.g. capture by longline) takes place within an area of 200 nm by 300 nm, then the spatial scale is scored as 4. The score is then recorded onto the SICA Document and the rationale documented.

Spatial scale score of activity

<1 nm:	1-10 nm:	10-100 nm:	100-500 nm:	500-1000 nm:	>1000 nm:
1	2	3	4	5	6

Maps and graphs may be used to supplement the information (e.g. sketches of the distribution of the activity relative to the distribution of the component) and additional notes describing the nature of the activity should be provided. The spatial scale score at Step 2 is not used directly, but the analysis is used in making judgments about level of intensity at Step 7. Obviously, two activities can score the same with regard to spatial scale, but the intensity of each can differ vastly. The reasons for the score are recorded in the rationale column of the SICA spreadsheet.

2.3.3 Score temporal scale of activity (Step 3)

The highest frequency must be used for determining the temporal scale score for each identified hazard. If the fishing activity occurs daily, the temporal scale is scored as 6. If oil spillage occurs about once per year, then the temporal scale of that hazard scores a 3. The score is then recorded onto the SICA Document and the rationale documented.

Temporal scale score of activity

Decadal (1 day every 10 years or so)	Every several years (1 day every several years)	Annual (1-100 days per year)	Quarterly (100-200 days per year)	Weekly (200-300 days per year)	Daily (300-365 days per year)
1	2	3	4	5	6

It may be more logical for some activities to consider the aggregate number of days that an activity occurs. For example, if the activity "fishing" was undertaken by 10 boats during the same 150 days of the year, the score is 3. If the same 10 boats each spend 30 non-overlapping days fishing, the temporal scale of the activity is a sum of 300 days, indicating that a score of 6 is appropriate. In the case where the activity occurs over many days, but only every 10 years, the number of days by the number of years in the cycle is used to determine the score. For example, 100 days of an activity every 10 years averages to 10 days every year, so that a score of 3 is appropriate.

The temporal scale score at Step 3 is not used directly, but the analysis is used in making judgments about level of intensity at Step 7. Obviously, two activities can score the same with regard to temporal scale, but the intensity of each can differ vastly. The reasons for the score are recorded in the rationale column.

2.3.4 Choose the sub-component most likely to be affected by activity (Step 4)

The most vulnerable sub-component must be used for analysis of each identified hazard. This selection must be made on the basis of expected highest potential risk for each 'direct impact of fishing' and 'fishing activity' combination, and recorded in the 'sub-component' column of the SICA Document. The justification is recorded in the rationale column.

2.3.5 Choose the unit of analysis most likely to be affected by activity and to have highest consequence score (Step 5)

The most vulnerable 'unit of analysis' (i.e. most vulnerable species, habitat type or community) must be used for analysis of each identified hazard. The species, habitats, or communities (depending on which component is being analysed) are selected from **Scoping Document S2** (A - C). This selection must be made on the basis of expected highest potential risk for each 'direct impact of fishing' and 'fishing activity' combination, and recorded in the 'unit of analysis' column of the SICA Document. The justification is recorded in the rationale column.

2.3.6 Select the most appropriate operational objective (Step 6)

To provide linkage between the SICA consequence score and the management objectives, the most appropriate operational objective for each sub-component is chosen. The most relevant operational objective code from **Scoping Document S3** is recorded in the 'operational objective' column in the SICA document. Note that SICA can only be performed on operational objectives agreed as important for the (sub) fishery during scoping and contained in **Scoping Document S3**. If the SICA process identifies reasons to include sub-components or operational objectives that were previously not included/eliminated then these sub-components or operational objectives must be re-instated.

2.3.7 Score the intensity of the activity for the component (Step 7)

The score for intensity of an activity considers the direct impacts in line with the categories shown in the conceptual model (**Figure 2**) (capture, direct impact without capture, addition/movement of biological material, addition of non-biological material, disturbance to physical processes, external hazards). The intensity of the activity is judged based on the scale of the activity, its nature and extent. Activities are scored as per intensity scores below.

Level	Score	Description
Negligible	1	remote likelihood of detection at any spatial or temporal scale
Minor	2	occurs rarely or in few restricted locations and detectability even
		at these scales is rare
Moderate	3	moderate at broader spatial scale, or severe but local
Major	4	severe and occurs reasonably often at broad spatial scale
Severe	5	occasional but very severe and localized or less severe but
		widespread and frequent
Catastrophic	6	local to regional severity or continual and widespread

Intensity score of activity (Modified from Fletcher et al. 2002)

This score is then recorded on the Level 1 (SICA) Document and the rationale documented.

2.3.8 Score the consequence of intensity for that component (Step 8)

The consequence of the activity is a measure of the likelihood of not achieving the operational objective for the selected sub-component and unit of analysis. It considers the flow on effects of the direct impacts from Step 7 for the relevant indicator (e.g. decline in biomass below the selected threshold due to direct capture). Activities are scored as per consequence scores below. A more detailed description of the consequences at each level for each component (target, bycatch and byproduct, TEP species, habitats, and communities) is provided as a guide for scoring the consequences of the activities in the description of consequences table (see **Table 5** Appendix B).

Level	Score	Description
Negligible	1	Impact unlikely to be detectable at the scale of the stock/habitat/community
Minor	2	Minimal impact on stock/habitat/community structure or dynamics
Moderate	3	Maximum impact that still meets an objective (e.g. sustainable level of
		impact such as full exploitation rate for a target species).
Major	4	Wider and longer term impacts (e.g. long-term decline in CPUE)
Severe	5	Very serious impacts now occurring, with relatively long time period likely
		to be needed to restore to an acceptable level (e.g. serious decline in
		spawning biomass limiting population increase).
Intolerable	6	Widespread and permanent/irreversible damage or loss will occur-unlikely
		to ever be fixed (e.g. extinction)

Consequence score for ERAEF activities (Modified from Fletcher et al. 2002).

The score should be based on existing information and/or the expertise of the risk assessment group. The rationale for assigning each consequence score must be documented. The conceptual model may be used to link impact to consequence by showing the pathway that was considered. In the absence of agreement or information, the highest score (worst case scenario) considered plausible is applied to the activity.

2.3.9 Record confidence/uncertainty for the consequence scores (Step 9)

The information used at this level is qualitative and each step is based on expert (fishers, managers, conservationists, scientists) judgment. The confidence rating for the consequence score is rated as 1 (low confidence) or 2 (high confidence) for the activity/component. The score is recorded on the SICA Document and the rationale documented. The confidence will reflect the levels of uncertainty for each score at steps 2, 3, 7 and 8.

Description of Confidence scores for Consequences. The confidence score appropriate to the
rationale is used, and documented on the SICA Document.

Confidence	Score	Rationale for the confidence score
Low	1	Data exists, but is considered poor or conflicting
		No data exists
		Disagreement between experts
High	2	Data exists and is considered sound
		Consensus between experts
		Consequence is constrained by logical consideration

2.3.10 Document rationale for each of the above steps (Step 10)

The rationale forms a logical pathway to the consequence score. It is provided for each choice at each step of the SICA analysis

2.3.1 Level 1 (SICA) Documents L1.1 - Target Species Component

SICA steps 1-10. Tables of descriptions of consequences for each component and each sub component provide a guide for scoring the level of consequence (see Table above)

Direct impact of Fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (from \$2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence score (1-2)	Rationale
Capture	Bait collection	0									
	Fishing	1	5	4	Population size	velvet scampi	1.1	3	3	1	Fishery spans 11 degrees of latitude - spatial scale is 660 nm => Fishing occurs between 100-200 days per year =>Scampi are long- living and slow-growing with low fecundity, and do not disperse widely. Velvet scampi is the main target species, and catch rates have declined (Lynch and Garvey 2005) => intensity moderate as fishing grounds are thought to be fully exploited => consequence moderate as stocks likely to be at full exploitation rate => confidence low as no fishery independent surveys to confirm trends
	Incidental behaviour	1	5	3	Population size	none		1	1	2	Recreational trolling is unlikely to affect deepwater target species
Direct impact	Bait collection	0									
without capture	Fishing	1	5	4	Population size	giant red prawn	1.1	2	2	1	Juvenile prawns may be too small to be captured but damaged by passing through the net, as they are fragile => intensity minor as little targeting of prawns has occurred in recent years => consequence minor as not likely to have impact on population size=> confidence low due to lack of information
	Incidental behaviour	1	5	4		none		1	1	2	Recreational trolling is unlikely to affect deepwater target species
	Gear loss	1	5	3	Behaviour/movement	velvet scampi	6.1	1	1	2	Lost nets may form a movement barrier to bottom-dwelling scampi - scampi more likely to be affected than more mobile prawns => intensity negligible => consequence negligible as any impact is unlikely to be detectable => confidence high by logic.
	Anchoring/ mooring	0									

Direct impact of Fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (from \$2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence score (1-2)	Rationale
	Navigation/ steaming	1	5	4	Behaviour/movement	giant red prawn	6.1	1	1	2	Prawns more likely to be affected by vessel navigation/steaming than bottom-dwelling scampi, as they rise to mid-water at night => intensity negligible as few vessels currently operating in the fishery => consequence negligible as prawns migrate to mid-water at night, not surface, so unlikely to suffer direct impact => confidence high due to logic
Addition/ movement of biological material	Translocation of species	1	5	4	Reproductive capacity	giant red prawn	5.1	2	2	1	Hull fouling may translocate organisms within sub-habitats of the WTF and between fisheries by vessels with permits in multiple fisheries (e.g. Northern Prawn Fishery) => intensity minor as potential pests from Northern Prawn Fishery unlikely to survive during long steaming time between fisheries=> consequence minor => confidence low due to lack of information
	On board processing	1	5	4	Behaviour/movement	velvet scampi	6.1	2	1	1	Small scampi are tailed onboard. Discarded organic matter sinking to the benthos may alter the abundance of detrital food available to crustaceans. This may result in increased movement of deepwater scampi and other crustaceans into the area => intensity minor as detectability rare => consequence negligible as impact unlikely to be detectable => confidence low due to lack of data
	Discarding catch	1	5	4	Behaviour/movement	velvet scampi	6.1	2	1	1	Discards sinking to the benthos may alter the abundance of detrital food available to crustaceans. This may result in increased movement of deepwater scampi into the area => intensity minor as detectability rare => consequence negligible as impact unlikely to be detectable => confidence low due to lack of data
	Stock enhancement	0									
	Provisioning	0									
	Organic waste disposal	1	5	4	Behaviour/movement	velvet scampi	6.1	1	1	2	Discards sinking to the benthos may alter the abundance of detrital food available to crustaceans. This may result in increased movement of deepwater scampi into the area => intensity negligible as few vessels in the fishery => consequence negligible as impact unlikely to be detectable => confidence high due to logic
Addition of non- biological material	Debris	1	5	4	Behaviour/movement	velvet scampi	6.1	1	1	2	Debris may form a movement barrier to bottom-dwelling scampi - scampi more likely to be affected than more mobile prawns => intensity negligible as debris is negligible => consequence negligible => confidence high by logic

Direct impact of Fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (from S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence score (1-2)	Rationale
	Chemical pollution	1	5	4	Reproductive capacity	velvet scampi	5.2	1	1	2	Scampi may consume contaminated detritus. Chemical pollutants that filter down to the benthos are likely to enter this trophic level as a first impact => intensity negligible as chemical pollutants introduced by fishery are negligible => consequence is negligible => confidence high due to logic.
	Exhaust	1	5	4	Population size	giant red prawn	1.1	1	1	2	Most exhaust enters the atmosphere, or immediately below the water from engines. Dissolved gases and particulates not believed to be of consequence to benthic/mid-water target species. Confidence high due to logical consideration
	Gear loss	1	5	3	Behaviour/movement	velvet scampi	6.1	1	1	2	Lost nets may form a movement barrier to bottom-dwelling scampi - scampi more likely to be affected than more mobile prawns => intensity negligible as little gear is lost=> consequence negligible as any impact is unlikely to be detectable => confidence high by logic.
	Navigation/ steaming	1	5	4	Behaviour/movement	giant red prawn	6.1	1	1	2	Prawns more likely to be affected by noise from vessel navigation/steaming than bottom-dwelling scampi, as they rise to mid-water at night => intensity negligible as few vessels currently operating in the fishery => consequence negligible as prawns migrate to mid-water at night, not surface, so unlikely be disturbed by vessel noise => confidence high due to logic
	Activity/ presence on water	1	5	4	Behaviour/movement	giant red prawn	6.1	1	1	2	Prawns more likely to be affected vessel activity than bottom- dwelling scampi, as they rise to mid-water at night => intensity negligible as few vessels currently operating in the fishery => consequence negligible as prawns migrate to mid-water at night, not surface, so unlikely be disturbed by vessel activity => confidence high due to logic
Disturb physical processes	Bait collection Fishing	0	5	4	Population size	velvet scampi	1.1	3	3	1	Juvenile scampi are likely to inhabit the same grounds as adult stocks. They are not caught by trawling but destruction of burrows and disturbance of sediment by trawling may result in a significant mortality of pre-recruit age classes (Phillips 1992)=> intensity moderate as fishing has been confined to relatively small areas within the NWS => consequence moderate as stocks likely to be at full exploitation => confidence low due to lack of information
	Boat launching Anchoring/ mooring	0 0									

Direct impact of Fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (from S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence score (1-2)	Rationale
	Navigation/stea ming	1	5	4	Behaviour/movement	giant red prawn	6.1	1	1	2	Prawns more likely to be affected by disturbance of physical processes from vessel navigation/steaming than bottom-dwelling scampi, as they rise to mid-water at night => intensity negligible as few vessels currently operating in the fishery => consequence negligible as prawns migrate to mid-water at night, not surface, so unlikely be disturbed => confidence high due to logic
External hazards (specify the	Other fisheries	1	5	4	Population size	scampi	1.1	2	2	1	The WDWTF also catches scampi, but species are not identified, and it is is not known if they are the same stocks as those exploited in the NWSTF.
particular	Aquaculture	0									
example within each	Coastal development	0									
activity area)	Other extractive activities	1	3	4	Population size	scampi	1.1	3	2	1	Oil drilling will dramatically impact on the benthos and may result in deleterious effects to localised grounds. => intensity moderate as impact is occasional but severe and localised => consequence minor as local populations unlikely to be severely affected => confidence low due to lack of information
	Other non extractive activities	1	3	3	Population size	scampi	1.1	2	2	1	Seismic activity has the potential to affect local populations of scampi => intensity minor as occurs in restricted locations => consequence minor as effect is not expected to be long-lasting => confidence low due to lack of information
	Other anthropogenic activities	1	5	4	Population size	scampi	1.1	1	1	2	There are few other anthropogenic activities in the area that have the potential to affect target species

Direct impact of Fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (from S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence score (1-2)	Rationale
Capture	Bait collection	0									
	Fishing	1	5	4	Population size	squid	1.1	2	2	1	Squid are the most important byproduct in the NWSTF in terms of tonnage and value. => intensity minor as squid is taken intermittently in small and variable volumes => consequence minor as small catch is unlikely to impact stock which is productive => confidence low as no formal assessments, and species are not identified in logbooks
	Incidental behaviour	1	5	3	Population size	sea perch	1.1	1	1	2	Crew may handline for fish when sheltering from bad weather => intensity negligible as occurs rarely => consequence negligible as catch would be very low => confidence high due to logic
Direct impact	Bait collection	0									
without capture	Fishing	1	5	4	Population size	spiny lobsters	1.1	1	1	2	Spiny lobsters may be damaged by impact with net => intensity negligible as remote likelihood of detection => consequence negligible => confidence high due to logic
	Incidental behaviour	1	5	4	Population size	sea perch	1.1	1	1	2	Crew may handline for fish when sheltering from bad weather => intensity negligible as occurs rarely => consequence negligible as catch would be very low => confidence high due to logic
	Gear loss	1	5	3	Behaviour/movement	bugs	6.1	1	1	2	Lost nets may form a movement barrier to bottom-dwelling bugs => intensity negligible as little gear is lost=> consequence negligible as any impact is unlikely to be detectable => confidence high by logic.
	Anchoring/ mooring	0									
	Navigation/ steaming	1	5	4	Behaviour/movement	sharks	6.1	1	1	2	Direct impact from navigation/steaming unlikely to affect any byproduct/bycatch species
Addition/ movement of biological material	Translocation of species	1	5	4	Reproductive capacity	red carid	5.1	1	1	1	Hull fouling may translocate organisms within sub-habitats of the WTF and between fisheries by vessels with permits in multiple fisheries (e.g. Northern Prawn Fishery) => intensity negligible as potential pests from Northern Prawn Fishery unlikely to survive during long steaming time between fisheries=> consequence negligible => confidence low due to lack of information
	On board processing	1	5	4	Behaviour/movement	Sharks	6.1	1	1	1	Some scampi are tailed. If tails thrown overboard this could attract scavenging species, however consequences are considered negligible. Confidence high due to small amount of material thrown overboard.

2.3.1 Level 1 (SICA) Documents L1.2 - Byproduct and Bycatch Component

Direct impact of Fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (from S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence score (1-2)	Rationale
	Discarding catch	1	5	4	Behaviour/movement	Sharks	6.1	2	2	1	Discarding of catch could attract scavenging species, however consequences are considered minor as time to return to original behaviour is on scale of days to weeks. Confidence low due to lack of information on scavenging behaviour.
	Stock enhancement	0									
	Provisioning Organic waste disposal	0	5	4	Behaviour/movement	Sharks	6.1	1	1	2	Organic waste disposal can attract species, however the limited volume of food from such sources and the area over which such an event occurs is negligible. Consequence also negligible. Confidence high due to logic.
Addition of non- biological material	Debris	1	5	4	Population size	Sharks	1.1	1	1	2	Debris lost from boats is considered to be of negligible intensity. If ingested by animals, could lead to death; however death by such events considered to have negligible consequences for population sizes. Confidence high due to logical consideration.
	Chemical pollution	1	5	4	Reproductive capacity	Sharks	5.1	1	1	2	Heavy metals from antifouling bioaccumulates higher up the trophic chain. Consequently sharks can be expected to accumulate the highest levels. Dilution is considered to quickly reduce the impact of any chemicals entering the sea. Consequence considered negligible. Confidence high due to logic.
	Exhaust	1	5	4	Reproductive capacity	Sharks	5.1	1	1	2	Most exhaust enters the atmosphere, or immediately below the water from engines. Dissolved gases and particulates not believed to be of consequence to benthic species. Confidence high due to logical consideration
	Gear loss	1	5	3	Behaviour/movement	bugs	6.1	1	1	2	Lost nets may form a movement barrier to bottom-dwelling bugs => intensity negligible as little gear is lost=> consequence negligible as any impact is unlikely to be detectable => confidence high by logic.
	Navigation/ steaming	1	5	4	Behaviour/movement	Sharks	6.1	1	1	2	The addition of noise from navigation/steaming unlikely to affect byproduct/bycatch species as few vessels operate in this fishery => consequence negligible => Confidence high due to logic
	Activity/ presence on water	1	5	4	Behaviour/movement	Sharks	6.1	1	1	2	Simple presence of vessels on water might change the behaviour of sharks by acting as a fish aggregation device particular during and after fishing. Hard to envisage any impact for the shark species. High confidence by consensus and lack of scenarios.
Disturb	Bait collection	0									

Direct impact of Fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (from S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence score (1-2)	Rationale
physical processes	Fishing	1	5	4	Population size	bugs	1.1	3	2	1	Bugs burrow and the potential exists that demersal trawls can destroy their habitat where their presence may overlap with other targeted crustaceans. Intensity moderate as local effects may be severe => consequence minor as not likely to have a long-term effect on population size => confidence low as little information is available
	Boat launching	0									
	Anchoring/ mooring	0									
	Navigation/stea ming	1	5	4	Behaviour/movement	sharks	6.1	1	1	2	Disturbance of physical processes by navigation/steaming is unlikely to affect demersal species
External hazards (specify the particular	Other fisheries	1	5	4	Population size	bugs	1.1	2	2	1	Bugs are now the main target of the adjoining Western Deepwater Trawl Fishery => intensity minor as catches are still relatively low => consequence minor => confidence low as no stock assessments have been done
example	Aquaculture	0									
within each	Coastal										
activity area)	development	0	0	0							
	Other extractive activities	1	3	4	Population size	Deepwater bugs	1.1	2	2	1	Oil drilling has the potential to affect local populations of deepwater bugs => intensity minor as occurs in restricted locations => consequence minor as effect is not expected to be long-lasting => confidence low due to lack of information
	Other non extractive activities	1	3	3	Population size	Deepwater bugs	1.1	2	2	1	Seismic activity has the potential to affect local populations of deepwater bugs => intensity minor as occurs in restricted locations => consequence minor as effect is not expected to be long-lasting => confidence low due to lack of information
	Other anthropogenic activities	1	5	4	Behaviour/movement	sharks	6.1	1	1	2	There are few other anthropogenic activities in the area that have the potential to affect target species

