

Contents

Contents 2
Introduction 4
1 Alfonsino (Beryx splendens) 5
2 Bight Redfish (Centroberyx gerrardi) 8
3 Blue-eye Trevalla (Hyperoglyphe antarctica) 13
4 Blue Grenadier (Macruronus novaezelandiae) 21
5 Blue Warehou (Seriolella brama) 25
6 Deepwater Flathead (Neoplatycephalus conatus) 29
7 Deepwater Shark Basket - East 33
8 Deepwater Shark Basket - West 38
9 Elephant fish (Callorhinchus milii) 42
10 Flathead 46
11 Gemfish East (Rexea solandri) 50
12 Gemfish West (Rexea solandri) 54
13 Gummy Shark (Mustelus antarcticus) 59
14 Jackass Morwong (Nemadactylus macropterus) 64
15 John Dory (Zeus faber) 71
16 Mirror Dory (Zenopsis nebulosus) 75
17 Offshore Ocean Perch (Helicolenus barathri) 79
18 Inshore Ocean Perch (Helicolenus percoides) 83
19 Orange Roughy (Hoplostethus atlanticus) - Southern zone 87
20 Orange Roughy (Hoplostethus atlanticus) - Eastern zone 91
21 Orange Roughy (Hoplostethus atlanticus) - Western zone. 98
22 Orange Roughy (Hoplostethus atlanticus) - Cascade Plateau 102
23 Oreo Smooth (Pseudocyttus maculatus) - Cascade 106
24 Oreo Smooth (Pseudocyttus maculatus) - Other 110
25 Oreo Basket (Warty, Spiky, Rough and Black Oreo Dory) 115
26 Pink Ling (Genypterus blacodes) 119
27 Redfish (Centroberyx affinis) 127
28 Ribaldo (Mora mora) 133
29 Royal Red Prawn (Haliporoides sibogae) 136
30 Sawshark (Pristiophorus spp) 140
31 Schoolshark (Galeorhinus galeus) 144
32 School Whiting (Sillago flindersi) 148
33 Silver Trevally (Pseudocaranx dentex) 152
34 Silver Warehou (Seriolella punctata) 156
Glossary 162

Introduction

These species summaries provide information on quota species assessed by the various Resource Assessment Groups (RAGs) for the Southern and Eastern Scalefish and Shark Fishery (SESSF) including Great Australian Bight RAG (GABRAG); South East RAG (SERAG) and SharkRAG.

These assessment summaries apply to stock assessments conducted in 2018 and made available for the 2019-20 fishing season.

The summaries contain basic information on stock status, Total Allowable Catches (TACs) and catch trends, assessment details and RAG comments. The summaries are designed to be a quick reference, and should be read in conjunction with RAG minutes and the applicable species stock assessments. Annual updates are completed for species that have a new stock assessment, were considered by the RAGs or species that are under AFMA rebuilding strategies. The most recent full set of species summaries can be found on the AFMA website.

A glossary of commonly used terms is available at the end of the document.

1 Alfonsino (Beryx splendens)

ABARES (2012): Line drawing - William Murray
Tier 3 - last assessed by SlopeRAG in 2013.

Summary				
Stock Structure	Little is known about the stock structure of Alfonsino in the SESSF. However, it is acknowledged that this is a straddling stock between the Australian Fishing Zone (AFZ) and the high seas. Only the East Coast Deepwater Zone (ECDWZ) resource is under quota management and this assessment summary only pertains to the ECDWZ (within the AFZ).			
Stock status against reference points and trend	Catches remain well below the TACs because no boats have been fishing the stock. When last assessed the age structure indicated that the stock had not been greatly impacted by fishing. There has been very little fishing since then. Tier 3 species use estimates of fishing mortality (F) that will reduce spawning biomass to a given level as reference points. The Tier 3 target reference point for Alfonsino is the level of F that will produce a spawning biomass of 48% of unfished levels. The Tier 3 limit reference point for Alfonsino is the level of F that will produce a spawning biomass of 20% of unfished levels.			
ABARES most recent assessment (2017)	Biomass Not overfished		Fishing Mortality Not subject to overfishing	
GVP Figures	GVP confidential		\% Fishery GVP N/A	
Is a MYTAC in place this season?	No		Have breakout rules been triggered?	N/A

Assessment Summary	
Tier Level	Tier 3 (last assessed in 2013)
Stock indicator trends	The age structure indicates that the stock has not been greatly impacted by fishing. TACs were increasing but catches remain well below the TACs. Nearly all the catch in the AFZ comes from the East Coast Deep Water Trawl Sector (ECDW) and due to low effort catches have been low.
Key model technical assumptions/ parameters	N/A
Changes to model structure/assumptions	N/A
Significant changes to data inputs	Calculation of the RBC only uses AFZ data, and so pertains only to the AFZ.
RAG Comments on data	Little new data is available given the lack of fishing for operational reasons.
RAG Comments on assessment	In 2018, SESSFRAG recommended delaying the next assessment until 2019 due to low catches and a lack of data. RBC calculations used to set TAC are taken from the AFZ only.
Projected Biomass (including confidence intervals)	N/A - Tier 3

Catch and TAC						
Assessment Year	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$
Tier / MYTAC	Tier 3	Not assessed	Not assessed	Not assessed	Not assessed	Not assessed
Stock	Fishing mortality Status target	Fishing mortality lower than target	Fishing mortality lower than target	Fishing mortality lower than target	Fishing mortality lower than target	Fishing mortality lower than target
SESSF	$2014 / 15$	$2015 / 16$	$2016 / 17$	$2017 / 18$	$2018 / 19$	$2019 / 20$
Season	1070	1070	1070	1070	1070	1070
RBC (retained)	1017	1016	1017	1017		
Agreed TAC	1130	1118	1119	1119		
TAC after unders/overs	1130					
\% TAC caught	0%	0%	0%	0%		

RAG Recommendations		
Recommended Biological Catch (2014/15)	1-year: 1070 tonnes 3-year: 1070 tonnes	Undercatch: Overcatch: Discount Factor: 10% 10%
Is a MYTAC recommended for future seasons?		
Indicate whether the multi-year recommendation is a RBC (e.g. based on Tier 1 model output) or TAC (e.g. a rollover of catch)	Yes. 3 year MYTAC, calculated from the RBC of 1070 t.	

Catch Trends

For confidentiality reasons AFMA TACs and catches are not reported for some years where a small number of boats were operating in the fishery.

2 Bight Redfish (Centroberyx gerrardi)

Common names: Nannygai, redfish, red snapper, king snapper, golden snapper.
Tier 1 - assessed by GABRAG in 2018

Summary			
Stock Structure	Assessed as a single stock.		
Stock status against reference points and trend	Limit reference is 20 per cent of unfished biomass. Target reference is 41 per cent of unfished biomass. 2015 assessment: 63 per cent of unfished biomass Modelling suggests a slow decline in abundance consistent with the fishdown of a developing fishery. Depletion of the stock occurred more rapidly in the mid-2000s when substantial fishing effort occurred, but the stock has never fallen below the maximum economic yield (MEY) biomass target. Current biomass is higher than the target biomass.		
ABARES most recent assessment (2017)	Biomass Not overfished	Fishing Mortality Not subject to overfishing	
GVP Figures (2016-17 season)	GVP \$1.43 million	\% Fishery GVP 14.2\% (GABTS)	
Is a MYTAC in place this season?	Yes. 5 -year RBC $=797 \mathrm{t}$	Have breakout rules been triggered?	N/A

Assessment Summary	
Tier Level	Tier 1
Stock indicator trends	Model fits a decline in abundance, consistent with the fishdown of a developing fishery. Biomass is high relative to targets.
Key model technical assumptions/ parameters	
Changes to model structure/assumptions	N/A
Significant changes to data inputs	1. Repeat the assessment from 2011 using the new software version SS 3.24 u 2. Use the older version of SS 3 (SS 3.24 f) to test the effect of using new software. 3. Add catch and commercial CPUE to 2014/15. 4. Add survey abundance estimates to 2014/15. 5. Add length composition data from 2011/12 to 2014/15; a new step this year was to keep the port and on-board ISMP data separate. In addition, length composition data from all surveys were included and, again new this year, the on-board length composition data obtained through crew sampling from 2010/2011-2014/2015 were also icluded. also included. 6. Estimate the selectivity curve for the Fishery Independent Survey 7. Add age composition data from 2011/12 to 2014/15. 8. Add the ageing error matrix 9. Estimate $L_{\text {min }}$ (a growth curve parameter) 10. Again use the older version of SS3 (SS3.24f) to test the effect of using new software. 11. New to this assessment, add the age composition data from the FIS for the years 2008/2009, 2010/2011, and 2014/2015, in which it is available. 12. Use variance estimates around the recruitment deviates to set the last estimated recruitment to 2004/2005. Accept fitted recruitment deviation bias adjustment values. 13. The variance of the different length and age composition data and the CPUE data were balanced to generate the initial base case. The balancing procedure this year attempts to apply more emphasis to the CPUE time series. The model balancing also involved increasing the recruitment variation from 0.2 to 0.34 as further bias adjustments were required after adjusting the variance estimates on different data streams.

RAG Comments on data	Data in the 2015 is more informative than for previous assessments. This is the result of the heavier fishing pressure applied to the fishery in the mid2000s, and the 10-15 year delay before recruitment effects are seen in the fishery (given bight redfish late age-at-maturity).
RAG Comments on assessment	At their December 2018 meeting, the RAG noted that overall catches of bight redfish have decreased in the last two years. The decrease in 2015 was attributed to the seismic survey that was also conducted that year. However, catches have not bounced back over the three years following this survey. Either the seismic survey had a longer term influence than expected or another factor is impacting stocks (may not be related to fishing pressure). The length frequency measurements of bight redfish have decreased from modal length $=30-35 \mathrm{~cm}$ in previous years to modal length $=29 \mathrm{~cm}$ in 2018. In both 2015 and 2018 relative biomass for bight redfish has decreased. Depth distribution of bight redfish appear to have shifted; with movement inshore apparent. There have been significant changed to the catch composition in the GAB. In 2005, bight redfish and deepwater flathead accounted for approximately half of the total composition. In 2018, both species contributed only 11% of the catch each. Due to the above information, the RAG recommended that the stock assessment for bight redfish be moved forward from 2020 to 2019. The RAG recommended that the RBC for bight redfish for the 2019-20 season be cut to 600 t . The MAC recommended that the TAC for bight redfish for the 2019-20 season be cut to 600 t .
Projected Biomass (including confidence intervals)	Projections from 2015 assessment:

Catch and TAC							
Assessment Year	2013	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	
Tier / MYTAC	MYTAC	MYTAC	Tier 1	MYTAC	MYTAC	MYTAC	
Stock Status	Not assessed	Not assessed					
SESSF Season	$2014 / 15$	$2015 / 16$	$2016 / 17$	$2017 / 18$	$2018 / 19$	$2019 / 20$	
RBC (retained)	Rollover	Rollover	797	797	797	600	
Agreed TAC	2358	2358	800	800	800	600	
TAC after unders/overs	2593	2593	1034	879	879		
\% TAC caught	8%	7%	28%	35%			

Catch Trends

Bight redfish: RBC and total catch are calendar year; TAC and Commonwealth catch are fishing season.

RAG Recommendations		
$\begin{array}{l}\text { Recommended Biological } \\ \text { Catch (2019-20) }\end{array}$	$\begin{array}{l}\text { 2019-20 }=600 \mathrm{t} \\ 5 \text {-year RBC }=797 \mathrm{t}\end{array}$	$\begin{array}{l}\text { Undercatch: } \\ \text { Overcatch: } \\ \text { Discount Factor: }\end{array} \quad 10 \%$
0%		

3 Blue-eye Trevalla (Hyperoglyphe antarctica)

ABARES (2012): Line drawing - FAO

Tier 4 for slope stock and catch-MSY Tier 5 for seamount stock, last assessed by SERAG 2018.

Summary				
Stock Structure	Blue-eye trevalla (Hyperoglyphe antarctica) is managed as a single stock in the SESSF. Recently, three lines of evidence based on phenotypic variation in age and growth, otolith chemistry and potential larval dispersal, suggest spatial patterns that may delineate natural subpopulations (Williams et al. 2017). This indicates that there is likely to be one stock on the continental slope (from which most of the catch is taken) which is separate from the stock(s) found on the east coast seamounts. The slope stock is assessed under a Tier 4 stock assessment. Fish on the seamounts are assumed to be geographically isolated from the slope stock. Potential stock structure among the seamounts is not clear. The seamount stocks are assessed under a Tier 5 stock assessment. Separate RBCs were determined for the slope and seamount stocks for the first time in 2018 but a global TAC is set for Blue-eye trevalla.			
Stock status against reference points and trend	Tier 4 for slope stock Tier 4 species use CPUE targets as a proxy for biomass targets. The Tier 4 target reference point is the level of CPUE assumed to be a proxy for spawning biomass of 48 per cent of unfished levels. The limit reference point is the equivalent CPUE that acts as a proxy for 20 per cent of unfished levels. In 2015 SlopeRAG agreed to use a revised catch per hook metric in the Tier 4 analysis in place of the previously used catch per record/day. The RAG considered the updated analysis to be a better reflection of CPUE in the early part of the fishery. Stock status: standardised CPUE has decreased over the last three years from above the target reference point in 2014 to a point between the limit and the target reference point in 2017.			
	CE_Targ	1.2288	Last Yr TAC	458
	CE_Limit	0.512	Ctarg	645.263
	CE_Recent	0.9994	RBC	438.697
	Wt_Discard	0		

	Tier 5 for seamount stock: Catch-MSY Analysis estimates the depletion to be approximately $33 \% \mathrm{~B}_{0}$ although that estimate is highly uncertain. Age-structured stock reduction analysis Deterministic estimates vary greatly depending on assumed exploitation rates and which values for natural mortality and steepness of the stockrecruitment relationship are used.				
	Projected Catches by Steepness and Natural Mortality				
		$\mathrm{h}=0.6$	$\mathrm{h}=0.7$	$\mathrm{h}=0.8$	
	$\mathrm{M}=0.08$	25	32	40	
	$\mathrm{M}=0.1$	35	40	45	
	$\mathrm{M}=0.12$	37	43	48	
	Figure 9 from report				
ABARES most recent assessment (2017)	Biomass Not overfished	Fishing Mortality Not subject to overfishing			
GVP Figures (2016-17 season)	GVP \$4.05 million	\% Fishery GVP8.7\%			
Is a MYTAC in place this season?	No	Have breakout rules been triggered?			N/A

Assessment Summary	
Tier Level	Tier 4 for slope stock and Tier 5 for seamounts stock.
	Tier 4 slope stock: Total blue-eye trevalla catches have declined from 650 t in 2006 to 328.5 t for the 2017-18 season. The 430 t TAC was slightly over caught (within over catch provisions) in 2016-17. Standardised CPUE has decreased over the last three years from above the target reference point in 2014 to a point between the limit and the target reference point in 2017.
Tier 5 seamount stock: Catch-MSY Analysis estimates the depletion to be approximately 33\%B ${ }^{\prime}$ highly uncertain. The model assumed maximum harvest rate in any one year that is is limited to 0.5, implying no more than 50\% of exploitable Blue-eye could be taken in any single year.	

	Age-structured MSY Estimates vary greatly depending on exploitation rates and which values for natural mortality and steepness of the stock-recruitment relationship are used.
Key model technical assumptions/ parameters	Both assessments assume that biomass was unfished prior to 1985 (when fishing started). Tier 4 slope stock: Standardised CPUE from zones 20 to 83 is assumed to be proportional to abundance. The best assessment is obtained by using catch per hook as the effort metric for CPUE. Standardised blue-eye trevalla catch rates (Sporcic \& Haddon 2018) combined dropline and longline catch-per-hook. The target reference period provides an acceptable CPUE proxy for the target reference point. Total catch history is accurate. Tier 5 seamount stock: Catch-MSY The catch-MSY data-poor stock assessment method requires some strong assumptions and a minimum amount and quality of data. The blue-eye fishery that has occurred on the eastern seamounts is a difficult fishery to assess. Age-structured stock reduction analysis Noting that not all of the seamounts would be fished in a given year, the model has assumed that harvest rates do not rise above 0.5 in a single year. This adds constraints to the analysis and assumes that there must have been at least twice the biomass relative to what was caught in any year.
Significant changes to data inputs	Tier 4: Catches from zone 10-83 are included in $\mathrm{C}_{\text {targ }}$ Only non-trawl catches from zones 20-83 are included in the CPUE analysis Tier 5: No previous tier 5 assessment for seamounts.
RAG Comments on data	Tier 4: Early records of high discards are likely from trawl. There are no significant discards and so they are not included in the Tier 4 assessment. Tier 5: It is difficult to get representative catch data from logbooks. There are a number of methods that can estimate the catch and uncertainty around accuracy of reporting. Most coming from automatic longline and drop-line.
RAG Comments on assessment	Tier 4: In 2015 the RAG agreed to use the catch per hook metric from drop-line and automatic longline, noting that this is a better reflection of CPUE across the fishery.

The updated analysis resulted in a lower CPUE in the early part of the data series, confirming that the 2014 Tier 4 assessment was conservative in nature and that blue eye trevalla are less depleted than the assessment indicated.

The RAG noted a shift in fishing effort and catch to the western region in the GAB.

The March 2018 blue-eye trevalla workshop recommended assessing the slope stock as a whole (Z20-83) and to monitor catches/CPUE in the GAB.

SERAG supported including catches from zone 10 and the GABT in $\mathrm{C}_{\text {targ }}$ however catches from Z10 are small and are not included in the CPUE analysis.

The CPUE analysis assumes there is mixing throughout the stock, however the stock is understood to be broadly distributed but localised. It is likely that CPUE are missed by applying CPUE standardisations across the distribution.

Noting the interest in collecting representative age and length data and developing alternative stock assessment such as close-kin, the RAG was comfortable using the Tier 4 assessment to provide RBC advice.

Tier 5:

Catch MSY Analysis

Without extra information, such as an index of relative abundance, the default assumptions of the catch-MSY lead to highly uncertain outcomes.

For all other assessments, the RAG would use the median of the estimate in generating RBC advice, however this assessment has not been MSE tested. Dr Haddon suggested treating the median as a summary rather than the 'best estimate' of stock status. In the absence of any other information, it is still the most appropriate estimate.

If the catch based MSY were to be used in the future, management may consider using some level greater than the median as the 'driver'.

There is currently no accepted harvest control rule for Tier 5 analyses. While highly uncertain, the catch-MSY analysis generates an MSY of about 45-50 t with a depletion estimate of about $33 \% \mathrm{~B}_{0}$. Constant catches of 40 t or less would maintain stock status at the proxy $48 \% \mathrm{~B}_{0}$.

Age-structured stock reduction analysis

The age-structured stock reduction analysis gives approximately the same answer as the catch-MSY assessment.

Constant catches leading to relative stability in depletion were estimated at about 25 t for lower productivity combinations of M and $\mathrm{h}(0.08,0.6)$ and 48 t for higher productivity combinations ($0.12,0.8$)

Considering plausible productivity (biology and maximum age) the RAG suggested $\mathrm{M}=0.08$ and $\mathrm{h}=0.75$, which is consistent with what New Zealand use. The RAG agreed to a constant catch of 36 t based on the constant catches generated when values of $\mathrm{h}=0.7$ and 0.8 .

	Discussion Industry have noted it is an episodic fishery because of how far they travel. Some operators may visit the seamounts as part of operations on the high seas. For economic reasons, other operators will fish the seamounts until catch rates are no longer viable due to long distance travel. The slope and seamounts are managed under a single blue-eye trevalla TAC. The RAG noted that a 36 t RBC applied annually on the seamounts might not be as economically viable as a larger combined RBC over a 3-year period to allow for the episodic and targeted style of fishing.
The RAG recommended allowing up to 50 per cent of the combined 3-year RBC (54t) could be taken in any given year from the seamounts. This recognises the economics of the fishery and that catches up to this level do not represent a risk to the stock. Age and length composition data from across the seamounts should be collected over time to monitor the stock. Electronic monitoring could be used to collect length information, however it might be difficult to collect enough age samples to get a representative sample. This will be addressed at SESSFRAG as part of the SESSF Data Plan development.	
Projected Biomass	
(Tier 5)	See figure 9. It is assumed that constant catches of 36 t would maintain stock stability or slow stock changes.

RAG Recommendations		
Recommended Biological Catch (2019/20)	Slope: 3-year RBC: 439 t per year Seamounts: 3-year RBC: 36 t per year (Total: 475 t)	Undercatch: 10% Overcatch: 10% Discount Factor: 0% The RAG recommended that the discount factor not be applied due to the conservative estimate of the RBC (due in part to unaccounted orca predation) and protection afforded the stock by fishing closures.
Is a MYTAC recommended for future seasons? Indicate whether the multiyear recommendation is a RBC (e.g. based on Tier 1 model output) or TAC (e.g. a rollover of catch)	Slope: Yes. 3-Year MYTAC Seamounts: Yes. 3-Year MYTAC The RAG recommended allowing up to 50 per cent of the combined 3-year RBC (54 t) could be taken in any given year from the seamounts.	

Probability of RBC (or other levels of catch) causing a decline below limit reference under proposed management Species that follow a HS rule that has been MSE tested will have a "very unlikely" score in this section (i.e. $P<10 \%$).	Tier 4 assessments do not assess the probability of being below the limit reference point. If the standardised CPUE series is a reasonable index of relative abundance catches up to the RBC are considered to have a very low probability of causing the stock to decline to below the limit reference point. However, the RAG considers the current assessment to be conservative. The RBC is taken from the MSE-tested harvest control rules. If the standardised CPUE series is a reasonable index of relative abundance the RBC will have a very low probability of causing a decline below the limit reference point. Tier 5 RBC Recommendation: The constant catch projections indicate that the risk of the stock declining to below the limit reference point is low. Alternative Catch Scenarios: N/A
Research Catch Allowance Included/Addition to TAC	0 t
Implications for companion species / TEPs / multi-species fisheries	Auto longline operators catch pink ling and blue-eye trevalla together. There may be implications to pink ling catch due to changes in TAC.

