Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery: 2013

© Copyright Commonwealth Scientific and Industrial Research Organisation ('CSIRO') Australia 2014.

All rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of CSIRO.

The results and analyses contained in this Report are based on a number of technical, circumstantial or otherwise specified assumptions and parameters. The user must make their own assessment of the suitability for its use of the information or material contained in or generated from the Report. To the extent permitted by law, CSIRO excludes all liability to any party for expenses, losses, damages and costs arising directly or indirectly from using this Report.

Tuck, Geoffrey N. (Geoffrey Neil).
Stock assessment for the southern and eastern scalefish and shark fishery: 2013.

ISBN 978-1-4863-0337-3

Preferred way to cite this report

Tuck, G.N. (ed.) 2014. Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2013. Part 2. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 487 p.

Acknowledgements

All authors wish to thank the science, management and industry members of the slopedeepwater, shelf, GAB and shark resource assessment groups for their contributions to the work presented in this report. Authors also acknowledge support from Fish Ageing Services (for fish ageing data) and AFMA (for the on-board and port length-frequencies, and in particular John Garvey, for the log book data). Jemery Day and Louise Bell are also greatly thanked for their assistance with the production of this report and Tim Ryan and Bruce Barker for the cover photographs of SESSF fish. Sally Wayte and Neil Klaer are thanked for their enormous contribution to the assessment and management of SESSF stocks.

Cover photographs

Front cover, jackass morwong, orange roughy, blue grenadier, and flathead.

Report structure

Part 1 of this report describes the Tier 1 assessments of 2013. Part 2 describes the Tier 3 and Tier 4 assessments, catch rate standardisations and other general work contributing to the assessment and management of SESSF stocks in 2013.

Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery: 2013

Part 2: Tier 3 and Tier 4, catch rate standardisations and other work contributing to the assessment and management of SESSF stocks in 2013