2.3.1 Level 1 (SICA) Documents L1.3 - TEP Species Component;

Direct impact of Fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (from S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence score (1-2)	Rationale
Capture	Bait collection	0									
	Fishing	1	5	4	Population size	none	1.1	1	1	2	No TEP species have been observed to be caught in this fishery
	Incidental behaviour	1				none		1	1	2	No known incidental behaviour that could affect TEP species.
Direct impact	Bait collection	0									
without capture	Fishing	1	5	4	Behaviour/movement	Frigate bird	6.1	2	2	2	Frigate birds have been observed to hover around vessels => intensity minor as vessels are few => consequence minor as time to return to original behaviour likely to be on scale of hours => confidence high as AFMA observer information is available
	Incidental behaviour	1	5	4		none		1	1	2	No known incidental behaviour that could affect TEP species.
	Gear loss	1	5	3	Population size	common dolphin	1.1	1	1	2	TEP species could become entangled in lost gear => Intensity negligible as little gear is lost => consequence negligible as expected to have no impact on TEP stocks => confidence high due to logic
	Anchoring/ mooring	0									
	Navigation/ steaming	1	5	4	Behaviour/movement	Turtles, Leatherback and loggerheads	6.1	1	1	2	Intensity: negligible because it is unlikely to have measurable/detectable impact e.g. through collisions. Consequence: negligible because interactions remote, and impact on population size or behaviour and movement of TEP species unlikely. Confidence: high because it was considered unlikely for there to be strong interactions between Navigation/steaming and TEP species.
Addition/ movement of	Translocation of species	1	5	4		none		1	1	2	Can't think of any scenario where translocation of species could affect TEP species.
biological material	On board processing	1	5	4	Behaviour/movement	Frigate bird	6.1	2	2	2	Frigate birds have been observed to hover around vessels, possibly attracted by waste => intensity minor as vessels are few => consequence minor as time to return to original behaviour likely to be on scale of hours => confidence high as AFMA observer information is available

Direct impact of Fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (from S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence score (1-2)	Rationale
	Discarding catch	1	5	4	Behaviour/movement	Frigate bird	6.1	2	2	1	Frigate birds have been observed to hover around vessels, possibly attracted by waste => intensity minor as vessels are few => consequence minor as time to return to original behaviour likely to be on scale of hours => confidence low due to lack of information
	Stock enhancement	0									
	Provisioning	0									
	Organic waste disposal	1	5	4	Behaviour/movement	Frigate bird	6.1	2	2	2	Frigate birds have been observed to hover around vessels, possibly attracted by waste => intensity minor as vessels are few => consequence minor as time to return to original behaviour likely to be on scale of hours => confidence high as AFMA observer information is available
Addition of non- biological material	Debris	1	5	4	Population size	Turtles	1.1	1	2	2	Plastics may be an issue, entanglement, ingestion. Boats subject to MARPOL rules . Intensity: negligible if MARPOL rules followed. Consequence: minor because debris by this fishery expected to be accidental not routine . Confidence Limited domestic observer data indicated crews diligent re waste therefore high confidence
	Chemical pollution	1	5	4	Population size	white shark	1.1	2	2	2	White shark considered species most vulnerable as they are long- lived top-order predators, so may accumulate high levels of chemicals in tissues => Intensity was scored as minor as most deleterious chemicals probably not from fishing vessels => Consequence was also considered minor as it is not likely that fishing vessels are a major source of pollution=> Confidence high due to logic
	Exhaust	1	5	4	Behaviour and movement	frigate bird	6.1	1	1	2	Intensity: negligible because exhaust considered low impact to TEP species =>Consequence: considered negligible because species unlikely to avoid fumes so unlikely to affect behaviour and movement of target species. =>Confidence: considered high due to logical consideration.
	Gear loss	1	5	3	Population size	common dolphin	1.1	1	1	2	TEP species could become entangled in lost gear => Intensity negligible as little gear is lost => consequence negligible as expected to have no impact on TEP stocks => confidence high due to logic

Direct impact	Fishing Activity				Sub-component	Unit of					Rationale
of Fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Suo-component	analysis	Operational objective (from S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence score (1-2)	Kalionale
	Navigation/ steaming	1	5	4	Behaviour / movement	Humpback whale	6.1	2	2	2	The humpback whale was chosen for analysis because noise and visual stimuli from fishing operations may disrupt calving => Navigation/ steaming is a large component of the NWSTF operations, however, it was considered that any impact would be rare => Consequence was considered minor for humpback whale populations => Confidence high due to low number of vessels operating in the NWSTF
	Activity/ presence on water	1	5	4	Behaviour / movement	Humpback whale	6.1	2	2	2	Humpback whale chosen because the presence of fishing vessels introduces sound waves that may impact on whale behaviour=> intensity and Consequence considered minor, any effects of vessel presence unlikely to be measurable for humpback whales in the NWSTF => Confidence high because of low number vessels operating in the NWSTF unlikely to have effect
Disturb	Bait collection	0									
physical processes	Fishing	1	5	4	Behaviour / movement	Humpback whale	6.1	1	1	2	Disturbance of physical processes by trawling may cause momentary disruption to feeding and/or movement=> intensity and Consequence considered negligible, any effects of vessel presence unlikely to be measurable for humpback whales in the NWSTF => Confidence high because of low number vessels operating in the NWSTF unlikely to have effect
	Boat launching	0									
	Anchoring/ mooring	0									
	Navigation/stea ming	1	5	4	Behaviour / movement	white shark	6.1	1	1	2	Disturbance of physical processes by navigation/steaming may cause momentary disruption to feeding and/or movement=> intensity and Consequence considered negligible, any effects of vessel presence unlikely to be measurable for white shark in the NWSTF => Confidence high because of low number vessels operating in the NWSTF unlikely to have effect
External hazards (specify the particular	Other fisheries	1	5	4	Population size	Turtles	1.1	2	2	1	Turtles occasionally caught in the Western Tuna and Billfish Fishery which overlaps the NWSTF. Consequence: minor because reports of interactions low and turtles able to swim to surface for air and can be released alive (SWTBF ERA report)
example	Aquaculture	0									
within each activity area)	Coastal development	0	0	0							

Direct impact of Fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (from \$2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence score (1-2)	Rationale
	Other extractive activities	1	3	4	Population size, Behaviour and movement	Seabirds	1.1, 6.1	2	2	2	Oil and gas industry. May be pollution from petrochemical industry in both shallow and deep water Noise and visual stimuli. re operations. Intensity: assumed to have minor impact both direct and indirect on TEP species, but linkages need to be better understood. Consequence: cumulative effects expected to be minor and not affect population size or behaviour or movement of TEP species . Confidence: high as oil and gas exploration only in limited area of the NWSTF
	Other non extractive activities	1	3	3	Behaviour / movement	Humpback whale	6.1	2	2	2	Shipping introduces sound waves that may impact on humpback whale behaviour=> intensity and consequence considered minor, any effects of vessel presence unlikely to be measurable for humpback whales in the NWSTF => Confidence high due to logic
	Other anthropogenic activities	1	5	4	Population size	Turtles	1.1	1	1	2	The turtles that occur/live/pass through the region of the fishery are extensively harvested (eggs and adults) throughout the world and killed through many anthropogenic events (pollution, boat strike, recreational fishing gear, beach use etc). Some species are in critical danger of extinction and all are endangered to some extent. Intensity and consequence scored low because most of these hazards not occurring in the area of this fishery.

2.3.1 Level 1 (SICA) Documents L1.4. - Habitat Component.

Direct impact of Fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (from \$2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence score (1-2)	Rationale
Capture	Bait collection	0									
	Fishing	1	5	4	Habitat structure and Function	Fine sediments, unrippled, large sponges, upper slope	5.1	3	4	1	Fishing activity in the North West Slope Trawl Fishery occurs over 5- 11° in extent on the continental slope off North Western Australia. Operations average between 100-200 days annually over the last 3 years with trawling occurring over 24 hours. Fishery primarily targets deepwater scampi and prawns at upper slope depths of 200-600m on open sediment areas, no fishing < 200m. Active disturbance of the substratum is designed to stimulate sheltering crustaceans into gear, using modified demersal prawn trawling gear, stern towed twin or triple nets, + tickler chains. Trawl shot times depend on the target species but average between 2-4 hours. Fishery may have intensely localised benthic impacts as target species form aggregations which are targeted. The most vulnerable habitats are those with large, erect, or fragile faunas, and serve as crustacean habitat. Habitat structure and function is at risk if substratum and epifauna are removed/ killed or relocated by the gear. Burrowing fauna (infauna) will be impacted in areas of semi- consolidated sediments that are repeatedly trawled. Intensity: low to moderate over the area of the fishery, may be localised in frequently targeted features. Consequence: Mostly minor to moderate, but may be major when deep faunas with low productivity (resilience) are removed. Regeneration times significantly increase with depth in a number of deep water invertebrate species, upper slope habitat recovery may take > decades (if at all), depending on the degree of modification and connectivity to recruitment sources. Confidence: low, few data exist for habitats in this region at these depths.
	Incidental behaviour	1	5	4	Habitat structure and Function	North Western Oceanic Pelagic Province	5.1	1	1	2	Recreational fishing such as trolling may occur on the way to and from fishing grounds. This seems an unlikely activity to occur during the normal course of fishing operations as attention would be required elsewhere. Intensity and Consequence: negligible impact on pelagic environment. Confidence: high, constrained by logic.
Direct impact without	Bait collection	0									

Direct impact of Fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (from S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence score (1-2)	Rationale
capture	Fishing	1	5	4	Habitat structure and Function	Fine sediments, unrippled, large sponges, upper slope	5.1	3	4	1	Habitat likely to be damaged by contact with gear. Some epifaunal types that are flexible, low or encrusting, or burrowing infauna, may survive gear passing, however actual post encounter mortality for habitats is unquantified, but could predictably be high. Intensity: moderate over the area of the fishery, but locally concentrated around targeted features. Consequence: Moderate to major where habitat modification in depths characterised by lower productivity may lead to extended recovery times. Habitats are susceptible, regardless of catch rates. If regeneration rates are slow, the effects of historical intensity may remain apparent at these depths for many decades, depending on the degree of modification and connectivity to recruitment sources. Confidence: low, data required as uncertainty for recovery rates of deep fauna in this region.
	Incidental behaviour	1	5	4	Habitat structure and Function	North Western Oceanic Pelagic Province	5.1	1	1	2	Recreational fishing such as trolling may occur on the way to and from fishing grounds. This seems an unlikely activity to occur during the normal course of fishing operations as attention would be required elsewhere. Intensity and Consequence: negligible impact on pelagic environment. Confidence: high, constrained by logic.
	Gear loss	1	5	3	Habitat structure and Function	Sedimentary rock, high outcrop, octocorals, upper slope	5.1	2	2	1	Gear loss possible over entire range of the subfishery, but more likely to occur in the area of greatest fishing effort. Gear loss considered to occur a few times a year during the calendar fishing year. Lost gear likely to be irretrievable in deeper waters, may damage higher relief habitat in the process of snagging and attempted/ actual retrieval, eventually becoming habitat if remains as part of benthos. Intensity: minor, considered a rare event. Consequence: minor habitat modification (locally severe); likely to take significant time to recover at upper slope-mid slope depths, although fishers report that gear loss is negligible, due to lack of reefs on which gear gets hooked Confidence: high as little gear loss occurs
	Anchoring/ mooring	0									

Direct impact of Fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (from S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence score (1-2)	Rationale
	Navigation/ steaming	1	5	4	Habitat structure and Function	North Western Oceanic Pelagic Province	5.1	1	1	2	Navigation/ steaming may occur daily during fishing season. The water quality of the North Western Oceanic Pelagic habitat may change with increased turbulence and changes in water mixing that could occur from movement of vessels through water. Intensity and Consequence: negligible due to remote likelihood of detection at any spatial or temporal scale and interactions that may be occurring are not detectable against natural variation. Confidence scored high because of logical constraints.
Addition/ movement of biological material	Translocation of species	1	5	4	Water quality	North Western Oceanic Pelagic Province	1.1	1	1	2	Translocation of species occurs when species are transported by vessels (e.g. black striped mussel), gear, ships ballast water (e.g. algal cysts, <i>Carcinus maenas</i> - European Green Crab eggs) (WA 0605). Risks are greater for interstate/ OS vessels fishing in the NWSTF. Translocation could occur over the entire range of the fishery, but is likely to have the greatest impact on shoreline or coastal habitat rather than offshore waters. Intensity and Consequence: negligible in offshore waters but potentially severe inshore, many shallow water examples have been shown to impact benthic habitat stability. Confidence: High, mechanism well documented however unvalidated record of frequency of this occurrence within waters linked to activities by this fishery.
	On board processing	1	5	4	Water quality	North Western Oceanic Pelagic Province	1.1	1	1	1	Most processing involves freezing catch at sea. Trip durations can be 4- 5 weeks. Intensity and Consequence: negligible, detection improbable. Discards can be expected to be rapidly taken up by pelagic scavengers and unlikely to reach the bottom in theses depths. Confidence: low, little information available about degree of processing involving wastes into sea.

Direct impact of Fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (from \$2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence score (1-2)	Rationale
	Discarding catch	1	5	4	Substrate quality	mud, unrippled, bioturbators, upper slope	3.1	2	2	1	Some potential for live discarding of berried female crustaceans (WESTMAC 10, 2004), otherwise discarding depends on target species. Some tailing of Pink Prawns at Sea. Discarding of Pink prawn, and White carid prawn common and can be substantial. Post capture survival unquantified. Dead discards can be expected to be taken up opportunistically by pelagic scavengers, although potentially crustacean parts will take longer to break down, and may sink to bottom. If discard densities large enough some localized accumulation on benthos may occur, creating anoxic conditions. Volumes may be enough to damage erect, inflexible faunal communities, but unlikely due to random and dispersed dumping and water depth. Intensity and Consequence: considered minor, may be detectable but insignificant across the scale of the fishery. Confidence low: because of a lack of insufficient knowledge on benthic trophodynamics associated with discards.
	Stock enhancement	0									
	Provisioning	0									
	Organic waste disposal	1	5	4	Water quality	North Western Oceanic Pelagic Province	1.1	1	2	2	Organic wastes such as food scraps and sewerage are deposited on a daily basis over the entire scale of fishing effort. Boats subject to MARPOL. Water quality of pelagic habitats is considered to experience greatest impact of organic waste disposal. Intensity: negligible. Discarded waste could be expected to be taken up rapidly by pelagic scavengers, and as overall volume of waste is likely to be small, it is unlikely to reach the benthos, or accumulate even if it does. Consequence: Minor, addition of high nutrient material is realistically expected to cause short term peaks in productivity or scavenging species interactions, with minimal detectability within minutes to hours. Confidence: high, logical constraints.

Direct impact of Fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (from S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence score (1-2)	Rationale
Addition of non- biological material	Debris	1	5	4	Habitat structure and Function	North Western Oceanic Pelagic Province	5.1	2	2	1	Fishing activity occurs over a large spatial scale. Generation of debris possible over this scale, and may occur on a daily basis during fishing season. Greatest effort within the North Western Oceanic pelagos, therefore considered the most likely habitat to accumulate floating plastics, and inadvertent losses from fishing operations. All boats subject to MARPOL, which means losses should be unintentional, and retrieved if possible. Debris considered to reduce water quality, and alter habitat structure with the addition of ingestible materials putting susceptible species at risk e.g. seabirds, dolphins or seals. Intensity: minor if adherence to MARPOL regulations. Consequence: minor to habitat as dispersal and small volumes likely. Confidence: low because the volume of debris generated and species susceptibility are unknown.
	Chemical pollution	1	5	3	Water quality	North Western Oceanic Pelagic Province	1.1	2	2	1	Chemicals may be introduced to pelagic habitats during vessel maintenance at sea. Chemical spill considered annual but is possible every time fishing occurs. The North Western Oceanic Pelagic habitat would be most at risk from chemical pollution. Residence time of small volume of contaminants likely to be short term in the offshore environment as weather and oceanographics disperse substances quickly. Intensity: minor because the activity (chemical spill) is thought to occur rarely. Consequence: minor, possible detectable change in water quality, but time to return to prior state on the scale of hours to days (note that chemical pollution likely to have measurable consequences if large-scale event occurs in a sensitive area, the scale of an event will be limited by the amount of chemicals carried by the fishing vessels). Confidence: low with out data on the volume of pollution.
	Exhaust	1	5	4	Air quality	North Western Oceanic Pelagic Province	2.1	1	1	2	Exhaust from running engines may impact the air quality of the species within Western Oceanic Pelagic habitat (e.g. birds). Intensity and Consequence: negligible due to rapid dispersal of pollutants in winds, and likely to be physically undetectable over very short time frames. Confidence in assessment: high because effect of exhaust was considered to be localised. Logical consideration.

Direct impact of Fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (from \$2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence score (1-2)	Rationale
	Gear loss	1	5	3	Habitat structure and Function	Sedimentary rock, high outcrop, octocorals, upper slope	5.1	2	1	1	Gear loss possible over entire range of the subfishery. Gear loss infrequent and tends to be associated with trawling 'hard' terrains, i.e. snagging on high relief reef or rugose surface structures. Tears to nets are more likely than loss of whole nets, trawl doors and accessory gear. In the rare occurrence of loss of whole nets, retrieval is unlikely to be affected in deeper waters. Lost gear known to ball up if not retrieved, potentially damaging habitat in the vicinity, eventually becoming habitat. Intensity: minor, impact considered detectible but overall footprint of lost gear extremely small. Consequence: negligible, habitat modification likely to be undetectable. Confidence: high, though effects not visually documented for this fishery, and there is a lack of verified data on rates and types of gear loss.
	Navigation/ steaming	1	5	5	Water quality	North Western Oceanic Pelagic Province	1.1	1	1	2	Navigation/ stearing may occur daily during fishing season. Operation of the vessel will add noise and visual stimuli to surrounds which may be wider than the immediate area of the vessel. Changes to the pelagic air and water quality, and habitat function of the oceanic habitat are likely to be undetectable over these scales due to rapid dispersal of noise and visual presence in air and water. Intensity and Consequence: negligible due to remote likelihood of detection at any spatial or temporal scale and interactions that may be occurring are not detectable against natural variation. Confidence scored high because of logical constraints.
	Activity/ presence on water	1	5	5	Water quality	North Western Oceanic Pelagic Province	1.1	1	1	2	Operation of the vessel will add noise and visual stimuli (e.g. light) to surrounds which may have an impact wider than the immediate area of the vessel. Activity/presence on water occurs over a large spatial scale, and over 24 hours during fishing season. Intensity and Consequence: negligible, remote likelihood of impact at any spatial or temporal scale. Confidence in consequence score: high because it was considered highly unlikely that vessel presence/activity would lead to community level changes in its own right (logical constraints).
Disturb	Bait collection	0									

Direct impact of Fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (from S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence score (1-2)	Rationale
physical processes	Fishing	1	5	5	Substrate quality	mud, unrippled, bioturbators, upper slope	3.1	3	3	1	Benthic processes will be most disturbed along the upper slope of North Western Australia where fishing activity currently concentrates on deep water crustaceans. This zone is characterised by gently sloping plains of muddy and sandy sediments grading into narrow mud terraces and escarpments. Targeted soft ground is likely to be interspersed with hard patches/ biogenic reef which support diverse faunal communities, dominated by suspension and filter feeding animals. Intensity: minor to major, because gear contact with bottom causes sediment resuspension which potentially smothers animals dependent on nonturbid conditions. Consequence: moderate, Shallow infaunal bioturbators may be dislodged leading to damage, mortality or relocation. Sheltering habitat of crustaceans destroyed in process of trawl passing, known to be locally intense in some locations. Recovery capacity of habitat modified by the net is unknown however seems to favor rapidly colonizing, predatory species altering habitat processes. Disturbance to physical processes most likely to be short term – permanent change to habitat structure and function possible if frequency of interaction precludes complete recovery. Confidence: low inadequate knowledge on the impact of crustacean trawling on long term substratum processes.
	Boat launching	0									
	Anchoring/ mooring	0									
	Navigation/stea ming	1	5	5	Habitat structure and Function	North Western Oceanic Pelagic Province	5.1	1	1	2	Navigation/ steaming may increase water mixing and turbulence influencing habitat structure, function daily during fishing season. Intensity and Consequence: negligible. Alteration of physical processes in the pelagos during operation of the vessel are likely to be undetectable at any spatial or temporal scale, due to the shallow nature of the interaction when compared with mixed layer depths normally present in these waters. Confidence scored high because of logical constraints.