Catch and TAC						
Assessment Year	2013	2014	2015	2016	2017	2018
Tier / MYTAC	Tier 4	MYTAC	Tier 4	Tier 4	Tier 4	Tier 4
Stock Status	CPUE between target and limit	MYTAC	CPUE between target and limit	CPUE between target and limit	CPUE between target and limit	CPUE between target and limit
SESSF Season	2014/15	2015/16	2016/17	2017/18	2018/19	2019/20
RBC (t)	269	269*	444	526	482	Slope: 439 Seamount: 36 (Total: 475)
Agreed TAC	335	335	410	458	462	
TAC after Unders/Overs	355	363	430	444	502	
\% TAC caught	76\%	82\%	100\%	74\%		

Catch Trends

Figure 1. The total reported catches from 1997-2016 taken by autoline and drop-line combined across the east, west, the GAB and far north seast (black and red used for CPUE standardisation)

Figure 2 TAC and landings for blue-eye trevalla up to the 2017 calander year

Figure 3 Standardised catch rates with the upper fine line represents the target catch rate and the lower line the limit catch rate. Thickened line (Blue line) represents the reference period for catches, catch rates, and the recent average catch rate (green line).

Tier 5 Seamounts:

BlueEye_709192

4 Blue Grenadier (Macruronus novaezelandiae)

ABARES (2012) Line drawing - Rosalind Poole

Tier 1: last assessed by SERAG in 2018.

Summary			
Stock Structure	Blue Grenadier is assessed as one stock however there is some evidence of separate stocks occurring across the SESSF. There are two defined subfisheries, the spawning fishery dominated by catches off western Tasmania and the widely spread catches of the non-spawning fishery.		
	Current	Target	Limit
	2019: 122\% B_{0}	48\% B0	20\% Bo
Stock status against reference points and trend	Updates to the model down-weighted the large recruitment estimated in 1993 which led to a decrease in the spawning biomass below the target ($48 \% \mathrm{~B}_{0}$) from around 2011 to 2015. Biomass has increased to be above virgin stock biomass $\left(122 \% B_{0}\right)$ at the start of 2019 due to high recruitment from 2010 to 2015. The catch in the Blue Grenadier spawning fishery is increasing but is still below 2000 levels. Catches in the non-spawning fishery have decreased.		
ABARES most recent assessment (2017)	Biomass Not overfished	Fishing Mortality Not subject to overfishing	
GVP Figures (2016-17 season)	$\begin{gathered} \text { GVP } \\ \$ 2.54 \mathrm{~m} \end{gathered}$	\% Fishery GVP3.1\%	
Is a MYTAC in place this season?	Yes.	Have breakout rules been triggered?	No.

Assessment Summary	
Tier Level	Tier 1
Stock indicator trends	Biomass has increased to be above virgin stock biomass (122\%B0) at the start of 2019 due to high recruitment from 2010 to 2015. The model suggests the biomass decreased to below target in 2012.

Key model technical assumptions/ parameters	2 sex model, age-structured Female M estimated. Male 20% larger $\left(1.2^{*} M_{f}\right)$ (sensitivity estimated $M_{\text {males }}$) Steepness is 0.75 Recruits estimated between 1974 and 2014 All growth parameters estimated by sex Cohort specific growth (estimated for cohorts from 1977-2014) Maturity: 50% female maturity at 63.7 cm Proportion of females that spawn 0.84 (Russell and Smith, 2006) Spawning fleet (logistic selectivity) Non-spawning fleet (dome-shaped selectivity) FIS non-spawning area (mirror selectivity non-spawning fleet) The base case estimates natural mortality (M) for females at 0.174 and uses $1.2 \mathrm{M}_{\mathrm{f}}$ to provide M for male at 0.209
Changes to model structure/assumptions	N/A
Significant changes to data inputs	FIS non-spawning abundance index included.
RAG Comments on data	Good fits to age and length data as well as acoustic surveys. Poor fits to CPUE for the non-spawning fishery. The model suggests a strong recent period of recruitment.
RAG Comments on assessment	The addition of new data through 2017 imply a reduction in spawning biomass to below the target reference point in 2012. Concern was raised about the estimated 2010 recruitment in the last assessment. This now appears to be supported by subsequent age/length data. The model projected discards are based on current fleet structure (wet boats). Factory freezer vessels do not discard. If the RBC were caught, it would be largely by factory vessels, in which case the actual discards would be lower. The large increase in biomass, and hence RBC, is largely driven by five years of above average recruitment. Given that the stock is estimated to be above B_{0} and with predicted catches at F, at that level it would take many years to reduce the stock to target reference point. There may be short-term economic benefits to fishing at a higher rate. There was a suggestion that the RBC is only applied over 2 years so that recruitment and biomass can be monitored. At SERAGs request (Sept 2018) M for males was also estimated and resulted in female $M=0.154$ and male $M=0.230$. This results in a small decrease in estimated spawning biomass. SERAG (2018) recommended looking at likelihood profiles for M as part of the next stock assessment. This was done for the September 2018 RAG meeting.

RAG Recommendations	
Recommended Biological Catch (2019/20)	$2019-13260 t$ $2020-12238 t$ $2021-11052 t$ Undercatch: 10% 3 -year average =12183 t Overcatch: 10%
Is a MYTAC recommended for future seasons? Indicate whether the multi-year recommendation is a RBC (e.g. based on Tier 1 model output) or TAC (e.g. a rollover of catch)	Yes. 3-Year MYTAC. SEMAC to consider either the yearly RBC or the 3-year average.
Probability of RBC (or other levels of catch) causing a decline below limit reference under proposed management Species that follow a HS rule that has been MSE tested will have a "very unlikely" score in this section (i.e. P<10\%).	RBC recommendation = very unlikely to cause a decline below Bим Alternative Catch Scenarios: N/A
Research Catch Allowance Included/Addition to TAC	0 t
Implications for companion species / TEPs / multi-species fisheries	There may be implications for the silver warehou bycatch with an increase in effort for blue grenadier. SERAG (2018) recommended looking at the proportion of silver warehou bycatch in the grenadier fishery (inc factory vessel catches). The ratio of silver warehou to blue grenadier is probably lower now than in the past.

Catch and TAC							
Assessment Year	2013	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	
Tier / MYTAC	MYTAC	MYTAC	MYTAC	MYTAC	MYTAC	Tier 1	
Stock Status	Not assessed	$122 \% B_{0}$					
SESSF Season	$2014 / 15$	$2015 / 16$	$2016 / 17$	$2017 / 18$	$2018 / 19$	$2019 / 20$	
RBC (retained)	8138	8796	8810	8810	8810		
Agreed TAC	6800	8796	8810	8765	8810		
TAC after unders/overs	7205	9411	9618	9627	9636		
\% TAC caught	19%	19%	14%	17%			

5 Blue Warehou (Seriolella brama)

ABARES (2012): Line Drawing - Rosalind Poole
Common names: Black trevally, sea bream, snotty trevalla.

Under a Stock Rebuilding Strategy.

Tier 4 last assessed in 2013 by ShelfRAG. Rebuilding species reviewed by SERAG in 2018.

Summary	
Stock Structure	There is good evidence that there are two stocks of blue warehou, east and west of the Bass Strait, but the species is managed under a single TAC.
Stock Status	Tier 4 species use CPUE targets as a proxy of biomass targets. SERAG noted a significant increase in discards in 2017, driven largely by small fish caught by Danish seiners in eastern Bass Strait. The Tier 4 target reference point is the level of CPUE assumed to be a proxy for spawning biomass of 48 per cent of unfished levels. The limit reference point is the equivalent CPUE that acts as a proxy for 20 per cent of unfished levels. 2013 Stock status: In 2013 blue warehou was expected to be below the limit reference point and is subject to a rebuilding strategy. The last agreed Tier 1 assessment in 2005-06 found the eastern stock to be depleted below the limit reference point. In contrast, the western stock was thought to be above the limit reference point and close to the biomass maximum sustainable yield (B_{40}) level. However, the assessment predicted that the western stock will have dropped below the limit reference point by 2007 if the landed catches remained high and if recruitment was average. Biomass trend: The standardised CPUE for both stocks continue to be low and declining in 2015, however, due to avoidance of blue warehou by operators the use of CPUE as an index of abundance is no longer considered reliable. Catches have been low over the last few years and below the incidental TAC, particularly in 2015 with only 4.5 t landed. As a consequence of low catches there is little data.

ABARES most recent assessment (2017)	Biomass Overfished	Fishing Mortality Uncertain	
GVP Figures (2016-17 season)	GVP < \$0.1 million	\% Fishery GVP 0.05%	
Is a MYTAC in place this season?	No.	Have breakout rules been triggered?	N/A.

Assessment Summary	
Tier Level	Tier 4
	The RAG noted again its' concern that CPUE is not a good index of abundance while there is an incidental catch TAC in place and industry is actively avoiding the species. An alternative primary index of abundance needs to be developed as a high priority for use in future stock assessments. She RAG noted low catches of blue warehou in 2015 and that the geographic range of catches has contracted. There was no information available to the RAG to suggest that the stock was recovering; the RAG noted the importance of the planned project looking at declining and non-recovering stocks.
Key model technical assumptions/ parameters	N/A
Changes to model structure/assumptions	N/A
Significant changes to data inputs	N/A
RAG Comments on data	CPUE is not a good index of abundance while there is an incidental catch TAC in place because industry is actively avoiding the species. The RAG recommended that an alternative primary index of abundance be developed as a high priority for use in future stock assessments. There was no information available to the RAG to suggest that the stock was recovering; the RAG noted the importance of continuing work looking at declining and non-recovering stocks.

RAG Comments on assessment	Standardized Catch Rates - N.B. Tier 4 not updated in 2016: Blue warehou (east left, west right) standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.
Projected Biomass (including confidence intervals)	

RAG Recommendations		
Recommended Biological Catch (2017-18)	0 t RBCs for both eastern/western stocks remain at zero as standardised catch rates are below the limit reference points. Blue warehou is managed under the Blue Warehou Stock Rebuilding Strategy - this was updated in 2014 and is available here. An incidental catch TAC of 118 t is recommended by SERAG.	Undercatch: 0\% Overcatch: 0\% Discount Factor: 0\%
Is a MYTAC recommended for future seasons?	No.	
Probability of RBC (or other levels of catch) causing a decline below limit reference under proposed management Species that follow a HS rule that has been MSE tested will have a "very unlikely" score in this section (i.e. P<10\%).	N/A - Already considered to be below the limit reference point. Alternative Catch Scenarios: N/A	
Research Catch Allowance Included/Addition to TAC	0 t	
Implications for companion species / TEPs / multi-species fisheries	N/A.	

Catch and TAC						
Assessment Year	$\mathbf{2 0 1 1}$	$\mathbf{2 0 1 2}$	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$
Tier / MYTAC	Tier 4	Tier 4	Tier 4	Not assessed	Not assessed	Not assessed
Stock	E: CPUE less than limit W: CPUE less than limit	E: CPUE less than limit W: CPUE less than limit	E: CPUE less than limit W: CPUE less than limit	E: CPUE less than limit W: CPUE less than limit	E: CPUE less than limit W: CPUE less than limit	E: CPUE less than limit W: CPUE less than limit
SESSF Season	$2012 / 13$	$2013 / 14$	$2014 / 15$	$2015 / 16$	$2016 / 17$	$2017 / 18$
RBC (retained)	0	0	0	0	0	0
Agreed TAC	118	118	118	118	118	118
TAC after unders/overs	118	118	118	118	118	118
\% TAC caught	41%	55%	14%	2%	14%	21%

Catch Trends

Blue Warehou RBC and total catch are calendar year. TAC and Commonwealth catch are fishing season.

6 Deepwater Flathead (Neoplatycephalus conatus)

Obsolete common names: deep sea flathead, trawl flathead.

Tier 1 assessed by GABRAG in 2016, species summary updated in 2016.

Summary			
Stock Structure	Assessed as a single stock.		
	Reference point is 20% of unfished biomass. Target is 43% of unfished biomass. 2016: 45\% of unfished biomass. The stock remains above the target.		
ABARES most recent assessment (2017)	Biomass Not overfished	Fishing Mortality Not subject to overfishing	
GVP Figures (2016-17 season)	GVP $\$ 5.86$ million	\% Fishery GVP 58.4\% (GABTS)	
Is a MYTAC in place this season?	Yes. 2019/20 is the final year of the MYTAC.	Have breakout rules been triggered?	N/A. Observed standardized CPUE or FIS (when run) falls outside the 95 per cent confidence intervals projected from the assessment.

Assessment Summary	
Tier Level	Tier 1
Stock indicator trends	While remaining above target, estimated spawning biomass suggests a gradual decline toward the target since 2012-13. The spread of ages in recent age data indicates the stock is responding to a reduction in fishing effort.

\(\left.$$
\begin{array}{|l|l|}\hline \begin{array}{l}\text { Key model technical } \\
\text { assumptions/ } \\
\text { parameters }\end{array} & \begin{array}{l}\text { The model projections assume average recruitment. However, } \\
\text { recruitment estimates for recent years have been below average. }\end{array} \\
\hline \begin{array}{l}\text { Changes to model } \\
\text { structure/assumptions }\end{array} & \begin{array}{l}\text { The latest version of stock synthesis } 3 \text { software (SS3.24z) was applied. }\end{array} \\
\hline \text { Significant changes to } \\
\text { data inputs } & \begin{array}{l}\text { ISMP data were divided into the onboard and port based samples. Length } \\
\text { and age composition data from the FIS and industry collected length } \\
\text { composition were included for the first time. }\end{array}
$$

RAG Comments on

assessment

There were large numbers of new samples, for example the industry

collected length frequency samples alone contribute more than 35 000

extra records.\end{array}\right\}\)| The RAG noted the 2015 FIS survey index is within bounds of variability of |
| :--- |
| the commercial catch rate index. While the FIS survey index and |
| commercial catch rates were unusually low over the same two months, |
| which may be related to the substantial seismic survey being conducted |
| over the same period, the RAG did not consider there was sufficiently |
| strong basis for excluding the 2015 FIS catch rate data from the |
| assessment. |
| data |

Projected Biomass (including confidence intervals)	 The 40 year projection depends on the RBC being caught each year, which, given recent catches, the RAG noted was unlikely due to the low number of vessels operating.

	RAG Recommendations
Recommended Biological Catch (2019/20)	$2019-20$ RBC = 1128 t Undercatch: 10% 1-year: 1155 t 3-year: 1128 t Overcatch: 10% 5-year: 1115 t Discount Factor: 0\%
Is a MYTAC recommended for future seasons? Indicate whether the multi-year recommendation is a RBC (e.g. based on Tier 1 model output) or TAC (e.g. a rollover of catch)	Yes. 3-year: 1128 t 5-year: 1115 t For TAC calculations: no discards or state catch to be deducted (M. Haddon confirmed that these sources of mortality don't contribute to RBC outcome) from TAC calculation summary.
Probability of RBC (or other levels of catch) causing a decline below limit reference under proposed management Species that follow a HS rule that has been MSE tested will have a "very unlikely" score in this section (i.e. $P<10 \%$).	RBC recommendation $=<10 \%$ - very unlikely to cause a decline below $\mathrm{B}_{\text {им }}$ Alternative Catch Scenarios: N/A
Research Catch Allowance Included/Addition to TAC	0 t
Implications for companion species / TEPs / multi-species fisheries	The RAG noted that deepwater flathead effort contributes to catches of other commercial species in the GAB.

Catch and TAC							
Assessment Year	2013	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	
Tier / MYTAC	MYTAC	MYTAC	MYTAC	Tier 1	MYTAC	MYTAC	
Stock Status	45%	Not assessed	Not assessed	45%	Not assessed	Not assessed	
SESSF Season	$2014 / 15$	$2015 / 16$	$2016 / 17$	$2017 / 18$	$2018 / 19$	$2019 / 20$	
RBC (retained)	1146	1112	1112	1128	1128	1128	
Agreed TAC	1150	1150	1150	1128	1128	1128	
TAC after unders/overs	1264	1265	1256	1241	1241		
\% TAC caught	52%	50%	54%	44%			

Catch Trends

7 Deepwater Shark Basket - East

The Deepwater Shark Basket quota includes multiple species of deepwater sharks: Brier shark (Deania calcea), Platypus shark (Deania quadrispinosa), Plunket's shark (Centroscymnus plunketi), Roughskin Shark (Centroscymnus and Deania spp), Pearl shark (D.calcea and D.quadrispinosa), Black shark (Centroscymnus spp), Lantern shark (Etmopterus spp), Dogfish Family squalidae and other sharks.

Tier 4: last assessed by SERAG in 2018

Assessment Summary	
Tier Level	Tier 4
Stock indicator trends	The CPUE trend in the eastern zone is slowly declining and is currently between the target and limit reference points.
Key model technical assumptions/ parameters	Major assumption that the CPUE represents the status of the whole stock, uncertain given the large closures. Assessed as a separate east and west stock. Basket of species (see stock structure), hence a key assumption is that the combined species CPUE at least broadly reflects the trends in CPUE for all the contributing species. Noted that approximately 80% of the catch was one species; Deania calcea (brier shark).
Changes to model structure/assumptions	Assessment based on open areas only. Reference period maintained at 1997-2004. The catch rates used in the analysis are based on log-transformed catches rather than log transformed catch/effort. This was a RAG decision relating to how the sharks are fished.
Significant changes to data inputs	N/A
RAG Comments on data	Discards are not used in the CPUE series and are not included in $\mathrm{C}_{\text {targ }}$ and so will not be deducted from the RBC. Catches have been stable between 20-30 t since 2012 and the CPUE has remained stable in the open areas.
RAG Comments on assessment	A large proportion ($>54 \%$) of the catch of the entire fishery was previously taken in waters $>700 \mathrm{~m}$ and most of these areas are now closed. (AFMA report 2008-836). The Tier 4 now excludes all catch taken in areas that are now closed (deepwater closures). The RAG has questioned whether the fishing in the reference period (which is prior to the implementation of the deepwater closures) is relevant to assessing the current status of the stock. There is limited data to inform the determination of an alternate reference period. Deepwater shark are not highly migratory. This was noted in relation to the influence of the closures on the component of the stock that remains open to the fishery. There has been a fishing down of the portion of the stock in the open areas. The RAG accepted the results of the Tier 4 assessment and the 2019 RBC of 9 t . However, given the bycatch nature of the fishery, a reduction in TAC would likely lead to discarding which will have implications for the CPUE series. With regards to setting TACs, the RAG noted that catches and CPUE have been relatively stable over the past eight years, and there would be little risk in maintaining catches at current levels.

Catch and TAC							
Assessment Year	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	2018	
Tier / MYTAC	Tier 4	Not assessed	Not assessed	Not assessed	Tier 4	Tier 4	
Stock Status	CPUE between target and limit	Not assessed	Not assessed	Not assessed	CPUE between target and limit	CPUE between target and limit	
SESSF Season	$2014 / 15$	$2015 / 16$	$2016 / 17$	$2017 / 18$	$2018 / 19$	$2019 / 20$	
RBC	78	47	47	47	9	9	
Agreed TAC	47	47	47	46	23		
TAC after unders/overs	55	51	51	50	27		
\% TAC caught	46%	44%	49%	46%			

Catch Trends

Deepwater shark (east) catches against TAC for various gear types:

Standardised Catch Rates

Standardised catch rates for eastern deepwater sharks in open areas only. The dashed black line represents the geometric mean catch rate, solid black line the standardized catch rates. The red bars are the 95% confidence intervals about the mean estimates. The graph scales both time-series of standardized catch rates relative to the mean of each time-series.

Deepwater Shark (east) standardised catch rates relative to the target and limit rates. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

8 Deepwater Shark Basket - West

The Deepwater Shark Basket quota includes multiple species of deepwater sharks: Brier shark (Deania calcea), Platypus shark (Deania quadrispinosa), Plunket's shark (Centroscymnus plunketi), Roughskin Shark (Centroscymnus and Deania spp), Pearl shark (D.calcea and D.quadrispinosa), Black shark (Centroscymnus spp), Lantern shark (Etmopterus spp), Dogfish Family squalidae and other sharks.

Tier 4: last assessed by SERAG in 2018.

Assessment Summary	
Tier Level	Tier 4
Stock indicator trends	$\begin{array}{l}\text { Standardised CPUE has increased for three of the last four years and was } \\ \text { stable from 2016 to 2017. The four year average in the western zone is } \\ \text { currently above the target reference point. }\end{array}$
	$\begin{array}{l}\text { Major assumption that the CPUE represents the status of the whole } \\ \text { stock, uncertain given the large closures. } \\ \text { Key model technical } \\ \text { assumptions/ } \\ \text { parameters }\end{array}$
$\begin{array}{l}\text { Assessed as a separate east and west stock. } \\ \text { Basket of species (see stock structure), hence a key assumption is that } \\ \text { the combined species CPUE at least broadly reflects the trends in CPUE } \\ \text { for all the contributing species. Noted that approximately 80 \% of the } \\ \text { catch was one species; Deania calcea (brier shark). AFMA funded a } \\ \text { project to look at the breakdown of deepwater shark species at Sydney } \\ \text { Fish Market and found that 86 per cent of the catch were Deania calcea } \\ \text { (brier shark) and six per cent were D. quadrispinosa (platypus shark). }\end{array}$	
$\begin{array}{l}\text { Changes to model } \\ \text { structure/assumptions }\end{array}$	N/A
$\begin{array}{l}\text { Significant changes to } \\ \text { data inputs }\end{array}$	N/A
RAG Comments on data	$\begin{array}{l}\text { If there is a change in discard estimates over time the RAG should } \\ \text { consider including them in the Tier 4. }\end{array}$
RAG Comments on	$\begin{array}{l}\text { The RAG noted the recent increase in CPUE and the correlation with the } \\ \text { modification to the deepwater closures in 2016. } \\ \text { assessment }\end{array}$
Only the stock outside the closures is assessed and there is little	
understanding of the effect of the closures.	

RAG Recommendations		
Recommended Biological Catch (2019-20)	235 t	Undercatch: 10\% Overcatch: 10\% Discount Factor: 0\%
Is a MYTAC recommended for future seasons? Indicate whether the multi-year recommendation is a RBC (e.g. based on Tier 1 model output) or TAC (e.g. a rollover of catch)	No. Future MYTAC subject to Feb 2019 SESSFRAG review of assessment approaches.	
Probability of RBC (or other levels of catch) causing a decline below limit reference under proposed management Species that follow a HS rule that has been MSE tested will have a "very unlikely" score in this section (i.e. P<10\%).	Tier 4 assessments do not assess the probability of being below the limit reference point. If the standardised CPUE series is a reasonable index of relative abundance catches up to the RBC are considered to have a very low probability of causing the stock to decline to below the limit reference point. Alternative Catch Scenarios: N/A	
Research Catch Allowance Included/Addition to TAC	0 t	
Implications for companion species / TEPs / multi-species fisheries	N/A	

Catch and TAC						
Assessment Year	2013	2014	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	2018
Tier / MYTAC	Tier 4	Not assessed	Not assessed	Not assessed	Tier 4	Tier 4
Stock	CPUE between target and limit	Not assessed	Not assessed	Not assessed	Above target	Above target
Status	$2014 / 15$	$2015 / 16$	$2016 / 17$	$2017 / 18$	$2018 / 19$	$2019 / 20$
SESSF Season	263	263	263	263	313	235
Agreed TAC	215	215	215	215	264	
TAC after unders/overs	230	231	232	232	281	
\% TAC caught	35%	30%	32%	34%		

Catch Trends

Standardised Catch Rates

Deepwater Shark Basket (west) standardised catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

9 Elephant fish (Callorhinchus milii)

Ken Graham DPI Fisheries (1984)

Tier 4 for slope stock and catch-MSY, last assessed by SharkRAG 2018.