G.N. Tuck
June 2014
Report 2011/0814

Australian Fisheries Management Authority

Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery: 2013
 Part 2

Table of Contents

15. TIER 1 CPUE FORECASTS FOR MULTI-YEAR TAC BREAKOUT 1
Neil Klaer
15.1 SUMMARY 1
15.2 Methods 1
15.3 Results 3
15.4 ACKNOWLEDGEMENTS 6
15.5 References 6
16. ESTIMATED CONVERSION COEFFICIENTS FOR LCF TO TOT LENGTH MEASUREMENTS FOR GUMMY SHARK, SCHOOL SHARK, ELEPHANT FISH AND DISCUSSION OF FURTHER NEEDS 7
Robin Thomson and Miriana Sporcic
16.1 InTRODUCTION 7
16.2 DATA \& METHODS 8
16.3 RESULTS \& CONCLUSIONS 11
16.4 FURTHER WORK 12
16.5 AcKNOWLEDGENTS 13
16.6 REFERENCES 13
17. YIELD, TOTAL MORTALITY VALUES AND TIER 3 ESTIMATES FOR SELECTED SHELF AND SLOPE SPECIES IN THE SESSF 2013 14
Neil Klaer
17.1 SUMMARY 14
17.2 Methods 15
17.3 Results 23
17.4 ACKNOWLEDGEMENTS 48
17.5 REFERENCES 48
17.6 APPENDIX 1 - DETAILS OF VALUES THAT WERE USED AS ESTIMATES OF TOTAL Z (SHOWNHIGHLIGHTED)51
18. CATCH RATE STANDARDIZATIONS FOR SELECTED SPECIES FROM THE SESSF (DATA 1986 - 2012) 57
Malcolm Haddon
18.1 SUMMARY 57
18.2 Introduction 58
18.3 Methods 59
18.4 ReSUlTS 62
18.5 ACKNOWLEDGEMENTS 273
18.6 Bibliography 273
19. STANDARDIZATION OF BIGHT REDFISH IN THE GAB 2000/2001 - FEB 2012/2013. CATCH RATE UPDATE. 276
Malcolm Haddon
19.1 SUMMARY 276
19.2 Methods 276
19.3 Results 277
19.4 CONCLUSION 278
19.5 AcKNOWLEDGEMENTS 278
20. STANDARDIZATION OF DEEPWATER FLATHEAD IN THE GAB 2000/2001 - FEB 2012/2013. CATCH RATE UPDATE. 284
Malcolm Haddon
20.1 SUMMARY 284
20.2 METHODS 284
20.3 ReSULTS 285
20.4 CONCLUSION 286
20.5 Acknowledgements 286
21. STANDARDIZED CATCH RATES FOR THE SESSF GUMMY SHARK FISHERY: DATA FROM 1976-2012 294
Malcolm Haddon
21.1 SUMMARY 294
21.2 Introduction 295
21.3 Methods 296
21.4 ReSUlts 303
21.5 Extra Tables 324
21.6 AcKNOWLEDGEMENTS 327
21.7 BibLIOGRAPHY 327
22. BLUE EYE FISHERY CHARACTERIZATION 329Malcolm Haddon
22.1 SUMMARY 329
22.2 Introduction 330
22.3 Methods 330
22.4 Results 332
22.5 DISCUSSION 350
22.1 AcKNOWLEDGEMENTS 350
22.2 References 350
23. TIER 4 ANALYSES IN THE SESSF, INCLUDING DEEP WATER SPECIES. DATA FROM 1986-2012 352
Malcolm Haddon
23.1 SUMMARY 352
23.2 InTRODUCTION 354
23.3 Methods 355
23.4 Results for Tier 4 Species 363
23.5 Deep-Water Tier 4 Results 391
23.6 NON-TIER 4 Species 428
2.2 MIRROR DORY (DOM - 37264003 - ZENOPSIS NEBULOSUS) 442
2.3 Silver Warehou (TRS - 37445006 - Seriolella punctata) 458
23.1 AcKNOWLEDGEMENTS 460
23.2 Bibliography 460
24. SAW SHARK AND ELEPHANT FISH TIER 4 ANALYSES (DATA FROM 1980 - 2012) 462
Malcolm Haddon
24.1 SUMMARY 462
24.2 Introduction 463
24.3 Methods 464
24.4 Results 468
24.5 DISCUSSION 477
24.6 AcKNOWLEDGEMENTS 477
24.7 TABLES 478
24.8 BibLIOGRAPHY 480
25. BENEFITS 481
26. CONCLUSION 482
27. APPENDIX: INTELLECTUAL PROPERTY 485
28. APPENDIX: PROJECT STAFF 486

15. Tier 1 CPUE forecasts for multi-year TAC breakout

Neil Klaer
CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart, TAS 7001, Australia

15.1 Summary

This chapter examines whether recent actual CPUE trends are consistent with projected trends from the most recent Tier 1 stock assessments. Only species not planned for assessment this year are examined, to allow RAG judgement of whether as assessment may be warranted. Of the species examined, only two showed actual CPUE trends that fell outside of the 95% confidence bounds projected from the stock assessment jackass morwong and silver warehou. Jackass morwong had results for two areas, and it was the result from the area with the least catch that fell just outside of the bounds, so this species was judged not to have broken out. Silver warehou however, only had one CPUE indicator series, and this had unambiguously broken out for the past two years.

15.2 Methods

To generate forecast CPUE from stock synthesis version 3 (SS) requires a run of the most recent stock assessment, updated with recent actual catches. Results were sought for SESSF school whiting, morwong and silver warehou. CPUE was not used for orange roughy, and shark assessments do not use SS, so this procedure does not apply to those.