Direct impact of Fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (from S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence score (1-2)	Rationale
External hazards (specify the particular example within each activity area)	Other fisheries	1	6	6	Habitat structure and function	Fine sediments, unrippled, large sponges, upper slope	5.1	2	2	1	The only Commonwealth fishery operating within the same operational area of the NWSTF is the WTBF. The WTBF targets pelagic species using pelagic longlines, therefore direct interaction is likely to be pelagic in nature and minimal. Benthic habitats not considered to be at threat. Western Australian State Fisheries also operating in the region under a negotiated OCS include; Northern Demersal Scalefish Fishery, and the Pilbara Trap and Line Fisheries. Interaction of trap and trawl methods is possible although effort by State operators outside 200m isoline is minimal. The West Coast Deep-Sea Crab Fishery (WCDSCF), a state managed crustacean fishery that primarily targets <i>Chaceon bicolor</i> , <i>Hypthalassia acerba</i> , and <i>Pseudocarcinus gigas</i> , in waters 600- 1200m deep. The footprint of other gears must include dragging during retrieval, and although small in comparison with trawl gears, may leave detectable impacts at depth. Fragile epifauna, and habitats of surface layers of the substratum (small pits, holes, burrows) are likely to be crushed in the process. Intensity: minor, over area of fishery. Consequence: minor, low overlap of efforts. Confidence: low because of insufficient knowledge of habitat dynamics, and ecosystem connectivity in this region. This may alter with further assessment of cumulative impacts.
	Aquaculture	0									
	Coastal development	0									
	Other extractive activities	1	3	6	Habitat structure and function	Rock/ biogenic matrix, subcrop, large sponges, outer shelf	5.1	3	4	1	The North West Slope is of prime interest to Oil and Gas stakeholders. Oil and gas exploration, including seismic activity and exploratory well drilling occurs regularly within the NWSTF to depths of up to >1500m, with the main focus in waters of ~200m. As of 2003, 1 Production licence, 48 exploration permits, and 8 retention leases overlap with the NWSTF. Activity is concentrated on the shelf, although there may be pollution and associated stimuli from the petrochemical industry in both shallow and deep water. Intensity: moderate as activity in this fishery may have locally intense effects on the benthos. Consequence: Cumulative impacts may exist with trawl fisheries, but considered major in their own right. Confidence: low, due to limited information available.

Direct impact of Fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (from S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence score (1-2)	Rationale
	Other non extractive activities	1	4	4	Habitat structure and Function	North Western Oceanic Pelagic Province	5.1	2	1	1	Shipping occurs daily throughout the NWSTF and the WA coast. Shipping considered to impact bio- and geo-chemical cycles of pelagic waters of the Western Coastal and Oceanic Pelagic environments by disturbing mixed depth layer, and addition of non biological materials. Intensity: minor because natural levels of mixing and re-mixing considered high in these habitats and benthic impacts localised over scale of fishery area. Consequence: negligible - Interactions which affect bio- & geochemical cycling unlikely to be detectable against natural variation. Benthic detection decreases with time and objects form basis of reef structure which will be colonized over time (more rapidly in waters < 200m. Confidence: low because of a lack of information on shipping-animal interactions plus insufficient knowledge on effects of ships on bio- and geo-chemical cycling
	Other anthropogenic activities	0									

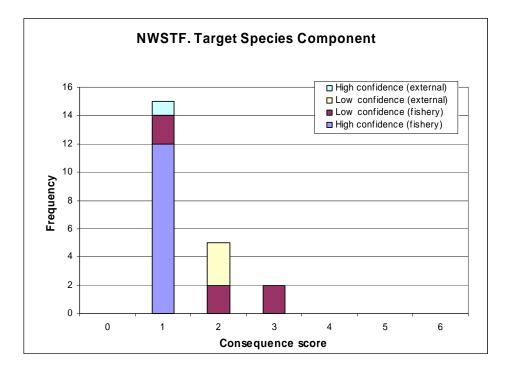
2.3.1 Level 1 (SICA) Documents L1.5 - Community Component

Direct impact of Fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (from \$2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence score (1-2)	Rationale
Capture	Bait collection	0									
	Fishing	1	5	4	Functional group	North Western Transition 250-565m	2.1	3	3	1	Fishery spans 11 degrees of latitude - spatial scale is 660 nm=>community chosen where majority of effort occurring=> Fishing occurs between 100-200 days per year =>Scampi are long- living and slow-growing with low fecundity, and do not disperse widely. Velvet scampi is the main target species, and catches are declining=> change in epeibenthic/megabenthos functional grp composition or trophic size/structure=>intensity moderate as fishing grounds are thought to be fully exploited => consequence moderate as stocks are likely to be at full exploitation rate (Lynch and Garvey 2005) => confidence low as no fishery independent surveys to confirm trends
	Incidental behaviour	1	5	3	Species composition	North Western Oceanic (1) 0-800m	1.1	1	1	2	Recreational trolling may impact pelagic species composition=> intensity minor as fishing from vessels not infrequent and spatially spread=>consequence minor as variation undetectable against natural variation
Direct impact	Bait collection	0									
without capture	Fishing	1	5	4	Trophic/size structure	North Western Transition 250-565m	4.1	2	2	1	Juvenile prawns may be too small to be captured but damaged by passing through the net, as they are fragile =>change in population size structure=> intensity minor as little targeting of prawns has occurred in recent years => consequence minor as not likely to have detectable impact on population size=> confidence low due to lack of information
	Incidental behaviour	1			Species composition	North Western Oceanic (1) 0-800m	1.1	1	1	2	Recreational trolling may impact pelagic species composition=> intensity minor as fishing from vessels not infrequent and spatially spread=>consequence minor as variation undetectable against natural variation
	Gear loss	1	5	3	Functional group	North Western Transition 250-565m	2.1	1	1	2	North Western Transition most activity there=>Lost nets may form a movement barrier to bottom-dwelling scampi - scampi more likely to be affected than more mobile prawns => intensity negligible occurs infrequently & localized => consequence negligible as any impact is unlikely to be detectable => confidence high as little gear is lost

Direct impact of Fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (from S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence score (1-2)	Rationale
	Anchoring/ mooring	0									
	Navigation/ steaming	1	5	4	Distribution of community	North Western Oceanic (1) 0-800m	3.1	1	1	1	Pelagic prawns & fish more likely to be affected by vessel navigation/steaming than bottom-dwellers => intensity negligible as few vessels currently operating in the fishery => consequence negligible as prawns migrate to mid-water at night, not surface, so unlikely to suffer direct impact => confidence low due to lack of information
Addition/ movement of biological material	Translocation of species	1	5	4	Species composition	North Western Oceanic (1) 0-800m	1.1	2	2	1	Hull fouling may translocate organisms within communities of the NWSF and between fisheries by vessels with permits in multiple fisheries (e.g. Northern Prawn Fishery) => intensity minor as potential pests from Northern Prawn Fishery unlikely to survive during long steaming time between fisheries=> consequence minor => confidence low due to lack of information
	On board processing	1	5	4	Species composition	North Western Transition 250-565m	1.1	2	1	1	Small scampi are tailed onboard. Discarded organic matter sinking to the benthos may alter the abundance of detrital food available to crustaceans. This may result in increased movement of deepwater scampi and other crustaceans into the area causing changes to community comp => intensity minor as detectability rare => consequence negligible as impact unlikely to be detectable => confidence low due to lack of data
	Discarding catch	1	5	4	Species composition	North Western Transition 250-565m	1.1	2	1	1	Discards sinking to the benthos may alter the abundance of detrital food available to crustaceans. This may result in increased movement of deepwater scampi into the area => intensity minor as detectability rare => consequence negligible as impact unlikely to be detectable => confidence low due to lack of data
	Stock enhancement	0									
	Provisioning	0									
	Organic waste disposal	1	5	4	Species composition	North Western Transition 250-565m	1.1	1	1	1	Discards sinking to the benthos may alter the abundance of detrital food available to crustaceans. This may result in increased movement of deepwater scampi into the area => intensity negligible as few vessels in the fishery => consequence negligible as impact unlikely to be detectable => confidence low due to lack of information

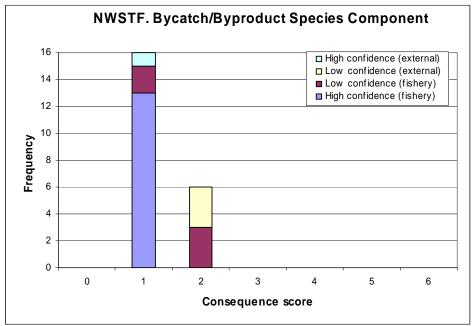
Direct impact of Fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (from S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence score (1-2)	Rationale
Addition of non- biological material	Debris	1	5	4	Distribution of community	North Western Transition 250-565m	3.1	1	1	2	Debris may form a movement barrier to bottom-dwelling scampi - scampi more likely to be affected than more mobile prawns => intensity negligible as debris is negligible => consequence negligible => confidence high as debris is minimal
	Chemical pollution	1	5	4	Functional group	North Western Transition 250-565m	2.1	1	1	1	Scampi may consume contaminated detritus. Chemical pollutants that filter down to the benthos are likely to enter this trophic level as a first impact =>adversely affect epibenthic/megabenthos/detritivore species=>decline in species cause change to functional grp=> intensity negligible as chemical pollutants introduced by fishery are negligible => consequence is negligible undetectable => confidence low due to lack of information
	Exhaust	1	5	4	Species composition	North Western Oceanic (1) 0-800m	1.1	1	1	2	Most exhaust enters the atmosphere, or immediately below the water from engines. Dissolved gases and particulates not believed to be of consequence to benthic/mid-water communities. Confidence high due to logical consideration
	Gear loss	1	5	3	Functional group	North Western Transition 250-565m	2.1	1	1	2	Lost nets may form a movement barrier to bottom-dwelling scampi - scampi more likely to be affected than more mobile prawns => intensity negligible as little gear is lost=>epibenthic functional group distribution altered=> consequence negligible as any impact is unlikely to be detectable => confidence high by logic.
	Navigation/ steaming	1	5	4	Functional group	North Western Oceanic (1) 0-800m	2.1	1	1	1	Pelagic prawns & fish more likely to be affected by noise from vessel navigation/steaming than bottom-dweller =>disruption of pelagic crustaceans causing them to relocate=> change in functional grp => intensity negligible as few vessels currently operating in the fishery => consequence negligible as prawns migrate to mid-water at night, not surface, so unlikely be disturbed by vessel noise => confidence low due to lack of information
Disturb	Activity/ presence on water Bait collection	0	5	4	Functional group	North Western Oceanic (1) 0-800m	2.1	1	1	1	Prawns more likely to be affected vessel activity than bottom- dwelling scampi, as they rise to mid-water at night => pelagic crustacean functional grp composition altered => intensity negligible as few vessels currently operating in the fishery => consequence negligible as prawns migrate to mid-water at night, not surface, so unlikely be disturbed by vessel activity => confidence low due to lack of information

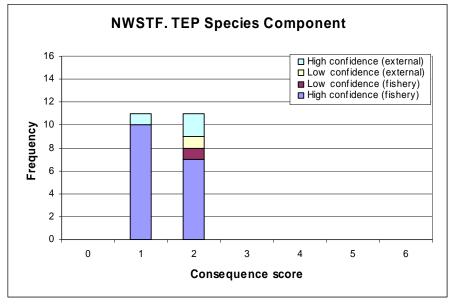
Direct impact of Fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (from S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence score (1-2)	Rationale
physical processes	Fishing	1	5	4	Trophic/size structure	North Western Transition 250-565m	4.1	3	3	1	Juvenile scampi are likely to inhabit the same grounds as adult stocks. They are not caught by trawling but destruction of burrows and disturbance of sediment by trawling may result in a significant mortality of pre-recruit age classes (Phillips 1992)=> trophic size/structure intensity moderate as fishing has been confined to relatively small areas within the NWS => consequence moderate as long-term recruitment does not appear to have been affected as catch rates have not declined dramatically => confidence low due to lack of information
	Boat launching	0									
	Anchoring/ mooring	0									
	Navigation/stea ming	1	5	4	Functional group	North Western Oceanic (1) 0-800m	2.1	1	1	1	Prawns more likely to be affected by disturbance of physical processes from vessel navigation/steaming than bottom-dwelling scampi, as they rise to mid-water at night =>disrupt pelagic crustacean functional grp composition=> intensity negligible as few vessels currently operating in the fishery => consequence negligible as prawns migrate to mid-water at night, not surface, so unlikely be disturbed => confidence low (no information)
External hazards (specify the particular	Other fisheries	1	5	4	Functional group	North Western Transition 250-565m	2.1	2	2	1	Several fisheries overlap or are adjacent to the NWS. WDWT has been targeting bugs. The WDWTF also catches scampi, but species are not identified, and it is not known if they are the same stocks as those exploited in the NWSTF
example	Aquaculture	0									
within each activity area)	Coastal development	0	0	0							


Direct impact of Fishing	Fishing Activity	Presence (1) Absence (0)	Spatial scale of Hazard (1-6)	Temporal scale of Hazard (1-6)	Sub-component	Unit of analysis	Operational objective (from S2.1)	Intensity Score (1-6)	Consequence Score (1-6)	Confidence score (1-2)	Rationale
	Other extractive activities	1	3	4	Functional group; bio- geochemical cycles	North Western Transition 250-565m	2.1, 5.1	3	2	2	Oil and gas extraction and exploration occurs in North Western Province shelf => Extraction occurs on a daily basis throughout the year => Bio- and geo-chemical cycles are likely to be affected also functional group composition => Shelf communities are the most likely to be adversely affected by construction of well heads and rigs and the pipelines that span across the shelf to the coast. Well construction is likely to lead to modifications to sediment & habitat and water chemistry as well as occasional spills or leaks. => Moderate intensity: rigs, pipelines and umbilical chords occur across a broad spatial scale but are restricted to localized sites. => Negligible consequence: time taken to return to pre-disturbed state is on the decadal scale but an extremely low percentage of the habitat will be affected. => High confidence: consensus and logical consideration.
	Other non- extractive activities	1	3	3	Functional group	North Western Oceanic (1) 0-800m	2.1	2	2	2	Shipping occurs most days throughout the year but more coastal => Species composition is likely to be affected before the other community subcomponents. => Continental shelf benthic waters are most likely to be adversely affected by ballast exchange from foreign ships therefore => Minor negligible Shipping occurs over a broad spatial scale and closer inshore but exchange of ballast at sea is unlikely to introduce new benthic species. => Negligible consequence: open ocean habitats are constantly being naturally 'seeded' by planktonic dispersal stages of enumerable organisms. => High confidence: consensus and logical consideration.
	Other anthropogenic activities	1	5	4	Species composition	North Western Oceanic (1) 0-800m	2.1	1	1	2	Tourism, gamefishing might occur out to shelf break=>but rarely impinge in fishery boundary?=> affect species composition=> intensity minor=> Consequence negligible undetectable against natural variation

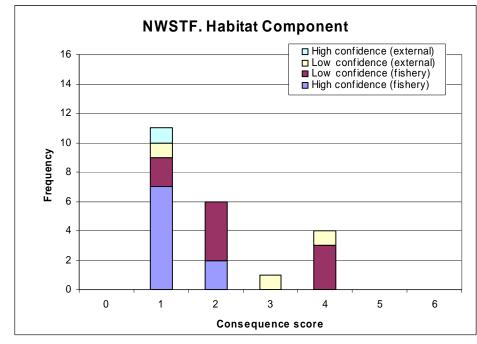
2.3.11 Summary of SICA results

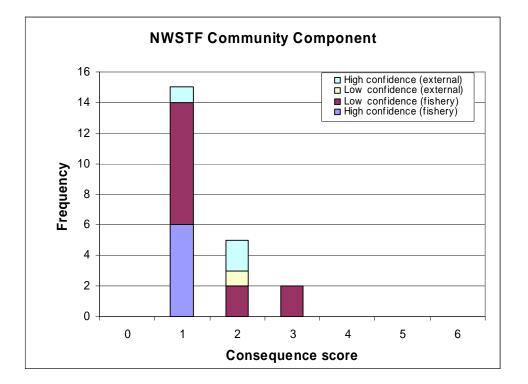
The report provides a summary table (Level 1 (SICA) Document L1.6) of consequence scores for all activity/component combinations and a table showing those that scored 3 or above for consequence, and differentiating those that did so with high confidence (in bold).


Level 1 (SICA) Document L1.6. Summary table of consequence scores for all activity/component
combinations.


Direct impact	Activity	Target species	Byproduct and bycatch species	TEP species	Habitats	Communities
Capture	Fishing	3	2	1	4	3
1	Incidental	1	1	1	1	1
	behaviour					
Direct	Fishing	2	1	2	4	2
impact	Incidental	1	1	1	1	1
without	behaviour					
capture	Gear loss	1	1	1	2	1
	Navigation/ steaming	1	1	1	1	1
Addition/ movement	Translocation of species	2	1	1	1	2
of biological material	On board processing	1	1	2	1	1
	Discarding catch	1	2	2	2	1
	Organic waste disposal	1	1	2	2	1
Addition of	Debris	1	1	2	2	1
non- biological	Chemical pollution	1	1	2	2	1
material	Exhaust	1	1	1	1	1
	Gear loss	1	1	1	1	1
	Navigation/ steaming	1	1	2	1	1
	Activity/ presence on water	1	1	2	1	1
Disturb	Fishing	3	2	1	3	3
physical processes	Navigation/ steaming	1	1	1	1	1
External	Other fisheries	2	2	2	2	2
hazards (specify the particular	Other extractive activities	2	2	2	4	2
example within each activity	Other non extractive activities	2	2	2	1	2
area)	Other anthropogenic activities	1	1	1	1	1

Target species: Frequency of consequence score differentiated between high and low confidence.


Byproduct and bycatch species: Frequency of consequence score differentiated between high and low confidence



TEP species: Frequency of consequence score differentiated between high and low confidence

Habitats: Frequency of consequence score differentiated between high and low confidence

Communities: Frequency of consequence score differentiated between high and low confidence

2.3.12 Evaluation/discussion of Level 1

The target species, habitat and community components all have consequence scores of 3 (moderate) or above for at least one activity. The hazards that led to the high consequence scores were: capture by fishing, direct impact of fishing without capture, and disturbance of physical processes due to fishing.

Two of these hazards were assessed to have a major impact (consequence score 4) on habitats. Age and regeneration times have been shown to significantly increase with depth in a number of deep water invertebrate species. Due to very slow growth rates, habitat recovery at these depths may take decades or even hundreds of years (if at all), depending on the degree of modification and connectivity to recruitment sources. Gear contact with the bottom causes sediment resuspension which potentially smothers animals dependent on non-turbid conditions. The sheltering habitat of crustaceans can be destroyed in the process of the trawl passing. The recovery capacity of sessile species removed by the net is unknown for many groups, but generally increases with depth. Recovery seems to favor rapidly colonizing, predatory species. The confidence for these scores is low, as few data exist for deep tropical waters, and the recovery rates of deep fauna are unknown. The North West Slope is of prime interest to oil and gas stakeholders. Oil and gas exploration, including seismic activity and exploratory well drilling, occurs regularly within the NWSTF to depths of up to >1500m, with the main focus in waters of ~200m. As of 2003, 1 Production licence, 48 exploration permits, and 8 retention leases overlap with the NWSTF. Activity is concentrated on the shelf, although there may be pollution and associated stimuli from the petrochemical industry in both shallow and deep water. The effect of these activities on species and habitats is unknown.

The byproduct/bycatch and TEP species components have been assessed to only be at minor risk in this fishery. There are few non-target species retained in the NWSTF. Squid are the most important byproduct in the NWSTF in terms of tonnage and value, but they are taken intermittently in small and variable volumes. The small catch is considered unlikely to impact this productive stock.

Compared to other tropical trawl fisheries, bycatch volume and composition in the NWSTF is small, due to the greater depth range at which the fishery operates. The two observer cruises so far undertaken in this fishery each report many more bycatch species than are recorded in logbooks. However many of these are not identified to species level, and have not been included in this analysis. Most of these species are caught in small volumes. A future analysis should make more effort to identify and include a greater range of bycatch species. More detailed observer data will assist in this.

There are no recorded interactions with TEP species in the NWSTF. Frigate birds are reported to follow boats, but are not observed to interact with fishing gear. The offshore and deepwater nature of the NWSTF reduces the likelihood of interactions with TEP species.