Assessment Summary	
Tier Level	Tier 4
Stock indicator trends	N/A

Key model technical assumptions/ parameters	Four year weighted average of discards are used for assessment and deducted from RBC. Recreational catch is included.
Significant changes to data inputs	Yes, model now includes discards data.
RAG Comments on data	In 2014 SharkRAG changed the model to include discards in the assessment but noted that further refinements were required. Further work to incorporate discards in the assessment was recommended for 2015. Shark RAG has expressed concerns that changes in fishing behaviour such as intentional avoidance cannot be accounted for in the Tier 4 assessment, and can ultimately drive RBC/TACs downwards. There is some uncertainty about how reliable the Tier 4 assessment is as an index of abundance for Elephantfish because we are using gillnet data and there appears to be avoidance behaviour by fishers. However, SharkRAG 2014 did not have concerns about the current status of the stock based on the available catch and effort information.
RAG Comments on assessment	SharkRAG recommended maintaining the TAC at the current level of 114 t , noting that the assessment will be updated after receiving advice from SESSFRAG in 2019 on species are currently difficult to assess. RAG industry members have previously expressed that a precautionary long term RBC should be set for elephantfish as the TAC level does not influence landings.
Projected Biomass	

RAG Recommendations			
Recommended Biological Catch (2019/20)	114 t	Undercatch: Overcatch: Discount Factor (A discount factor is	$\begin{aligned} & 10 \% \\ & 10 \% \\ & 15 \% \\ & \text { ed to tier } 4 \text { species) } \end{aligned}$
Is a MYTAC recommended for future seasons? Indicate whether the multi-year recommendation is a RBC (e.g. based on Tier 1 model output) or TAC (e.g. a rollover of catch)	SharkRAG recommended maintaining the TAC at the current level of 114 t for this year.		

Probability of RBC (or other levels of catch) causing a decline below limit reference under proposed management Species that follow a HS rule that has been MSE tested will have a "very unlikely" score in this section (i.e. P<10\%).	RBC recommendation $=<10 \%$ (very unlikely)
Research Catch Allowance Included/Addition to TAC	0 t
Implications for companion species / TEPs / multi-species fisheries	N/A

Catch and TAC						
Assessment Year	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$
Tier / MYTAC	Tier 4					
Stock Status	CPUE above target	CPUE above target	Not assessed	Not assessed	Not assessed	Not assessed
SESSF Season	$\mathbf{2 0 1 4 / 1 5}$	$\mathbf{2 0 1 5 / 1 6}$	$\mathbf{2 0 1 6 / 1 7}$	$\mathbf{2 0 1 7 / 1 8}$	$\mathbf{2 0 1 8 / 1 9}$	$\mathbf{2 0 1 9 / 2 0}$
RBC (t)	116	357	306	306	206	
Agreed TAC	109	163	92	114	114	
TAC after Unders/Overs	117.43	172	108	122	122	
\% TAC caught	52%	32%	59%	38%		

Catch Trends

Figure 4. Top panel is the total removals with the fine line illustrating the target catch. Bottom panel represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represent the reference period for catches, catch rates (1996-2007), and the recent average catch rate (last four years).

Figure 2 Elephantfish TAC, RBC, AFMA catch and total catch are detailed above. The spike in total catch for 2011 can be attributed to the high level of discards recorded for that year which is incorporated into the total catch.

10 Flathead

Common names: Deep sea flathead, flathead, king flathead, spiky flathead, trawl flathead.

Tier 1 assessed by SERAG in 2016, species summary updated in 2017.

\quad Assessment Summary	
Tier Level	Tier 1
Stock indicator trends	Refer to Tier 1 assessment.
$\begin{array}{l}\text { Key model technical } \\ \text { assumptions/ } \\ \text { parameters }\end{array}$	$\begin{array}{l}\text { The current assessment assumes a single growth curve for the whole } \\ \text { stock, an assumption also made in previous assessments. }\end{array}$
$\begin{array}{l}\text { Significant changes to } \\ \text { data inputs }\end{array}$	$\begin{array}{l}\text { Both port and onboard length frequency data were included. } \\ \text { Length frequency data from the fishery independent surveys from 2008, } \\ \text { 2010, 2012 and 2014 was included. }\end{array}$
RAG Comments on data	$\begin{array}{l}\text { Need to investigate spatial differences in growth parameters between } \\ \text { eastern TAS and other regions. } \\ \text { The 2016 model outputs are robust to a range of sensitivities. The } \\ \text { assessment indicated there has been better than average recent } \\ \text { recruitments. }\end{array}$
RAG Comments on	$\begin{array}{l}\text { November 2016 SERAG meeting } \\ \text { The 2016 model outputs are robust to a range of sensitivities. }\end{array}$
assessment	$\begin{array}{l}\text { The assessment indicated there has been better than average recent } \\ \text { recruitments. } \\ \text { The RBC has been reduced (approx. 15 per cent) because: }\end{array}$
- 2013 model over estimated recent recruitment	
- The 2013 assessment estimated biomass at 50 per cent, which	
has been fished down towards the target.	

fishery GVP in reducing the RBC.

12 January 2017 SERAG teleconference:

Corrections made to the assessment with adjusted RBCs as described

above.

Industry raised concerns over Danish seine gear selectivity estimates not

being included in the model and requested a phased approach in

reducing TAC until the assessment is updated.

The RAG considered modeled projections under adjusted RBCs (to allow

for higher TACs) which result in a biomass above target (B40) over five

years.

The RAG recommended a single year RBC for 2017-18 and the

assessment to be updated in 2017. If the assessment is not completed in

2017, 2nd year RBCs have been calculated which are dependent on the

TAC set by SEMAC.

A Danish seine gear survey should be conducted to inform the 2017

assessment.\end{array}\right\}\)

	18 September 2017 SERAG Meeting: Danish seine gear survey showed little change in mesh size over time. SERAG agreed not to update the assessment and recommended single year RBCs from the projections for the remainder of the MYTAC period. Assessment to be updated in 2019.
Projected Biomass	

RAG Recommendations			
Recommended Biological Catch (2019/20)	2826 t	Undercatch: Overcatch: Discount Factor	$\begin{aligned} & 10 \% \\ & 10 \% \\ & \text { N/A } \end{aligned}$
Is a MYTAC recommended for future seasons? Indicate whether the multi year recommendation is a RBC (e.g. based on Tier 1 model output) or TAC (e.g. a rollover of catch)	No. Sin Recom Assess	remainder of th	AC
Probability of RBC (or other levels of catch) causing a decline below limit reference under proposed management Species that follow a HS rule that has been MSE tested will have a "very unlikely" score in this section (i.e. $P<10 \%$).	RBC re	(ery unlikely)	
Research Catch Allowance Included/Addition to TAC	10 t fro		
Implications for companion species / TEPs / multi-species fisheries	N/A		

Catch and TAC						
Assessment Year	2013	2014	2015	2016	2017	2018
Tier / MYTAC	Tier 1	MYTAC	MYTAC	Tier 1	MYTAC	Not assessed
Stock Status	50\%	Not assessed	Not assessed	42\%	Not assessed	Not assessed
SESSF Season	2014/15	2015/16	2016/17	2017/18	2018/19	2019/20
RBC (t)	$\begin{aligned} & 1 \mathrm{yr}: 3428 \\ & 2 \mathrm{yr}: 3334 \\ & 5 \mathrm{yr}: 3252 \end{aligned}$	3334	3334	1yr: 3089	2837	
Agreed TAC	2878	2860	2882	2712	2507	
TAC after Unders/Overs	3143	3092	2992	2850		
\% TAC caught	81\%	90\%	94\%	86\%		

11 Gemfish East (Rexea solandri)

Obsolete common names: Hake, Common gemfish, Deepsea Kingfish, King barracouta, King couta, Silver Gemfish, Southern Kingfish

Under a Stock Rebuilding Strategy.

Tier 1 assessed by ShelfRAG in 2010, species summary updated in 2016.

Summary			
Stock Structure	There are considered to be two stocks of R. solandri in Australia, an eastern and a western stock bordered by a boundary in the south west of Tasmania (west of $146^{\circ} 22^{\prime} \mathrm{E}$, north of $42^{\circ} 43^{\prime} \mathrm{S}$). The current assessment is based solely on eastern gemfish, caught south of Latitude 43° south off western Tasmania, and east of longitude $146^{\circ} 22^{\prime}$.		
Stock status against reference points and trend	Current 2009: 16\% Bo Limit reference point is Target reference point is Stock status: The last up assessed eastern gemfis hence to be below the li The Eastern gemfish Sto released in early 2015. Biomass trend: While a assessment model was assessment was not acc the outcome did not provid	Target 48% Bo of unfis t of unfi ssment i 6 per ce ce point ng Strat rebuildi ssment th more e RAG, vidence	Limit 20\% Bo ted from 2008), hed biomass, and updated and was located here. ertaken, the 2008 The updated RAG noted that ilding.
ABARES most recent assessment (2017)	Biomass Overfished		ortality tain
GVP Figures (2016-17 season)	$\begin{gathered} \text { GVP } \\ <\$ 0.1 \text { million } \end{gathered}$		$\begin{aligned} & \text { y GVP } \\ & 5 \% \end{aligned}$

Is a MYTAC in place this season?	No	Have breakout rules been triggered?	N/A

Assessment Summary	
Tier Level	Tier 1
Stock indicator trends	Landed catches remain well below the incidental catch TAC and have been declining. Aggregated landings and discards are less than the TAC and declining. In 2016, the 2008 assessment model was updated with more recent data. The updated assessment was not accepted by the RAG, however, the RAG noted that the outcome did not provide any evidence of stock rebuilding.
Key model technical assumptions/ parameters	N/A
Significant changes to data inputs	N/A
RAG Comments on data	Standardised CPUE cannot be used as a reliable index of abundance due to avoidance behaviour of operators.
RAG Comments on assessment	The RAG reviewed the 2015 calendar year data and noted: - discard rates remain high at between 40-60 per cent - the non-targeted spawning standardized CPUE has decreased - there has been low recruitment since 2002 and biomass is tracking down since that 2002 cohort entered the fishery Projections from the most recent assessment, updated during 2010, indicate that with average recruitment the stock would recover within 13 years which is within the rebuilding timeframe specified in the HSP. CSIRO reviewed the available data for eastern gemfish in August 2016 and prepared a preliminary update of the eastern gemfish assessment, in order for the SESSFRAG to provide advice on whether an assessment is completed in 2016 or deferred to 2017. The RAG recommended that an assessment be postponed until 2017 and that the data should be assessed during 2017 to determine whether an updated assessment would inform stock status. The RAG has previously pointed out the eastern gemfish stock may now be at a new equilibrium and the stock may not rebuild under current conditions meaning the Eastern Gemfish Rebuilding Strategy under the Harvest Strategy Policy may not achieve its objectives. The RAG noted the importance of the planned project looking at declining and non-recovering stocks. The RAG agreed that continuing with the 100 t incidental catch MYTAC was appropriate.

Projected Biomass	Tier 1 stock projection: Projections under Ot catch (green) and 100t catch (blue) (0.05 and 0.95 percentile). Note: total catches (including discards) are often in excess of the current 100t bycatch TAC, which means the above trajectories are optimistic (from Little and Rowling 2011). Eastern gemfish base-case time-trajectories of spawning biomass depletion.

RAG Recommendations			
Recommended Biological Catch (2019/20)	0 t (under a bycatch TAC) Incidental TAC of 100 t	Undercatch: Overcatch: Discount Factor:	$\begin{aligned} & 0 \% \\ & 0 \% \\ & 0 \% \end{aligned}$
Is a MYTAC recommended for future seasons?	No.		
Probability of RBC (or other levels of catch) causing a decline below limit reference under proposed management Species that follow a HS rule that has been MSE tested will have a "very unlikely" score in this section (i.e. $P<10 \%$).	RBC recommendation = N/A, already considered to be below the limit reference point.		
Research Catch Allowance Included/Addition to TAC	0 t		
Implications for companion species / TEPs / multi-species fisheries	Historically there were reports of a companion species relationship between mirror dory and eastern gemfish which is likely to have changed due to avoidance of fishing the areas and depths that these species inhabit during the eastern gemfish spawning season.		

Catch and TAC						
Assessment Year	$\mathbf{2 0 1 2}$	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$
Tier / MYTAC	Not assessed					
Stock Status	Not assessed					
SESSF Season	$\mathbf{2 0 1 3 / 1 4}$	$\mathbf{2 0 1 4 / 1 5}$	$\mathbf{2 0 1 5 / 1 6}$	$\mathbf{2 0 1 6 / 1 7}$	$\mathbf{2 0 1 7 / 1 8}$	$\mathbf{2 0 1 8 / 1 9}$
RBC (t)	0	0	0	0	0	
Agreed TAC	100	100	100	100	100	
TAC after Unders/Overs	100	100	100	100	100	
\% TAC caught	52%	37%	30%	30%	32%	

12 Gemfish West (Rexea solandri)

Obsolete common names: Hake, Common gemfish, Deepsea Kingfish, King barracouta, King couta, Silver Gemfish, Southern Kingfish

Tier 4 last assessed by GABRAG in 2016 (a Tier 1 assessment was also considered).

Summary			
Stock Structure	There are considered to be two stocks of R. solandri in Australia, an eastern and a western stock bordered by a boundary in the south west of Tasmania (west of $146^{\circ} 22^{\prime} \mathrm{E}$, north of $42^{\circ} 43^{\prime} \mathrm{S}$). Currently available data indicate a single biological stock of western gemfish.		
Stock status against reference points and trend	Current	Target	Limit
	CPUE ${ }_{\text {current }}=0.9378$	$\mathrm{CPUE}_{\text {targ }}=1.1816$	$\mathrm{CPUE}_{\text {lim }}=0.4923$
	Limit reference 20\% of unfished biomass. Target reference 48% of unfished biomass. An integrated assessment model and CPUE analysis were used to estimate depletion and changes in catch rate. Both analyses identified deficiencies in the data which prevented precise estimates of stock status.		
ABARES most recent assessment (2017)	Biomass Not overfished	Fishing Mortality Not subject to overfishing	
GVP Figures (2016-17 season)	GVP $\$ 0.19$ million	\% Fishery GVP0.41%	
Is a MYTAC in place this season?	Yes. 2019-20 is the final year of the MYTAC.	Have breakout rules been triggered?	N/A. Observed standardized CPUE or FIS (when run) falls outside the 95% confidence intervals projected from the assessment.

Assessment Summary	
Tier Level	Tier 1
Stock indicator trends	The RAG considered a weight of evidence approach using Tier 1 and Tier 4 assessments as well as catch history. These indicated that there was a low risk of the stock declining below the limit reference point.
Key model technical assumptions/ parameters	In relation to the Tier 4 assessment which includes discards, the RAG noted the key assumption was that no shots of western gemfish were completely discarded. If some shots were completely discarded, the Tier 4 (no discards) assessment will be biased high. If discards are not included in the Tier 4 assessment, then it will be biased low. As such, the actual CPUE will be bounded by the Tier 4 discard CPUE and Tier 4 no discards CPUE assessments.
Significant changes to data inputs	The Tier 1 stock synthesis assessment model was updated (to SSv24z). In the previous Tier 1 assessment, decisions regarding model structure and tuning were based on the views of the GABRAG and standard procedures employed in Tier 1 assessments in the SESSF. In the current Tier 1 assessment the tuning and balancing was determined from the software.
RAG Comments on data	The RAG noted that limited data availability restricted its ability to assess the stock. In particular: - There is a paucity of length frequency data for the GAB and more recently (since 2006) for the CTS. - There has been no biological data collected specifically for western gemfish and the assessment relies on characteristics from eastern gemfish. - There is a need to better understand the effect of high levels of discarding on CPUE. The RAG recommended that future data collection for western gemfish be considered by AFMA, the RAG, GABIA, SETFIA, recognising the current and likely future economic contribution of the species.
RAG Comments on assessment	The RAG considered a Tier 1 assessment, a Tier 4 assessment (no discards) and a Tier 4 assessment (discards). These analyses identified deficiencies in the data which prevented precise estimates of stock status being made. There were insufficient data to provide a reliable understanding of productivity of western gemfish in the GAB. Accordingly, the RAG based its advice on the CTS component of the Tier 1 in the context of the outcomes of the three assessments and current catches relative to TAC. The RAG noted that market restrictions were limiting the landed catch of western gemfish. The RAG noted discards were high compared to landed catch and recommended AFMA engage with industry associations to develop approaches to reduce discards.

Projected Biomass

RAG Recommendations			
Recommended Biological Catch (2019/20)	200 t	Undercatch: Overcatch: Discount Factor:	$\begin{aligned} & 10 \% \\ & 10 \% \\ & 0 \% \end{aligned}$
Is a MYTAC recommended for future seasons?	Yes. 3 year: 200 t (RBC for Zones 40 and 50 only) The RAG noted there were significant uncertainties with the assessments reflecting limited data availability. The RAG recommended a multi-year RBC to allow targeted data collection.		
Probability of RBC (or other levels of catch) causing a decline below limit reference under proposed management Species that follow a HS rule that has been MSE tested will have a "very unlikely" score in this section (i.e. $P<10 \%$).	The RAG considered a Tier 1 assessment, Tier 4 assessment, and catch history in a weight of evidence approach to recommend an RBC. These indicated that there was a low risk of the stock declining below the limit reference point. Over the last five years catch and discards have remained below the RBC. Alternative Catch Scenarios $=N / A$		
Research Catch Allowance Included/Addition to TAC	N/A		
Implications for companion species / TEPs / multi-species fisheries	N/A		

Catch and TAC						
Assessment Year	2013	2014	2015	2016	2017	2018
Tier / MYTAC	Tier 1 (Tier 4 used to set CTS TAC)	$2^{\text {nd }}$ Year of 3-year MYTAC	$3^{\text {rd }}$ year of 3-year MYTAC	Tier 1/4	$2^{\text {nd }}$ year of 3-year MYTAC	$3^{\text {rd }}$ year of 3-year MYTAC
Stock Status	Tier 1-74\% Tier 4 - CPUE between the target and limit	Not assessed	$\begin{gathered} \text { Not } \\ \text { assessed } \end{gathered}$	Tier 1-43\% Tier 4 (CTS) Above the limit (no discards) and above the target (discards)	$\begin{gathered} \text { Not } \\ \text { assessed } \end{gathered}$	Not assessed

SESSF Season	$2014 / 15$	$2015 / 16$	$2016 / 17$	$2017 / 18$	2018/19	2019/20
RBC (t)	676 (T1) $346(T 4)$	247 (T4)	247 (T4)	$200(T 1)$ $139(T 4)$ $423(T 4$ discards)	200	200
Agreed TAC	199	183	247	200	200	200
TAC after Unders/Overs	217	200	261	223	218	
\% TAC caught	33%	41%	28%	35%		

Catch Trends

13 Gummy Shark (Mustelus antarcticus)

Fisheries Research \& Development Corporation (2012)

Tier 1: Last assessed by SharkRAG in 2016

	Summary
Stock Structure	Gummy shark is endemic to southern Australia. It is considered a single genetic stock across the SESSF extending from Bunbury in Western Australia to Jervis Bay in NSW. The single genetic stock is assessed as three separate sub-stocks within broad regions on the continental shelf of Bass Strait, Tasmania and South Australia...
Stock status against reference points and trend	Limit reference point is 20 per cent of unfished biomass (pup production is used as a proxy for breeding biomass) Target reference point is 48 per cent of unfished biomass (pup production is used as a proxy for breeding biomass) The 2016 assessment estimates that each of the three sub-stocks are above the target reference point.
	 Figure 1. Catch tends for gummy shark (RBC and total catch are calendar year : TAC and commonwealth catch are fishing season

ABARES most recent assessment (2017)	Biomass Not overfished		Fishing Mortality Not subject to overfishing	
GVP Figures (2016-17 season)	GVP $\$ 17.93$ million	\% Fishery GVP 21.87%		
Is a MYTAC in place this season?	Yes	Have breakout rules been triggered?	No	

$\quad \begin{array}{l}\text { Assessment Summary }\end{array}$	
Tier Level	Level 1
Stock indicator trends	$\begin{array}{l}\text { All three assessment stocks remain above target, with no evidence that } \\ \text { stocks were ever below the management target. }\end{array}$
Key model technical	
assumptions/	
parameters	$\begin{array}{l}\text { The model uses three management regions which are assessed } \\ \text { simultaneously. }\end{array}$
Differing availability to gear by age is incorporated into model reflecting	
the varying ability to target gummy shark. Although this approach	
improves fits to data, for the next gummy shark assessment, SharkRAG	
agreed to investigate estimating selectivity separately for each region and	
allowing it to be a more flexible form. This may allow the differing	
availability function to be removed from the assessment.	