Running this kind of forecast is very fast because no estimation is required. However, there is a small amount of set-up time. SS3 does not produce expected values for each CPUE index in standard forecasts, so assessment authors were provided with the following instructions:

```
Edit starter.ss
1 # 0=use init values in control file; 1=use ss3.par
0 # Turn off estimation for parameters entering after this phase
Edit ss3.dat
Change end year on line 3 to the most recently available data - this
year it is 2011.
Add the most recent actual catch estimates for the years to 2011 to
the catch series using the attached CDRsum.xlsx file - assume fleet
splits as per your last projections (don't forget to increase the
number of lines of catch data.
Add lines to the end of recent abundance indices so that they finish
in 2011. Please use values of 1.0 and a CV of 999.0 - here are
examples used for index 9 for tiger flathead:
                                    2007 1 9 1.137 0.1539
                                    2008 1 9 1.0583 0.1538
                                    2009 1 9 1.0346 0.1553
    2010 1 9 1.0000 999.0
    2011 1 9 1.0000 999.0
Edit ss3.par
Add another 0.0000000000 to the end of rec devs for every extra year
of data you have added.
Run ss3 -nohess
Look in report.sso under the heading INDEX_2 and there should be
estimates of CPUE for all years to 2011 for recent abundance indices.
```


15.3 Results

Observed CPUE values used for the last stock assessment are shown as blue circles. Observed values as calculated in 2013 (Haddon 2013) for years since those used in the assessment are shown as red circles. The red series has been rescaled to the value of the last point in the blue series.

The only series that have been examined where recent observed CPUE values have landed outside of the 95% confidence interval of the data as predicted by the last stock assessment are for jackass morwong Tas trawl, and silver warehou trawl. As only one third of the catch of jackass morwong was taken by the Tas trawl fleet, and the NSW and Vic trawl index was not broken out, a case may be made for not breaking out jackass morwong. However, the breakout for silver warehou is clear and unambiguous.
15.3.1 Jackass morwong

Jackass morwong: NSW Vic trawl CPUE

Jackass morwong: Tas trawl CPUE

15.3.2 Silver warehou

Silver warehou: Trawl CPUE

15.3.3 School whiting

15.4 Acknowledgements

Thanks to all of the Tier 1 stock assessment authors for providing forecast CPUE estimates: Geoff Tuck, Sally Wayte, Jemery Day, Rich Little.

15.5 References

Haddon 2013. Catch Rate Standardizations for Selected Species from the SESSF (data 1986 - 2012). Draft report the Shelf and Slope RAG, 2013.

16. Estimated conversion coefficients for LCF to TOT length measurements for gummy shark, school shark, elephant fish and discussion of further needs

Robin Thomson and Miriana Sporcic

CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart, TAS 7001, Australia

16.1 Introduction

The AFMA Observer Program and its predecessor the Integrated Scientific Monitoring Program (e.g. Knuckey et al. 2001; Talman et al. 2003) collected length information from commercial catches for quota species to facilitate stock assessments. Length information for the four shark quota species: school shark, gummy shark, elephant fish and saw shark have been collected using a range of measurements, of which total length (TOT), partial length (PAR) and LCF (fork length) predominate (Figure 16.1 and Table 16.1).

Figure 16.1. Partial length (PAR), fork length (LCF) and total length (TOT) as measured by the AFMA Observer Program (taken from the 'GHATF - Gillnet Observers Manual 2008, AFMA Observer Program'; GHATF, 2008).

Table 16.1. Number of sharks measured by the AFMA Observer Program over all years, regions, gear types and for both sexes (and sex unknown). The type of measurement (see Figure 16.1) is shown. Blanks indicate zero samples. Grey shading indicate samples that can now be used in stock assessments.

Type	School shark		Gummy shark		Elephant fish		Sawsharks	
	Port	Onboard	Port	Onboard	Port	Onboard	Port	Onboard
TOT		3114		48848		6775		9663
PAR	18513	642	55645	2095	7804	2	2847	354
LCF	1492	1519	4640	10060		1272		947
Unknown	2	2	931^{*}	39				10
STL			204	36				1
Other				4				5

* All net captures, 794 sharks measured in Streaky Bay captured in Central South Australia during 2009 and 137 unsexed sharks measured in an unknown port from an unknown zone of capture during 1999.