2.3.13 Components to be examined at Level 2

As a result of the preliminary SICA analysis, the components that are to be examined at Level 2 are those with any consequence scores of 3 or above. These components are:

- Target species
- Habitats
- Communities

The SICA has removed some components from further analysis, as these are judged to be impacted with low consequence by the set of activities considered. Those components excluded are:

- Bycatch/byproduct species
- TEP species

2.4 Level 2 Productivity and Susceptibility Analysis (PSA)

When the risk of an activity at Level 1 (SICA) on a component is moderate or higher and no planned management interventions that would remove this risk are identified, an assessment is required at Level 2. The PSA approach is a method of assessment which allows all units within any of the ecological components to be effectively and comprehensively screened for risk. The units of analysis are the complete set of species habitats or communities identified at the scoping stage. The PSA results in sections 2.4.2 and 2.4.3 of this report measure risk from direct impacts of fishing only, which in all assessments to date has been the hazard with the greatest risks identified at Level 1. Future iterations of the methodology will include PSAs modified to measure the risk due to other activities, such as gear loss.

The PSA approach is based on the assumption that the risk to an ecological component will depend on two characteristics of the component units: (1) the extent of the impact due to the fishing activity, which will be determined by the susceptibility of the unit to the fishing activities (Susceptibility) and (2) the productivity of the unit (Productivity), which will determine the rate at which the unit can recover after potential depletion or damage by the fishing. It is important to note that the PSA analysis essentially measures potential for risk. A measure of absolute risk requires some direct measure of abundance or mortality rate for the unit in question, and this information is generally lacking at Level 2.

The PSA approach examines attributes of each unit that contribute to or reflect its productivity or susceptibility to provide a relative measure of risk to the unit. The following section describes how this approach is applied to the different components in the analysis. Full details of the methods are described in Hobday *et al.* (2007).

Species

The following table outlines the seven attributes that are averaged to measure productivity, and the four aspects that are multiplied to measure susceptibility for all the species components.

	Attribute							
Productivity	Average age at maturity							
	Average size at maturity							
	Average maximum age							
	Average maximum size							
	Fecundity							
	Reproductive strategy							
	Trophic level							
Susceptibility	Availability considers overlap of fishing effort with a species distribution							
	Encounterability considers the likelihood that a species will encounter fishing gear that is deployed within the geographic range of that species (based on two attributes: adult habitat and bathymetry)							
	Selectivity considers the potential of the gear to capture or retain species							
	Post capture mortality considers the condition and subsequent survival of a species that is captured and released (or discarded)							

The productivity attributes for each species are based on data from the literature or from data sources such as FishBase. The four aspects of susceptibility are calculated in the following way:

Availability considers overlap of effort with species distribution. For species without distribution maps, availability is scored based on broad geographic distribution (global, southern hemisphere, Australian endemic). Where more detailed distribution maps are available (e.g. from BIOREG data or DEH protected species maps), availability is scored as the overlap between fishing effort and the portion of the species range that lies within the broader geographical spread of the fishery. Overrides can occur where direct data from independent observer programs are available.

Encounterability is the likelihood that a species will encounter fishing gear deployed within its range. Encounterability is scored using habitat information from FishBase, modified by bathymetric information. Higher risk corresponds to the gear being deployed at the core depth range of the species. Overrides are based on mitigation measures and fishery independent observer data.

For species that do encounter gear, **selectivity** is a measure of the likelihood that the species will be caught by the gear. Factors affecting selectivity will be gear and species dependent, but body size in relation to gear size is an important attribute for this aspect. Overrides can be based on body shape, swimming speed and independent observer data.

For species that are caught by the gear, **post capture mortality** measures the survival probability of the species. Obviously, for species that are retained, survival will be zero. Species that are discarded may or may not survive. This aspect is mainly scored using independent filed observations or expert knowledge.

Overall susceptibility scores for species are a product of the four aspects outlined above. This means that susceptibility scores will be substantially reduced if any one of the four aspects is considered to be low risk. However the default assumption in the absence of verifiable supporting data is that all aspects are high risk.

Habitats

Similar to species, PSA methods for habitats are based around a set of attributes that measure productivity and susceptibility. Productivity attributes include speed of regeneration of fauna, and likelihood of natural disturbance. The susceptibility attributes for habitats are described in the following Table.

Aspect	Attribute	Concept	Rationale			
Susceptibility						
Availability	General depth range (Biome)	Spatial overlap of subfishery with habitat defined at biomic scale	Habitat occurs within the management area			
Encounterability	Depth zone and feature type	Habitat encountered at the depth and location at which fishing activity occurs	Fishing takes place where habitat occurs			
	Ruggedness (fractal dimension of substratum and seabed slope)	Relief, rugosity, hardness and seabed slope influence accessibility to different sub-fisheries	Rugged substratum is less accessible to mobile gears. Steeply sloping seabed is less accessible to mobile gears			
	Level of disturbance	Gear footprint and intensity of encounters	Degree of impact is determined by the frequency and intensity of encounters (inc. size, weight and mobility of individual gears)			
Selectivity	Removability/ mortality of fauna/ flora	Removal/ mortality of structure forming epifauna/ flora (inc. bioturbating infauna)	Erect, large, rugose, inflexible, delicate epifauna and flora, and large or delicate and shallow burrowing infauna (at depths impacted by mobile gears) are preferentially removed or damaged.			
	Areal extent	How much of each habitat is present	Effective degree of impact greater in rarer habitats: rarer habitats may maintain rarer species.			
	Removability of substratum	Certain size classes can be removed	Intermediate sized clasts (~6 cm to 3 m) that form attachment sites for sessile fauna can be permanently removed			
	Substratum hardness	Composition of substrata	Harder substratum is intrinsically more resistant			
	Seabed slope	Mobility of substrata once dislodged; generally higher levels of structural fauna	Gravity or latent energy transfer assists movement of habitat structures, e.g. turbidity flows, larger clasts. Greater density of filter feeding animals found where currents move up and down slopes.			
Productivity						
Productivity	Regeneration of fauna	Accumulation/ recovery of fauna	Fauna have different intrinsic growth and reproductive rates which are also variable in different conditions of temperature, nutrients, productivity.			
	Natural disturbance	Level of natural disturbance affects intrinsic ability to recover	Frequently disturbed communities adapted to recover from disturbance			

Communities

PSA methods for communities are still under development. Consequently, it has not yet been possible to undertake level 2 risk analyses for communities.

During the Level 2 assessment, each unit of analysis within each ecological component (species or habitat) is scored for risk based on attributes for productivity and susceptibility, and the results are plotted as shown in Figure 13.

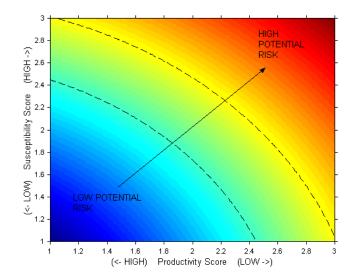


Figure 13. The axes on which risk to the ecological units is plotted. The *x*-axis includes attributes that influence the productivity of a unit, or its ability to recover after impact from fishing. The *y*-axis includes attributes that influence the susceptibility of the unit to impacts from fishing. The combination of susceptibility and productivity determines the relative risk to a unit, i.e. units with high susceptibility and low productivity are at highest risk, while units with low susceptibility and high productivity are at lowest risk. The contour lines divide regions of equal risk and group units of similar risk levels.

There are seven steps for the PSA undertaken for each component brought forward from Level 1 analysis.

- Step 1 Identify the units excluded from analysis and document the reason for exclusion
- Step 2 Score units for productivity
- Step 3 Score units for susceptibility
- Step 4 Plot individual units of analysis onto a PSA Plot
- Step 5 Ranking of overall risk to each unit
- Step 6 Evaluation of the PSA analysis
- Step 7 Decision rules to move from Level 2 to Level 3

2.4.1 Units excluded from analysis and document the reason for exclusion (Step 1)

 ERA_SPECIES_I TAXA_NAME SCIENTIFIC_NAME
 CAAB_CODE FAMILY_NAME COMMON_NAME CODE_ROLE SOURCE Reason for removal

 D
 _IN_FISHERY

No units were excluded

2.4.2 and 2.4.3 Level 2 PSA (steps 2 and 3)

The results in the Tables below provide details of the PSA assessments for each species, separated by role in the fishery, and by taxa where appropriate. These assessments are limited to direct impacts from fishing, and the operational objective is to avoid over-exploitation due to fishing, either as over-fishing or becoming over-fished. The risk scores and categories (high, medium or low) reflect potential rather than actual risk using the Level 2 (PSA) method. For species assessed at Level 2, no account is taken of the level of catch, the size of the population, or the likely exploitation rate. To assess actual risk for any species requires a Level 3 assessment which does account for these factors. However, recent fishing effort distributions are considered when calculating the availability attribute for the Level 2 analysis, whereas the entire jurisdictional range of the fishery is considered at Level 1.

The PSA analyses do not fully take account of management actions already in place in the fishery that may mitigate for high risk species. Some management actions or strategies, however, can be accounted for in the analysis where they exist. These include spatial management that limits the range of the fishery (affecting availability), gear limits that affect the size of animals that are captured (selectivity), and handling practices that may affect the survival of species after capture (post capture mortality). Management strategies that are not reflected in the PSA scores include limits to fishing effort, use of catch limits (such as TACs), and some other controls such as seasonal closures.

It should be noted that the PSA method is likely to generate more false positives for high risk (species assessed to be high risk when they are actually low risk) than false negatives (species assessed to be low risk when they are actually high risk). This is due to the precautionary approach to uncertainty adopted in the PSA method, whereby attributes are set at high risk levels in the absence of information. It also arises from the nature of the PSA method assessing potential rather than actual risk, as discussed above. Thus some species will be assessed at high risk because they have low productivity and are exposed to the fishery, even though they are rarely if ever caught and are relatively abundant.

In the PSA Tables below, the "Comments" column is used to provide information on one or more of the following aspects of the analysis for each species: use of overrides to alter susceptibility scores (for example based on use of observer data, or taking account of specific

management measures or mitigation); data or information sources or limitations; and information that supports the overall scores. The use of over-rides is explained more fully in Hobday *et al* (2006).

The PSA Tables also report on "missing information" (the number of attributes with missing data that therefore score at the highest risk level by default). There are seven attributes used to score productivity and four aspects (availability, encounterability, selectivity and post capture mortality) used to score susceptibility (though encounterability is the average of two attributes). An attribute or aspect is scored as missing if there are no data available to score it, and it has defaulted to high risk for this reason. For some species, attributes may be scored on information from related species or other supplementary information, and even though this information is indirect and less reliable than if species specific information was available, this is not scored as a missing attribute.

There are differences between analyses for TEP species and the other species components. In particular, target, by-product and by-catch species are included on the basis that they are known to be caught by the fishery (in some cases only very rarely). However TEP species are included in the analysis on the basis that they occur in the area of the fishery, whether or not there has ever been an interaction with the fishery recorded. For this reason there may be a higher proportion of false positives for high vulnerability for TEP species, unless there is a robust observer program that can verify that species do not interact with the gear.

Observer data and observer expert knowledge are important sources of information in the PSA analyses, particularly for the bycatch and TEP components. The level of observer data for this fishery is regarded as low. AFMA observers have taken part in 2 trips on the NWSTF – in June 2004 and June 2005.

Summary of Species PSA results

A summary of the species considered at Level 2 is presented below, sorted by component, by taxa within components, and then by the overall risk score [high (>3.18), medium (2.64-3.18), low<2.64)], together with categorisation of risk (refer to section 2.4.8).

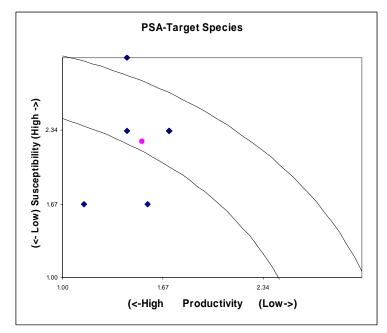
Target species NWS trawl fishery

ERA species ID	Scientific Name	Common Name	Average logbook catch (kg) (2001-04)	Missing > 3 attributes (Y/N)		Number of missing susceptibility attributes (out	Productivity (additive) 1- low risk, 3 - high risk	Susceptibility (mult) 1- low risk, 3 - high risk	2D risk value (P&S) 1.41- low risk, 4.24 - high risk	Susceptibility override used?	PSA risk category	High/Med risk category (Refer 2.4.8)	Comments
Invertebrate													
16	Aristaeopsis edwardsiana	Scarlet Prawn	43	Ν	1	0	1.43	3.00	3.32	N	High	Spatial uncertainty	
1332	Metanephrops australiensis	Australiensis scampi	20,134	N	1	0	1.71	2.33	2.90	N	Med	Spatial uncertainty	
1333	Metanephrops boschmai	Boschmai scampi	6,877	Ν	1	0	1.71	2.33	2.90	N	Med	Spatial uncertainty	
1335	Metanephrops velutinus	Velvet scampi	9,336	N	1	0	1.71	2.33	2.90	N	Med	Spatial uncertainty	
15	Aristaeomorpha foliacea	giant red prawn (wa)	975	N	1	0	1.43	2.33	2.74	N	Med	Spatial uncertainty	
1326	Aristeus virilis	Pink striped prawn	820	Ν	0	1	1.57	1.67	2.29	Ν	Low		
17	Haliporoides sibogae	Royal Red Prawn	7,221	Ν	0	0	1.14	1.67	2.02	Ν	Low		

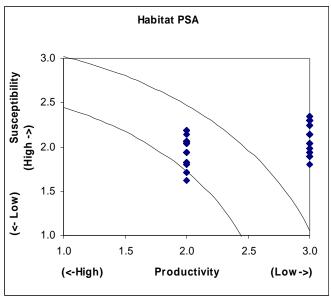
Summary of Habitat PSA results

A summary of the habitats considered at Level 2 is presented below, and is sorted by the overall risk score (high, medium, low), by subbiome, and by SGF score (Habitat type).

Record #	ERA habitat #	Sub-biome	Feature	Habitat Name	SGF Score	Productivity score (Average)	Susceptibility score (Multiplicative)	Overall Risk Value (P&Sm)	Overall Risk Ranking	Risk Ranking Override	Rational for Risk Ranking Override
3663	143	upper slope	slope	mud, unrippled, large sponges	001	3.00	2.30	3.78	High		
3664	144	upper slope	Canyon, Slope	Mud, Unrippled, Sedentary	007	3.00	2.30	3.78	High		
3697	227	upper slope	Slope	Fine sediments, unrippled, large sponges	101	3.00	2.30	3.78	High		
3644	078	upper slope	Canyon, Terrace, Slope	Fine sediments, unrippled, Solitary epifauna	107	3.00	2.30	3.78	High		
3700	231	upper slope	Slope	Fine sediments, irregular, glass sponge (stalked)	137	3.00	2.30	3.78	High		
#2	TBC	upper slope	slope	Likely: fine sediments, subcrop, mixed faunal community (corals)	153	3.00	2.35	3.81	High		
3728	284	upper slope	slope	Coarse sediments, unrippled, large sponges	201	3.00	2.30	3.78	_High		
3729	285	upper slope	slope	Coarse sediments, unrippled, octocorals	205	3.00	2.30	3.78	High		
3619	045	upper slope	slope	coarse sediments, unrippled, sedentary	207	3.00	2.30	3.78	High		
3703	236	upper slope	Slope	Coarse sediments, rippled, solitary epifauna	217	3.00	2.30	3.78	High		
3705	238	upper slope	Slope	Coarse sediments, irregular, octocorals (matrix of solsomalia)	235	3.00	2.30	3.78	High		
#1	TBC	upper slope	slope	Likely: coarse sediments, subcrop, mixed faunal community (corals)	253	3.00	2.35	3.81	High		
3652	131	upper slope	slope	cobble, debris flow, octocorals	445	3.00	2.24	3.75	High		
3730	286	upper slope	slope	Cobble/ boulder, debris, sedentary	447	3.00	2.24	3.75	High		
3706	239	upper slope	Slope	Coarse sediments, subcrop, large (?) sponges	251	3.00	2.14	3.69	High		
3655	134	upper slope	slope	fine sediments, subcrop, large sponges	151	3.00	2.14	3.69	High		
3615	040	upper slope	slope	fine sediments, subcrop, sedentary	157	3.00	2.35	3.81	High		
3636	067	upper slope	canyon, slope	Sedimentary rock, subcrop, large sponges	651	3.00	2.24	3.75	High		
3610	033	upper slope	slope	Sedimentary rock, subcrop, mixed faunal community	653	3.00	2.04	3.63	High		
3667	148	upper slope	Terrace, Slope	Sedimentary rock, Subcrop, Octocorals (gold corals / seawhips)	655	3.00	2.14	3.69	High		
3707	240	upper slope	Slope	Sedimentary rock, subcrop, octocorals	655	3.00	1.93	3.57	High		
3736	292	upper slope	slope	Sedimentary Rock (?), subcrop, sedentary	657	3.00	2.04	3.63	High		
3662	142	upper slope	slope	mud, unrippled, encrustors	006	2.00	2.07	2.88	Med		


Record #	ERA habitat #	Sub-biome	Feature	Habitat Name	SGF Score	Productivity score (Average)	Susceptibility score (Multiplicative)	Overall Risk Value (P&Sm)	Overall Risk Ranking	Risk Ranking Override	Rational for Risk Ranking Override
3661	141	upper slope	Slope	mud, unrippled, bioturbators	009	2.00	2.07	2.88	Med		
3660	140	upper slope	slope	mud, irregular, bioturbators	039	2.00	2.07	2.88	Med		
3657	137	upper slope	slope	fine sediments, unrippled, small sponges	102	2.00	2.19	2.96	Med		
3656	136	upper slope	slope	fine sediments, unrippled, encrustors	106	2.00	2.07	2.88	Med		
3618	044	upper slope	slope, canyon, terrace	fine sediments, unrippled, bioturbators	109	2.00	2.07	2.88	Med		
3641	073	upper slope	Canyon, Terrace	Fine sediments, irregular, Small encrustors / erect forms (including bryozoans)	136	2.00	2.07	2.88	Med		
3616	041	upper slope	Slope	Fine sediments, irregular, bioturbators	139	2.00	2.07	2.88	Med		
3643	077	upper slope	canyon, slope	fine sediments, subcrop, small sponges	152	2.00	2.04	2.85	Med		
3617	043	upper slope	slope	coarse sediments, unrippled, low mixed encrustors	206	2.00	2.07	2.88	Med		
3704	237	upper slope	Slope	Coarse sediments, wave rippled, bryozoan turf	226	2.00	2.07	2.88	Med		
3642	076	upper slope	canyon, slope	coarse sediments, irregular, low mixed encrustors	236	2.00	2.07	2.88	Med		
3640	072	upper slope	Slope	Coarse sediments, rippled, bioturbators	239	2.00	2.07	2.88	Med		
3708	241	upper slope	Slope	Coarse sediments, subcrop, low encrusting community	256	2.00	1.93	2.78	Med		
3658	138	upper slope	slope	gravel, debris flow, encrustors	346	2.00	2.19	2.96	Med		
3653	132	upper slope	slope	cobble, debris flow, small sponges	442	2.00	2.14	2.93	Med		
3650	129	upper slope	slope	cobble, debris flow, encrustors	446	2.00	2.04	2.85	Med		
3638	070	upper slope	canyon	Sedimentary rock, subcrop, small sponges	652	2.00	2.14	2.93	Med		
3613	036	upper slope	Slope	Sedimentary rock, subcrop, small encrustors	656	2.00	1.83	2.71	Med		
3649	128	upper slope	slope	Bryozoan based communities	XX6	2.00	2.19	2.96	Med		
3724	265	upper slope	Slope	Sedimentary rock, high outcrop, no fauna	690	2.00	1.71	2.63	Low		
3611	034	upper slope	slope	Sedimentary rock, high outcrop, encrustors	696	2.00	1.71	2.63	Low		
#3	TBC	upper slope	slope	Likely: fine seds, low outcrop, mixed faunal community (corals)	173	3.00	2.35	3.81	High	Low	low encounterability with outcrops
#4	TBC	upper slope	slope	Likely: coarse seds, low outcrop, mixed faunal community (corals)	273	3.00	2.35	3.81	High	Low	low encounterability with outcrops
3637	069	upper slope	canyon	cobble, low outcrop, crinoids	464	3.00	2.45	3.87	High	Low	low encounterability with outcrops
3731	287	upper slope	slope	slabs and boulders, low outcrop, octocorals	475	3.00	2.24	3.75	High	Low	low encounterability with outcrops
3732	288	upper slope	slope	Igneous Rock (?), low outcrop, octocorals	565	3.00	1.93	3.57	High	Low	low encounterability