	SharkRAG provided advice to consider delaying the assessment to at least 2020. This recommendation will be considered in SESSFRAG in February 2019. RAG Comments on assessment
Previously the state allocations agreed under the shark memorandum of understanding with Southern Australia, Victoria and Tasmania have been deducted from the RBC. However in 2018 SharkRAG recommended deducting the weighted average state catch from the RBC, as is the case for other SESSF species. The AFMA commission will consider this amendment to the SESSF harvest strategy Framework for the 2019-20 season and the AFMA TAC recommendation is made on that basis.	
Projected Biomass (including confidence intervals)	

| RAG Recommendations | | |
| :--- | :--- | :--- | :--- |
| Recommended Biological Catch
 $\mathbf{(2 0 1 9 / 2 0)}$ | 1785 t | Undercatch: 10% |
| Is a MYTAC recommended for
 future seasons? | Yes, AFMA management recommend a TAC of 175 t for the | |
| Indicate whether the multi-year
 recommendation is a RBC (e.g. based on
 Tier 1 model output) or TAC (e.g. a
 rollover of catch) | 2019-20 fishing year, the third year of a 3-year MYTAC. | |

Catch and TAC							
Assessment Year	2012	2013	2014	2015	2016	2017	
Tier / MYTAC	Rollover	Tier 1	MYTAC	MYTAC	Tier 1		
Stock Status	>BTARG	>BTARG	>BTARG	>BTARG	>BTARG		

SESSF Season	$2013 / 1$	$2014 / 15$	$2015 / 16$	$2016 / 17$	$2017 / 18$	$2018 / 19$
RBC (retained)	1836	2010	2010	2010	1961	
Agreed TAC	1836	1836	1836	1836	1774	
TAC after unders/overs	1964	1986	1978	1935	1916	
\% TAC caught	77%	77%	91%	87%	91%	

Catch Trends

Figure 2. Time trajectories of depletion (pup production relative to unfished pup production) (left panels). Recommended biological catch (centre panels0 and recommended biological a catch by gear type for projections based on Model 5D (the reference case model)

14 Jackass Morwong (Nemadactylus macropterus)

Common Names: Deep sea perch, deepsea perch, jackass fish, morwong, mowi, mowie, sea bream, silver perch, squeeker perch, tarakihi, terakihi.

Tier 1: last assessed by SERAG in 2018.

Summary			
Stock Structure	For assessment purposes it is assumed there are separate stocks of jackass morwong in the eastern and western zones.		
	Current	Target	Limit
	E: 35\% (1988 biomass) W: 68\%Bo	48\% B0	20\% Bo
Stock status against reference points and trend	East In 2011 a productivity shift was accepted for eastern jackass morwong, with lower productivity assumed from 1988 onwards. As a result, target and reference points were recalculated relative to the post productivity shift "virgin biomass", rather than the 1915 "virgin biomass". The limit reference point is 20 per cent of the 1988 equilibrium spawning biomass. The target reference point is 48 per cent of the 1988 equilibrium spawning biomass. Stock status at start of 2019: 35\% of 1988 equilibrium spawning biomass compared to the last assessment which gave 37% at the start of 2016. West The limit reference point is 20 per cent of the unfished biomass. The target reference point is 48 per cent of the unfished biomass. Stock status at the start of 2019: 68 per cent of B_{0} compared to the last assessment which gave $69 \% B_{0}$ at the start of 2016.		
ABARES most recent assessment (2017)	Biomass Not overfished	Fishing Mortality Not subject to overfishing	
GVP Figures (2016-17 season)	GVP \$0.47 million		

Is a MYTAC in place this season?	Yes.	Have breakout rules been triggered?	N/A for 2018

Assessment Summary	
Tier Level	Tier 1
Stock indicator trends	East The estimated 2019 biomass is 35% of 1988 virgin biomass which is slightly lower than the 2015 estimated biomass of 37%. CPUE has been decreasing since 2008 although there has been a slight increase in the last two years for eastern trawl, but not for Tasmanian trawl. West The assessment suggests the biomass was below the target reference point between 2006 and 2014 and has increased to an estimated 2019 biomass of $68 \% B_{0}$. This is slightly lower than the 2015 estimated biomass of $69 \% B_{0}$. CPUE is increasing but the fit is poor and there are some questions about the quality of the CPUE data.
Key model technical assumptions/ parameters	West Single stock in zones 40 and 50 Single sex model One fleet: trawl Selectivity estimated for this fleet Discard fraction is estimated for trawl fleet Natural mortality fixed at 0.15 (agreed by RAG) Recruitment estimated 1989 to 2011 East Single stock in zones 10, 20 and 30 Single sex model Six fleets: - eastern trawl: zones 10 and 20 (1986-2017) - Danish seine (1986-2017) - Tasmanian trawl: zone 30 (1986-2017) - steam trawl (1915-1961) - early Danish seine (1929-1967) - Mixed (DS + trawl) (1968-1985) Selectivity estimated for all fleets and retention for recent trawl fleets Discard fraction not estimated for Danish seine fleet (discards added to catch) Natural mortality fixed at 0.15 (agreed by RAG) Recruitment estimated 1945 to 2012
Changes to model structure/assumptions	West \& East Same assumptions as 2015 assessment except: Discard rates included and retention estimated (change only for west).
Significant changes to data inputs	N/A

RAG Comments on data	Poor data quality and quantity continues to be an issue, particularly in the west.
RAG Comments on assessment	West The last assessment in 2015 (Tuck et al, 2015) estimated a 2016 spawning stock biomass of $69 \% \mathrm{~B}_{0}$. The 2018 base case estimates a 2019 spawning stock biomass of $68 \% \mathrm{~B}_{0}$. The 2015 assessment did not estimate the biomass series to have fallen below the target reference point. The 2018 assessment suggests the biomass was below the target between 2006 and 2014. This was largely driven by updates to software and tuning procedures, but was also influenced by revisions to historical data on discard rates and additional new data. The last 5 recruitments are estimated to be above average. The RAG recommended including the FIS length frequencies in the base case for the next assessment. Fits to the FIS abundance are poor. It was noted that western jackass morwong are caught from February to April. The results should be treated with considerable caution due to the poor quality of the data. East The last assessment in 2015 (Tuck et al, 2015) estimated a 2016 spawning stock biomass of 37% of 1988 virgin biomass. The 2018 base case estimates a 2019 spawning stock biomass of 35% of 1988 virgin biomass. Exploration of model sensitivity showed variation in spawning biomass across all sensitivities ranging from 18% to 52% of $S S B_{0}$ with greatest sensitivity to natural mortality. Excluding the sensitivity to natural mortality, the other sensitivities showed a much narrower range of affect, from 29% to 40% of SSB. Fits to Eastern trawl CPUE and Tasmanian trawl CPUE are remarkably good. FIS abundance index declines more than the model is able fit. Recruitment deviations indicate that the regime shift may not have been a step change (as currently modelled) and it would be worth investigating whether this is the most appropriate way to model changes in productivity. There may be some value in investigating different mehtods for implementing a regime shift. This would constitute a change to the model structure, which is not a standard sensitivity. 7 of the last 9 recruitment events are estimated to be below average, however the last 4 estimated recruitments are close to average. Industry noted they are seeing more small fish but not in large numbers.

RAG Recommendations					
Recommended Biological Catch (2019-20)	Year	RBCeast (t)	RBCwest (t)	Combined (t)	Undercatch: 10\% Overcatch: 10\% Discount Factor: N/A
	2019	261	235	496	
	2020	271	223	494	
	2021	280	211	491	
	2022	288	201	489	
	2023	296	192	488	
	3-Year	270	223	494	
	Longterm	356	158	514	

Is a MYTAC recommended for future seasons?	Yes West: 3-Year MYTAC using yearly RBCs or the 3-year average each year.
Indicate whether the multi-year recommendation is a RBC (e.g. based on Tier 1 model output) or TAC (e.g. a rollover of catch)	East: 3-Year MYTAC using yearly RBCs or the 3-year average each year. Combined: 3-Year MYTAC using yearly RBCs or the 3-year average each year.
Probability of RBC (or other levels of catch) causing a decline below limit reference under proposed management Species that follow a HS rule that has been MSE tested will have a "very unlikely" score in this section (i.e. P<10\%).	RBC recommendation = Very unlikely (<10\% chance) Alternative Catch Scenarios: N/A
Research Catch Allowance Included/Addition to TAC	N/A
Implications for companion species / TEPs / multi-species fisheries	N/A

Catch and TAC							
Assessment Year	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	
Tier / MYTAC	Tier 1	MYTAC	Tier 1	MYTAC	MYTAC	Tier 1	
Stock Status	E: 40\% W: 68\%	Not assessed	E:37\% W:69\%	Not assessed	Not assessed	E:35\% W:68\%	
SESSF Season	$2014 / 15$	$2015 / 16$	$2016 / 17$	$2017 / 18$	$2018 / 19$	$2019 / 20$	
RBC	692	624	563	551	543	496 (2019) 494 (3-year)	
Agreed TAC	568	598	474	513	505		
TAC after unders/overs	654	654	533	554	556		
\% TAC caught	20%	21%	40%	33%			

Catch Trends

Western

Eastern

15 John Dory (Zeus faber)

Common names: Doorkeeper's Fish, Keparu, Kuparu, St. Peter's Fish.

Tier 3 assessed by SERAG in 2017.

Summary				
Stock Structure	For management purposes, a single stock is assumed for the SESSF.			
Stock status against reference points and trend	Tier 3 species use estimates of fishing mortality (F) that will produce a spawning biomass at a given level as reference points. The Tier 3 target reference point recommended by the RAG 2017 for John Dory is the level of F that will produce a spawning biomass of 40% of unfished levels. The Tier 3 limit reference point for John Dory is the level of F that will produce a spawning biomass of 20% of unfished levels. Stock status: Currently F (0.036) is below the target (0.126) indicating that fishing mortality is at a level that would lead to spawning biomass being above target. Trend: Catches have been less than the allocated Total Allowable Catch (TAC), and fishing mortality rates have been below targets (i.e. no overfishing is occurring).			
ABARES most recent assessment (2017)	Biomass Not overfished	Fishing Mortality Not subject to overfishing		
GVP Figures (2016-17 season)	GVP \$0.72million	\% Fishery GVP1.6\%		
Is a MYTAC in place this season?	Yes. 2019-20 is the final year of the MYTAC.	Have breakout rules been triggered?		N/A.

Assessment Summary	
Tier Level	Tier 1
Stock indicator trends	The 2017 Tier 3 assessment indicates fishing mortality rates (0.036) below the target fishing mortality rate (0.126). Standardised CPUE is again below the Tier 4 limit reference point. Total catches have been well below the TAC ($<50 \%$ caught) for the previous five fishing seasons.
Key model technical assumptions/ parameters	Yield per recruit (YpR) analyses are performed using the assumed biological parameter values shown in Table 1. The YpR analysis gives the fishing mortality rates that would hold the population (at equilibrium) at specified depletions (i.e. $20 \%, 40 \%$ and 48%). Table 1. Population parameters used for yield analysis: natural mortality (M), steepness (h), growth parameters (L_{∞}, k, t_{0}), length-weight relationship (a, b), gear selectivity $\left(l_{25}, l_{50}\right)$, length at first maturity ($l_{\text {mat }}$), maximum age for plus group ($a_{\max }$), maximum age for inclusion in catch curve ($C C_{a m a x}$). The yield per recruit calculations are changed partially from those presented in Thomson (2014) because the model has been refined to fully comply with the method for calculating $\mathrm{F}_{\text {msy }}$ in Klaer (2006). The previous calculations multiplied female SSB times R, without accounting for the equilibrium nature of the calculation.
Significant changes to data inputs	New age data for John Dory from 2010-2016
RAG Comments on data	Prioritise otolith collection on trawl vessels
RAG Comments on assessment	The RAG noted that John Dory are not a target species in the fishery and substantially under-caught during the current MYTAC period. The RAG reaffirmed its previous recommendation that an MSY target (FSPR40) be applied to John Dory. The RAG considered the 2017 Tier 3 assessment would be suitable for setting a three year MYTAC. However noted issues with Tier 3 assessment methodology, alternative needed, RAG support for a Tier 4 analysis for consideration at first SERAG meeting 2018. The RAG recommended that although the 5\% discount factor had not previously been applied, it would now be applied given SESSFRAG advice that stability in CPUE was no longer a reason to not apply the discount factor.

Projected Biomass	

RAG Recommendations		
Recommended Biological Catch $(2019 / 20)$	485 t (First year of a 3-year MYTAC)	Undercatch: 10% Overcatch: 10% Discount Factor: 5% (Discount factor based on SESSFRAG advice that a stable CPUE was not an appropriate reason to not apply discount factors, as was previously the case.)
Is a MYTAC recommended for future seasons?	Yes. 3-year RBC $=485 \mathrm{t}$	
Probability of RBC (or other levels of catch) causing a decline below limit reference under proposed management Species that follow a HS rule that has been MSE tested will have a "very unlikely" score in this section (i.e. $P<10 \%$).	Very unlikely (P < 10\%) Alternative Catch Scenarios $=N / A$	
Research Catch Allowance Included/Addition to TAC	N/A	
Implications for companion species / TEPs / multi-species fisheries	N/A	

Catch and TAC						
Assessment Year	2013	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$
Tier / MYTAC	Tier 3	Tier 3	Not assessed	Not assessed	Tier 3	Not assessed
Stock	Fishing mortality less than target	Fishing mortality less than target	Not assessed	Not assessed	Fishing mortality less than target	Not assessed
SESSF	2014/15	$\mathbf{2 0 1 5 / 1 6}$	$\mathbf{2 0 1 6 / 1 7}$	$\mathbf{2 0 1 7 / 1 8}$	$\mathbf{2 0 1 8 / 1 9}$	$\mathbf{2 0 1 9 / 2 0}$
Season	MYC (t)	203	203	203	485	Not assessed

Agreed TAC	221	169	167	175	Not assessed	
TAC after Unders/Overs	243	189	181	191	Not assessed	
\% TAC caught	30%	46%	45%	43%		

Catch Trends

16 Mirror Dory (Zenopsis nebulosus)

 AthbubonNonconeridil

Tier 4: last assessed by SERAG in 2018.

Summary				
Stock Structure	An eastern and western stock is currently assumed for assessment purposes. However mirror dory is managed under a global TAC.			
Stock status against reference points and trend	Tier 4 assessment uses CPUE targets as a proxy for biomass targets. The Tier 4 target reference point is the proxy level of CPUE assumed to produce a target biomass consistent with the harvest strategy policy, and avoid the limit reference point. East Standardised CPUE has been cyclical since a peak in 1990 and has recently declined to between the limit and target reference point, with a small increase from 2016 to 2017.			
	Parameter	Value	Parameter	Value
	Reference Years	1986-1995	Scaling	0.3723
	CE_Targ	1.1408	Last Year's TAC	235
	CE_Limit	0.4753	$\mathrm{C}_{\text {targ }}$	377.051
	CE_Recent	0.723	RBC	140.378
	Wt_Discard	7.086		
	West Standardised CPUE has been cyclical since the 1990s, though not as high and low as in the east. It is currently between the limit and target reference point.			
	Parameter	Value	Parameter	Value
	Reference Years	1996-1995	Scaling	0.7114
	CE_Targ	0.9841	Last Year's TAC	235
	CE_Limit	0.41	$\mathrm{C}_{\text {targ }}$	133.2
	CE_Recent	0.8184	RBC	94.76
	Wt_Discard	0		

ABARES most recent assessment (2017)	Biomass Not overfished	Fishing Mortality Not subject to overfishing	
GVP Figures (2016-17 season)	GVP $\$ 0.99$ million	\% Fishery GVP2.1\%	
Is a MYTAC in place this season?	No.	Have breakout rules been triggered?	N/A

Assessment Summary	
Tier Level	Tier 4
Stock indicator trends	East Standardised CPUE has been cyclical since a peak in 1990 and has recently declined to between the limit and target reference point, with a small increase from 2016 to 2017. West Standardised CPUE has been cyclical since the 1990s, though not as high and low as in the east. It is currently between the limit and target reference point.
Key model technical assumptions/ parameters	Standard Tier 4 assumptions apply.
Changes to model structure/assumptions	N/A
Significant changes to data inputs	CDR data only available from 1998. Catches have been converted from processed weights to whole weights resulting in small increases since 2008. There was a decrease in 2012 but this is not in any of the reference periods so does not affect the Tier 4. East New methodology for discard estimation has had significant impacts (increase) on discard rates from early 2000s. There will be additional changes in 2019 and until those changes are implemented and accepted by the RAG, the Tier 4 assessment is updated using the previous discard series and the Tier 4 is using an updated CPUE series to generate an RBC for 2019. West Given the issues with discard estimation, discards are not used in the western assessment, which is consistent with the previous Tier 4.
RAG Comments on data	Otolith collection targets were removed from the data plan for mirror dory as it is a Tier 4 species and is unlikely to move to an assessment that requires age data.

RAG Comments on assessment

This Tier 4 has been applied consistently over time and there were no additional comments.

RAG Recommendations		
Recommended Biological Catch (2019-20)	West: 95 t East: 140 t Total: 235 t	Undercatch: 10\% Overcatch: 10\% Discount Factor: 15\%
Is a MYTAC recommended for future seasons? Indicate whether the multi-year recommendation is a RBC (e.g. based on Tier 1 model output) or TAC (e.g. a rollover of catch)	No.	
Probability of RBC (or other levels of catch) causing a decline below limit reference under proposed management Species that follow a HS rule that has been MSE tested will have a "very unlikely" score in this section (i.e. $P<10 \%$).	Tier 4 assessments do not assess the probability of being below the limit reference point. If the standardised CPUE series is a reasonable index of relative abundance catches up to the RBC are considered to have a very low probability of causing the stock to decline to below the limit reference point. Alternative Catch Scenarios: N/A	
Research Catch Allowance Included/Addition to TAC	0 t	
Implications for companion species / TEPs / multi-species fisheries	Restrictions on pink ling catches have likely driven the decrease in discarding for mirror dory east.	

Catch and TAC						
Assessment Year	2013	2014	2015	2016	2017	2018
Tier / MYTAC	Tier 4					
Stock Status	CPUE higher than target	CPUE east above target, west between target and limit	CPUE east above target, west between target and limit	CPUE east/west between limit and target	CPUE east/west between limit and target	CPUE east/west between limit and target
SESSF Season	2014/15	2015/16	2016/17	2017/18	2018/19	2019/20
RBC	680	684	East 362 West 129	$\begin{aligned} & \text { East } 198 \\ & \text { West } 104 \end{aligned}$	East 199 West 123	East 140 West 95
Agreed TAC	808	437	325	235	253	

TAC after unders/overs	968	514	362	262	275	
\% TAC caught	23%	49%	76%	84%		

Catch Trends

Standardised catch rates

Standardised catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

East:

West:

Catch trends

(RBC and total catch are calendar year for east and west combined; TAC and Commonwealth catch are fishing season)

17 Offshore Ocean Perch (Helicolenus barathri)

Common names: Ocean Perch, Bigeye Ocean Perch, Coral Cod.
Tier 4 assessed by SERAG in 2017.

Summary				
Stock Structure	A single TAC is set for the two distinct species: the inshore species (H. percoides), and the offshore species (H. barathri), however both are assessed separately.			
Stock status against reference points and trend	Tier 4 species use CPUE tar The Tier 4 Target reference a spawning biomass of 40% The limit reference point is Stock status: In the 2017 Ti standardized CPUE proxy for Trend: CPUE has been relative been gradually declining to period.	ts as a proxy oint is the le of unfished 0\% of the ta 4 assessme biomass is a ely stable sin point below	of biomass ta vel of CPUE as vels. get reference Parameter Scaling Last Yr TAC Ctarg RBC the recent bove the targ ce the mid 19 that of the Ti	gets. umed to produce point. erage reference point. 0 's but catch has 4 reference
ABARES most recent assessment (2017)	Biomass Not overfished	Fishing Mortality Uncertain		
GVP Figures (2016-17 season)	GVP $\$ 0.75$ million	\% Fishery GVP1.8\%		
Is a MYTAC in place this season?	No.	Have breakout rules been triggered?		N/A.

Assessment Summary	
Tier Level	Tier 1

Stock indicator trends	CPUE has been relatively stable since mid-90s Catches have decreased over past 4 years
Key model technical assumptions/ parameters	The target reference point is 40\% of unfished biomass. The 2017 Tier 4 uses zones 10 and 20 only, as per previous assessments. The assessment includes discards.
Significant changes to data inputs	N/A
RAG Comments on data	N/A
RAG Comments on	
assessment	The RAG determined a 3-year RBC of 345 t suitable. The RAG agreed Ocean Perch (inshore and offshore) are an obvious candidate for separate TACs; however it was noted that it would not be easy to administer as the species are separated by depth rather than by geographical distribution. Noted that most of the catch comes from zones 10 and 20.
Projected Biomass	Nath

RAG Recommendations			
Recommended Biological Catch (2019/20)	345	Undercatch: Overcatch: Discount Factor:	$\begin{aligned} & 10 \% \\ & 10 \% \\ & 15 \% \end{aligned}$
Is a MYTAC recommended for future seasons?	Yes. 3 ye		
Probability of RBC (or other levels of catch) causing a decline below limit reference under proposed management Species that follow a HS rule that has been MSE tested will have a "very unlikely" score in this section (i.e. $P<10 \%$).	$\begin{aligned} & \text { RBC } \\ & \text { Alte } \end{aligned}$		
Research Catch Allowance Included/Addition to TAC	0 t		

Implications for	
companion species /	N/A
TEPs / multi-species	
fisheries	

Catch and TAC						
Assessment Year	2013	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$
Tier / MYTAC	Tier 4	Not assessed	Not assessed	Not assessed	Tier 4	Not assessed
Stock						
Status	CPUE higher than target	Not assessed	Not assessed	Not assessed	CPUE above target	Not assessed
SESSF Season	$2014 / 15$	$2015 / 16$	$\mathbf{2 0 1 6 / 1 7}$	$2017 / 18$	$2018 / 19$	$\mathbf{2 0 1 9 / 2 0}$
RBC (t)	285	283	283	283	345	
Agreed TAC	195	166	190	190		
TAC after Unders/Overs	208	179	194	204		
\% TAC caught*	90%	95%	84%	28%		

Note: combined TAC for inshore and offshore ocean perch
Catch Trends
Offshore Ocean Perch standardized catch rates with the upper fine line representing the
target catch rate and the lower line the limit catch rate. Thickened lines represents the
reference period for catches, catch rates, and the recent average catch rate.

* Inshore and Offshore Ocean Perch are assessed separately, but managed under a single TAC and quota SFR.

18 Inshore Ocean Perch (Helicolenus percoides)

Common names: Ocean Perch, Bigeye Ocean Perch, Coral Cod.
Tier 4 assessed by SERAG in 2017.

Summary				
Stock Structure	A single TAC is set for the two distinct species: the inshore species (H. percoides), and the offshore species (H. barathri), however both are assessed separately.			
Stock status against reference points and trend	Tier 4 species use CPUE tar The Tier 4 Target reference a spawning biomass of 40% The limit reference point is spawning biomass of 48% o Stock status: In the 2017 Tie standardized CPUE proxy for point. Trend: CPUE has steadily in by variable but high discard	ts as a prox point is the le of unfished le 40% of the CP unfished lev 4 assessme biomass is a reased over rate estimate	of biomass vel of CPUE vels. UE assumed ls. Parameter Scaling Last Yr TAC Ctarg RBC t the recent bove the 40\% he past ten y s.	gets. umed to produce produce a verage arget reference rs, which is driven
ABARES most recent assessment (2017)	Biomass Not overfished	Fishing Mortality Uncertain		
GVP Figures (2016-17 season)	GVP \$0.75 million	\% Fishery GVP1.8\%		
Is a MYTAC in place this season?	No.	Have breakout rules been triggered?		N/A.