In order to use length data in stock assessments, it is necessary to convert all length measurements to a single type (TOT), for which growth curves are available. It is evident that estimated conversion coefficients are required for (i) PAR to TOT and (ii) LCF to TOT for all four shark quota species (Table 16.1). These coefficients are available for PAR to TOT for school and gummy shark (Walker et al. 2009) but until now (this document) none were available for LCF to TOT. However, when all PAR measurements for school and gummy shark are converted to TOT, and plotted alongside the length frequency for TOT measurements, the length frequencies differ more than would be expected (Figure 16.2). This may be due to changes, over time, in (i) the way sharks are processed before landing (ii) how a PAR length measurement is made, or (iii) other factors which may influence which fish are landed and which are measured onboard. It would be desirable to estimate new PAR to TOT conversion coefficients for school and gummy sharks to investigate this apparent change.

16.2 Data \& methods

Observer data collected by the AFMA Observer Program under the banner "biological samples" were provided by John Garvey (AFMA, Canberra). The data included a unique identifying code for each individual shark "Bio.Id", which was used to identify LCF and TOT measurements taken from single individuals. Apart from one gummy shark that had a PAR measurement, all measurements were of type LCF and TOT. See Figure 16.1 for the three measurements used. Note that the data shown in Table 16.1 and Figure 16.2 relate to commercially caught sharks, sampled by the Observer Program, for which a single measurement were taken. The data shown in Table 16.2 and Figure 16.3 relate to sharks for which dual measurements were taken. Whether or not these measurements were also included in the main Observer Program database (and if so, whether each individual shark appears once, or twice) is unknown.

Apart from one gummy shark measured in January 2007, and one school shark measured in September 2009, data for all species were collected between 2011 and 2013. All but eight gummy sharks were measured during 7-10 Feb 2013 or 6-27 Oct 2012. All but five school shark samples were measured between 6 Oct-20 Nov 2012 and 7-10 Feb 2013. Apart from four elephant fish samples taken on January 2011, all were sampled between 19-27 Oct 2012.

Gummy shark were mostly sampled from Eastern Bass Strait, while school shark were mostly sampled from Western Bass Strait (Table 16.2). By contrast, elephant fish were equally sampled from Eastern Bass Strait and Eastern Tasmania (Table 16.2).

Table 16.2. Sample sizes by shark region (zone) of capture. WSA: Western South Australia; CSA: Central South Australia; WBS: Western Bass Strait; EBS: Eastern Bass Strait; WTas: Western Tasmania; ETas: Eastern Tasmania

Region	Gummy shark	School shark	Elephant fish
WSA	1	1	
CSA	2		4
WBS	43	24	4
EBS	110	20	16
WTas	7	5	
ETas	65	2	16

Figure 16.2. Length frequencies for school shark and gummy shark collected by the AFMA Observer program. Top panel: All data collected as total length (TOT);middle panel: All data collected using partial length (PAR), and bottom panel: PAR measurements after conversation to TOT.

The R statistical software was used to fit linear regressions based on Ordinary Least Squares to all double-measured gummy shark (Mustelus antarcticus), school shark (Galeorhinus galeus) and elephant fish (Callorhinchus mili). Estimated parameters (a; b) were used to convert LCF length (cm) to TOT length (cm) for stock assessment purposes using the formula: $\mathrm{TOTi}=\mathrm{a}+\mathrm{b}$ LCFi, for shark i (Table 16.3).

16.3 Results \& conclusions

The estimated conversion coefficients for gummy shark and school shark appear reliable, with R^{2} statistics close to 1 - these can be used with confidence to convert LCF to TOT lengths for stock assessment purposes (Table 16.3; Figure 16.3).

Table 16.3. Estimated coefficients of linear regressions between LCF and TOT measurements for gummy shark school shark and elephant fish. R^{2} statistics and sample sizes are also shown. "na": not available (no samples)

Common name	Intercept (a)	Slope (b)	R^{2}	Sample size
Gummy shark	5.166	1.085	0.99	228
School shark	2.915	1.107	0.98	52
Elephant fish	14.185	1.004	0.85	40
Saw shark	na	na	na	0

Estimated coeffcients for saw shark could not be obtained because this species was not sampled. The sample size for elephant fish is relatively small and measurements show greater variability than those of other two species. In particular, two measurements with low LCF appear unduly influential (Figure 16.3). Therefore, the estimated coefficients should not be used to convert from LCF to TOT lengths for elephant fish.