Record #	ERA habitat #	Sub-biome	Feature	Habitat Name	SGF Score	Productivity score (Average)	Susceptibility score (Multiplicative)	Overall Risk Value (P&Sm)	Overall Risk Ranking	Risk Ranking Override	with ontcrobs
											low encounterability
3733	289	upper slope	slope	Igneous Rock (?), low outcrop, mixed faunal community	573	3.00	1.93	3.57	High	Low	with outcrops
											low encounterability
3735	291	upper slope	slope	Igneous Rock (?), high outcrop, mixed faunal community	593	3.00	1.80	3.50	High	Low	with outcrops
3719	256	upper slope	Slope	Sedimentary rock, low outcrop, octocorals	665	3.00	2.04	3.63	High	Low	low encounterability with outcrops
0110	200		0.000		000	0.00				2011	low encounterability
3665	145	upper slope	Canyon	Sedimentary rock, low outcrop, large sponges	671	3.00	2.24	3.75	High	Low	with outcrops
3692	216	uppor clopo	Convon	Sedimentary rock, low outcrop, Octocorals (gold corals / seawhips)	675	3.00	2.24	3.75	High	Low	low encounterability
3092	210	upper slope	Canyon	Sedimentary rock, low outcrop, Octocorais (gold corais / seawnips)	675	3.00	2.24	3.75	High	Low	with outcrops low encounterability
3721	261	upper slope	Slope	Sedimentary rock, low outcrop, sedentary	677	3.00	2.04	3.63	High	Low	with outcrops
											low encounterability
3723	264	upper slope	Slope	Sedimentary rock, high outcrop, octocorals	683	3.00	1.89	3.55	High	Low	with outcrops
3614	039	upper slope	slope	Sedimentary rock, high outcrop, crinoids	684	3.00	1.89	3.55	High	Low	low encounterability with outcrops
			0.000			0.00		0.00			low encounterability
3694	218	upper slope	Canyon	Sedimentary rock, High Outcrop, Sedentary: e.g. seapens	687	3.00	2.07	3.64	High	Low	with outcrops
3635	066	unnerelene	000000	Sedimentary rock, high outcrop, crinoids	694	3.00	2.07	3.64	Lligh	Low	low encounterability
3035	000	upper slope	canyon	Sedmentary rock, high outcrop, chiloids	094	3.00	2.07	3.04	High	Low	with outcrops low encounterability
3726	269	upper slope	Slope	Sedimentary, high outcrop, octocorals	695	3.00	1.89	3.55	High	Low	with outcrops
											low encounterability
3727	270	upper slope	Slope	Sedimentary, high outcrop, solitary epifauna	697	3.00	1.89	3.55	High	Low	with outcrops
3737	293	upper slope	slope	Rock/ biogenic matrix, low outcrop, mixed faunal community	763	3.00	2.35	3.81	High	Low	low encounterability with outcrops
0101	200		0.000		100	0.00	2.00	0.01	riigii	2011	low encounterability
3712	247	upper slope	Slope	boulders, low outcrop, no fauna	470	2.00	2.04	2.85	Med	Low	with outcrops
0704	200	uppor stars	alara	Ignacus Dack (2) high outgrap no four-	500	0.00	1.00	0 74	N /II	Low	low encounterability
3734	290	upper slope	slope	Igneous Rock (?), high outcrop, no fauna	590	2.00	1.83	2.71	Med	Low	with outcrops low encounterability
3612	035	upper slope	Slope	Sedimentary rock, low outcrop, small encrustors	666	2.00	1.83	2.71	Med	Low	with outcrops
											low encounterability
3720	257	upper slope	Shelf break	Sedimentary rock, low outcrop, no fauna	670	2.00	1.93	2.78	Med	Low	with outcrops
3666	146	upper slope	slope	Sedimentary rock, low outcrop, small sponges	672	2.00	1.93	2.78	Med	Low	low encounterability


Record #	ERA habitat #	Sub-biome	Feature	Habitat Name	SGF Score	Productivity score (Average)	Susceptibility score (Multiplicative)	Overall Risk Value (P&Sm)	Overall Risk Ranking	Risk Ranking Override	Rational for Risk Ranking Override
											with outcrops
3639	071	upper slope	Shelf break	Sedimentary rock, low outcrop, small encrustors	676	2.00	1.93	2.78	Med	Low	low encounterability with outcrops
3693	217	upper slope	Canyon	Sedimentary rock, High Outcrop, Small encrustors / erect forms	686	2.00	1.89	2.75	Med	Low	low encounterability with outcrops
3725	267	upper slope	Slope	Sedimentary rock, high outcrop, small sponges	692	2.00	1.80	2.69	Med	Low	low encounterability with outcrops
3683	202	upper slope	Terrace, Slope	mud, unrippled, no fauna	000	2.00	2.07	2.88	Med	Low	sediments no fauna
3620	046	upper slope	slope	fine sediments, unrippled, no fauna	100	2.00	2.07	2.88	Med	Low	sediments no fauna
3654	133	upper slope	Slope	Fine sediments, current rippled, no fauna	110	2.00	2.07	2.88	Med	Low	sediments no fauna
3702	235	upper slope	Slope	Coarse sediments, rippled, no fauna	210	2.00	2.07	2.88	Med	Low	sediments no fauna
3651	130	upper slope	slope	cobble, debris flow, no fauna	440	2.00	2.04	2.85	Med	Low	sediments no fauna
3716	251	upper slope	Slope	Sedimentary rock, subcrop, no fauna	650	2.00	1.83	2.71	Med	Low	sediments no fauna

2.4.4 PSA Plot for individual units of analysis (Step 4)

The average productivity and susceptibility scores for each unit of analysis (e.g. for each species) are then used to place the individual units of analysis on 2D plots (as below). The relative position of the units on the plot will determine relative risk at the unit level as per PSA plot below. The overall risk value for a unit is the Euclidean distance from the origin of the graph. Units that fall in the upper third of the PSA plots are deemed to be at high risk. Units with a PSA score in the middle are at medium risk, while units in the lower third are at low risk with regard to the productivity and susceptibility attributes. The divisions between these risk categories are based on dividing the area of the PSA plots into equal thirds. If all productivity and susceptibility scores (scale 1-3) are assumed to be equally likely, then $1/3^{rd}$ of the Euclidean overall risk values will be greater than 3.18 (high risk), $1/3^{rd}$ will be between 3.18 and 2.64 (medium risk), and $1/3^{rd}$ will be lower than 2.64 (low risk).

PSA plot for target species

PSA plot for habitats

The overall risk value for each unit is the Euclidean distance from the origin to the location of the species on the PSA plot. The units are then divided into three risk categories, high, medium and low, according to the risk values (**Figure 17**). The cutoffs for each category are thirds of the total distribution of all possible risk values (**Figure 17**).

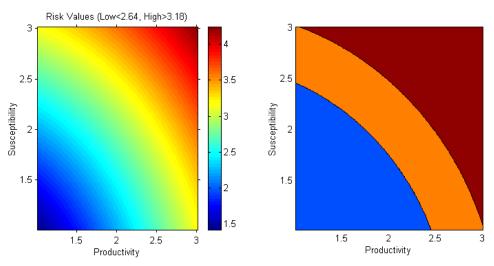


Figure 17. Overall risk values in the PSA plot. Left panel. Colour map of the distribution of the euclidean overall risk values. Right panel. The PSA plot contoured to show the low risk (blue), medium risk (orange) and high risk (red) values.

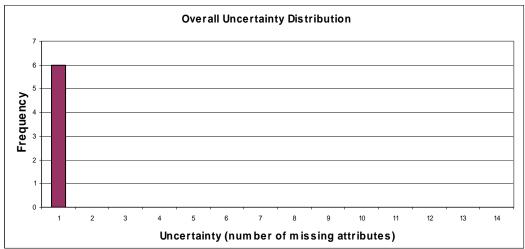
The PSA output allows identification and prioritization (via ranking the overall risk scores) of the units (e.g. species, habitat types, communities) at greatest risk to fishing activities. This prioritization means units with the lowest inherent productivity or highest susceptibility, which can only sustain the lowest level of impact, can be examined in detail. The overall risk to an individual unit will depend on the level of impact as well its productivity and susceptibility.

2.4.5 Uncertainty analysis ranking of overall risk (Step 5)

The final PSA result for a species is obtained by ranking overall risk value resulting from scoring the productivity and susceptibility attributes. Uncertainty in the PSA results can arise when there is imprecise, incorrect or missing data, where an average for a higher taxonomic unit was used (e.g. average genera value for species units), or because an inappropriate attribute was included. The number of missing attributes, and hence conservative scores, is tallied for each unit of analysis. Units with missing scores will have a more conservative overall risk value than those species with fewer missing attributes, as the highest score for the attribute is used in the absence of data. Gathering the information to allow the attribute to be scored may reduce the overall risk value. Identification of high-risk units with missing attribute information should translate into prioritisation of additional research (an alternative strategy).

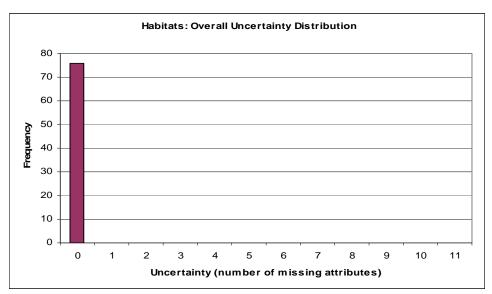
A second measure of uncertainty is due to the selection of the attributes. The influence of particular attributes on the final result for a unit of analysis (e.g. a habitat unit) can be quantified with an uncertainty analysis, using a Monte Carlo resampling technique. A set of productivity and susceptibility scores for each unit is calculated by removing one of the productivity or susceptibility attributes at a time, until all attribute combinations have been used. The variation (standard deviation) in the productivity and susceptibility scores is a measure of the uncertainty in the overall PSA score. If the uncertainty analysis shows that the unit would be treated differently with regard to risk, it should be the subject of more study.

The validity of the ranking can also be examined by comparing the results with those from other data sources or modelling approaches that have already been undertaken in specific fisheries. For example, the PSA results of the individual species (target, byproduct and bycatch and TEP) can be compared against catch rates for any species or against completed stock assessments. These comparisons will show whether the PSA ranking agrees with these other sources of information or more rigorous approaches.


Availability of information

The ability to score each species based on information on each attribute did not vary between the attributes (as per summary below). With regard to the productivity attributes, trophic level was missing in three of the seven species, and so the most conservative score was used. Information on most productivity attributes could be found or calculated for all species. The current method of scoring the susceptibility attributes provides a value for each attribute for each species – some of these are based on good information, whereas others are merely sensible default values.

Productivity Attributes	Average age at maturity	Average max age	Fecundity	Average max size	Average size at Maturity	Reproducti ve strategy	
Total species scores for attribute	7	7	5	7	7	7	4
n species scores with attribute unknown, (conservative score used)	0	0	2	0	0	0	3
% unknown information	0	0	29	0	0	0	43
Susceptibility Attributes	Availability	Encount	erability	Selectivity	PCM		
		Bathymetry overlap	Habitat				
Total species scores for attribute	7	7	6	7	7	7	7
n species scores with attribute unknown, (conservative score used)	0	0	1	0	0	0	0
% unknown information	0	0	14	0	0	0	0


Summary of the success of obtaining information on the set of productivity and susceptibility attributes for the species. Where information on an attribute was missing the highest score was used in the PSA.

Each species considered in the analysis had information for an average of 6.29 (90%) productivity attributes and 3.9 (98%) susceptibility attributes. This meant that, on average, conservative scores were used for less than 7% of the attributes for a single species. Species had missing information for between 0 and 1 of the combined 12 productivity and susceptibility attributes.

Species: Overall uncertainty distribution - frequency of missing information for the combined productivity and susceptibility attributes

Habitats: Eleven attributes were used in the habitat PSA. All attributes were scored according to Habitat attribute tables 9-27. Only attributes that could be ranked were utilized and therefore there are no missing attributes. It is important to note that habitat attributes relating to fauna are based on taxa specific generalizations, not species specific metrics.

Habitats: Overall uncertainty distribution- frequency of missing information for the combined productivity and susceptibility attributes

Correlation between attributes

In situations where attributes are strongly correlated only one of them should be included in the final PSA (Stobutzki *et al.*, 2001).

Species component: Some of the attributes selected for productivity and susceptibility were strongly correlated (as per correlation matrix below for Productivity and susceptibility). However with only seven species considered, this analysis is not particularly meaningful. Correlations were not calculated for the Susceptibility attributes as there was no variation between species for most attributes.

	Age at	Max age	Fecundit	Max size	Min size	Reproduc	Trophic
	maturity		У		at	tive	level
					maturity	strategy	
Age at maturity	Х						
Max age	-0.55	Х					
Fecundity	0.65	-0.35	Х				
Max size	-	-	-	Х			
Min size at maturity	-	-	-	-	Х		
Reproductive strategy	-1.00	0.55	-0.65	-	-	Х	
Trophic level	-0.68	0.94	-0.22	-	-	0.68	Х

Correlation matrix for the species productivity attributes. The correlation (r) is based on the scores within each attribute pair. Results from PSA workbook ranking graphs worksheet.

	Availability	Encounterability	Selectivity	Post-capture mortality
Availability	Х			
Encounterability	-	Х		
Selectivity	-	-	Х	
Post-capture mortality	-	-	-	Х

Correlation matrix for the four species susceptibility attributes. The correlation (r) is based on the scores within each attribute pair. Results from PSA workbook ranking graphs worksheet.

Habitat Component: The correlation between the productivity attributes Regeneration of Fauna and Natural disturbance could not be calculated because there was no variation in the Natural disturbance score. The susceptibility correlation could not be calculated between the Availability and any other aspect, because there was no variation in the Availability score. There was no correlation between the attributes used to calculate Encounterability and Selectivity. All attributes were suitable for inclusion in the PSA

Productivity Correlation Matrix	Regeneration of fauna	Natural disturbance
Regeneration of fauna	Х	
Natural disturbance	-	Х

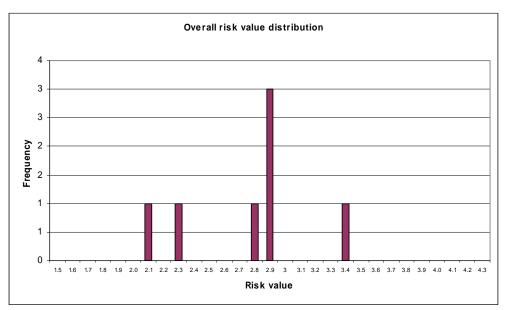
Correlation matrix for the habitat productivity attributes. The correlation (r) is based on the scores within each attribute pair. Results from PSA workbook ranking graphs worksheet.

		Encounterability	Selectivity score
Susceptibility Correlation Matrix	Availability score	score (average)	(average)
Availability score	Х		
Encounterability score (average)	-	Х	
Selectivity score (average)	-	-0.13	Х

Correlation matrix for the three habitat susceptibility attributes. The correlation (r) is based on the scores within each attribute pair. Results from PSA workbook ranking graphs worksheet.

Productivity and susceptibility risk values for Species

The average productivity score for all species was 1.53 ± 0.12 (mean \pm SD of scores calculated using n-1 attributes) and the mean susceptibility score was 2.24 (as per summary of average productivity and susceptibility scores as below). Individual scores are shown in section 2.4.2: Summary of PSA results. Information was missing for an average of 0.86 attributes out of 12 possible for each species.

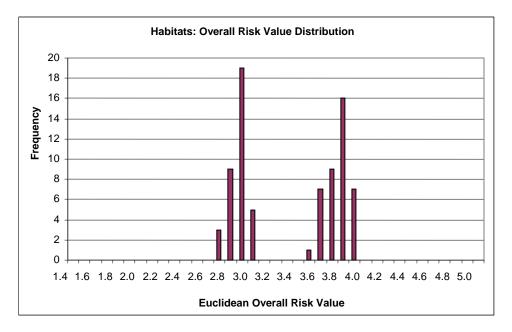

Productivity and susceptibility risk values for habitat units.

The average productivity score for all habitats was 2.53 ± 0.5 (mean \pm SD of scores calculated using n-1 attributes) and the mean susceptibility score was 2.09 ± 0.18 (as per summary of average productivity and susceptibility scores as below). Individual scores are shown in section 2.4.3: Summary of PSA results.

Overall Risk Values for Species

The overall risk values (Euclidean distance on the PSA plot) could fall between 1 and 4.24 (scores of 1&1 and 3&3 for both productivity and susceptibility respectively). The mean observed overall risk score was 2.72, with a range of 1.84 - 3.32. The actual values for each species are shown in section 2.4.2 Summary of PSA results. One unit was classed as high risk, four were in the medium risk category, and three

were classed as low risk.


Results: Frequency distribution of the overall PSA risk values

Frequency distribution of the overall risk values generated for the 7 species in the NWSTF PSA.

Overall Risk Values for Habitats

The overall risk values (Euclidean distance on the PSA plot) could fall between 1 and 4.24 (scores of 1&1 and 3&3 for both productivity and susceptibility respectively). The mean observed overall risk score was 3.01, with a range of 2.18-3.97.

The actual values for each species are shown in section 2.4.3: Summary of PSA results. A total of 22 units, (29%) were classed as high risk, 20 units, (26%) were in the medium risk category, and 34 (45%) as low risk.

Frequency distribution of the overall risk values generated for the 76 habitat types in the NWSTF PSA.

2.4.6 Evaluation of the PSA results (Step 6)

The Level 2 (or PSA) analysis of the species in the North West Slope Trawl Fishery was presented to, and reviewed by, WESTMAC members at a meeting in Fremantle on 7 March 2006. The PSA methodology has since been reviewed and revised. The following results reflect the revised methodology (as at 30 April 2006).

Overall

A total of seven target species were considered. For most species there was little missing data. The average number of missing attributes was 0.86 out of a possible 12. No expert over rides were used, and no species had more than three missing attributes.

Component	Measure	
Target species	Number of species	7
	Average of productivity total	1.53
	Average of susceptibility total	2.24
	Average of overall risk value	2.72
	Average number of missing attributes	0.86

Table 1. Summary of average productivity, susceptibility and overall risk scores.

Table 2. Risk categories for each species component (all invertebrates).

Risk Category	High	Medium	Low	Total
Target species	1	4	2	7

Target species

Scarlet prawn was assessed to be at high risk. It is the largest prawn found in the NWSTF, and therefore has a higher selectivity score than the other crustaceans. It is important to note that the PSA assesses potential risk. Currently catches of scarlet prawn are very low in the NWSTF, so it is unlikely to be at risk from the fishery at present. It would be a commercially attractive species if found in larger quantities. Australian scampi, Boschmai scampi, velvet scampi and giant red prawn are at medium risk, and pink striped prawn and pink prawn (or royal red prawn) are at low risk.

Habitat Component:

A Level 1 (or SICA) analysis of the potentially vulnerable habitats from the North West Slope Trawl Fishery region was presented to, and reviewed by, WESTMAC members at a meeting in Fremantle on 7 March 2006. The detailed Scoping for habitats has been completed since, the SICA populated with revised Units of Analysis, and a PSA has recently been completed but not reviewed by stakeholders. The following results reflect the revised PSA methodology (as at 30 April 2006).

Overall

A total of 76 habitat types were considered. Eleven attributes were scored for all habitats. Risk ranking categories were adjusted following the PSA based on stakeholder feedback and expert opinion. The resulting PSA risk rankings (H, M or L) including overrides are considered in the following discussion. Overrides are made according to

the rationales discussed in the evaluation and are included in section 2.4.3: Summary of PSA Results, which lists all habitats assessed in the PSA. Overrides are a category adjustment only, as the Productivity and Susceptibility scores could not be adjusted further to automatically over ride overall risk values.

Component	Measure	
All habitats	Number of habitats	76
	Average of productivity total	2.53
	Average of susceptibility total	2.09
	Average of overall risk value	3.29
	Average number of missing attributes	0

Summary of average productivity, susceptibility and overall risk scores

PSA (productivity and susceptibility) risk categories for sub-biome (depth zone) fished (before override)
adjustment).	

Risk	Coastal			Upper-	Mid-	Total
Score	Margin	Inner-shelf	Outer-shelf	slope	slope	habitats
High	0	0	0	40	0	40
Medium	0	0	0	34	0	34
Low	0	0	0	2	0	2
Total	0	0	0	76	0	76
		Not in	Not in			
	Not in fishery	fishery	fishery		no effort	

PSA (productivity and susceptibility) risk categories for sub-biome fished after risk ranking adjustment (stakeholder/expert override).

Risk	Coastal			Upper-	Mid-	Total
Score	Margin	Inner-shelf	Outer-shelf	slope	slope	habitats
High	0	0	0	22	0	22
Medium	0	0	0	20	0	20
Low	0	0	0	34	0	34
Total	0	0	0	76	0	76
		Not in	Not in			
	Not in fishery	fishery	fishery		no effort	

PSA (productivity and susceptibility) risk categories for the habitat component.

Risk Category	High	Medium	Low	Total
Total Habitats	22	20	34	76

Only habitats of the upper slope were scored; these were mostly at low risk (34), with near-equal numbers at medium risk (20) and high risk (22). Effort in this fishery area does not extend onto the mid-continental slope (> 700 m depth); no continental shelf habitats were scored because the shallow operating depth of the fishery is 200 m.