Assessment Summary	
Tier Level	Tier 4
Stock indicator trends	Large increase in standardised CPUE which is driven by high discard rate estimates.
Key model technical assumptions/ parameters	The assessment includes discards. The target reference point is 40 \% of unfished biomass. Changes: Implemented an upper limit of 8 to the Tier 4 multiplier (D/C+1).
Significant changes to data inputs	N/A
RAG Comments on data	N/A
RAG Comments on	
assessment	Discards are very high (>80\%) resulting in severe distortion of the RBC. RAG agreed that this species is a candidate for removing from the ocean perch basket and setting a catch trigger.
Projected Biomass	

RAG Recommendations			
Recommended Biological Catch (2018/19)	248	Undercatch: Overcatch: Discount Factor:	$\begin{aligned} & 10 \% \\ & 10 \% \\ & 15 \% \end{aligned}$
Is a MYTAC recommended for future seasons?	Yes. 3 ye		
Probability of RBC (or other levels of catch) causing a decline below limit reference under proposed management Species that follow a HS rule that has been MSE tested will have a "very unlikely" score in this section (i.e. $P<10 \%$).	$\begin{aligned} & \text { RBC } \\ & \text { Alte } \end{aligned}$		
Research Catch Allowance Included/Addition to TAC	0 t		

Implications for	
companion species /	N/A
TEPs / multi-species	
fisheries	

Catch and TAC						
Assessment Year	2013	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$
Tier / MYTAC	Tier 4	Not assessed	Not assessed	Not assessed	Tier 4	Not assessed
Stock						
Status	CPUE higher than target	Not assessed	Not assessed	Not assessed	CPUE higher than target	Not assessed
SESSF Season	$2014 / 15$	$\mathbf{2 0 1 5 / 1 6}$	$\mathbf{2 0 1 6 / 1 7}$	$\mathbf{2 0 1 7 / 1 8}$	$\mathbf{2 0 1 8 / 1 9}$	$\mathbf{2 0 1 9 / 2 0}$
RBC (t)	234	102	102	102	248	
Agreed TAC	195	166	190	190		
TAC after Unders/Overs	208	179	194	204		
\% TAC caught*	90%	95%	84%	$83 \% *$		

Note: combined TAC for inshore and offshore ocean perch
Cier 4 CPUE series - standardised catch rates

* Inshore and Offshore Ocean Perch are assessed separately, but managed under a single TAC and quota SFR.

19 Orange Roughy (Hoplostethus atlanticus) - Southern zone

ABARES (2012): Line Drawing - Rosalind Poole

Tier $\mathbf{2}$ in 2000, not assessed since. Last reviewed by SlopeRAG in 2015, species summary updated in 2015.

Summary		
Stock Structure	Based on the existing data and fishery dynamics multiple regional stocks of Orange Roughy are assumed and the fishery is managed and assessed as a number of discrete regional stocks. Recent genetic studies indicate little genetic diversity between all south east Australian stocks, however they may be demographically separate. The part of the southern zone catch that is caught on the Pedra Branca grounds is assumed to be part of the eastern stock and was assessed as part of the 2014 base case assessment.	
Stock status against reference points and trend	Limit reference point is 20 Target reference point is Stock status: unresolved in limit reference point. The that the stock was less th southern is managed und The component of the sou seamounts area is assesse due to the stock structure estimated the stock status biomass. Biomass trend: The 2004 observations of possible sp indicated that rebuilding eastern Orange Roughy st area. Catches are extremely low The current TAC poses no	ass. mass. but likely to be less than the ed assessment (2000) concluded e point. Orange Roughy y Rebuilding Strategy. at resides in the Pedra Branca stern zone stock assessment astern zone assessment in 2014 area to be 26% of unfished abundance indices and ns (from acoustic surveys) 2014 assessment of the hat rebuilding is occurring in that ing is unlikely to be occurring. k recovery.
ABARES most recent assessment (2017)	Biomass Overfished	Fishing Mortality Not subject to overfishing
GVP Figures (2016-17 season)	GVP 0.43 million	\% Fishery GVP 0.9%

Is a MYTAC in place this season?	No.
Have breakout rules been triggered?	N/A. If 90% of the MYTAC is caught this will trigger exploration of options for updating the assessments.

Assessment Summary	
Tier Level	Tier 2 in 2000, not assessed since.
Stock indicator trends	Due to incidental catch TAC with no targeted fishing, CPUE is not a reliable index of abundance. The 2014 eastern Orange Roughy assessment (which includes stock residing in the southern quota zone), indicates that the stock referenced by the assessment has rebuilt to 26% of unfished biomass.
Key model technical assumptions/ parameters	N/A
Changes to model structure/ assumptions	N/A
Significant changes to data inputs	N/A
RAG Comments on data	N/A
RAG Comments on assessment	The RAG has previously agreed that, despite the absence of an agreed assessment model, the data show there is little targeting or bycatch of Orange Roughy. As such the incidental catch TAC is applicable and does not impede recovery of the stock
Projected Biomass (including confidence intervals)	No biomass projection as there is no assessment for the southern zone outside of the Pedra Branca area. For a biomass projection for the eastern Orange Roughy stock (that includes the Pedra Branca area), see Orange Roughy Eastern Zone in this document.

RAG Recommendations		
Recommended Biological Catch (2014-15)	$0 t$ in the southern zone outside of the Pedra Branca area. No targeted fishing. 27 t inside the Pedra Branca area. Incidental catch TAC of 31 tonnes.	Undercatch: 0\% Overcatch: 0\% Discount Factor: 0\%
Is a MYTAC recommended for future seasons? Indicate whether the multi-year recommendation is a RBC (e.g. based on Tier 1 model output) or TAC (e.g. a rollover of catch)	Yes. SlopeRAG recommended a 3-year bycatch TAC providing that the MYTAC does not restrict future work on the stock.	
Probability of RBC (or other levels of catch) causing a decline below limit reference under proposed management Species that follow a HS rule that has been MSE tested will have a "very unlikely" score in this section (i.e. $P<10 \%$).	RBC recommendation $=N / A$ Alternative Catch Scenarios: Not assessed.	
Research Catch Allowance Included/Addition to TAC	0 t	
Implications for companion species / TEPs / multi-species fisheries	Nil.	

Catch and TAC								
Assessment Year	2011	2012	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$
Tier / MYTAC	Not assessed							
Stock Status	Not assessed							
SESSF Season	$2012 / 13$	$2013 / 14$	$2014 / 15$	$2015 / 16$	$2016 / 17$	$2017 / 18$	$2018 / 19$	$2019 / 20$
RBC (t)	0	0	0	$0 *$	$0 *$	$0 *$	$0 *$	
Agreed TAC (t)	35	35	35	66	66	66		
TAC (t) after unders/overs	35	35	35	66	66	66		
\% TAC caught	52%	62%	50%	87%	65%	81%		

* Consideration is being given to apportioning the RBC arising from the Eastern Zone Stock Assessment (Upston and Punt 2014) which includes the Pedra Branca in the Southern Zone. This will be presented to SEMAC for consideration at the 2015 TACsetting meeting.

20 Orange Roughy (Hoplostethus atlanticus) - Eastern zone

ABARES (2012): Line Drawing - Rosalind Poole

Tier 1: last assessed by SERAG in 2018.

Summary

Summary		
Stock Structure	Based on the existing data and fishery dynamics, multiple regional stocks of Orange Roughy are assumed and the fishery is managed and assessed as a number of discrete regional stocks. Recent genetic studies indicate little genetic diversity between all SE Australian stocks. However, they may be demographically separate. For assessment purposes the eastern stock (primarily St Helens Hill and St Patricks Head) is assumed to also include catches taken from the Pedra Branca area in the southern zone.	
Stock status against reference points and trend	Limit reference point is 20% of unfished biomass. Target reference point is 48% of unfished biomass. Stock status: The most recent assessment (2017) indicates that the stock is above the limit reference point, and is estimated to be at 33% of unfished biomass for the beginning of 2018. Orange Roughy eastern is managed under the Orange Roughy Rebuilding Strategy 2014. Biomass trend. 2017 assessment indicates the biomass is continuing to increase. The acoustic survey abundance estimates (2013 recalibrated and 2016) support the model predicted spawning biomass estimates.	
ABARES most recent assessment (2017)	Biomass Not overfished	Fishing Mortality Not subject to overfishing
GVP Figures (2016-17 season)	GVP $\$ 1.64$ million	\% Fishery GVP 3.5\%
Is a MYTAC in place this season?	Yes. 465 t, 3-year MYTAC	
Have breakout rules been triggered?		

Assessment Summary	
Tier Level	Tier 1
Stock indicator trends	Acoustic survey results undertaken in 1999, 2006, 2010, 2012, 2013 and 2016 at St. Helen's Hill and St. Patrick's Head indicate an increasing population.
Key model technical assumptions/ parameters	The model assumptions include the single stock structure hypothesis; eastern zone spawning roughy and Pedra Branca non-spawning roughy. The biomass is assumed to have been unfished at the start of 1979. Recruitment is assumed to be distributed about a Beverton-Holt stock recruitment relationship. Plus group age was set at 80 years. Recruitment steepness and rate of M - refer to base case and alternate case below. Recruitment variability -0.70 Length at maturity -35.8 cm VB growth co-efficient -0.06
Changes to model structure/ assumptions	Assumed single stock structure encompassing eastern zone (Orange Roughy zone 10) and the eastern side of the southern zone (Orange Roughy zone 21, Pedra Branca).
Significant changes to data inputs	See above
RAG Comments on data	The Tier 1 model inputs include: new ageing error matrix, new age data for 2012 and 2016, new acoustic survey index from 2016, revised acoustic survey estimate for 2013, catches from eastern zone and Pedra Branca, male and female age composition and abundance indices from acoustic sampling, and an increase in the variability that the recruitment deviates could express. 2017 assessment assumes a single stock that includes eastern zone plus Pedra Branca. Constants of M and Steepness: noted the wide range of M estimates that have been used in Orange Roughy assessments in other jurisdictions. Previous eastern Orange Roughy assessment used 0.04. Preliminary Likelihood analysis presented to the RAG indicated most likely values of M and h may be lower than used in the base case. Additional work is required to ensure the robustness of the likelihood profile analysis.

RAG Comments on assessment	Future assessments should consider the implications of temporal changes in distribution of fishing effort. This will have implications for data collection and data plan. Future assessment to consider mechanism for considering changes in fecundity. Even though the model fits to the available data were reasonable the model remains uncertain with relatively wide confidence intervals around the median stock estimates. Despite uncertainties in input parameters the model was stable. The RAG noted that the acoustic surveys provide key data for the assessment and it is important that they are continued every 2-3 years. The RAG noted the recent temporal changes in fishing effort and the effect this has on the age and length data. There are 2 scenarios: the base case and another scenario with alternate M and h. The RAG noted that based on a forecasts and cross-catch risk assessment, the spawning stock is not expected to decline before the next assessment under either scenario. The RAG recognise that there are potential alternative values to M and h and that further analysis of likelihood profiles is needed. Alternative approaches to likelihood profiles e.g. gridding of different parameters should be investigated prior to the next assessment.
	A comparison of the female spawning biomass trajectories from the initial base case and the alternate scenario over the years 1993-2017, along with the asymptotic 95% confidence intervals (the dashed lines). The intervals for the Initial base case were from $25.6 \%-41.9 \% B_{0}$ and for alternative scenario were from $21.9 \%-37.7 \%$ Bo.
Projected Biomass (including confidence intervals)	

RAG Recommendations					
Recommended Biological Catch (201819)	In 2017, the RAG recommended a 3-year MYRBC under the HCR 20:35:48. An initial likelihood profile analysis indicated that key productivity parameters may be lower than used in the initial base case. Alternative case varying M and h was considered as a sensitivity. RAG recommends that the RBC is determined based on the initial base case and consideration to the sensitivity analysis noting that the large change limiting rule will apply in setting the TAC. In March 2018, the AFMA Commission accepted this advice for one year but requested further advice from SERAG regarding RBCs for the second and third years of the MYTAC. Details of the subsequent risk assessment are detailed in 'catch trends' below. There is little additional risk to future depletion associated with the industry proposed catches compared to the harvest control rule catches associated with the high and low productivity scenarios. SERAG maintained its previous advice that the RBCs be based on the initial base-case, noting that there is little additional risk to depletion in the short term even under the lower productivity scenario.				Undercatch: 100% Overcatch: 10% Discount Factor: 0%
Is a MYTAC recommended for future seasons? Indicate whether the multi-year recommendation is a RBC (e.g. based on Tier 1 model output) or TAC (e.g. a rollover of catch)	Yes. Continuation of the 3 -Year MYTAC with the following RBC each year. The RAG noted there was little risk in accepting industry's proposal to limt catches in the $2^{\text {nd }}$ and $3^{\text {rd }}$ year of the MYTAC to 900 t each year.				

Probability of RBC (or other levels of catch) causing a decline below limit reference under proposed management	RBC recommendation = Very low Alternative Catch Scenarios:
Species that follow a HS rule that has been MSE tested will have a "very unlikely" score in this section (i.e. P<10\%).	Deterministic projections indicate that the stock is not predicted to decline below the limit reference under any of the 6 scenarios presented under 'catch trends'.
Research Catch Allowance Inc/uded/Addition to TAC	0 t
Implications for companion species / TEPs / multi-species fisheries	Nil.

Catch and TAC							
Assessment Year	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	
Tier / MYTAC	Not assessed	Tier 1	Not assessed	Not assessed	Tier 1	MYTAC	
Stock Status	Not assessed	>BLıм	Not assessed	Not assessed	>Bடıм		
SESSF Season	$2014 / 15$	$2015 / 16$	$2016 / 17$	$2017 / 18$	$2018 / 19$	$2019 / 20$	
RBC (t)	0	465	465	465	1345	900	
Agreed TAC (t)	25	465	465	465	698		
TAC (t) after unders/overs	25	465	494	584			
\% TAC caught	$\mathbf{1 2 \%}$	$\mathbf{9 4 \%}$	$\mathbf{7 3 \%}$	$\mathbf{5 1 \%}$			

Catch Trends

Forecasts and Cross-catch Risk Assessment (Dec 2017):

The predicted female spawning biomass of Orange Roughy East projected for 55 years for the initial base-case ($M=0.04 \mathrm{~h}=0.75$; black line) and the alternate base-case ($M=0.036 \mathrm{~h}=.60$; red line), using the standard 20:35:48 HCR.

In addition, there is a projection to 2040 (24 years) of the initial base-case using the predicted catches from the alternate base-case (blue line) and of the alternate base-case using the predicted catches from the initial base-case (green line) (From Orange Roughy Tier 1 assessment report, Haddon 2017).

Forecasts and Cross-catch Risk Assessment (Nov 2018):

At it's September 2018 meeting, SERAG requested a cross-catch risk assessment for eastern orange roughy based upon the model structure of the 2017 assessment. There were six scenarios that differed only by the assumed values of natural mortality and the projected catches.

Scenarios		Model	Low productivity
		Base-case $(\mathrm{M}=0.04)$	$(\mathrm{M}=0.032)$
Catch	Base-case HCR	04 w 04	032 w 04
	Low productivity HCR	04 w 032	032 w 032
	Industry proposal	04 wlnd	032 wlnd

The model with the lower productivity ($\mathrm{M}=0.032$) and with highest catches had the lowest longterm biomass series in terms of annual tonnage of female spawning biomass. This series stabilised at approximately $30 \% \mathrm{~B}_{0}$. However, in the short-term there is still little difference in projected biomass between this scenario and those that use $\mathrm{M}=0.032$ with catches from the higher productivity scenarios.

There was very little difference between the projected biomass for the low ($\mathrm{M}=0.032$) and high $(\mathrm{M}=0.04)$ productivity scenarios with the industry proposed catches compared to the catches resulting from the harvest control rule. Noting this, the RAG saw little risk in accepting industry's proposal to limt catches in the $2^{\text {nd }}$ and $3^{\text {rd }}$ year of the MYTAC to 900 t each year.

Landed catch against TAC:

21 Orange Roughy (Hoplostethus atlanticus) - Western zone

ABARES (2012): Line Drawing - Rosalind Poole
Reviewed by SlopeRAG in 2015. Species summary updated in 2015.

Summary		
Stock Structure	Based on the existing data and fishery dynamics multiple regional stocks of orange roughy are assumed and the fishery is managed and assessed as a number of discrete regional stocks. Recent genetic studies indicate little genetic diversity between all South Eastern Australian stocks, however they may be demographically separate.	
Stock status against reference points and trend	Orange roughy western is managed under the Orange roughy Rebuilding Strategy. Limit reference point is 20% of unfished biomass. Target reference point is 48% of unfished biomass. Stock status and biomass trend: The most recent assessment of western stock was in 2002 and estimated a biomass <30\% of 1985 biomass. Stock status is unresolved in the western zone however considering that there has been minimal fishing in the western zone and that the eastern stock has rebuilt to a harvestable level it is not inconsistent to think that similar rebuilding may have occurred in the western zone.	
ABARES most recent assessment (2017)	Biomass Overfished	Fishing Mortality Not subject to overfishing
GVP Figures (2016-17 season)	GVP $\$ 0.11$ million	\% Fishery GVP 0.2%
Is a MYTAC in place this season?	Yes.	
Have breakout rules been triggered?		

$\left.$| Assessment Summary | |
| :--- | :--- |
| Tier Level | Tier 2 in 2002, not assessed since. |
| Stock indicator
 trends | Due to incidental catch TAC with no targeted fishing, CPUE is not a reliable
 index of abundance. |
| Key model
 technical
 assumptions/
 parameters | N/A |
| Changes to model
 structure/
 assumptions | N/A |
| Significant
 changes to data
 inputs | N/A |
| RAG Comments on
 data | N/A |
| N/A | |
| Projected Biomass
 (including
 confidence
 intervals) | The RAG has previously agreed that, despite the absence of an agreed
 assessment model, the data show there is little targeting or bycatch of
 Orange Roughy. As such the incidental catch TAC is applicable and does not
 impede recovery of the stock.
 Rearing in mind the rebuild of the eastern stock from a low biomass it could |
| be argued that the southern and western zones should have recovered | |
| somewhat. This is tempered by not knowing if recruitment processes and | |
| stock movement in the southern and western zones are similar or different | |
| to those in the eastern zone. | |
| It was pointed out that the eastern stock part of the southern stock had | |
| assessment | |\quad| Nebuilt to a certain degree and that the recovery will have to be watched for |
| :--- |
| at least a decade to monitor if previous high catches have any effect on |
| recruitment. |
| The RAG noted that the western zone continues to be on rebuilding as there is no assessment. |
| incidental TAC and the RAG found there was no additional information that |
| would provide a basis for the RAG to change its' previous TAC advice. The |
| RAG recommended that the western zone orange roughy MYTAC remains |
| unchanged. |
| The RAG supported undertaking an externally reviewed desktop study of how | \right\rvert\, | evidence of rebuilding should be collected, is there currently any |
| :--- |
| evidence/likelihood of rebuilding and identification of information gaps that |
| preclude a stock assessment of the southern and western orange roughy |
| stocks. |

RAG Recommendations		
Recommended Biological Catch (2018-19)	0 t . No targeted fishing. Incidental bycatch TAC of 60 t .	Undercatch: 0\% Overcatch: 0\% Discount Factor: 0\%
Is a MYTAC recommended for future seasons? Indicate whether the multi-year recommendation is a RBC (e.g. based on Tier 1 model output) or TAC (e.g. a rollover of catch)		
Probability of RBC (or other levels of catch) causing a decline below limit reference under proposed management Species that follow a HS rule that has been MSE tested will have a "very unlikely" score in this section (i.e. $P<10 \%$).	RBC recommendation $=\mathrm{N} / \mathrm{A}$ Alternative Catch Scenarios: Not assessed.	
Research Catch Allowance Included/Addition to TAC	0 t	
Implications for companion species / TEPs / multi-species fisheries	N/A	

Catch and TAC							
Assessment Year	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	
Tier / MYTAC	Not assessed						
Stock Status	Not assessed						
SESSF Season	$2014 / 15$	$2015 / 16$	$2016 / 17$	$2017 / 18$	$2018 / 19$	$2019 / 20$	
RBC (t)	0	0	0				
Agreed TAC (t)	60	60	60	60			

TAC (t) after unders/overs	60	60	60	60		
$\%$ TAC caught	48%	37%	73%	38%		

Catch Trends

RBC and total catch are calendar year; TAC and Commonwealth catch are fishing season.

22 Orange Roughy (Hoplostethus atlanticus) - Cascade

 Plateau

ABARES (2012): Line Drawing - Rosalind Poole

Tier 1 reviewed by SlopeRAG in 2013. Species summary updated in 2013.

Summary		
Stock Structure	The stock structure of Orange Roughy in the Australian Fishing Zone remains unresolved. Based on the existing data fishery dynamics multiple regional stocks of Orange Roughy are assumed. The Cascade Plateau, however, holds Orange Roughy with distinct morphometrics, parasite populations, size and age composition, and which also have a distinct spawning time from other adjacent stocks. For assessment and management purposes they are regarded as a separate stock.	
Stock status against reference points and trend	Limit reference point $=20 \%$ of unfished biomass Target reference point $=60 \%$ of unfished biomass Stock status: The last stock update of the stock assessment (2009) estimated the stock to be at 64\% of unfished biomass which is above the target reference point. Biomass trend: Catches have remained below the RBC for the past 5 years so the stock is expected to be rebuilding..	
ABARES most recent assessment (2017)	Biomass Not overfished	Fishing Mortality Not subject to overfishing
GVP Figures (2016-17 season)	$\begin{aligned} & \text { GVP } \\ & \$ 0.00 \end{aligned}$	\% Fishery GVP 0.46%
Is a MYTAC in place this season?	Yes.	
Have breakout rules been triggered?	N/A	

Assessment Summary	
Tier Level	Tier 1
Stock indicator trends	N/A. Low levels of fishing has resulted in insufficient data being available to update the assessment.
Key model technical assumptions/ parameters	N/A
Changes to model structure/ assumptions	N/A
Significant changes to data inputs	Low levels of fishing has resulted in insufficient data being available to update the assessment.
RAG Comments on data	Low levels of fishing has resulted in insufficient data being available to update the assessment.
The first quantitative stock assessment of the Cascade Plateau Orange Roughy population was produced in 2004 (Wayte, 2004). The 2004 assessment used catch records, biological data collected over the previous 6 years, and the 2003 acoustic biomass estimate. - The 2004 stock assessment estimated the Orange Roughy biomass at Cascade Plateau to be between 7,000 and 18,700 tand the long term sustainable catch to be 300-400 t. In 2006, the assessment was again updated, using the acoustic biomass estimate from the 2005 winter spawning aggregation which was about three times larger than previous estimates. The 2006 assessment estimated the stock to be about 20,000 t and the current biomass as 72- 73\% of the unfished biomass (B0) approximately 20\% higher than the target reference point and 12\% higher than the target under the Conservation Program. assessment In 2008 a DeepRAG member expressed concerns that the 2005 biomass estimate was biologically unfeasible. In 2009 the 2005 acoustic data were reanalyzed and as a result biomass estimates were downgraded. Using these data the assessment suggested that maintaining the TAC at 500t in 2010 would result in a depletion of 34\% at the start of 2011.	