Figure 16.3. Length measurements (cm) of the LCF and TOT type for individual sharks (circles) and an estimated -linear regression (line) for gummy shark, school shark and elephant fish.

16.4 Further work

1. The variability in the relationship between LCF and TOT for elephant fish presumably relates to differences in the way these sharks are processed. It would be useful for sharkRAG to discuss what factors might influence processing (e.g. different methods on different boats, or at different ports or different sized fish). A larger sample size which records any factor that may influence processing would be of use.
2. A sawshark relationship, using dual LCF-TOT measurements made for these sharks, would be of great value to any future assessment of these (two) species.
3. Dual PAR-TOT measurements for all four species would be of value to stock assessments as the port length collections cannot (at present) be used.

16.5 Acknowledgents

Thanks to both John Garvey (AFMA) and Selvy Coundjidapadam (AFMA) for providing the data on which this work is based.

16.6 References

GHATF (2008). GHATF - Gillnet Observers Manual 2008, AFMA Observer Program.
Knuckey, I. and Gason, A.S.H. (2001). Development of a "design model" for an adaptive ISMP sampling regime. Marine and Freshwater Resources Institute Integrated Scientific Monitoring Program. Final report to the Australian Fisheries Management Authority December 2001. ARF Project R99/1502

Talman, S.G., Brown, L.P., Gason, A.S.H., and Berrie, S. (2003). Gillnet, Hook and Trap Fishery Integrated Scientific Monitoring Program 2002/2003 Report to the Australian Fisheries Management Authority.

Walker, T. I., and Gason, A. S. (2009). SESSF monitoring data management, reporting and Documentation 2006/07. Final report to Australian Fisheries Management Authority Project No. R2006/812. (June 2009). vii + 177 pp. (Marine and Freshwater Fisheries Research Institute, Fisheries Victoria, Department of Primary Industries: Queenscliff, Victoria, Australia).

17. Yield, total mortality values and Tier 3 estimates for selected shelf and slope species in the SESSF 2013

Neil Klaer
CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart, TAS 7001, Australia

17.1 Summary

This chapter updates yield analyses presented in Klaer (2012) for major commercial species caught in the Southern and Eastern Scalefish and Shark Fishery (SESSF) on the shelf and slope. Much of the data processing and analysis has been automated, following procedures documented particularly in Thomson (2002a) and Klaer et al. (2008).

Yield and total mortality estimates are provided for major commercial fish species from the shelf and slope in the South East Fishery. Yield estimates were made using a yield-per-recruit model with the following input: selectivity-at-age, length-at-age, weight-at-age, age-at-maturity, and natural mortality. Total mortality values corresponding to various reference equilibrium biomass depletions were calculated for each species.

Recent average total mortality was estimated from catch curves constructed from length frequency information. Length frequency data were from ISMP port and/or onboard measurements. The method used to estimate total mortality also estimates average fishery selectivity.

Tier 3 calculations use the estimates of total mortality, natural mortality and average recent catches to decide the Recommended Biological Catch (RBC) for next year. The method used to calculate the Tier 3 RBC is described in Klaer et al. 2008 and Wayte and Klaer (2010). An average length procedure was developed and tested (Klaer et al., 2012) for species where only length data and no age samples are available. The average length method is described here, but results not presented because all current Tier 3 species have recent length at age data.

Tier 3 calculations were applied to all SESSF quota species with sufficient available information, regardless of the actual Tier that applies to the species because (a) the Tier that will apply to each species in the current year is decided by the Resource Assessment Groups and (b) it is useful to compare Tier 3 results with those from other Tiers to check performance of the methods.

At the SESSFRAG meeting in early 2012 it was agreed to allow the investigation of an M-based threshold to limit the size of the RBC multiplier produced by Tier 3 analyses. In the results here, $F_{\text {cur }}$ has been limited to a lowest possible value of $M / 10$. Alfonsino was the only species to reach this threshold (last year was alfonsino, John dory and mirror dory).