Discussion

The poor knowledge of upper slope seabed habitats in this large fishery area required a list of habitats to be generated based on (1) the presence of known coarse-scale habitat types ('geomorphic features') and (2) the presence of fine-scale habitats inferred from better known adjacent or similar fishery areas (Scoping method 2). A precautionary approach is taken, in which all upper slope habitats of geomorphic features were included: canyons, trenches, troughs, seamounts, pinnacles, plateaus and terrace (Geoscience Australia, National Bioregionalization). In addition, seabed habitat data from a recent (late-2005) CSIRO survey of deep benthic biodiversity off the western WA coast were also considered. Rankings are consistent with the same habitat types from other Commonwealth fisheries utilizing similar gear in upper slope depths (i.e. SET OT, WDWT, GABT).

This alternative scoping method generated a conservatively large list of potentially encounterable habitats (76) and included many habitat types in each risk category. However, these detailed habitat types can be readily aggregated into a smaller number of general categories for interpretation. This is because many types are similar, differing in only one respect of substratum or geomorphology or dominant fauna, and therefore attracting similar PSA scores and the same risk rankings. For example, one general type will group together the habitats of a depth zone characterized by similar substratum and geomorphology but different large fauna (sponges, crinoids, octocorals or mixed communities).

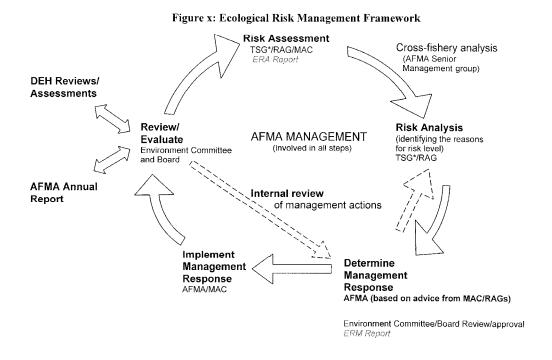
The distribution of risk values for the NWSTF is 22 (29%) high, 20 (26%) medium and 34 (45%) low. All habitat types were on the upper continental slope (200-700 m depth).

Factors contributing to the high risk ranking of 22 habitats were predominantly the relatively high overall level of disturbance of bottom trawling and use of continental slope habitats where productivity is relatively low (compared to the continental shelf). There is potentially high removability of epifauna that are large, erect or delicate, particularly where habitats have low ruggedness and low resistance (e.g. sediments). In overview,

22 high risk upper slope habitats included 15 categories of 'soft bottom' types • and 7 'hard bottom' types. Soft bottom habitats are muds, fine and coarse sediments characterized by large, erect or delicate epifauna (large demosponges, glass sponges, octocorals, solitary and sedentary fauna). Hard types fall into two categories: 2 types of low-relief cobble bottom characterized by octocorals and sedentary fauna, and 5 types of low, sub-cropping, soft sedimentary rock with large, erect or delicate epifauna consisting of sponges, octocorals, mixed and sedentary epifauna. Outcropping rocky habitats with vulnerable fauna (particularly large erect types) scored at high risk due to low productivity on the continental slope (compared to the shelf) but were down-ranked to low risk because of low accessibility (encounterability). A similar down-ranking of the 5 sub-cropping hard bottom types is also likely to be appropriate for crustacean trawling that targets prawns and scampi on sediment bottoms using light gear. However, this category is left at high risk as a precautionary measure until more information is available.

Factors contributing to the medium risk ranking of 20 habitats are largely the same as for high risk types, although only habitats with small, low or bioturbating (burrowing) fauna score at medium risk. The 34 habitat types scored at low risk are mostly down-ranked from high risk based on their low encounterability by bottom trawling.

2.4.7 Decision rules to move from Level 2 to Level 3 (Step 7)


For the PSA overall risk values, units that fall in the upper third (risk value > 3.18) and middle third (2.64 < risk value < 3.18) of the PSA plots are deemed to be at high and medium risk respectively. These need to be the focus of further work, either through implementing a management response to address the risk or be further examined for risk within the particular ecological component at Level 3. Units at low risk, in the lower third (risk value <2.64), will be deemed not at risk from the sub-fishery and the assessment is concluded for these units.

For example, if in a Level 2 analysis of habitat types, two of seven habitat types were determined to be at risk from the sub-fishery, only those two habitat types would be considered at Level 3.

The output from the Level 2 analysis will result in four options:

- The risk of fishing on a unit of analysis within a component (e.g. single species or habitat type) not high, the rationale is documented, and the impact of the fishing activity on this unit need not be assessed at a higher level unless management or the fishery changes.
- The risk of fishing on a unit is high but management strategies are introduced rapidly that will reduce this risk, this unit need not be assessed further unless the management or the fishery changes.
- The risk of fishing on a unit is high but there is additional information that can be used to determine if Level 3, or even a new management action is required. This information should be sought before action is taken
- The risk of fishing on a unit is high and there are no planned management interventions that would remove this risk, therefore the reasons are documented and the assessment moves to Level 3.

At level 2 analysis, a fishery can decide to further investigate the risk of fishing to the species via a level 3 assessment or implement a management response to mitigate the risk. To ensure all fisheries follow a consistent process in responding to the results of the risk assessment, AFMA has developed an ecological risk management framework. The framework (see Figure x below) makes use of the existing AFMA management structures to enable the ERAs to become a part of normal fisheries management, including the involvement of fisheries consultative committees. A separate document, the ERM report, will be developed that outlines the reasons why species are at risk and what actions the fishery will implement to respond to the risks.

*TSG - Technical Support Group - currently provided by CSIRO.

2.4.8 High/Medium risk categorisation (Step 8)

Following the <u>Level 2 PSA</u> scoring of target, bycatch and byproduct, and TEP species, the high and medium risk species have been divided into five categories that highlight potential reasons for the higher risk scores. These categories should also help identify areas of uncertainty and assist decisions regarding possible management responses for these species. The categories are independent and species are allocated to each category in the order the categories are presented below. Thus, while in principle a species could qualify for both Category 1 and 2, it will only appear in Category 1 because that was scored first. The five categories are programmed into the PSA excel spreadsheets for each fishery according to the following algorithms:

- **Category 1: Missing data** (>3 missing attributes in either Productivity or Susceptibility estimation). <u>Rationale:</u> A total of more than 3 missing attributes (out of 12 possible) could lead to a change in risk score if the information became known. This is because where information is missing for an attribute, that attribute is automatically scored as high risk. The choice of 3 attributes was identified using sensitivity analysis.
- Category 2: Spatial overlap
 - **2A. Widely distributed** (*More than 80% of the full range of a species is outside the jurisdictional boundary of the fishery*). <u>Rationale:</u> These species may have refuge outside the fishery.
 - **2B. Low overlap** (<20% overlap between effort and the species distribution inside the fishery). Refers to the preferred Availability attribute used to calculate Susceptibility. <u>Rationale:</u> This cutoff (20%) has no strong rationale, other than being a low percentage overlap. Additional work to

determine what threshold might be applicable is required. However, the categories are to be used as a guide for management, and additional effort to decide on cutoffs may be misplaced if the categories are just used as a guide. A similar analysis could be undertaken for the encounterability and selectivity attributes, but there is more information available for availability (overlap) for most species and overlap may be more informative about risk. A subtle change in fishing practice could modify encounterability or selectivity, while to change availability requires a major change in fleet location, which will be easier to detect.

- **Category 3**: **Low (susceptibility) attribute score** (*One of the susceptibility attribute scores* = 1). <u>Rationale:</u> These species may be scored high risk based on productivity risk alone, even if their susceptibility is very low.
- **Category 4**: **Spatial uncertainty** (*No detailed distributional data available*) Availability was calculated using less reliable mapping data or distributional categories: Global/Southern Hemisphere/Australia, with stock likelihood overrides where necessary. <u>Rationale</u>: the absence of fine scale catch and species distribution data (e.g. TEP species) means that the substitute attribute (precautionary) was used. Spatial data should be sought.
- **Category 5 Other**: *risk score not affected by 1-4 considered above*

Categorisation results - High risk species

Detailed species by species results of the categorisation are presented for medium and high risk species in the Tables in section 2.4.2 of this report. The following is a brief summary of the results for species classified as high risk from the PSA analyses.

Of the 1 species classified as high risk in the NWS fishery, 1 had spatial uncertainty (Category 4).

High risk Category	Description	Total
Category 1	High risk - Missing data for more that 3 attributes	0
Category 2A	High risk - Widely distributed outside fishery	0
Category 2B	High risk - Low overlap inside fishery	0
Category 3	High risk - One (susceptibility) attribute scored low	0
Category 4	High risk - Spatial uncertainty	1
Category 5	High risk -other	0
	Total High	1

It is important to stress that this categorization does not imply a down-grading of risk. It is intended as a tool to focus subsequent discussions on risk treatment and identify needs for further data. Sensitivity analysis to the particular cutoffs has not been undertaken in a formal sense, and may not be required, as these categories are intended as guides to focus further consideration of the high risk species. These categories may also indicate the presence of false positives in the high risk species category, but only further analysis or data can determine this.

2.5 Level 3

CPUE trends for the three scampi species were calculated in 2004 (Lynch and Garvey, 2005). This analysis shows that CPUE for all species has declined since 1985. No evidence of growth overfishing was found, and stocks are not considered to be over-exploited at current catch levels.

3. General discussion and research implications

The North West Slope Trawl Fishery operates in deep water (greater than 200m) off the north-west coast of Western Australia, between North West Cape and Cartier Island. It is based on commercial stocks of deepwater crustaceans, principally scampi and prawns.

It is mainly fished by Northern Prawn Fishery trawlers that operate on an opportunistic basis during closures in the NPF. Demersal prawn trawling gear modified for deepwater trawling is used.

3.1 Level 1

The SICA analysis identified three components at potential risk from the fishery – the target species, habitats and communities. Target species and habitats have both been assessed further at Level 2 using the PSA analysis. The hazards identified to be of concern at Level 1 were capture by fishing, direct impact of fishing without capture, and disturbance of physical processes due to fishing. Habitats were considered to be potentially at major risk from the fishery (risk score 4).

The byproduct/bycatch and TEP species components have been assessed to only be at minor risk in this fishery. There are few non-target species retained in the NWSTF. Compared to other tropical trawl fisheries, bycatch volume and composition in the NWSTF is small, due to the greater depth range at which the fishery operates. However, observer reports show that many more bycatch species are caught than have been included in this analysis. A future analysis should make more effort to identify and include a greater range of bycatch species. More detailed observer data will assist in such analyses.

The offshore and deepwater nature of the NWSTF reduces the likelihood of interactions with TEP species. The two existing observer reports show no interactions with TEP species.

3.2 Level 2

Of the seven target species assessed, one was found to be at high risk, four at medium risk, and two at low risk. Twenty-two of the 76 habitats assessed were also found to be at potential high risk from trawling, though see also discussion below.

3.2.1 Species at risk

Of the list of species rated as high risk from the PSA analyses, the authors consider that 1 species (Scarlet prawn) may, in future, need further evaluation or management response. This expert judgment is based on taxonomy/identification, distribution, stock structure, movements, conservation status and overlap with this/other fisheries. This and other species are discussed below.

Species	Risk category	Role
Invertebrate		
 Scarlet prawn 	Spatial uncertainty	Target

Scarlet prawn is the only species assessed to be at high risk in the NWSTF. It is the largest commercial crustacean targeted, and thus has the highest selectivity score. Currently catches of scarlet prawn are very low in the NWSTF (<100 kg per year), so it is unlikely to be at risk from the fishery at present. It would be commercially attractive if found in larger quantities. Worldwide, this species has been recorded to depths of 1800m, so it is conceivable that further resources may be discovered if the deeper waters of the North West slope are explored (Wadley, 1992).

Scampi are currently the main target in the NWSTF. They have been assessed in more detail in other analyses (Lynch and Garvey, 2005). Although catch rates have declined, they are not considered to be over-exploited at current catch levels.

There is no information available for any of the target species on the overlap of their range with effort in the fishery. Fishing for scampi in the NWSTF has been confined to relatively small areas. There is no evidence of serial depletion of scampi in the fishery (Lynch and Garvey, 2005).

Residual risk

As discussed elsewhere in this report (Section 1), the ERAEF methods are both hierarchically structured and precautionary. The Level 1 (SICA) analyses are used to identify potential hazards associated with fishing and which broad components of the ecological system they apply to. The Level 2 (PSA) analyses consider the direct impacts of fishing on individual species and habitats (rather than whole components), but the large numbers of species that need to be assessed and the nature of the information available for most species in the PSA analyses limits these analyses in several important respects. These include that some existing management measures are not directly accounted for, and that no direct account is taken of the level of mortality associated with fishing. Both these factors are taken into account in the ERAEF framework at Level 3, but the analyses reported here stop at Level 2. This means that the risk levels for species must be regarded as identifying potential rather than actual risk, and due to the precautionary assumptions made in the PSA analyses, there will be a tendency to overestimate absolute levels of risk from fishing.

In moving from ERA to ERM, AFMA will focus scarce resources on the highest priority species and habitats (those likely to be most at risk from fishing). To that end, and because Level 3 analyses are not yet available for most species, AFMA (with input from CSIRO and other stakeholders) has developed guidelines to assess "residual risk" for those species identified as being at high potential risk based on the PSA analyses. The residual risk guidelines will be applied on a species by species basis, and include consideration of existing management measures not currently accounted for in the PSA analyses, as well as additional information about the levels of direct mortality. These guidelines will also provide a transparent process for including more precise or missing information into the PSA analysis as it becomes available.

CSIRO and AFMA will continue to work together to include the broad set of management arrangements in Level 2 analyses, and these methods will be incorporated in future developments of the ERAEF framework. CSIRO has also undertaken some preliminary Level 3 analyses for bycatch species for several fisheries, and these or similar methods will also form part of the overall ERAEF framework into the future.

3.2.2 Habitats at risk

The Level 2 habitat PSA analyses have highlighted a range of habitat types likely to be at high risk from trawling. These habitat types cover both hard and soft ground (the former still able to be trawled), and generally involve habitats with large, erect and fragile epifauna of various types. Habitats characterized by what appears to be a very rich bioturbating fauna including large animals (e.g. scampi) are scored at medium risk, acknowledging both a potentially deleterious impact from trawling and the vast expanses of these habitats that exist in the NWSTF with low trawl fishing effort.

Initially, the information required for an informed management response includes knowledge of what habitats exist, how much of each type there is, and where they are found. So that goals can be clearly defined, it is also necessary to know whether a habitat is essential to maintaining a part of the fishery ecosystem (is important for commercial species), or has important biodiversity values. The Level 2 analysis for the NWSTF provides only an evaluation of what habitats exist at a relevant level of detail for initial risk assessment. Very little information, even at a coarse scale, has been analysed to address other key issues for fishery habitats in this area: the "how much" and "where", value to the fishery or biodiversity value. These issues require further analysis (and over time, further data collection).

Additional information to that used in the risk assessment does exist and would enable a preliminary examination of management options. Relevant findings can also be inferred from other continental slope areas that are better known (e.g. those in the eastern and southeastern regions of the SESSF) or the well-documented North West Shelf area shoreward of this fishery. Primarily this is finer scale information on habitat distribution (how much and where), but information on the role of habitat for ecosystem function (e.g. providing refuge for commercial species) is available – especially for North West Shelf species. Example of unused data include surveys by AIMS and CSIRO (respectively, in this and the adjacent WDWTF). The CSIRO data show two underlying and relevant patterns in benthic habitats of the WDWTF: vast areas of bioturbated sediments (medium to low risk) and concentrations of hard bottom habitats (high to low risk) at particular latitudes and depths, and associated with particular features (e.g. canyons) that may be largely untrawlable. These data, used in conjunction with the information being incorporated in MPA planning, will be very helpful in understanding the area planning issues for the fishery.

In summary: while high risk habitats have been identified, several factors point to there being no immediate needs to protect fishery habitat. These include the large size of the fishery, low effort, a narrow (if not exclusive) focus on crustacean target species, the use of relatively light trawl gear (compared to scalefish gear), the probability that extensive tracts of inaccessible bottom exist, and a rapidly developing program to implement offshore MPAs. Two factors that may require a management response

would be an expansion of fishing effort using heavier fish trawl gear, and/or if habitats of seamounts and pinnacles, widely recognized as being hotspots for both fishery production and biodiversity value, were discovered and exploited. Any consideration of spatial management for habitat protection should also involve an analysis of the extent to which it would or would not help mitigate impacts on high risk species. A key element of this is to examine the ecosystem services provided by complex fishery habitat to commercial species and their prey. Both developments will rely on an increased knowledge of the fishery landscape through mapping existing data at relevant scales.

3.2.3 Communities at risk

The community component was not assessed at Level 2 for this sub-fishery, but should be considered in future assessments when the methods to do this are fully developed.

3.3. Key Uncertainties / Recommendations for Research and Monitoring

In assessing risk to species, it is not possible to assess absolute risk without supplementary information on either abundance or total mortality rates, and such data are not available for this fishery. At the moment, the only inferences that can be drawn about stock status are from trends in CPUE.

In assessing risk to habitats, similar issues arise. In general we do not have detailed information on the amount of each habitat type present in the area of the fishery, nor of its spatial distribution.

Specific recommendations arising from this assessment include:

- Continue the observer program with better taxonomic resolution to better identify bycatch species and document any wildlife interactions
- Revisit risk assessment for byproduct/bycatch species once better species lists are compiled

References

Ecological Risk Assessment References (specific for this fishery)

- Baron, M. (2004) AFZ Observer Report for the Prawn Trawler FV Heron. Confidential report to Australian Fisheries Management Authority, Canberra.
- Carter, D., Maxwell, J. and Bowtell, C. (1983) K.F.V. Fisheries (QLD) Pty. LTD. North west shelf crustacean resource survey report. The Fisheries Division, Department of Primary Industry, Barton, ACT 2600.
- Evans, D. (1992). The Western Deep Water Trawl and North West Slope Trawl Fisheries, pp. 19-27. In *The fisheries biology of deepwater crustacea and finfish* on the continental slope of Western Australia, Rainer, S.F. (ed). Final Report FRDC Project 1988/74, 308pp.
- Fowler, J. and McLoughlin, K (eds) (1996). North West Slope Trawl Fishery and Western Deepwater Trawl Fishery 1994, Fisheries Assessment Report compiled by the Northern Fisheries Resource Assessment Group. Australian Fisheries Management Authority, Canberra.
- Garvey, J.R., Wadley, V.A. and Phillips, B.F. (1992). Estimation of the relative abundance of commercial crustaceans from the North West Slope Trawl Fishery using comercial catch and effort data, pp. 131-155. In *The fisheries biology of deepwater crustacea and finfish on the continental slope of Western Australia*, Rainer, S.F. (ed). Final Report FRDC Project 1988/74, 308pp.
- Jernakoff, P. (1988). Bulletin No. 1 The Western and North West Shelf Deep-Water Trawl Fisheries: Research Priorities. Bureau of Rural Sciences, Canberra. 33pp.
- Levings, A., Mitchell, B.D., McGarvey, R., Mathews, J., Laurenson, L., Austin, C., Heeron, T., Murphy, N., Miller, A., Rowsell, M. and Jones, P. (2001) Fisheries biology of the giant crab *Pseudocarcinus gigas*. Final report to the Fisheries Research and Development Corporation for projects 93/220 & 97/132. Deakin University, pp 388.
- Lynch A., and Garvey, J. (2003) Great Australia Bight Trawl Fishery. Data summary 1990-2002. Australian Fisheries Management Authority, Canberra.
- Lynch, A. and Garvey, J. (2005) North West Slope Trawl Fishery Scampi Stock Assessment 2004. Data Group, Australian Fisheries Management Authority, Canberra.
- McLoughlin, R. G., Davis, T. L. and Ward, T.J. (1988) Sedimentary provinces, and associated bedforms and benthos on the Scott Reef-Rowely Shoals platform off North-West Australia. *Aust. J. Mar. Fresh. Res.* **39** (2): 133-144.
- Newman, J.S. and Evans, D. (2002) Demersal finfish resource assessment survey of the north-west slope of Western Australia. Report to the Fisheries Research and

Development Corporation for project 1998/152. Department of Fisheries – Research Division, Western Australia, pp 49.