	-There was low levels of fishing on the Cascade Plateau (<1\% of TAC caught) during 2011 and 2012.
-An update to the assessment was due for 2012 but this was deferred due to the lack of new data and a higher priority being assigned to other species. The RAG has noted that recent low levels of fishing catch and effort reduces the information available for updating the assessment and may make it difficult for it to provide useful guidance in the future. Until new data are obtained, and in particular a new survey is conducted, the RAG would not be in a position to update the assessment. Negligible levels of fishing over recent years constitute a low risk to stocks even if the TAC were to be taken over the next few years.	
Projected Biomass (including confidence intervals)	N/A

Catch and TAC								
Assessment Year	$\mathbf{2 0 1 1}$	$\mathbf{2 0 1 2}$	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	
Tier / MYTAC	Not assessed							
Stock Status	Not assessed							
SESSF Season	$2012 / 13$	$2013 / 14$	$2014 / 15$	$2015 / 16$	$2016 / 17$	$2017 / 18$	$2018 / 19$	
RBC (t)	N/A	N/A	N/A	N/A	N/A	N/A		
Agreed TAC (t)	500	500	500	500	500	500		
TAC (t) after unders/overs	543	550	550	550	550	550		
\% TAC caught	$\mathbf{1 \%}$	$\mathbf{0 \%}$						

RAG Recommendations		
Recommended Biological Catch (201819)	Due to low fishing effort and therefore little data, there was no update to previously calculated RBCs.	Undercatch: 10% Overcatch: 10% Discount Factor: 0%
Is a MYTAC recommended for future seasons? Indicate whether the multi-year recommendation is a RBC (e.g. based on Tier 1 model output) or TAC (e.g. a rollover of catch)	No.	
Probability of RBC (or other levels of catch) causing a decline below limit reference under proposed management Species that follow a HS rule that has been MSE tested will have a "very unlikely" score in this section (i.e. $P<10 \%$).	RBC recommendation = N/A Alternative Catch Scenarios: Not ass	
Research Catch Allowance Included/Addition to TAC	0 t	
Implications for companion species / TEPs / multi-species fisheries	N/A	

Catch Trends

23 Oreo Smooth (Pseudocyttus maculatus) - Cascade

Tier 4 assessed by SlopeRAG in 2009, reviewed in 2015.

Assessment Summary	
Tier Level	Tier 4
Stock indicator trends	
Key model technical assumptions/ parameters	
Changes to model structure/ assumptions	
Significant changes to data inputs	
RAG Comments on data	
RAG Comments on assessment	N/A
Projected Biomass (including confidence intervals)	

RAG Recommendations		
Recommended Biological Catch (2014-15)	Catches of Smooth Oreos are now so low on the Cascade Plateau that the catch rate and Tier 4 analyses are unlikely to be valid. MYTAC 150 t .	Undercatch: 10\% Overcatch: 10\% Discount Factor: 0\%
Is a MYTAC recommended for future seasons? Indicate whether the multiyear recommendation is a RBC (e.g. based on Tier 1 model output) or TAC (e.g. a rollover of catch)	Yes. The RAG recommended rolling over the RBC into the fourth year of the 3 -year MYTAC.	
Probability of RBC (or other levels of catch) causing a decline below limit reference under proposed management Species that follow a HS rule that has been MSE tested will have a "very unlikely" score in this section (i.e. P<10\%).	See above comment. Alternative Catch Scenarios: N/A	
Research Catch Allowance Included/Addition to TAC	0 t	
Implications for companion species / TEPs / multi-species fisheries		

Catch and TAC							
Assessment Year	$\mathbf{2 0 1 1}$	$\mathbf{2 0 1 2}$	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$
Tier / MYTAC	Not assessed						
Stock Status	Not assessed						
SESSF Season	$2012 / 13$	$2013 / 14$	$2014 / 15$	$2015 / 16$	$2016 / 17$	$\mathbf{2 0 1 7 / 1 8}$	$2018 / 19$
RBC	Not estimated						
Agreed TAC	150	150	150	150	150	150	
TAC after unders/overs	165	$\mathbf{1 6 5}$	$\mathbf{1 6 1}$	$\mathbf{1 6 5}$	150	$\mathbf{1 6 9}$	
\% TAC caught	$\mathbf{0 \%}$						

Catch Trends

Standardised Catch Rates

Smooth Oreo (Cascade) standardized catch rates from the most recent Tier 4 assessment completed (2010) with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

Smooth oreodory - Cascade

(RBC and total catch are calendar year; TAC and Commonwealth catch are fishing season)

24 Oreo Smooth (Pseudocyttus maculatus) - Other

Tier 5: last assessed by SlopeRAG in 2015 - updated in 2018. Species summary updated in 2018.

Summary	
Stock Structure	Little is known about the stock structure of smooth oreodory. For assessment and management purposes they are treated as a single unit of stock through the SESSF excluding the Cascade Plateau and South Tasman Rise.
Stock status against reference points and trend	Smooth oreodory were assessed using a Tier 5 depletion based stock reduction analysis (DBSRA) for the first time in 2015. DBSRA is used to search for the level of yield (RBC) that would lead to a yield equivalent to a target depletion of 48 per cent of unfished biomass while maintaining the probability of the spawning biomass remaining above 20 per cent of unfished biomass above 0.9. Biomass trend: When last assessed, the CPUE was variable but with a slight positive trend. Low catch and effort levels since 2009 have precluded any updates.
ABARES most recent assessment (2015)	Biomass Fishing Mortality Not overfished Not subject to overfishing
GVP Figures (201314 season)	GVP \% Fishery GVP \$0.19 million $<0.4 \%$
Is a MYTAC in place this season?	Yes, MYTAC of 90 t . In 2018, the RAG agreed to roll over the RBC into the fourth year.
Have breakout rules been triggered?	No.

Assessment Summary	
Tier Level	Tier 5 - see note in RAG comments on assessment
Stock indicator trends	Unknown due to low effort and catches.

- catch time series; ideally from the start of the fishery

Key model technical

assumptions/

parameters\end{array} \quad $$
\begin{array}{l}\text { Plausible values are also required for: } \\
\text { - the natural Mortality Rate: } \mathrm{M} \text {, model input } 0.05 \\
\text { - the ratio of FMSY to the Natural Mortality: FMSY/M, model input } 0.8 \\
\text { - the most productive stock depletion level: BMSY/BO, model input 0.4 } \\
\text { - the age at maturity: model input 15 }\end{array}
$$\right.\right\}\)

	In 2018, the RAG agreed to roll over the RBC into the fourth year as there was no basis for changing advice on this species since the last assessment and there was minimal risk. Members noted that the assessment will be updated after receiving advice from the SESSFRAG sub-working group recently tasked with considering the species in the 'unassessable' basket. Smooth oreodory are an aggregating bycatch species taken when fishing for orange roughy and the catch rate may not be a reliable index of abundance. Smooth oreodory are spatially structured and the model assumes some homogeneity that may not be a reliable estimation of stock distribution. The RAG agreed that a target depletion of 48 per cent of BO is needed to be consistent with the SESSF Harvest Strategy Framework. The RBC is extremely conservative as 90 per cent of the smooth oreodory catch was taken from waters that are now closed. assessment The previous TAC of 23 t was arbitrary and was set when the deepwater area of the fishery was closed to protect orange roughy. The RAG noted that under the large change limiting rule the maximum the TAC could be is 34.5 t. The RAG agreed that there are no sustainability issues in not applying the large change limiting rule in this instance.
Projected Biomass (including confidence intervals)	N/A

RAG Recommendations		
Recommended Biological Catch (2019- 20)	90 t	Undercatch: 10\% Overcatch: 10\% Discount Factor: 0\% The discount factor was not applied due to this method of calculating the RBC is extremely conservative and in combination with large trawl closures provides sufficient protection to the smooth oreodory stock. The RAG recommended that a discount factor is not applied. NB. There is no specific Tier 5 discount factor in the SESSF HSF.
Is a MYTAC recommended for future seasons? Indicate whether the multiyear recommendation is a RBC (e.g. based on Tier 1 model output) or TAC (e.g. a rollover of catch)	Yes. The RAG recommended rolling over the RBC into the fourth year of the 3year MYTAC.	
Probability of RBC (or other levels of catch) causing a decline below limit reference under proposed management Species that follow a HS rule that has been MSE tested will have a "very unlikely" score in this section (i.e. $P<10 \%$).	The constant catch projections indicate that the risk of the stock declining to below the limit reference point is low.	
Research Catch Allowance Included/Addition to TAC	0 t	
Implications for companion species / TEPs / multi-species fisheries	Smooth oreodory is a bycatch when targeting orange roughy. The previous TAC of 23 t constrained catches of orange roughy in the Pedra Branca area of the southern orange roughy zone. An increase in TAC should reduce/remove this constraint.	

Catch and TAC						
Assessment Year	2013	2014	2015	2016	2017	2018

Tier / MYTAC	Not assessed	Not assessed	Tier 5	MYTAC	MYTAC	MYTAC
Stock Status	Not assessed	Not assessed	N/A	N/A	N/A	N/A
SESSF Season	$2014 / 15$	$2015 / 16$	$2016 / 17$	$2017 / 18$	$2018 / 19$	$2019 / 20$
RBC	Not assessed	Not assessed	90	90	90	90
Agreed TAC	23	23	90	90		
TAC after unders/overs	25	25	90	99		
\% TAC caught	$\mathbf{3 \%}$	$\mathbf{8 5 \%}$	$\mathbf{5 3 \%}$	$\mathbf{5 6 \%}$		

Catch Trends

25 Oreo Basket (Warty, Spiky, Rough and Black Oreo Dory)

Tier 4 last assessed by SERAG in 2017. Species summary updated in 2017.

Summary				
Stock Structure	Little is known about the stock structure of the Oreo species in this basket quota. They are bentho-pelagic species that are caught mainly below 600 m . For assessment and management purposes they are treated as a single unit of stock through the SESSF.			
Stock status against reference points and trend	Tier 4 species use CPUE targets as a proxy of biomass targets. The Tier 4 target reference point is the level of CPUE assumed to produce a spawning biomass of 48% of unfished levels. The limit reference point is 40% of the target reference point.			
	Parameter	Value	Parameter	Value
	Reference Years	1993-2001	Scaling	1.5947
	CE_Targ	0.441	Last Year's TAC	128
	CE_Limit	0.1837	$\mathrm{C}_{\text {targ }}$	160.83
	CE_Recent	0.4297	RBC	256.474
	Wt_Discard	70.53		
	CPUE trend (with discards): Standardized CPUE is above the target reference point and has been for the last three years.			
ABARES most recent assessment (2015)	Biomas Not overfi	hed		ing Mortality ect to overfishing
GVP Figures (201617 season)	GVP \$0.37 mill			Fishery GVP 0.8%
Is a MYTAC in place this season?	Yes.			
Have breakout rules been triggered?	No.			

Assessment Summary				
Tier Level	Tier 4			
Stock indicator trends	Standardised CPUE is above the target reference point (F_{48}) since 2014			
Key model technical assumptions/ parameters	N/A			
Changes to model structure/ assumptions	N/A			
Significant changes to data inputs	N/A			
RAG Comments on data	Catches of oxeye oreodory have been reported. The RAG assumes an ID issue and that the reported oxeye species should be included in the assessment			
RAG Comments on assessment	High level of discards but not constant partly due to changes in fishing practices. The RAG agreed to now include discards in RBC calculation. Increased catch and discards are correlated with opening of deepwater closures and increased access to stock. Mixed oreos are a potential candidate for a lower target reference point to			
s40 and there is little biological risk to doing so. AFMA to consider as part of SMARP implementation. While mixed oreos are targeted they are not an economic driver in the fishery. A high proportion of the quota is caught and there is low quota latency. The majority of mixed oreo catches are spikey oreo. intervals) confidence				
These species are suitable for a three year MYTAC because the stock is at				
approximately 40\%B and closures provide protection.		$	$	N/A
:---	:---			

RAG Recommendations		
Recommended Biological Catch (2018- 19)	256 t	Undercatch: 10\% Overcatch: 10\% Discount Factor: 0\%
Is a MYTAC recommended for future seasons? Indicate whether the multiyear recommendation is a RBC (e.g. based on Tier 1 model output) or TAC (e.g. a rollover of catch)	Yes. 3-year RBC $=256 \mathrm{t}$.	
Probability of RBC (or other levels of catch) causing a decline below limit reference under proposed management Species that follow a HS rule that has been MSE tested will have a "very unlikely" score in this section (i.e. $P<10 \%$).	Very unlikely. Alternative Catch Scenarios: N/A	
Research Catch Allowance Included/Addition to TAC	0 t	
Implications for companion species / TEPs / multi-species fisheries	Smooth oreodory is a bycatch wh TAC of 23 t constrained catches of the southern orange roughy zone this constraint.	en targeting orange roughy. The previous orange roughy in the Pedra Branca area of An increase in TAC should reduce/remove

Catch and TAC							
Assessment Year	2013	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	2018	
Tier / MYTAC	Tier 4	Not assessed	Tier 5	MYTAC	Tier 4		
Stock	Not assessed Status	Not assessed	Not assessed	Not assessed	CPUE above target		
SESSF Season	$2014 / 15$	$2015 / 16$	$2016 / 17$	$2017 / 18$	$2018 / 19$	$2019 / 20$	
RBC	128	128	128	128	256		
Agreed TAC	132	128	128	128	12		

TAC after unders/overs	130	140	137	140		
$\%$ TAC caught	75%	79%	72%	63%		

Catch Trends

Standardised Catch Rates

Mixed Oreo Basket (Discard) standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate. The thin black dotted line is the unmodified standardized CPUE before the inclusion of discards.

Catch Trends

26 Pink Ling (Genypterus blacodes)

Common names: Pink cusk-eel, ling, Australian rockling, New Zealand ling, kingklip, northern ling

Tier 1: last assessed by SERAG in 2018

Summary				
Stock Structure	Pink ling are assessed as separate stocks east and west of Longitude 147° East. Genetic variation between eastern and western pink ling has not been found, however, there are differences in size and age structure, growth and catch rates between the eastern and western zones. These differences suggest there is little mixing of pink ling between the zones, and that fishing in one area will have limited impact on fish in the other area.			
Stock status against reference points and trend		Current	Target	Limit
	East	$30 \% \mathrm{~B}_{0}$	$48 \% \mathrm{~B}_{0}$	$20 \% \mathrm{~B}_{0}$
	West	$84 \% \mathrm{~B}_{0}$		
	East - biomass trend continuing recent increases. West - biomass increasing above management target.			
ABARES assessment (2018)	Biomass Not overfished		Fishing Mortality Not subject to overfishing	
GVP Figures (2016-17 season)	GVP \$5.22 million		\% Fishery GVP 11.2\%	
Is a MYTAC in place this season?	Yes		Have breakout rules been triggered?	No

Assessment Summary	
Tier Level	Tier 1
Stock indicator trends	East: biomass trend continuing recent increases and is between the limit and target reference point. There is some uncertainty around the rate given various estimates of M and which CPUE series is used (whether or not avoidance is accounted for).

	West: biomass increasing above management target.
Key model technical assumptions/ parameters	Assessed using CASAL based stock assessment model. See Cordue (2018) for detailed technical assumptions and parameters. Single area, two sex, age-structured Von Bertalanffy growth, single M Fixed maturity and steepness ($\mathrm{h}=0.75$) SSB: female only, mid-year Two fisheries: trawl, non-trawl Time-blocked selectivities for trawl Vessel effects in CPUE standardisation time-blocked for most vessels (1986-1999, 2000-2006, 2007-2017) to account for effects of structural adjustment and halving in the number of vessels from 2006 to 2007 Estimate parameters: B_{0}, growth, recruitments strengths, $M(E: 0.25$, W:0.23), selectivities Data weighting followed Francis (except age-length not fully down-weighted) A full Bayesian estimation was undertaken; MPD runs for diagnostics followed by MCMC runs for estimates.
Changes to model structure/ assumptions	The 2018 pink ling assessment is as an update of ISL's 2015 assessment.
	FIS indices and length frequencies were included in the assessment
Significant changes to data inputs	Trip limits formed part of the management arrangements to constrain catches in the eastern zone and although trip limits will reduce landings is not so obvious whether they will reduce total fishing mortality (removals). Period effects were estimated to account for discard avoidance behaviour due to trip limits (see Cordue 2018 for details). The 'Period CPUE' series appeared to have an implausible increase from 2015 to 2017. Excluding it (linkall CPUE) generates a 'pessimistic' index. CPUE is likely somewhere in between. Variations to the base-case were presented; Three fixed-M, a uniform M, period CPUE with M fixed at 0.23 , and a 'linkall CPUE'.

RAG Comments on	
data	The RAG agreed to include the FIS CPUE indices (east and west) and length frequencies at the first SERAG meeting. There is generally a good fit to FIS LF in the east and west. There is variation in the length of trawl shots, and so length frequencies are scaled by catch-rate, rather than catch. Non-trawl port length frequencies are not stratified by depth, based on 2013 analysis suggesting they're not required Time-blocking on trawl selectivity suggests smaller fish were not caught during 'trawl 2' which is from 2000-2006. Industry suggested this is due to structural adjustment and vessel catching small fish leaving. MDP estimated and MCMC estimates were very similar (not always the case).

RAG Comments on assessment

East

Current stock status is not well estimated. It varies across model runs and is heavily dependent on M . Three variations to the base-case are presented here:

Reference: CPUE series with no period/avoidance effect, est M of 0.25
M-0.23: CPUE series with no period/avoidance effect and M fixed at 0.23
Period: CPUE series with period/avoidance effect and M fixed at 0.23 .
The 'signals' in the data from the east make it difficult to estimate M and the RAG agreed that a fixed value of 0.23 should be used in the east.
The RAG agreed that the steep increase in CPUE for the 'period CPUE' is not plausible and agreed to use the reference CPUE series. This series does not account for avoidance and is likely conservative. This should be considered when setting RBCs based on estimated depletion and rebuild timeframes.
The base-case model using the accepted CPUE series with a fixed $\mathrm{M}=0.23$ estimates the current spawning biomass is $30 \% \mathrm{~B}_{0}(22-42,95 \% \mathrm{CI})$ and under the 20:35:48 harvest control rule generates an RBC of 260 t in 2019 (36-560, 95\% $\mathrm{CI})$ and a long-term yield of $570 \mathrm{t}(540-620,95 \% \mathrm{CI})$. The RAG noted these estimates are highly uncertain.

SERAG accepted the final eastern pink ling base case stock assessment noting the estimated current eastern zone spawning stock biomass of $30 \% \mathrm{~B}_{0}$ (22-42, $95 \% \mathrm{CI}$) and the 2019 median RBC of 260 t (36-560, $95 \% \mathrm{CI})$.
The RAG recommended that if a TAC greater than the 2019 RBC was considered by the AFMA Commission then the table below should be used as basis for determining the TAC. It shows probabilities of being below the limit reference point or approaching the target reference point under constant catch scenarios from 0-650t.
A similar approach was taken in 2015 to provide advice regarding risks associated with setting multi-year TACs at constant catches. The RAG noted there has been an increase in biomass since then and it is reasonable that a similar approach is taken this time.

Table 1 Pink Ling MCMC projection results
MCMC projection results for the base model ($M=0.23$) showing the expected SSB in 2021 and 2028 under different constant catch scenarios with the associated probabilities of being below 20% or 30% BO and at or above the target of $48 \% \mathrm{BO}$.

Annual catch (t)	$\mathbf{E}\left(\mathbf{B}_{21} / \mathbf{B}_{\mathbf{0}}\right)$	$\mathbf{E}\left(\mathbf{B}_{\mathbf{2 8}} / \mathbf{B}_{\mathbf{0}}\right)$	$\mathbf{P}\left(\mathbf{S S}_{21}<\mathbf{0 . 2}\right)$	$\mathbf{P}\left(\mathbf{S S _ { 2 8 } < \mathbf { 0 . 2 })}\right.$	Rebuild year to $\mathbf{B}_{\mathbf{4 8}}$
0	42	72	0.00	0.00	2023
300	37	53	0.01	0.00	2026
400	35	47	0.02	0.01	2030
450	34	44	0.02	0.01	2033
500	33	41	0.04	0.02	2040
550	32	38	0.05	0.05	>2050
600	32	35	0.06	0.11	>2050
650	31	31	0.08	0.18	>2050

Should the constant catch scenarios be used to consider management options or future TAC recommendations for the eastern zone, constant catches in excess of 550 t lead to a greater than 10 per cent probability of eastern pink

RAG Recommendations						
Recommended Biological Catch (2019- 20)	East: $\text { 2019: } 260 \text { t (36-560 t, 95\% CI) }$ West: $\text { 2019: } 1150 \text { t (770-1660 t, 95\% CI) }$				Undercatch: 10\% Overcatch: 10\% Discount Factor: 15\%	
Is a MYTAC recommended for future seasons? Indicate whether the multiyear recommendation is a RBC (e.g. based on Tier 1 model output) or TAC (e.g. a rollover of catch)	Yes. 3-year MYTAC. East $\text { 2019: } 260 \text { t }$ The RAG recommended that if a TAC greater than the 2019 RBC was considered by the AFMA Commission then constant catch projections (below) should be used as basis for determining the TAC. West 2019: 1150 t 2020: TBC 2021: TBC					
Probability of RBC (or other levels of catch) causing a decline below limit reference under proposed management Species that follow a HS rule that has been MSE tested will have a "very unlikely" score in this section (i.e. $P<10 \%$).	RBC recommendation = Very unlikely. Alternative Catch Scenarios - eastern stock at constant catch: Alternative catch projections using the accepted $\mathrm{M}=0.23$ and CPUE series					
	Annual catch (t)	$\begin{gathered} E \\ \left(B_{21} / B_{0}\right) \end{gathered}$	$E\left(B_{28} / B_{0}\right)$	$\begin{gathered} P \\ \left(S S_{21}<0.2\right) \end{gathered}$	$\begin{gathered} P \\ \left(S S_{28}<0.2\right) \end{gathered}$	Rebuild year to B_{48}
	0	42	72	0.00	0.00	2023
	300	37	53	0.01	0.00	2026
	400	35	47	0.02	0.01	2030
	450	34	44	0.02	0.01	2033
	500	33	41	0.04	0.02	2040
	550	32	38	0.05	0.05	>2050
	600	32	35	0.06	0.11	>2050
	650	31	31	0.08	0.18	>2050
	B_{21} means the biomass estimate in 2021. B_{0} means unfished biomass. P means probability. E means estimate 0.2 means 20 per cent of unfished biomass, the limit reference point. Rebuild year means at least a 50 per cent probability of being at or above the target reference point of 48 per cent of the unfished biomass. N.B. Uses Markov Chain Monte Carlo stochastic projections to determine performance indicators.					
Research Catch Allowance Included/Addition to TAC	0 t					

```
Implications for
companion species /
TEPs / multi-species
fisheries
```

Pink ling is caught in close association with blue-eye trevalla in the line sector and blue grenadier in the trawl fishery.