RBC values for alfonsino, John dory and redfish were greater than reference average catches ($\mathrm{p}>1$). The RBC for mirror dory is lower than the reference catch ($\mathrm{p}<1$) which is a result very different to that presented in 2012. The reason is a considerable shift in the average Z fit for catch curves in the east (Figure 17.26) caused by a change in emphasis in the overall fit from younger to older fish. This highlights the possible catch variability inherent in a data-poor procedure such as the Tier 3.

17.2 Methods

17.2.1 Zoning

The fishery region and zones referred to here are as shown in Figure 17.1.

Figure 17.1. Map of the SESSF showing 8 statistical zones used in analyses here.

17.2.2 Yield analysis

The information required for this calculation was: selectivity-at-age, length-at-age, weight-at-age; age-at-maturity; and natural mortality. The parameters used are shown in Table 17.1. A mix of shelf and slope quota species has been considered and results are presented where the automated process appears to have produced sensible results, and where sufficient data were available.

Table 17.1. Population parameters used for yield analysis.

Species	M	h	L_{∞}	k	t_{0}	a	b	l_{25}	l_{50}	l_{mat}	$a_{\max }$	$\mathrm{cc}_{\text {amax }}$
Alfonsino	0.22	0.75	54.3	0.099	-3.83	0.019	3.061	20	25	19	20	10

For species for which a recent stock assessment has been performed, the population parameters used in the assessment were used here. Otherwise, the primary source of information on population parameters was Smith and Wayte (2002) or, failing that, the Fishbase website (http://www.fishbase.com). A meta-analysis performed by Koopman et al. (2001) was used to provide values for steepness.

17.2.2.1 Length- and weight-at-age

Length-at-age was calculated using the von Bertalanffy growth equation (parameters are l_{∞}, k and t_{0}) and the weight-at-age using the allometric length-weight relationship (parameters are a and b). The von Bertalanffy parameters were calculated using length and age data supplied by the Fish Ageing Services (FAS, Kyne Krusic-Golub pers com). The type of length measurement (e.g. standard length or total length) used was specified in the data. It is assumed the parameters of the length-weight relationship (Smith and Wayte, 2002) use the same measures. The units for these parameters are not specified and do not all appear to use the same units. These were manipulated until the results appeared to be in kg per cm . Parameters that were not available from Smith and Wayte (2002) were obtained from the Fishbase website (http://www.fishbase.org), using values that had been calculated from Australian fish or, if necessary, New Zealand fish.

17.2.2.2 Female length-at-maturity

Length-at-maturity for females ($l_{\text {mat }}$) (which is converted into a knife-edged function of age using the calculated lengths-at-age) was obtained, where possible, from Wayte and Smith (2002). If separate values were not available for males and females, that for both sexes combined was used. In some cases several different values were available and an arbitrary selection was made - when there were three of more values the median value was chosen.

17.2.2.3 Natural mortality

Natural mortality (M) values were obtained from Smith and Wayte (2002) or by calculating the median of the values presented by Bax and Knuckey (2001). The value of M for John dory was updated by the Shelf Research Assessment Group in 2005 based on an additional meta-analysis performed by Matt Koopman. The value of M for tiger flathead was updated for the 2010 stock assessment (Klaer, 2011b).

17.2.2.4 Selectivity

A logistic selectivity curve is assumed for all species. Selectivity parameters $\left(l_{25}, l_{50}\right)$ were drawn from Bax and Knuckey's calculated selectivity factors. All parameters used in the present investigation apply to a 90 mm trawl mesh (except for school whiting where 42 mm has been assumed) and non-trawl gear types are not considered. Values were not available, from Bax and Knuckey, for John dory or silver trevally. Those for mirror dory were applied to John dory because, of all the quota species, mirror dory are most like John dory in shape.