- Newman, J.S., Evans, D. and Ashworth, R. (2000) Assessment of the outer-shelf fishery resources off the Pilbara coast of tropical Western Australia. Report to the Fisheries Research and Development Corporation for project 97/138. Department of Fisheries – Research Division, Western Australia, pp 107.
- Penn, J.W. (editor) (2002) State of the Fisheries Report 2001/2002. Department of Fisheries, Government of Western Australia.
- Phillips, B. (1992). Pp 5-18 in Rainer, S.F. (ed) The fisheries biology of deepwater crustacea and finfish on the continental slope of Western Australia. Final report, FRDC Project 1988/74, 308 pp.
- Pogonoski, J.J., Pollard, D.A. and Paxton, J.R. (2002). Conservation overview and action plan for Australian threatened and potentially threatened marine and estuarine fishes 2002. Environment Australia, pp. 375.
- Staples, D., McLoughlin, K., Newton, G., Rainer, S., Wadley, V. and Garvey, J. (1994).
 North West Slope Trawl, pp. 103-108. In *Fishery Status Reports 1993* —
 Resource Assessments of Australian Commonwealth Fisheries, McLoughlin, K., Staples, D. and Maliel, M. (eds). Bureau of Resource Sciences, Canberra.
- Stone, S. (2005) AFZ Observer Report for the Prawn Trawler FV Surefire. Confidential report to Australian Fisheries Management Authority, Canberra.
- Wadley, V. (1992). The biology of scampi, prawns, carids, bugs and crabs exploited by deepwater trawling, pp. 95-122. In *The fisheries biology of deepwater crustacea* and finfish on the continental slope of Western Australia, Rainer, S.F. (ed). Final Report FRDC Project 1988/74, 308pp.
- Wallner, B. and McLoughlin, K. (1995). Indonesian Fishing in Northern Australia, pp. 115-121. In Fishery Status Reports 1994 Resource Assessments of Australian Commonwealth Fisheries, McLoughlin, K., Wallner, B. and Staples, D. (eds). Bureau of Resource Sciences, Canberra.
- Wallner, B., McLoughlin, K. and Tilzey, R. (1995). Western Deepwater Trawl, pp. 109-113. In Fishery Status Reports 1994 — Resource Assessments of Australian Commonwealth Fisheries, McLoughlin, K., Wallner, B. and Staples, D. (eds). Bureau of Resource Sciences, Canberra.
- Wallner, B.G. and Phillips, B. F. (1995). Development of a trawl fishery for deepwater metanephropid lobsters off the northwest continental slope of Australia: designing a management strategy compatible with species life history. *ICES mar. Sci. Symp.*, **199:** 379-390.

Wassenberg, T.J. and Hill, B. J. (1989) Diets of four decapod crustaceans (Linuparis

trigonis, Metanephrops and amanicus, M, australiensis and M. boschmai from the continental shelf around Australia. Mar. Biol. 103: 113-122

- Williams, A., Koslow, J.A. and Last, P. (2001). Diversity, density and community structure of the demersal fish fauna of the continental slope off Western Australia (20 to 35°S). *Mar. Ecol. Prog. Ser.*, 212: 247-263.
- Williams, A., Last, P.R., Goman, M.F. and Paxton, J.R. (1996). Species composition and check list of the demersal ichthyofauna of the continental slope off Western Australia (20-35°S). *Records of the Western Australian Museum* 18: 135-155.

General Methodology References

- Fletcher, W. (2005) The application of qualitative risk assessment methodology to prioritize issues for fisheries management. *ICES Journal of Marine Science* 62:1576-1587.
- Fletcher, W. J., Chesson, J., Fisher, M., Sainsbury, K. J., Hundloe, T., Smith, A.D.M. and Whitworth, B. 2002. National ESD reporting framework for Australian Fisheries: The how to guide for wild capture fisheries. FRDC Report 2000/145, Canberra, Australia.
- Hobday, A. J., A. Smith and I. Stobutzki (2004). Ecological risk Assessment for Australian Commonwealth Fisheries. Final Report Stage 1. Hazard identification and preliminary risk assessment. <u>Report Number R01/0934</u>, CSIRO Marine Research.
- Stobutzki, I., Miller, M., Brewer, D., 2001. Sustainability of fishery bycatch: a process for assessing highly diverse and numerous bycatch. Environmental Conservation 28 (2), 167-181.
- Walker, T. (2004). Elasmobranch fisheries management techniques. Chapter 13. Management measures. *Technical manual for the management of elasmobranchs*. J. A. Musick and R. Bonfil, Asia Pacific Economic Cooperation: (in press).

Species Methodology References

- Bax, N. J. and Knuckey, I. 1996. Evaluation of selectivity in the South-East fishery to determine its sustainable yield. Final Report to the Fisheries Development Corporation. Project 1996/40.
- Daley, R. K., last, P. R., Yearsley, G. K. and Ward, R. D. 1997. South East Fishery Quota Species – an Identification Guide. CSIRO Division of Marine Research, Hobart. 91 pp.
- Gomon, M. F., Glover, J. C. M. and Kuiter, R. H. (Eds.) 1994. The Fishes of Australia's South Coast. State Print, Adelaide. 992 pp.

- Last, P., V. Lyne, G. Yearsley, D. Gledhill, M. Gomon, T. Rees and W. White. (2005). Validation of national demersal fish datasets for the regionalisation of the Australian continental slope and outer shelf (>40 m depth). Final Report to the National Oceans Office. National Oceans Office, Hobart. 99pp.
- Milton, D. A. 2000. Assessing the susceptibility to fishing of rare trawl bycatch: sea snakes caught by Australia's Northern Prawn Fishery. Biological Conservation. 101: 281 290.
- Walker, T. I., Hudson, R. J. and Gason, A. S. 2005. Catch evaluation of target, byproduct and bycatch species taken by gillnets and longlines in the shark fishery of south-eastern Australia. Journal of Northwest Atlantic Fisheries Science. 35: 505 – 530.
- Yearsley, G. K., Last, P. R. and Ward, R. D. 1999. Australian Seafood Handbook Domestic species. CSIRO Marine Research, Hobart. 461 pp.

Habitat Methodology References

Althaus F.A. and Barker B. 2005. Lab Guide to Habitat scoring (unpublished).

- Bax N., Kloser R., Williams A., Gowlett-Holmes K., Ryan T. 1999. Seafloor habitat definition for spatial management in fisheries: a case study on the continental shelf of southeast Australia. Oceanologica Acta 22 (6) 705-719
- Bax N. and Williams A. 2001. Seabed habitat on the south-eastern Australian continental shelf: context, vulnerability and monitoring. Marine and Freshwater Research 52: 491-512
- Bulman C., Sporcic M., Dambacher J. 2005 (in prep). Ecological Risk Assessment for Communities Methodology Report.
- Commonwealth of Australia 2005. National Marine Bioregionalisation of Australia. Summary. Department of Environment and Heritage, Canberra, Australia.
- Greene H.G., Yoklavich M.M., Starr R.M., O'Connell V.E., Wakefield W.W., Sullivan D.E., McRea J.E. Jr., Cailliet G.M. 1999. A classification scheme for deep seafloor habitats. Oceanologica Acta 22: 663-678
- Heap A.D., Harris P.T., Last P., Lyne V., Hinde A., Woods M. 2005. Draft Benthic Marine Bioregionalisation of Australia's Exclusive Economic Zone. Geoscience Australia Report to the National Oceans Office. Geoscience Australia, Canberra.
- Harris P., Heap A.D., Passlow V., Sbaffi L., Fellows M., Porter-Smith R., Buchanan C., Daniell J (2003). Geomorphic Features of the Continental Margin of Australia. Geoscience Australia, Canberra.

- Kloser R., Williams A., Butler A. 2000. Assessment of Acoustic Mapping of Seabed Habitats: Phase 1 Surveys April-June 2000, Progress Report 1. Marine Biological and Resource Surveys South-East Region.
- Kostylev V.E., Todd B.J., Fader G.B.J., Courtney R.C., Cameron G.D.M., Pickrill R.A. 2001. Benthic habitat mapping on the Scotian Shelf based on multibeam bathymetry, surficial geology and sea floor photographs. Marine Ecology Progress Series 219: 121-137
- Roff J.C., and Taylor M.E. 2000. National Frameworks for marine conservation a hierarchical geophysical approach. Aquatic Conservation: Marine and Freshwater Ecosystems 10: 209- 223

Community Methodology References

- Condie, S., Ridgway, K., Griffiths, B., Rintoul, S. and Dunn, J. (2003). National Oceanographic Description and Information Review for National Bioregionalisation. Report for National Oceans Office.(CSIRO Marine Research: Hobart, Tasmania, Australia.)
- Interim Marine and Coastal Regionalisation for Australia Technical Group (1998). Interim Marine and Coastal Regionalisation for Australia: an ecosystem-based classification for marine and coastal environments. Version 3.3 (Environment Australia, Commonwealth Department of the Environment: Canberra, Australia.)
- Last, P., Lyne, V., Yearsley, G., Gledhill, D., Gomon, M., Rees, T., and White, W. (2005). Validation of national demersal fish datasets for the regionalisation of the Australian continental slope and outer shelf (>40m depth). (National Oceans Office, Department of Environment and Heritage and CSIRO Marine Research, Australia.)
- Lyne, V. and Hayes, D. (2004). Pelagic Regionalisation. National Marine Bioregionalisation Integration Project. 137 pp. (CSIRO Marine Research and NOO: Hobart, Australia.)
- Meyer, L., Constable, A. and Williams, R. (2000). Conservation of marine habitats in the region of Heard Island and McDonald Islands. Final Report to Environment Australia. (Australian Antarctic Division, Kingston, Tasmania.)
- Rees, A.J.J., Yearsley, G.K., and Gowlett-Holmes, K. (2005). Codes for Australian Aquatic Biota (on-line version). CSIRO Marine Research, World Wide Web electronic publication, 1999 onwards. Available at: http://www.marine.csiro.au/caab/.

Glossary of Terms

Assemblage	A subset of the species in the community that can be easily recognized and studied. For example, the set of
	sharks and rays in a community is the Chondrichthyans assemblage.
Attribute	A general term for a set of properties relating to the
	productivity or susceptibility of a particular unit of
	analysis.
Bycatch species	A non-target species captured in a fishery, usually of low value and often discarded (see also Byproduct).
Byproduct species	A non-target species captured in a fishery, but it may have
	value to the fisher and be retained for sale.
Community	A complete set of interacting species.
Component	A major area of relevance to fisheries with regard to
	ecological risk assessment (e.g. target species, bycatch and
	byproduct species, threatened and endangered species,
	habitats, and communities).
Component model	A conceptual description of the impacts of fishing
	activities (hazards) on components and sub-components,
	linked through the processes and resources that determine
_	the level of a component.
Consequence	The effect of an activity on achieving the operational
~	objective for a sub-component.
Core objective	The overall aim of management for a component.
End point	A term used in risk assessment to denote the object of the
	assessment; equivalent to component or sub-component in ERAEF
Ecosystem	The spatially explicit association of abiotic and biotic
	elements within which there is a flow of resources, such as
	nutrients, biomass or energy (Crooks, 2002).
External factor	Factors other than fishing that affect achievement of
	operational objectives for components and sub-
	components.
Fishery method	A technique or set of equipment used to harvest fish in a
Fisherry	fishery (e.g. long-lining, purse-seining, trawling).
Fishery	A related set of fish harvesting activities regulated by an authority (e.g. South-East Trawl Fishery).
Habitat	The place where fauna or flora complete all or a portion of
Habitat	their life cycle.
Hazard identification	The identification of activities (hazards) that may impact
	the components of interest.
Indicator	Used to monitor the effect of an activity on a sub-
	component. An indicator is something that can be
	measured, such as biomass or abundance.
Likelihood	The chance that a sub-component will be affected by an
	activity.

Operational objective	A measurable objective for a component or sub- component (typically expressed as "the level of X does not
	fall outside acceptable bounds")
Precautionary approach	The approach whereby, if there is uncertainty about the outcome of an action, the benefit of the doubt should be given to the biological entity (such as species, habitat or community).
PSA	Productivity-Susceptibility Analysis. Used at Level 2 in the ERAEF methodology.
Scoping	A general step in an ERA or the first step in the ERAEF involving the identification of the fishery history,
	management, methods, scope and activities.
SICA	Scale, Impact, Consequence Analysis. Used at Level 1 in
	the ERAEF methodology.
Sub-component	A more detailed aspect of a component. For example,
	within the target species component, the sub-components
	include the population size, geographic range, and the
	age/size/sex structure.
Sub-fishery	A subdivision of the fishery on the basis of the gear or
	areal extent of the fishery. Ecological risk is assessed
	separately for each sub-fishery within a fishery.
Sustainability	Ability to be maintained indefinitely
Target species	A species or group of species whose capture is the goal of
Turnhing and it an	a fishery, sub-fishery, or fishing operation.
Trophic position	Location of an individual organism or species within a foodweb.
Unit of analysis	The entities for which attributes are scored in the Level 2 analysis. For example, the units of analysis for the Target Species component are individual "species", while for Habitats, they are "biotypes", and for Communities the units are "assemblages".

Appendix A: General summary of stakeholder feedback

Date	Format received	Comment from stakeholder	Action/explanation
		No specific comments provided for this fishery	

Appendix B: PSA results summary of stakeholder discussions

Level 2 (PSA) Document L2.1. Summary table of stakeholder discussion regarding PSA results.

PSA results were not discussed for this sub-fishery.

Taxa name	Scientific name	Common name	Role in fishery	PSA risk ranking (H/M/L)	Comments from meeting, and follow-up	Action	Outcome	Possible management response
					e.g. Distribution queried- core depth is mostly shallower than fishery	Changed depth dsn	Reduced risk from high to medium	
					e.g. extra size information provided by fishers	Max size added	Reduced risk from high to medium	
					e.g. Confusion re species identification	none	none	Improve species identification
					e.g. more common on outer shelf. Does occur in range of fishery according to literature.	none	none	Check depths at which caught in adjacent fishery

Appendix C: SICA Scoring Table

Table 5A. Target Species. Description of consequences for each component and each sub-component. Use table as a guide for scoring the level of consequence for target species.

	Score/level					
Sub-component	1	2	3	4	5	6
	Negligible	Minor	Moderate	Major	Severe	Intolerable
Population size	1. Population size	1. Population size	1. Population size	1. Population size	1. Population size	1. Population size
	Insignificant change	Possible detectable	Full exploitation rate	Affecting recruitment	Likely to cause local	Local extinctions are
	to population	change in size/growth	but long-term	state of stocks and/or	extinctions if	imminent/immediate
	size/growth rate (r).	rate (r) but minimal	recruitment dynamics	their capacity to	continued in longer	
	Unlikely to be	impact on population	not adversely	increase	term	
	detectable against	size and none on	damaged.			
	background	dynamics.				
	variability for this					
	population.					
Geographic range	2. Geographic range	2. Geographic range	2. Geographic range	2. Geographic range	2. Geographic range	2. Geographic range
	No detectable change	Possible detectable	Change in	Change in	Change in	Change in geographic
	in geographic range.	change in geographic	geographic range up	geographic range up	geographic range up	range > 50 % of
	Unlikely to be	range but minimal	to 10 % of original.	to 25 % of original.	to 50 % of original.	original.
	detectable against	impact on population				
	background	range and none on				
	variability for this	dynamics, change in				
	population.	geographic range up				
		to 5 % of original.				
Genetic structure	3. Genetic structure	3. Genetic structure	3. Genetic structure	3. Genetic structure	3. Genetic structure	3. Genetic structure
	No detectable change	Possible detectable	Change in frequency	Change in frequency	Change in frequency	Change in frequency
	in genetic structure.	change in genetic	of genotypes,	of genotypes,	of genotypes,	of genotypes,
	Unlikely to be	structure. Any	effective population	effective population	effective population	effective population
	detectable against	change in frequency	size or number of	size or number of	size or number of	size or number of
	background	of genotypes,	spawning units up to	spawning units up to	spawning units,	spawning units >
	variability for this	effective population	10%.	25%.	change up to 50%.	50%.
	population.	size or number of				
		spawning units up to				

	Score/level					
Sub-component	1	2	3	4	5	6
	Negligible	Minor	Moderate	Major	Severe	Intolerable
		5%.				
Age/size/sex structure	4. Age/size/sex	4. Age/size/sex	4. Age/size/sex	4. Age/size/sex	4. Age/size/sex	4. Age/size/sex
	structure No	structure	structure	structure	structure	structure Long-term
	detectable change in	Possible detectable	Impact on population	Long-term	Long-term	recruitment dynamics
	age/size/sex	change in	dynamics at	recruitment dynamics	recruitment dynamics	adversely affected.
	structure. Unlikely to	age/size/sex structure	maximum sustainable	adversely affected.	adversely affected.	Time to recover to
	be detectable against	but minimal impact	level, long-term	Time to recover to	Time to recover to	original structure >
	background	on population	recruitment dynamics	original structure up	original structure up	100 generations free
	variability for this	dynamics.	not adversely	to 5 generations free	to 10 generations free	from impact.
	population.	5	affected.	from impact.	from impact.	1
Reproductive capacity	5. Reproductive	5. Reproductive	5. Reproductive	5. Reproductive	5. Reproductive	5. Reproductive
	capacity	capacity	capacity	capacity	capacity	capacity Change in
	No detectable change	Possible detectable	Impact on population	Change in	Change in	reproductive capacity
	in reproductive	change in	dynamics at	reproductive capacity	reproductive capacity	adversely affecting
	capacity. Unlikely to	reproductive capacity	maximum sustainable	adversely affecting	adversely affecting	long-term recruitment
	be detectable against	but minimal impact	level, long-term	long-term recruitment	long-term recruitment	dynamics. Time to
	background	on population	recruitment dynamics	dynamics. Time to	dynamics. Time to	recovery > 100
	variability for this	dynamics.	not adversely	recovery up to 5	recovery up to 10	generations free from
	population.	2	affected.	generations free from	generations free from	impact.
	1 1			impact.	impact.	1
Behaviour/movement	6. Behaviour/	6. Behaviour/	6. Behaviour/	6. Behaviour/	6. Behaviour/	6. Behaviour/
	movement	movement	movement	movement Change in	movement	movement
	No detectable change	Possible detectable	Detectable change in	behaviour/ movement	Change in behaviour/	Change to behaviour/
	in behaviour/	change in behaviour/	behaviour/ movement	with impacts on	movement with	movement.
	movement. Unlikely	movement but	with the potential for	population dynamics.	impacts on	Population does not
	to be detectable	minimal impact on	some impact on	Time to return to	population dynamics.	return to original
	against background	population dynamics.	population dynamics.	original behaviour/	Time to return to	behaviour/
	variability for this	Time to return to	Time to return to	movement on the	original behaviour/	movement.
	population. Time	original behaviour/	original behaviour/	scale of months to	movement on the	
	taken to recover to	movement on the	movement on the	years.	scale of years to	
	pre-disturbed state on	scale of days to	scale of weeks to	-	decades.	
	the scale of hours.	weeks.	months.			

Table 5B. Bycatch and Byproduct species. Description of consequences for each component and each sub-component. Use table as a guide for scoring the level of consequence for bycatch/byproduct species.

	Score/level					
Sub-component	1	2	3	4	5	6
	Negligible	Minor	Moderate	Major	Severe	Intolerable
Population size	1. Population size Insignificant change to population size/growth rate (r). Unlikely to be detectable against background variability for this population.	1. Population size Possible detectable change in size/growth rate (r) but minimal impact on population size and none on dynamics.	1. Population size No information is available on the relative area or susceptibility to capture/ impact or on the vulnerability of life history traits of this type of species Susceptibility to capture is suspected to be less than 50% and species do not have vulnerable life history traits. For species with vulnerable life history traits to stay in this category susceptibility to capture must be less than 25%.	1. Population size Relative state of capture/susceptibility suspected/known to be greater than 50% and species should be examined explicitly.	1. Population size Likely to cause local extinctions if continued in longer term	1. Population size Local extinctions are imminent/immediate
Geographic range	2. Geographic range No detectable change in geographic range. Unlikely to be detectable against	2. Geographic range Possible detectable change in geographic range but minimal impact on population	2. Geographic range Change in geographic range up to 10 % of original.	2. Geographic range Change in geographic range up to 25 % of original.	2. Geographic range Change in geographic range up to 50 % of original.	2. Geographic range Change in geographic range > 50 % of original.