Catch and TAC						
Assessment Year	2013	2014	2015	2016	2017	2018
Tier / MYTAC	East: Tier 1 West: Tier 1	Rollover MYTAC	East: Tier 1 West: Tier 1	Rollover MYTAC	Rollover MYTAC	East: Tier 1 West: Tier 1
Stock Status	East: 25\% West: 58\%	Not assessed	East: 30\% West: 73\%	$\begin{gathered} \text { Not } \\ \text { assessed } \end{gathered}$	Not assessed	East: 35\% West: 84\%
$\begin{aligned} & \hline \text { SESSF } \\ & \text { Season } \end{aligned}$	2014/15	2015/16	2016/17	2017/18	2018/19	2019/20
RBC	$\begin{aligned} & \text { East: } 122 \mathrm{t} \\ & \text { West: } 807 \mathrm{t} \end{aligned}$	Not assessed	East: 250 t West: 990 t	East: 250 t West: 990 t	East: 250 t West: 990 t	East: 260 t West: 1150 t
Agreed TAC	996	980	1144	1154	1117	
TAC after unders/overs	1016	1006	1233	1262	1203	
\% TAC caught	95\%	82\%	74\%	82\%		

Catch Trends

Pink ling standardised catch rates (East: Z10-30, no avoidance included)

Pink ling standardised catch rates (West: Z40-50)

Catch trends

27 Redfish (Centroberyx affinis)

Common names: Nannygai, red snapper, king snapper, golden snapper.
Tier 1: last assessed by SERAG in 2017. Species summary updated in 2017.

Summary		
Stock Structure	No formal stock discrimination studies have been done in Australia. Tagging studies suggested a single unit stock of redfish off NSW. Previous studies of mean length at age suggest differences in growth rates between the 'northern' and 'southern' sectors of the fishery off eastern Australia. The boundary being Latitude 36ㅇ (just north of Montague Island). Previous assessments of the redfish stock have therefore also considered that the fishery exploits two separate populations, with the boundary between these 'stocks'. However for the 2017 assessment, the RAG agreed to use a single stock model with no split at 360 S.	
Stock status against reference points and trend	Limit reference point is 20 per cent of unfished biomass. Target reference point is 48 per cent of unfished biomass. The Redfish Stock Rebuilding Strategy was implemented in 2016. The 2017 assessment estimated that the stock is below the limit reference point at an estimated 2018 stock status of 8 per cent of unexploited levels.	
ABARES most recent assessment (2015)	Biomass Overfished	Fishing Mortality Uncertain
GVP Figures (2016- 17 season)	GVP $\$ 0.08$ million	\% Fishery GVP 0.2%
Is a MYTAC in place this season?	No.	
Have breakout rules been triggered?	N/A	

Assessment Summary	
Tier Level	Tier 1
Stock indicator trends	The 2017 Tier 1 assessment indicates 2000-2010 was a sustained period of below average recruitment. 2011-12 estimates an increase in recruitment.
Key model technical assumptions/ parameters	Parameter Description Value M Natural mortality 0.1 h "steepness" of the Beverton-Holt stock-recruit curve 0.75 x age observation plus group 40 years a allometric length-weight equations $0.0577 \mathrm{~g}^{-1} . \mathrm{cm}$ b allometric length-weight equations 2.77 I Female length at 50% maturity 19 cm
Changes to model structure/ assumptions	Tier 1 assessment.
Significant changes to data inputs	N/A
RAG Comments on data	Significant differences in the onboard length and port length data. EBass port lengths are considerably larger than NSW port lengths, with ascending limbs beginning at $\sim 10 \mathrm{~cm}$ for NSW and $\sim 15-20 \mathrm{~cm}$ for EBass. This appears to be driven by different discard practices, as the distribution of caught fish lengths from the onboard length data are similar for EBass and NSW. Future models should consider data separated by zone, with a different discard function estimated for each zone.

RAG Comments on assessment	With regards to the 2017 Tier 1, the RAG noted: - The projected 2018 spawning biomass of 8% is lower than that in the 2014 assessment, which predicted a 2015 spawning biomass of 11%. - Under the very low recruitment scenario the constant catch of 100 t there is slow rebuild. - Recruitment pulse predicted by the 2014 assessment had eventuated but not to the degree expected and that catches and catch rates in 2016 were the lowest recorded. - Climate factors may be influencing recruitment and recovery and further work was required to better understand and respond to these impacts. - Fishing mortality is unlikely to be the driver for slow recovery. - The 2014 model predicted the stock to rebuild above the limit reference point within five years regardless of whether total mortality was 50 tonnes, 100 tonnes or 150 tonnes. However, this was based on average recruitment and, despite combined Commonwealth and NSW catches and discards being below 150 tonnes in each year of the MYTAC, recovery had not occurred. - Recommended an RBC of 0 tonnes and requested stock projections under both average and low recruitment scenarios to assist in TAC setting. - Changes to gear (a bigger diamond mesh) should be considered to reduce the bycatch of juvenile redfish. However, the RAG noted that this may impact on the catches of other highly desirable species such as flathead. - Existing closed areas may provide some degree of protection for redfish however this has not been quantified. - Avoiding redfish is difficult because they occur across the entire fishery area. - Noted that the NSW recreational catch estimates have declined from 104,000 fish estimated through the 2001 survey to 21,000 fish in the 2016 survey
Projected Biomass (including confidence intervals)	The accepted basecase estimates the redfish spawning biomass to pass the limit reference point by approximately 2024.

RAG Recommendations		
Recommended Biological Catch (2019- 20)	The 2017 assessment estimated that the stock is below the limit reference point at an estimated 2018 stock status of 8 per cent of unexploited levels. The RAG recommended RBC of zero and an incidental catch TAC of 100 tonnes noting that the rebuild timeframes are based on recruitment estimates that have been below average since the early 2000's. Annual catches of 50 t take more than 50 years to recover to the limit reference point. An annual catch of $150 t$ is unsustainable for the stock. Under the standard harvest control rule and recruitment model (which uses recruitments from the stockrecruitment curve), the spawning biomass is estimated to pass the limit reference point by approximately 2024.	Undercatch: 0\% Overcatch: 0\% Discount Factor: 0\%
Is a MYTAC recommended for future seasons? Indicate whether the multiyear recommendation is a RBC (e.g. based on Tier 1 model output) or TAC (e.g. a rollover of catch)	No.	
Probability of RBC (or other levels of catch) causing a decline below limit reference under proposed management Species that follow a HS rule that has been MSE tested will have a "very unlikely" score in this section (i.e. $P<10 \%$).	N/A - the stock is assessed as being below the limit	rence point (8\%)
Research Catch Allowance Included/Addition to TAC	0 t	

	Companion species analysis indicates that the majority (64 per cent) of all redfish are taken in shots where redfish is not the most valuable component of the catch. This suggests it is not normally targeted.
Flathead is the species most commonly being targeted when redfish are	
caught (31 per cent).	
Implications for	
companion species /	
TEPs / multi-species last companion species analysis (Klaer, 2010) indicated that of 156 t of	
fisheries	
redfish caught, 100 t was caught in shots where redfish was not main species	
taken.	
In the 2015 fishing season, 50 t of redfish was landed while 3095 t of flathead	
was landed, suggesting that full quota utilisation of flathead does not result in	
substantial redfish mortality (total redfish discards in 2015 was 74 t).	
Projections completed in the 2014 redfish stock assessment showed that	
redfish would rebuild by 2018 or 2019 at catches of $0 \mathrm{t}, 50 \mathrm{t}, 100 \mathrm{t}$ and 150 t	
(i.e. catches up to 150 t made little different to the projected rebuilding rate	
for redfish).	

Catch and TAC						
Assessment Year	2013	2014	2015	2016	2017	2018
Tier / MYTAC	Tier 3 Tier 4	Tier 1	Incidental TAC	Incidental TAC	Tier 1	
Target	B_{48}	B48	B48	B48	B48	
Stock Status	Tier 3 - Fishing mortality less than target Tier 4 - CPUE lower than limit	$<\mathrm{BLim}^{\text {l }}$	$<\mathrm{BLim}^{\text {L }}$	$<\mathrm{BLim}^{\text {l }}$	8	
SESSF Season	2014/15	2015/16	2016/17	2017/18	2018/19	2019/20
RBC	Tier 3-3791 Tier 4-0	0	0	0	0	
Agreed TAC	138	100	100	100		
TAC after unders/overs	164	100	100	100		
\% TAC caught	48\%	45\%	39\%	27\%		

Catch Trends

Redfish

(RBC and total catch are calendar year; TAC and Commonwealth catch are fishing season)

28 Ribaldo (Mora mora)

Tier 4: last assessed by SERAG in 2017

Summary				
Stock Structure	One stock of Ribaldo is assumed for the SESSF.			
	Tier 4 species use CPUE The Tier 4 Target referen to produce a spawning b The limit reference point spawning biomass of 48\% CPUE trend: Standardise 2000's and remains abov	argets as a pr point for r ib omass of 40% is 40% of the of unfished CPUE has be the target r	xy of biomass targe aldo is the level of of unfished levels. CPUE assumed to prod vels. n relatively flat sin ference point.	PUE assumed duce a the early
ABARES assessment (2018)	Biomass Not overfished		Fishing Mortal Not subject to over	ishing
GVP Figures (2016-17 season)	GVP \$0.31 million		\% Fishery GV 0.7%	
Is a MYTAC in place this season?	Yes	Have br been tri	akout rules gered?	No

Assessment Summary	
Tier Level	Tier 4
Stock indicator trends	Trawl and non-trawl CPUE are flat and well above the Tier 4 target catch levels.

Key model technical assumptions/ parameters	N/A
Changes to model structure/ assumptions	N/A
Significant changes to data inputs	N/A
RAG Comments on data	Trawl only data is used in the assessment. Autoline catch is continuing to decline.
RAG Comments on assessment	Significant component of the catch in deeper water 500 m. Deepwater closures provide significant protection.
Estimated Biomass (including confidence intervals)	

RAG Recommendations		
Recommended Biological Catch (2018-19)	430 t	Undercatch: 10% Overcatch: 10% Discount Factor: 0% Deepwater closures are considered to provide a level of precaution that is at least equivalent to the default 15% discount factor for a Tier 4 species.
Is a MYTAC recommended for future seasons? Indicate whether the multi-year recommendation is a RBC (e.g. based on Tier 1 model output) or TAC (e.g. a rollover of catch)	Yes. 3 -year RBC $=430 \mathrm{t}$.	
Probability of RBC (or other levels of catch) causing a decline below limit reference under proposed management Species that follow a HS rule that has been MSE tested will have a "very unlikely" score in this section (i.e. P<10\%).	RBC recommendation = Very unlikely. Alternative Catch Scenarios: N/A	
Research Catch Allowance Included/Addition to TAC	0 t	

```
Implications for companion
species / TEPs / multi-species
N/A
fisheries
```

Catch and TAC							
Assessment Year	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	2018	
Tier / MYTAC	Tier 4	Not assessed	Not assessed	Not assessed	Tier 4		
Stock Status	CPUE higher than target	Not assessed	Not assessed	Not assessed	CPUE higher than target		
SESSF Season	$2014 / 15$	$2015 / 16$	$2016 / 17$	$2017 / 18$	$2018 / 19$	$2019 / 20$	
RBC	355	355	355	355	430		
Agreed TAC	252	355	355	355			
TAC after unders/overs	266	376	389	389			
\% TAC caught	53%	24%	23%	24%			

Catch Trends

Standardised Catch Rates

Ribaldo standardized catch rates from 2017 Tier 4 assessment with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

Catch trends

29 Royal Red Prawn (Haliporoides sibogae)

Tier 4 assessed by SERAG in 2017.

Summary				
Stock Structure	Little is known of the stock structure in Australia, but they are assumed to comprise a common stock off eastern Australia which straddles the Barrenjoey Point SESSF management line.			
	Tier 4 species use CPUE targets as a proxy of biomass targets. The Tier 4 Target reference point is the level of CPUE assumed to produce a spawning biomass of 48% of unfished levels. The limit reference point is 40% of the target reference point. Stock status: The recent average standardised CPUE-based proxy for biomass is above but close to the target reference point. Trend: CPUE has fluctuated around target levels. Catches have been below the RBC in recent years, due to reported market constraints..			
ABARES assessment (2018)	Biomass Not overfished	Fishing Mortality Not subject to overfishing		
GVP Figures (2016-17 season)	GVP \$0.89 million	\% Fishery GVP1.9\%		
Is a MYTAC in place this season?	Yes	Have been	beakout rules riggered?	No

Assessment Summary	
Tier Level	Tier 4

Stock indicator trends	Standardised CPUE has displayed a cyclical trend around the target and generally increased from 2010. The population size structure has been relatively stable.
Key model technical assumptions/ parameters	N/A
Changes to model structure/ assumptions	N/A
Significant changes to data inputs	N/A
RAG Comments on data	N/A
RAG Comments on	The RAG recommended a research catch allowance of 40 tonnes for the Gulper Shark Grid Exclusion Device project to offset costs of research trips. The RAG will review the decision relating to the discount factor if significant changes to the deepwater closures occurs.
Estimated Biomass (including confidence intervals)	

RAG Recommendations		
Recommended Biological Catch (2018-19)	430 t.	Undercatch: 10% Overcatch: 10% Discount Factor: 0\% Discount factor does not apply due to the protection afforded by deepwater closures
Is a MYTAC recommended for future seasons? Indicate whether the multi-year recommendation is a RBC (e.g. based on Ter 1 model output) or TAC (e.g. a rollover of catch)	Yes. 3-year RBC = 431 t.	

Probability of RBC (or other levels of catch) causing a decline below limit reference under proposed management Species that follow a HS rule that has been MSE tested will have a "very unlikely" score in this section (i.e. P<10\%).	RBC recommendation = Very unlikely. Alternative Catch Scenarios: N/A
Research Catch Allowance Included/Addition to TAC	40 t
Implications for companion species / TEPs / multi-species fisheries	The Royal Red Prawn fishing grounds off Sydney occur in areas of core habitat for Harrisson's and Southern dogfish and much of the fishing grounds have been closed under the Upper Slope Dogfish Management Strategy. Industry has proposed to trial a Grid Exclusion Device in Royal Red Prawn nets to exclude Dogfish.

Catch and TAC							
Assessment Year	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	
Tier / MYTAC	Tier 4	Not assessed	Not assessed	Not assessed	Tier 4		
Stock	CPUE between target and limit	Not assessed	Not assessed	Not assessed	CPUE above target		
SESSF Season	$2014 / 15$	$2015 / 16$	$2016 / 17$	$2017 / 18$	$2018 / 19$	$2019 / 20$	
RBC	393	393	393	393	431		
Agreed TAC	344	386	387	384			
TAC after unders/overs	373	414	417	421			
\% TAC caught	39%	44%	30%	53%			

Catch Trends

Standardised Catch Rates

Royal Red Prawn standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

Catch trends

TAC and landings
start month 1

CSIRO national Fish Collection (2009)

Tier 4: last assessed by SharkRAG in 2017

Summary

Summary				
Stock Structure	Three endemic species of sawsharks occur off southern Australia, but their distributions have not been described precisely. Common Sawshark (Pristiophorus cirratus) is reported to range from Jurien Bay in WA to Eden in NSW, including Tasmania, to depths of 310 m . Southern Sawshark (P. nudipinnis) is reported to range from the western region of the Great Australian Bight to eastern Gippsland in Victoria, including Tasmania, to depths of 70 m . The Eastern Sawshark (Pristiophorus sp. A) is reported to range from approximately Lakes Entrance in Victoria to Coffs Harbour in NSW at depths of 100-630 m (Last and Stevens 1994). Little is known of stock structure or movement rates. For assessment purposes, all sawsharks south of the Victoria-NSW border are assumed to be Common Sawshark and Southern Sawshark, whereas those north of this border are assumed to be Eastern Sawshark.			
Stock status against reference points and trend	Tier 4 species use CPUE targets as a proxy of biomass targets. Shark RAG reviewed the target reference point for sawshark and supported an MSY proxy target of B_{40}. This was based on consideration that sawshark is not targeted, it is considered sustainable and it is a secondary commercial species contributing about 1% to GVP. The limit reference point is 20% of the Bo proxy.			
	Parameter	Value	Parameter	Value
	Reference Years	2002-2008	Scaling	1.6098
	CE_Targ	0.7236	Last Year's TAC	433
	CE_Limit	0.3618	$\mathrm{C}_{\text {targ }}$	322.13
	CE_Recent	0.9443	RBC	518.555
	Wt_Discard	39.714		
	Stock status: in the 2017 Tier 4 assessment the recent average standardized CPUE-based proxy for biomass was above the target limit reference point. The standardised trawI CPUE which is used in a Tier 4 assessment has been relatively flat. In the 2017 Tier 4 assessment, the recent average standardised CPUE-based proxy for biomass is above the target reference point.			

	 Trend: the standardized gillnet-CPUE has been declining since 2004, while the standardized trawl-CPUE has been relatively flat.
ABARES most recent assessment (2016)	Biomass Fishing Mortality Not overfished Not subject to overfishing
GVP Figures (2016-17 season)	GVP \% Fishery GVP $\$ 0.52$ million 2.6%
Is a MYTAC in place this season?	Yes Have breakout rules been triggered? No

Assessment Summary	
Tier Level	Tier 4
Stock indicator trends	Sawshark catches have been split primarily between gillnets and trawls (with a lesser quantity taken by Danish seine). The standardized gillnet-CPUE has been declining since 2004, with slight increases in recent years, although it does not account for the level of discarding that occurs. By contrast, the standardized trawl-CPUE has been relatively flat. Catches by trawl are now almost as high as those taken by gillnets, illustrating the uncertainty in this analysis and providing some evidence that there may be an element of avoidance by gillnet fishers. assumptions/ parameters
Changes to model	
structure/assumptions	None
Significant changes to data inputs	None
RAG Comments on data	None
RAG Comments on assessment	N/A

RAG Recommendations		
Recommended Biological Catch (2018-19)	430 t	Undercatch: 10% Overcatch: 10% Discount Factor: 15%
Is a MYTAC recommended for future seasons? Indicate whether the multi-year recommendation is a $R B C$ (e.g. based on Tier 1 model output) or TAC (e.g. a rollover of catch)	Yes, continue with the second year of a 3-year MYTAC.	
Probability of RBC (or other levels of catch) causing a decline below limit reference under proposed management Species that follow a HS rule that has been MSE tested will have a "very unlikely" score in this section (i.e. $P<10 \%$).		
Research Catch Allowance Included/Addition to TAC	0 t	
Implications for companion species / TEPs / multi-species fisheries		

Catch and TAC						
Assessment Year	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	2018
Tier / MYTAC	Tier 4					
Stock Status	CPUE between target and limit	CPUE between target and limit	Not assessed	Not assessed	CPUE above target	
SESSF Season	$2014 / 15$	$2015 / 16$	$2016 / 17$	$2017 / 18$	$2018 / 19$	$2019 / 20$
RBC	459	600	455	535	519	
Agreed TAC	459	482	433	442	430	
TAC after unders/overs	487.66	522	478	482		
\% TAC caught	51%	36%	42%	42%		

Catch Trends

Figure 2. Sawshark TAC and landings

Figures 3 and 4. Sawsharks taken by trawl. Top plot is the total removals with the fine line illustrating the target catch. Bottom pot represents the standardised catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represent the reference period for catches, catch rates, and the recent average catch rate

Tier 1 under a stock rebuilding strategy. Last assessed by SharkRAG in 2018.

Summary			
Stock Structure	Tagging and genetic data shows some evidence for one well mixed stock. However, earlier data suggests there could be an east/west divide in stocks. This is supported by research documenting a collapse in the eastern part of the fishery around Tasmania and Bass Strait. After this collapse a fishery subsequently established in the west suggesting a reproductively isolated stock.		
Stock status against reference points and trend	Target reference point is 48 per cent of the unfished biomass (pup production is used as a proxy for breeding biomass). Limit reference point is 20 per cent of the unfished biomass (pup production is used as a proxy for breeding biomass). Gillnet CPUE is not considered a reliable index of abundance as school shark are actively avoided by gillnet fishers. In 2016 SharkRAG noted that there are continuing positive signs suggesting that the school shark is rebuilding. This is based on an overall increasing trend in trawl CPUE (since 2003). This is consistent with advice from industry that school shark, particularly juveniles, are in relatively high abundance.		
ABARES most recent assessment (2016)	Biomass Overfished	Fishing Mortality Uncertain	
GVP Figures (2016-17 season)	GVP \$1.70 million	\% Fishery GVP	
Is a MYTAC in place this season?	No	Have breakout rules been triggered?	No

Assessment Summary	
Tier Level	Tier 1

Stock indicator trends	The CK model provides an estimate of current absolute abundance with trend back to 2000. It does not provide an estimate pf depletion from B_{0}. The CK model indicates that the stock had recovered slightly during the period from 2000-2017.
Key model technical assumptions/ parameters	The assessment model assumes that there is one well mixed stock.
Changes to model structure/assumptions	The close in assessment model considers only one region, one population, starts in 2000 and does not allow (or need to take account of) movement between regions) because there is only one region.
Significant changes to data inputs	
RAG Comments on data	The RAG accepted the close kin assessment model noting high confidence in the absolute estimate of abundance produced by the mode, but accepting lower confidence in the estimates of trend.
RAG Comments on assessment	Assessments (since 1991) have consistently estimated the school shark population to be below the limit reference point of 20 per cent of unfished levels. The RAG recommended setting an incidental catch TAC based on projections using the average fishery mortality rates over the last five years. The rate taking into account increasing stick size due to rebuilding give total fishing morality estimate of 256t in 2019-20, 263 t in 2020-21 and 270t in 2021-2022. This level of fishing mortality rate would lead to an initial reduction in stock size before recovery due to effect of age class inputs into the model. The base case model shows a population that is relatively small compared with that estimated by the previous stock assessment model. However the model is inconsistent with the catches taken during the 1990s which brings into question whether or not the stock from which the close kin sample was taken is different from the stock that sustained catches prior to 2000. That is, the stock being assessed may have been a different smaller stock than the stock that was historically fished. Any future consideration of B_{0} and associated reference points will need to take this into account

	The gillnet fishery interacts with Australian sea lions in waters off South Australia. Interactions are mitigated by using trigger limits that close spatial zones for 18 months if an interaction occurs.		
Implications for			
companion species / TEPs			
/ multi-species fisheries		\quad	Dolphin interactions are managed through the GHAT Dolphin Strategy
:---			
which sets performance criteria for individual operators.			
To reduce targeting, gillnet operators are subject to a rule that constrains			
their catches of school shark to 20 per cent of their gummy shark catches.			