The selectivity parameters used in this study have been estimated from an empirical relationship between fish size and mesh size derived from covered cod end (or trouser haul) experiments on a subset of the species. These pertain purely to gear selectivity, which is not the function often referred to in stock assessments as "selectivity". Fishers are able to target fish of a particular size by fishing in particular areas and in particular different depths -- all SEF quota shelf-associated species show a pattern of larger fish being caught at greater depths. No account is taken in this study of how trawl selectivity changes as a function of gear design or gear deployment (e.g. changing door
separation with depth) that have been shown to exert large influences on overall selectivity in other studies.

It has been suggested that practices such as double bagging might reduce the selectivity of commercial trawls below that expected for a 90 mm mesh cod end, however there was no evidence for this, with the possible exception of school whiting and redfish off Eastern Victoria.
The "selectivity" estimated in stock assessment models is a function of both gear selectivity, targeting by the fishery and availability of fish to being caught.

17.2.2.5 Maximum age

Maximum observed age ($a_{\max }$) values were selected after examining available aged otolith samples. As the maximum age is treated as a plus group, a maximum age for catch curve analysis (ccamax $)$ is also required that is normally at least one age less than the maximum. This was chosen after examination of age samples from the last 5 years.

17.2.2.6 Stock-recruit relationship

A Beverton-Holt stock-recruit relationship is assumed using the single-parameter formulation suggested by Francis (1992a). The value of this parameter (steepness - h) was investigated by Koopman et al. (2001) using meta-population analysis. The histograms presented by Koopman et al. were examined and likely figures for steepness chosen. The default figure of 0.75 suggested by Francis (1992b) is used when the results of Koopman et al. do not suggest a clear pattern.

17.2.2.7 Management reference points

Using virgin biomass estimates provided by stock reduction analysis in combination with yield-perrecruit analysis, a number of common F-based management reference point values were calculated. While $F_{0.1}$ (Gulland and Boerema 1973) and $F_{\text {spr30 }}$ (or $F_{30 \% \text { SPR, Gabriel et al. 1989) are reasonably }}$ widely known, the method used to calculate $F_{\text {msy }}$ is given below (from Klaer 2006).

Fisheries management decisions are often based on abundance relative to target and limit reference points. The most common reference point is the population size where maximum sustainable yield (MSY) is achieved. The fully-selected fishing mortality corresponding to MSY, $F_{\text {msy }}$, is defined as the instantaneous rate of fishing mortality at which yield is maximized, i.e.:
$\left.\frac{d Y(F)}{d F}\right|_{F_{\text {uSY }}}=0$
where $Y(F)$ is yield as a function of fully-selected fishing mortality, i.e.:

$$
Y(F)=\tilde{Y}(F) R(F)
$$

$\tilde{Y}(F)$ is yield-per-recruit as a function of F, and
$R(F)$ is recruitment as a function of F.
Yield-per-recruit is defined according to the formula:
$\tilde{Y}(F)=\sum_{s} \sum_{a=0}^{x} w_{a}^{s} \frac{S_{a}^{s} F}{Z_{a}^{s}(F)} N_{a}^{s}(F)\left(1-e^{-Z_{a}^{s}(F)}\right)$
where $w_{a}^{s} \quad$ is the weight of an animal of sex s and age a,
$S_{a}^{s} \quad$ is the selectivity for animals of sex s and age a,
$Z_{a}^{s}(F)$ is the total mortality on fish of sex s and age a,
$Z_{a}^{s}(F)=M+S_{a}^{s} F$
$N_{a}^{s}(F)$ is the number of fish of sex s and age a relative to the number of animals of age 0 (both sexes combined):
$N_{a}^{s}(F)= \begin{cases}0.5 & \text { if } a=0 \\ N_{a-1}^{s}(F) e^{-Z_{a-1}^{s}(F)} & \text { if } 0<a<x \\ N_{x-1}^{s}(F) e^{-Z_{x-1}^{s}(F)} /\left(1-e^{-Z_{x}^{s}(F)}\right) & \text { if } a=x\end{cases}$
$x \quad$ is the maximum age-class.
The recruitment as a function of F depends on the assumed form of the stock-recruitment relationship, e.g.:
$R(F)=\frac{S(F)}{\alpha+\beta S(F)}$
where $S(F)$ is spawner biomass as a function of F :
$S(F)=\tilde{S}(F) R(F)$
$\tilde{S}(F)$ is spawner biomass-per-recruit as a function of F :
$\tilde{S}(F)=\sum_{a=1}^{x} f_{a} N_{a}^{\mathrm{fem}}(F)$
$f_{a} \quad$ is fecundity as a function of age.