	Score/level					
Sub-component	1	2	3	4	5	6
	Negligible	Minor	Moderate	Major	Severe	Intolerable
	background	range and none on		× ·		
	variability for this	dynamics, change in				
	population.	geographic range up				
	1 1	to 5 % of original.				
Genetic structure	3. Genetic structure	3. Genetic structure	3. Genetic structure	3. Genetic structure	3. Genetic structure	3. Genetic structure
	No detectable change	Possible detectable	Detectable change in	Change in frequency	Change in frequency	Change in frequency
	in genetic structure.	change in genetic	genetic structure.	of genotypes,	of genotypes,	of genotypes,
	Unlikely to be	structure. Any	Change in frequency	effective population	effective population	effective population
	detectable against	change in frequency	of genotypes,	size or number of	size or number of	size or number of
	background	of genotypes,	effective population	spawning units up to	spawning units up to	spawning units >
	variability for this	effective population	size or number of	25%.	50%.	50%.
	population.	size or number of	spawning units up to			
		spawning units up to	10%.			
		5%.				
Age/size/sex structure	4. Age/size/sex	4. Age/size/sex	4. Age/size/sex	4. Age/size/sex	4. Age/size/sex	4. Age/size/sex
	structure	structure	structure	structure	structure	structure
	No detectable change	Possible detectable	Detectable change in	Long-term	Long-term	Long-term
	in age/size/sex	change in	age/size/sex	recruitment dynamics	recruitment dynamics	recruitment dynamics
	structure. Unlikely to	age/size/sex structure	structure. Impact on	adversely affected.	adversely affected.	adversely affected.
	be detectable against	but minimal impact	population dynamics	Time to recover to	Time to recover to	Time to recover to
	background	on population	at maximum	original structure up	original structure up	original structure >
	variability for this	dynamics.	sustainable level,	to 5 generations free	to 10 generations free	100 generations free
	population.		long-term	from impact.	from impact.	from impact.
			recruitment dynamics			
			not adversely			
Donnaduativa conceity	5. Reproductive	5. Reproductive	damaged. 5. Reproductive	5. Reproductive	5. Reproductive	5. Reproductive
Reproductive capacity	5. Reproductive capacity	capacity Possible	5. Reproductive capacity Detectable	5. Reproductive capacity	5. Reproductive capacity	5. Reproductive capacity Change in
	No detectable change	detectable change in	change in	Change in	Change in	reproductive capacity
	in reproductive	reproductive capacity	reproductive	reproductive capacity	reproductive capacity	adversely affecting
	capacity. Unlikely to	but minimal impact	capacity, impact on	adversely affecting	adversely affecting	long-term recruitment
	be detectable against	on population	population dynamics	long-term recruitment	long-term	dynamics. Time to
	background	dynamics.	at maximum	dynamics. Time to	recruitment	recovery > 100

	Score/level	Score/level					
Sub-component	1	2	3	4	5	6	
	Negligible	Minor	Moderate	Major	Severe	Intolerable	
	variability for this		sustainable level,	recovery up to 5	dynamics. Time to	generations free from	
	population.		long-term	generations free from	recovery up to 10	impact.	
			recruitment dynamics	impact.	generations free from	-	
			not adversely		impact.		
			damaged.				
Behaviour/movement	6. Behaviour/	6. Behaviour/	6. Behaviour/	6. Behaviour/	6. Behaviour/	6. Behaviour/	
	movement	movement	movement	movement	movement	movement	
	No detectable change	Possible detectable	Detectable change in	Change in behaviour/	Change in behaviour/	Change to behaviour/	
	in behaviour/	change in behaviour/	behaviour/ movement	movement with	movement with	movement.	
	movement. Unlikely	movement but	with the potential for	impacts on population	impacts on	Population does not	
	to be detectable	minimal impact on	some impact on	dynamics. Time to	population dynamics.	return to original	
	against background	population dynamics.	population dynamics.	return to original	Time to return to	behaviour/	
	variability for this	Time to return to	Time to return to	behaviour/ movement	original behaviour/	movement.	
	population. Time	original behaviour/	original behaviour/	on the scale of	movement on the		
	taken to recover to	movement on the	movement on the	months to years	scale of years to		
	pre-disturbed state on	scale of days to	scale of weeks to		decades.		
	the scale of hours.	weeks.	months.				

Table 5C. TEP species. Description of consequences for each component and each sub-component. Use table as a guide for scoring the level of consequence for TEP species.

	Score/level					
Sub-component	1	2	3	4	5	6
	Negligible	Minor	Moderate	Major	Severe	Intolerable
Population size	1. Population size	1. Population size	1. Population size.	1. Population size	1. Population size	1. Population size
	Almost none are	Insignificant change	State of reduction on	Affecting recruitment	Local extinctions are	Global extinctions are
	killed.	to population	the rate of increase	state of stocks or	imminent/immediate	imminent/immediate
		size/growth rate (r).	are at the maximum	their capacity to		
		Unlikely to be	acceptable level.	increase.		
		detectable against	Possible detectable			
		background	change in size/			
		variability for this	growth rate (r) but			
		population.	minimal impact on			
			population size and			
			none on dynamics of			
			TEP species.			
Geographic range	2. Geographic range	2. Geographic range	2. Geographic range	2. Geographic range	2. Geographic range	2. Geographic range
	No interactions	No detectable change	Possible detectable	Change in	Change in geographic	Change in geographic
	leading to impact on	in geographic range.	change in geographic	geographic range up	range up to 25% of	range up to 25% of
	geographic range.	Unlikely to be	range but minimal	to 10% of original.	original.	original.
		detectable against	impact on population			
		background	range and none on			
		variability for this	dynamics. Change in			
		population.	geographic range up			
<u> </u>			to 5 % of original.			
Genetic structure	3. Genetic structure	3. Genetic structure	3. Genetic structure	3. Genetic structure	3. Genetic structure	3. Genetic structure
	No interactions	No detectable change	Possible detectable	Moderate change in	Change in frequency	Change in frequency
	leading to impact on	in genetic structure.	change in genetic	genetic structure.	of genotypes,	of genotypes,
	genetic structure.	Unlikely to be	structure but minimal	Change in frequency	effective population	effective population
		detectable against	impact at population	of genotypes,	size or number of	size or number of
		background	level. Any change in	effective population	spawning units up to	spawning units up to
		variability for this	frequency of	size or number of	25%.	25%.
		population.	genotypes, effective	spawning units up to	l	

	Score/level					
Sub-component	1	2	3	4	5	6
	Negligible	Minor	Moderate	Major	Severe	Intolerable
			population size or	10%.		
			number of spawning			
			units up to 5%.			
Age/size/sex structure	4. Age/size/sex	4. Age/size/sex				
0	structure	structure	structure	structure	structure	structure
	No interactions	No detectable change	Possible detectable	Detectable change in	Severe change in	Impact adversely
	leading to change in	in age/size/sex	change in	age/size/sex	age/size/sex structure.	affecting population
	age/size/sex	structure. Unlikely to	age/size/sex structure	structure. Impact on	Impact adversely	dynamics. Time to
	structure.	be detectable against	but minimal impact	population dynamics	affecting population	recover to original
		background	on population	at maximum	dynamics. Time to	structure > 10
		variability for this	dynamics.	sustainable level,	recover to original	generations free from
		population.	-	long-term	structure up to 5	impact
				recruitment dynamics	generations free from	-
				not adversely	impact	
				damaged.	-	
Reproductive capacity	5. Reproductive	5. Reproductive				
	capacity	capacity	capacity	capacity	capacity	capacity
	No interactions	No detectable change	Possible detectable	Detectable change in	Change in	Change in
	resulting in change to	in reproductive	change in	reproductive	reproductive capacity,	reproductive capacity,
	reproductive	capacity. Unlikely to	reproductive capacity	capacity, impact on	impact adversely	impact adversely
	capacity.	be detectable against	but minimal impact	population dynamics	affecting recruitment	affecting recruitment
		background	on population	at maximum	dynamics. Time to	dynamics. Time to
		variability for this	dynamics.	sustainable level,	recover to original	recover to original
		population.		long-term	structure up to 5	structure > 10
				recruitment dynamics	generations free from	generations free from
				not adversely	impact	impact
				damaged.		
Behaviour/movement	6. Behaviour/	6. Behaviour/				
	movement	movement	movement	movement	movement	movement
	No interactions	No detectable change	Possible detectable	Detectable change in	Change in behaviour/	Change in behaviour/
	resulting in change to	in behaviour/	change in behaviour/	behaviour/ movement	movement, impact	movement. Impact
	behaviour/	movement. Time to	movement but	with the potential for	adversely affecting	adversely affecting
	movement.	return to original	minimal impact on	some impact on	population dynamics.	population dynamics.

	Score/level	Score/level						
Sub-component	1	2	3	4	5	6		
	Negligible	Minor	Moderate	Major	Severe	Intolerable		
		behaviour/ movement	population dynamics.	population dynamics.	Time to return to	Time to return to		
		on the scale of hours.	Time to return to	Time to return to	original behaviour/	original behaviour/		
			original behaviour/	original behaviour/	movement on the	movement on the		
			movement on the	movement on the	scale of months to	scale of years to		
			scale of days to	scale of weeks to	years.	decades.		
			weeks	months				
Interaction with	7. Interactions with	7. Interactions with	7. Interactions with	7. Interactions with	7. Interactions with	7. Interactions with		
fishery	fishery	fishery	fishery	fishery	fishery	fishery		
	No interactions with	Few interactions and	Moderate level of	Major interactions	Frequent interactions	Frequent interactions		
	fishery.	involving up to 5%	interactions with	with fishery,	involving ~ 50% of	involving the entire		
		of population.	fishery involving up	interactions and	population.	known population		
			to10 % of population.	involving up to 25%		negatively affecting		
				of population.		the viability of the		
						population.		

Table 5D. Habitats. Description of consequences for each component and each sub-component. Use table as a guide for scoring the level of consequence for habitats. Note that for sub-components Habitat types and Habitat structure and function, time to recover from impact scales differ from substrate, water and air. Rationale: structural elements operate on greater timeframes to return to pre-disturbance states.

		Score/level						
Sub-component	1	2	3	4	5	6		
	Negligible	Minor	Moderate	Major	Severe	Intolerable		
Substrate quality	1. Substrate quality	1. Substrate quality	1. Substrate quality	1. Substrate quality	1. Substrate quality	1. Substrate quality		
	Reduction in the	Detectable impact on	More widespread	The level of	Severe impact on	The dynamics of the		
	productivity (similar	substrate quality. At	effects on the	reduction of internal	substrate quality with	entire habitat is in		
	to the intrinsic rate of	small spatial scale	dynamics of substrate	dynamics of habitats	50 - 90% of the	danger of being		
	increase for species)	time taken to recover	quality but the state	may be larger than is	habitat affected or	changed in a major		
	on the substrate from	to pre-disturbed state	are still considered	sensible to ensure that	removed by the	way, or > 90% of		
	the activity is	on the scale of days	acceptable given the	the habitat will not be	activity which may	habitat destroyed.		
	unlikely to be	to weeks, at larger	percent area affected,	able to recover	seriously endanger its			
	detectable. Time	spatial scales	the types of impact	adequately, or it will	long-term survival			
	taken to recover to	recovery time of	occurring and the	cause strong	and result in changes			
	pre-disturbed state on	hours to days.	recovery capacity of	downstream effects	to ecosystem			
	the scale of hours.		the substrate. For	from loss of function.	function. Recovery			
			impacts on non-	Time to recover from	period measured in			
			fragile substrates this	local impact on the	years to decades.			
			may be for up to 50%	scale of months to				
			of habitat affected,	years, at larger spatial				
			but for more fragile	scales recovery time				
			habitats, e.g. reef	of weeks to months.				
			substrate, to stay in					
			this category the %					
			area affected needs to					
			be smaller up to 25%.					
Water quality	2. Water quality	2. Water quality	2. Water quality	2. Water quality	2. Water quality	2. Water quality		
	No direct impact on	Detectable impact on	Moderate impact on	Time to recover from	Impact on water	The dynamics of the		
	water quality. Impact	water quality. Time	water quality. Time	local impact on the	quality with 50 - 90%	entire habitat is in		
	unlikely to be	to recover from local	to recover from local	scale of months to	of the habitat affected	danger of being		
	detectable. Time	impact on the scale of	impact on the scale of	years, at larger spatial	or removed by the	changed in a major		
	taken to recover to	days to weeks, at	weeks to months, at	scales recovery time	activity which may	way, or > 90% of		

Sub-component	1	2	3	4	5	6
•	Negligible	Minor	Moderate	Major	Severe	Intolerable
	pre-disturbed state on	larger spatial scales	larger spatial scales	of weeks to months.	seriously endanger its	habitat destroyed.
	the scale of hours.	recovery time of	recovery time of days		long-term survival	
		hours to days.	to weeks.		and result in changes	
					to ecosystem	
					function. Recovery	
					period measured in	
					years to decades.	
Air quality	3. Air quality	3. Air quality	3. Air quality	3. Air quality	3. Air quality	3. Air quality
	No direct impact on	Detectable impact on	Detectable impact on	Time to recover from	Impact on air quality	The dynamics of the
	air quality. Impact	air quality. Time to	air quality. Time to	local impact on the	with 50 - 90% of the	entire habitat is in
	unlikely to be	recover from local	recover from local	scale of months to	habitat affected or	danger of being
	detectable. Time	impact on the scale of	impact on the scale of	years, at larger spatial	removed by the	changed in a major
	taken to recover to	days to weeks, at	weeks to months, at	scales recovery time	activity .which may	way, or > 90% of
	pre-disturbed state on	larger spatial scales	larger spatial scales	of weeks to months.	seriously endanger its	habitat destroyed.
	the scale of hours.	recovery time of	recovery time of days		long-term survival	
		hours to days.	to weeks.		and result in changes	
					to ecosystem	
					function. Recovery period measured in	
					years to decades.	
Habitat types	4. Habitat types	4. Habitat types	4. Habitat types	4. Habitat types	4. Habitat types	4. Habitat types
Hubitut types	No direct impact on	Detectable impact on	Impact reduces	The reduction of	Impact on relative	The dynamics of the
	habitat types. Impact	distribution of habitat	distribution of habitat	habitat type areal	abundance of habitat	entire habitat is in
	unlikely to be	types. Time to	types. Time to	extent may threaten	types resulting in	danger of being
	detectable. Time	recover from local	recover from local	ability to recover	severe changes to	changed in a
	taken to recover to	impact on the scale of	impact on the scale of	adequately, or cause	ecosystem function.	catastrophic way. The
	pre-disturbed state on	days to weeks, at	weeks to months, at	strong downstream	Recovery period	distribution of habitat
	the scale of hours to	larger spatial scales	larger spatial scales	effects in habitat	likely to be > decadal	types has been shifted
	days.	recovery time of days	recovery time of	distribution and		away from original
		to months.	months to < one year.	extent. Time to		spatial pattern. If
			-	recover from impact		reversible, will
				on the scale of $>$ one		require a long-term
				year to < decadal		recovery period, on

Sub-component	1	2	3	4	5	6
	Negligible	Minor	Moderate	Major	Severe	Intolerable
				timeframes.		the scale of decades
						to centuries.
Habitat structure	5. Habitat structure	5. Habitat structure	5. Habitat structure	5. Habitat structure	5. Habitat structure	5. Habitat structure
and function	and function	and function	and function	and function	and function	and function
	No detectable change	Detectable impact on	Impact reduces	The level of	Impact on habitat	The dynamics of the
	to the internal	habitat structure and	habitat structure and	reduction of internal	function resulting	entire habitat is in
	dynamics of habitat	function. Time to	function. For impacts	dynamics of habitat	from severe changes	danger of being
	or populations of	recover from impact	on non-fragile habitat	may threaten ability	to internal dynamics	changed in a
	species making up the	on the scale of days	structure this may be	to recover adequately,	of habitats. Time to	catastrophic way
	habitat. Time taken to	to months, regardless	for up to 50% of	or it will cause strong	recover from impact	which may not be
	recover to pre-	of spatial scale	habitat affected, but	downstream effects	likely to be >	reversible. Habitat
	disturbed state on the		for more fragile	from loss of function.	decadal.	losses occur. Some
	scale of hours to		habitats, to stay in	For impacts on non-		elements may remain
	days.		this category the %	fragile habitats this		but will require a
			area affected needs to	may be for up to 50%		long-term recovery
			be smaller up to 20%.	of habitat affected,		period, on the scale
			Time to recover from	but for more fragile		of decades to
			local impact on the	habitats, to stay in		centuries.
			scale of months to <	this category the %		
			one year, at larger	area affected up to		
			spatial scales	25%. Time to recover		
			recovery time of	from impact on the		
			months to < one year.	scale of > one year to		
				< decadal timeframes.		

Table 5E. Communities. Description of consequences for each component and each sub-component. Use table as a guide for scoring the level of consequence for communities.

	Score/level					
Sub-component	1	2	3	4	5	6
	Negligible	Minor	Moderate	Major	Severe	Intolerable
Species composition	1. Species composition Interactions may be occurring which affect the internal dynamics of communities leading to change in species composition not detectable against natural variation.	1. Species composition Impacted species do not play a keystone role – only minor changes in relative abundance of other constituents. Changes of species composition up to 5%.	1. Species composition Detectable changes to the community species composition without a major change in function (no loss of function). Changes to species composition up to 10%.	1. Species composition Major changes to the community species composition (~25%) (involving keystone species) with major change in function. Ecosystem function altered measurably and some function or components are locally missing/declining/increasin g outside of historical range and/or allowed/facilitated new species to appear. Recovery period measured in years.	1. Species composition Change to ecosystem structure and function. Ecosystem dynamics currently shifting as different species appear in fishery. Recovery period measured in years to decades.	1. Species composition Total collapse of ecosystem processes Long-term recovery period required, on the scale of decades to centuries
Functional group composition	2. Functional group composition Interactions which affect the internal dynamics of communities leading to change in functional group composition not detectable against natural variation.	2. Functional group composition Minor changes in relative abundance of community constituents up to 5%.	2. Functional group composition Changes in relative abundance of community constituents, up to 10% chance of flipping to an alternate state/ trophic cascade.	2. Functional group composition Ecosystem function altered measurably and some functional groups are locally missing/declining/increasin g outside of historical range and/or allowed/facilitated new species to appear. Recovery period measured in months to years.	2. Functional group composition Ecosystem dynamics currently shifting, some functional groups are missing and new species/groups are now appearing in the fishery. Recovery period measured in years to decades.	2. Functional group composition Ecosystem function catastrophically altered with total collapse of ecosystem processes Recovery period measured in decades to centuries.
Distribution of the	3. Distribution of	3. Distribution of	3. Distribution of	3. Distribution of the	3. Distribution of the	3. Distribution of the

	Score/level					
Sub-component	1	2	3	4	5	6
	Negligible	Minor	Moderate	Major	Severe	Intolerable
community	the community Interactions which affect the distribution of communities unlikely to be detectable against natural variation.	the community Possible detectable change in geographic range of communities but minimal impact on community dynamics change in geographic range up to 5 % of original.	the community Detectable change in geographic range of communities with some impact on community dynamics Change in geographic range up to 10 % of original.	community Geographic range of communities, ecosystem function altered measurably and some functional groups are locally missing/declining/increasin g outside of historical range. Change in geographic range for up to 25 % of the species. Recovery period measured in months to years.	community Change in geographic range of communities, ecosystem function altered and some functional groups are currently missing and new groups are present. Change in geographic range for up to 50 % of species including keystone species. Recovery period measured in years to decades.	community Change in geographic range of communities, ecosystem function collapsed. Change in geographic range for >90% of species including keystone species. Recovery period measured in decades to centuries.
Trophic/size structure	4. Trophic/size structure Interactions which affect the internal dynamics unlikely to be detectable against natural variation.	4. Trophic/size structure Change in mean trophic level, biomass/ number in each size class up to 5%.	4. Trophic/size structure Changes in mean trophic level, biomass/ number in each size class up to 10%.	4. Trophic/size structure Changes in mean trophic level. Ecosystem function altered measurably and some function or components are locally missing/declining/increasin g outside of historical range and/or allowed/facilitated new species to appear. Recovery period measured in years to decades.	4. Trophic/size structure Changes in mean trophic level. Ecosystem function severely altered and some function or components are missing and new groups present. Recovery period measured in years to decades.	4. Trophic/size structure Ecosystem function catastrophically altered as a result of changes in mean trophic level, total collapse of ecosystem processes. Recovery period measured in decades to centuries.
Bio-geochemical cycles	5. Bio- and geochemical cycles Interactions which	5. Bio- and geochemical cycles Only minor changes	5. Bio- and geochemical cycles Changes in relative	5. Bio- and geochemical cycles Changes in relative	5. Bio- and geochemical cycles Changes in relative	5. Bio- and geochemical cycles Ecosystem function

	Score/level	Score/level						
Sub-component	1	2	3	4	5	6		
	Negligible	Minor	Moderate	Major	Severe	Intolerable		
	affect bio- &	in relative	abundance of other	abundance of constituents	abundance of	catastrophically		
	geochemical cycling	abundance of other	constituents leading	leading to major changes to	constituents leading	altered as a result of		
	unlikely to be	constituents leading	to minimal changes	bio- & geochemical cycling,	to Severe changes to	community changes		
	detectable against	to minimal changes	to bio- &	up to 25%.	bio- & geochemical	affecting bio- and		
	natural variation.	to bio- &	geochemical		cycling. Recovery	geo- chemical		
		geochemical cycling	cycling, up to 10%.		period measured in	cycles, total collapse		
		up to 5%.			years to decades.	of ecosystem		
						processes. Recovery		
						period measured in		
						decades to centuries.		