Catch and TAC							
Assessment Year	$\mathbf{2 0 1 2}$	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	
Tier / MYTAC	rollover	rollover	rollover	rollover	rollover		
Stock Status	<BLIM	<BLIM	<BLIM	<BLIM	<BLIM		
SESSF Season	$2013 / 14$	$2015 / 16$	$2016 / 17$	$2017 / 18$	$2018 / 19$	$2019 / 20$	
RBC	0	0	0	0	0		
Agreed TAC	215	215	215	215	215		
TAC after unders/overs	215	215	215	215	215		
$\%$ TAC caught	90%	94%	84%	96%			

Catch Trends

Gilnet CPUE is not considered a reliable index of abundance as school shark are actively avoided by gillnet fishers. Since 2003 there has been an overall increasing trend in trawl CPUE.

32 School Whiting (Sillago flindersi)

Common names: Red spot whiting, spotted whiting, silver whiting, trawl whiting.

Tier 1 last assessed by SERAG in 2018.

Summary			
Stock Structure	Early genetic studies suggested two stocks with the division between 'northern' and 'southern' stocks in the Sydney - Jervis Bay area. An investigation into stock structure will be proposed to FRDC in 2018.		
Stock status against reference points and trend	Limit Reference $=20 \%$ of unfished biomass. Target $=48 \%$ of unfished biomass. Stock status: base case estimates spawning stock biomass 47% of B_{0}. Trend: the most recent assessment estimated the stock to have dropped below the target reference point from 2009 to approximately 39%, and then increased to 47% at the start of 2018.		
ABARES most recent assessment (2016)	Biomass Not overfished	Fishing M Not subject	
GVP Figures (2016-17 season)	GVP \$1.49 million	\% Fishe 3.2%	
Is a MYTAC in place this season?	Yes.	Have breakout rules been triggered?	No

Assessment Summary	
Tier Level	Tier 1
Stock indicator trends	Standardized catch rates have remained above the limit reference point and just below the target reference point. Landings have increased since 2013 with the TAC between 79-83\% caught.
Key model technical assumptions/ parameters	N/A
Changes to model structure/assumptions	The current assessment fits four growth parameters, whereas the last assessment only fitted three.

\(\left.$$
\begin{array}{|l|l|}\hline \begin{array}{l}\text { Significant changes to } \\
\text { data inputs }\end{array} & \begin{array}{l}\text { New data in the assessment included revised conditional age-at-length } \\
\text { data and ageing error based on sectioned otolith readings. }\end{array} \\
\hline \text { RAG Comments on data } & \begin{array}{l}\text { The RAG accepted the close kin assessment model noting high confidence } \\
\text { in the absolute estimate of abundance produced by the mode, but } \\
\text { accepting lower confidence in the estimates of trend. }\end{array} \\
\hline & \begin{array}{l}\text { There were issues with updates to a new version of Stock Synthesis. These } \\
\text { issues were rectified, and a final base case was presented to SERAG in } \\
\text { December via teleconference. }\end{array}
$$

January spawning has been set as the base case with the following

sensitivities:

- July as the spawning month

- January as the spawning month with improved growth fits to the

model (Day 2017).

assessment \quad Exclusion of catches north of Barrenjoey Head.\end{array}\right\}\)| The RAG adopted the January spawning and the improved growth curves |
| :--- |
| as the base case. |
| The RAG noted that under the previous long-term RBC the stock declined |
| below the target reference point. This was largely due to below-average |
| recruitment during that time and the proposed long-term RBC was |
| appropriate. |
| The assessment outcome is very sensitive to assumptions about stock |
| structure. Catches north of Barrenjoey Head are used in the assessment, |
| but are not included when calculating standardised CPUE. When the |
| catches are excluded as a sensitivity, the estimated biomass of the stock |
| south of Barrenjoey Head is 39\%. |
| SERAG supported an investigation into stock structure. Stock structure |
| work also needs to assess the latitudinal variation in seasonality of |
| spawning. |
| The recent NSW length, age, catch rate and some discard data should be |
| made available for the next eastern school whiting assessment. |

RAG Recommendations		
Recommended Biological Catch (2018-19)	1615 t	Undercatch: 10% Overcatch: 10% Discount Factor: 0%
Is a MYTAC recommended for future seasons? Indicate whether the multi-year recommendation is a RBC (e.g. based on Tier 1 model output) or TAC (e.g. a rollover of catch)	Yes. 3-year RBC	
Probability of RBC (or other levels of catch) causing a decline below limit reference under proposed management Species that follow a HS rule that has been MSE tested will have a "very unlikely" score in this section (i.e. $\mathrm{P}<10 \%$).	RBC recommendation: $\mathrm{P}<10 \%$. Alternative Catch Scenarios: N/A	
Research Catch Allowance Included/Addition to TAC	0 t	
Implications for companion species / TEPs / multi-species fisheries	N/A.	

Catch and TAC						
Assessment Year	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$
Tier / MYTAC	Not assessed	Not assessed	Not assessed	Not assessed	Tier 1	
Stock Status	Not assessed	Not assessed	Not assessed	Not assessed	47%	
SESSF Season	$2014 / 15$	$2015 / 16$	$2016 / 17$	$2017 / 18$	$2018 / 19$	$2019 / 20$
RBC	1660 (long term RBC)	1615 (first of 3-year)				
Agreed TAC	809	747	868	986		
TAC after unders/overs	873	790	911	1071		
\% TAC caught	91%	93%	79%	69%		

33 Silver Trevally (Pseudocaranx dentex)

Tier 4 last assessed by SERAG in 2017.

Assessment Summary	
Tier Level	Tier 4

$\left.\begin{array}{|l|l|}\hline \text { Stock indicator trends } & \begin{array}{l}\text { The size composition of the landed catch shows a trend towards larger } \\ \text { fish, but onboard measurements of the retained catch show little change. } \\ \text { There is no information on the age composition of the catch in the CTS. } \\ \text { CPUE over the last three years has been stable. }\end{array} \\ \hline \text { Key model technical } \\ \text { assumptions/ parameters } & \begin{array}{l}\text { The assessment excludes all the data from inside the Batemans Bay MPA. } \\ \text { The recreational catch is significant, but as there are no data on trends in } \\ \text { the recreational catch the assessment assumes that recent catches are } \\ \text { similar to those during the reference period. }\end{array} \\ \hline \begin{array}{l}\text { Changes to model } \\ \text { structure/assumptions }\end{array} & \begin{array}{l}\text { N/A } \\ \text { Significant changes to } \\ \text { data inputs }\end{array} \\ \hline \text { N/AG Comments on data } & \begin{array}{l}\text { Tier 4 assessment only uses catch rates outside the Batemans Bay marine } \\ \text { park closure. } \\ \text { The higher CPUE points from 2010 - 2013 are no longer used to calculate } \\ \text { recent CPUE, this has resulted in a decrease in RBC. }\end{array} \\ \hline \text { RAG Comments on } \\ \text { assessment } & \begin{array}{l}\text { Discards to be deducted, noting single discard rate applied to total catch. } \\ \text { Remove targets for otolith collection and maintain collection of length } \\ \text { data to inform any subsequent changes in discards. } \\ \text { Catches are well below the TAC. State catches in the last } 2 \text { years have } \\ \text { been 90 - 147 tonnes with state discards estimated around 20\%. }\end{array} \\ \hline \text { The RAG discussed the use of a discount factor, and agreed that } \\ \text { consistent with previous years, a discount factor is not required due to } \\ \text { protection from the Batemans Bay MPA. }\end{array}\right\}$

Catch and TAC							
Assessment Year	2013	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	2018	
Tier / MYTAC	Tier 4	Not assessed	Not assessed	Not assessed	Tier 4		
Stock Status	CPUE higher than target	Not assessed	Not assessed	Not assessed	CPUE between target and limit		
SESSF Season	$2014 / 15$	$2015 / 16$	$2016 / 17$	$2017 / 18$	$2018 / 19$	$2019 / 20$	
RBC	$3-$ year: 791	791	791	791	445		
Agreed TAC	615	602	588	613			
TAC after unders/overs	691	662	645	672			
\% TAC caught	13%	11%	8%	8%			

RAG Recommendations		
Recommended Biological Catch (2018-19)	445 t	Undercatch: 10\% Overcatch: 10\% Discount Factor: 0\% Appropriate protection is afforded by the Batemans Bay marine park closure.
Is a MYTAC recommended for future seasons? Indicate whether the multi-year recommendation is a RBC (e.g. based on Tier 1 model output) or TAC (e.g. a rollover of catch)	Yes. 3-year RBC $=445 \mathrm{t}$	
Probability of RBC (or other levels of catch) causing a decline below limit reference under proposed management Species that follow a HS rule that has been MSE tested will have a "very unlikely" score in this section (i.e. $P<10 \%$).	RBC recommendation: $\mathrm{P}<10 \%$. Alternative Catch Scenarios: N/A	
Research Catch Allowance Included/Addition to TAC	0 t	
Implications for companion species / TEPs / multi-species fisheries	N/A.	

Catch Trends

Standardised Catch Rates

Silver Trevally standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

Catch Trends

34 Silver Warehou (Seriolella punctata)

ABARES (2012): Line drawing - FAO

Tier 1: last assessed by SERAG in 2018

Summary			
Stock Structure	Considered to be a single stock in the SESSF.		
Stock status against reference points and trend	Current	Target	Limit
	$31 \% \mathrm{~B}_{0}$	$48 \% \mathrm{~B}_{0}$	20\% B_{0}
	Biomass Trend: The biomass has declined since the mid-2000s with the 2018 assessment estimating a recent increase from close to the limit reference point to the estimated biomass of $31 \% \mathrm{~B}_{0}$. Previous assessments (Day et al 2012, 2015) have shown that the optimistic recent recruitments which may be driving the recent increase in biomass have been revised downwards in subsequent assessments. Figure 15. Time-trajectory of spawning biomass depletion (with 95% confidence intervals) corresponding to the MPD estimates for silver warehou.		
ABARES most recent assessment (2015)	Biomass Not overfished	Fishing Mortality Not subject to overfishing	
GVP Figures (2016-17 season)	GVP \$0.45 million	\% Fishery GVP 1\%	

Is a MYTAC in place this season?	Yes	Have breakout rules been triggered?	No

Assessment Summary	
Tier Level	Tier 1
Stock indicator trends	Standardised CPUE has continued to decline and is at historically low levels, but there are no major changes in other indicators (size composition, age composition, area of the fishery, or depth distribution of the catch).
Key model technical assumptions/ parameters	Parameter Details Natural mortality (M) fixed 0.3 Steepness (h) fixed 0.75 length-weight scale, a fixed $6.50 \mathrm{E}-06$ length-weight power, b fixed 3.27 length at 50% maturity (cm) fixed 37 maturity slope fixed -6 Recruitment deviations estimated $1980-2014$ CV growth estimated 0.0808 Growth K estimated Female 0.312 Growth $I_{\text {min }}$ estimated Female age 2 14.82 Growth $I_{\text {max }}$ estimated Female 51.21 length at 50% selectivity (cm) estimated 22.82 (east) 39.87 (west) selectivity spread (cm) estimated 3.48 (east) 11.24 (west) $\ln \left(R_{0}\right)$ estimated 9.379
Changes to model structure/ assumptions	The ageing error matrix has been updated. A new tuning procedure has been used to balance the weighting of each of the data sources that contribute to the overall likelihood function.
Significant changes to data inputs	Catches from the gillnet, hook and trap sector and the small pelagic fishery are now included. Estimated annual discard rates that are fitted to by the model have been split into eastern and western components. Factory trawlers are now included in the estimation of annual discard rates when there is observer coverage. FIS abundance indices for east and west fleets are removed from the base-case and are considered as a sensitivity.
RAG Comments on data	There were questions regarding the discarding of silver warehou on factory trawlers. For this assessment discard estimates from factory trawlers were incorporated into the overall estimate where observers were present. CPUE assumes targeting practices have not changed over time. Industry members suggested larger vessels leaving the fleet have changed the dynamics of the fishery. CPUE standardisation may not adequately account for this.

RAG Comments on assessment	Base-
	Under the assumption that there was an increase in the stock size in 2016 \& 2017 and that the stock will return to average recruitment, the spawning biomass in 2019 under the base-case is estimated to 31% of B_{0}.
	Previous assessments (Day et al 2012, 2015) have shown the pattern of optimistic recent recruitments and increases in stock status have not been realised in subsequent assessments. The recent estimates of recruitment and stock size have been revised downwards in subsequent assessments.
	An application of the Tier 1 harvest control rule with a target depletion of 48 per cent leads to the RBCs below. Assuming average recruitment, the biomass is projected to reach target by 2030.
	2019: 942 t 2020:1353t 2021:1420t
	Long-term: 1773 t
	Predicted RBCs under average recruitment are well above current catch levels ($\sim 350 \mathrm{t}$). Average recruitment has not been observed since 2003.
	Variations to future recruitment
	At SERAGs request (Sept 2018), projections were carried out using two scenarios of below average recruitment assuming catches continue at current levels (~350 t):
	Mean of last five years: stock status improves more slowly ($\sim 31 \% \mathrm{~B}_{0}$ in 2021). This was used as the scenario in the 2015 assessment.
	Mean of the lowest three of the last five years: spawning biomass stabilises at around $27 \% \mathrm{~B}_{0}$
	A retrospective analysis was undertaken to determine whether the pattern of optimistic recruitment revised down in previous assessments was still present in the 2018 assessment structure.
	The 2018, 2016 and 2014 scenarios all saw increases in estimated stock depletion levels in the final two or three years of the assessment. That pattern was not present in the 2012 assessment.
	Estimated recruitment deviations from the 2014 and 2016 scenarios are revised downwards in subsequent assessments.
	Figure 5 (bottom panel). Retrospective analysis of relative spawning biomass. Two years of data were removed from the base case and the model retuned to produce the assessments for 2016, 2014 and 2012 using the same model structure at the 2018 base case
	1980 1990 2010 2000

	Dr Burch suggested the increase in biomass in the last two years could be due to an overestimation of CPUE in the last two years. Uncertainty around assessment The depletion from an MCMC in 2019 of 30.4% is slightly lower than he MLE estimate of $31.3 \% \mathrm{~B}_{0}$. MCMC analysis suggests the probability that depletion was $<20 \% \mathrm{~B}_{0}$ between 2013 and 2016 was between 68% and 75%. RBC advice In forming RBC advice, the RAG recommended using projections that use the low recruitment scenario (average of the last five years). This was also used in the 2015 assessment. Consistent with the approach in 2015, the RAG requested running a series of fixed catch projections under the 'low' recruitment scenario to assist in forming RBC advice; Harvest control rule catches, current TAC, current catches, 450 t and 750 t . Under the low recruitment scenario, catches below 600 t mean the biomass is expected to gradually increase.
Projected Biomass (including confidence intervals)	 Figure 6 Time trajectory of spawning biomass depletion (with 95 per cent Cl) under poor recruitment and catches maintained at current levels.

RAG Recommendations		
Recommended Biological Catch (2019/20)	N/A	Undercatch: 10\% Overcatch: 10\% Discount Factor: N/A
Is a MYTAC recommended for future seasons? Indicate whether the multi-year recommendation is a RBC (e.g. based on Tier 1 model output) or TAC (e.g. a rollover of catch)	Yes. Under the low recruitment scenario, catches below 600 t mean the biomass is expected to gradually increase. The RAG recommended setting a 3-Year TAC based on the constant catch scenarios table copied above.	
Probability of RBC (or other levels of catch) causing a decline below limit reference under proposed management Species that follow a HS rule that has been MSE tested will have a "very unlikely" score in this section (i.e. $P<10 \%$).	RBC recommendation: Alternative Catch Scenarios: Under the low recruitment scenario, catches below 600 t mean the biomass is expected to gradually increase and the risk of falling below the limit reference point is low.	
Research Catch Allowance Included/Addition to TAC	0 t	
Implications for companion species / TEPs / multi-species fisheries	Silver warehou are caught as bycatch when fishing for blue grenadier. There is a risk that an increase in blue-grenadier catches in the winter spawning fishery could see an increase in catches/discards of silver warehou.	

Catch and TAC							
Assessment Year	2013	2014	2015	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	2018	
Tier / MYTAC	MYTAC	MYTAC	Tier 1	MYTAC	MYTAC	Tier 1	
Stock Status	Not assessed	Not assessed	40%	Not assessed	Not assessed		
SESSF Season	$2014 / 15$	$2015 / 16$	$2016 / 17$	$2017 / 18$	$2018 / 19$	$2019 / 20$	
RBC	MYTAC	MYTAC	1958	604	604		
Agreed TAC	2326	2417	1209	605			
TAC after unders/overs	2553	2643	1449	716			
\% TAC caught	14%	11%	25%	60%			

biological reference points - quantitative values, often stated in terms of fishing mortality or stock size, that summarise either a desired state for the stock (a target) or a state of the stock that should be avoided (a threshold).
biomass - the total weight of all the fish in a stock or a component of a stock.
Buim (biomass limit reference point) - The point beyond which the risk to the stock is regarded as unacceptably high.

Bmey (biomass at maximum economic yield) - Average biomass corresponding to maximum economic yield.

Вмsу (biomass at maximum sustainable yield) - Average biomass corresponding to maximum sustainable yield.

Btarg (target biomass) - The desired biomass of the stock.
B_{0} (mean equilibrium unfished biomass) - Average biomass level if fishing had not occurred.
catch-per-unit effort (CPUE) - the number or biomass of fish caught as by a unit of fishing effort. Often used as a measure of fish abundance.

Ctarg (Catch target) - The target catch level.
CElim (CPUE limit reference point) - the point below which CPUE is too low and can indicate stock depletion.
CEtarg (CPUE target) - The target CPUE rate.
confidence interval - also called the confidence bound, a range of values within which the true value most likely lies.
F (fishing mortality) - The instantaneous rate of fish deaths due to fishing a designated component of the fish stock. F reference points may be applied to entire stocks or segments of the stocks and should match the scale of management unit. Instantaneous fishing mortality rates of $0.1,0.2$ and 0.5 are equivalent to 10 per cent, 18 per cent and 39 per cent of deaths of a stock due to fishing.

Flim (fishing mortality limit reference point) - The point above which the removal rate from the stock is too high.

Fmey (fishing mortality at maximum economic yield) - The fishing mortality rate that corresponds to maximum economic yield.

Fmsy (fishing mortality maximum sustainable yield) - The fishing mortality rate that achieves maximum sustainable yield.

Ftarg (fishing mortality target) - The target fishing mortality rate.
index of abundance - numerical value used to demonstrate the trend in relative abundance over time.

Markov Chain Monte Carlo (MCMC) - an approach to estimate uncertainty in a statistical model by beginning with a final model and shifting its associated parameter values slightly to recalculate the model's goodness of fit thousands or millions of times.

Maximum economic yield (MEY) - The sustainable catch level for a commercial fishery that allows net economic returns to be maximised. For most practical discount rates and fishing costs, MEY implies that the equilibrium stock of fish is larger than that associated with maximum sustainable yield (MSY). In this sense, MEY is more environmentally conservative than MSY and should, in principle, help protect the fishery from unfavourable environmental impacts that could diminish the fish population.
Maximum sustainable yield (MSY) - The maximum average annual catch that can be removed from a stock over an indefinite period under prevailing environmental conditions. MSY defined in this way makes no allowance for environmental variability, and studies have demonstrated that fishing at the level of MSY is often not sustainable.

Mortality - Deaths from all causes (usually expressed as a rate or as the proportion of the stock dying each year).

Overfished - A fish stock with a biomass below the biomass limit reference point. 'Not overfished' implies that the stock is not below the threshold.
Overfishing, subject to - A stock that is experiencing too much fishing, and the removal rate from the stock is unsustainable. Also:

- Fishing mortality (F) exceeds the limit reference point (FLIM). When stock levels are at or above Bmsy, Fmsy will be the default level for FLim.
- Fishing mortality in excess of Fum will not be defined as overfishing if a formal 'fish down' or similar strategy is in place for a stock and the stock remains above the target level (Btarg).
- When the stock is less than Bmsy but greater than Blim, Flim will decrease in proportion to the level of biomass relative to Bmsy.
- At these stock levels, fishing mortality in excess of the target reference point ($\mathrm{F}_{\text {TARG }}$) but less than Flim may also be defined as overfishing, depending on the harvest strategy in place and/or recent trends in biomass levels.
- Any fishing mortality will be defined as overfishing if the stock level is below Blim, unless fishing mortality is below the level that will allow the stock to recover within a period of 10 years plus one mean generation times the mean generation time, whichever is less.
spawning stock biomass (SB) - the total weight of all adult (reproductively mature) individuals in a population. Also called spawning biomass.

SBмяу - Spawning or 'adult' equilibrium biomass at maximum sustainable yield.
stock assessment - an evaluation of the past, present and future status of the stock that includes a range of life history characteristics for a species, such as the geographical boundaries of the population and the stock; information on age, growth, natural mortality, sexual maturity and reproduction, feeding habits and habitat preferences; and the fisheries pressures affecting the species.