17.2.3 Catch curves

17.2.3.1 Data

This investigation used length frequency data from ISMP port measurements (eg Knuckey et al, 2001). For a given year, fleet and population (see below for further detail) length frequencies are catch-weighted and summed to give annual length frequencies.

Age and length data were obtained from the Central Ageing Facility. Age-length keys (ALKs) were constructed from these data.

Two methods were used to convert length frequencies data into age frequencies: ALKs and chopping. The ALK method was used, where possible, to generate age frequencies data by multiplying the length frequency for a given year by the ALK for that same year. No allowances were made for inadequate sampling of an ALK so that, if no age samples were taken from a particular length class then all samples from this length class in the length frequency were ignored. This occurs because the ALK has a zero for all ages for that length class so that the length frequency is always multiplied by zero. 'Chopping' involves using the von Bertalanffy to chop the length frequency into age classes. Catch curve analysis was applied to all resulting age frequencies. In the future it may be desirable to use a chopping method that allows variance in length-at-age about the von Bertalanffy curve.

Age samples from the 2010 and 2011 calendar years became available for both mirror dory and John dory during October 2011, and were used to provide age-based Tier 3 results here for both species. In both cases, all samples from 2010 and 2011 were used to provide an average age-length key that was applied to length data from the most recent 5 years.

17.2.3.2 Fleets and Populations

The difference between a fleet and a population is that although the length frequency data are separated for both, the ALK data are separated into populations but are combined across fleets.
For species except tiger flathead, redfish, spotted warehou and blue grenadier, the length frequency data were separated into trawl and non-trawl (including Danish seine) fleets. Tiger flathead was separated into trawl and Danish seine. Non-trawl data for redfish was ignored so that there was only one fleet - a trawl fleet. Spotted warehou was divided into trawl and non-trawl fleets but any Danish seine records were ignored. For blue grenadier the fleets were separated into the summer nonspawning trawl fishery and the winter spawning trawl fishery.

Redfish was divided into two populations - north and south of $36^{\circ} \mathrm{S}$. Population 1 is north and Population 2 south of this latitude.

As there was no recent age data for redfish, all available age data was combined into a single average ALK for that species.

17.2.3.3 Automated catch curve analysis

The method of $F_{C U R}$ estimation used is an improved method of catch-curve estimation which involves fitting an equilibrium age-structured production model to the most recent five years of agecomposition data to estimate $F_{C U R}$ and two selectivity parameters. This method accounts for selectivity-at-age, and integrates over all years used in the estimation. Estimated numbers at age in each year are fitted to the observed using simple sum of squares difference as a goodness of fit measure. The advantages of this method over traditional catch-curve methods are that averaging of annual mortality estimates is not required to obtain an estimate of $F_{C U R}$ and all selected ages are used, rather than just the assumed fully-selected ages, as selectivity is taken into account in the estimation.

Specifically, the population model is of the form:

$$
N_{a}=\left\{\begin{array}{cc}
1 & \text { if } a=0 \\
N_{a-1} e^{-\left(s_{a-1} F_{\text {CuR }}+M\right)} & \text { if } 0<a<=a_{\max }
\end{array}\right.
$$

where the N_{a} are the numbers-at-age a, s_{a} is the (estimated) selectivity-at-age (assumed to be asymptotic and to follow a logistic curve with two parameters, age at 50% and 95% selectivity), $a_{\text {max }}$ is the maximum age used for catch curve analysis (a value less than maximum age), $F_{\text {CUR }}$ is the estimated rate of current fishing mortality, and M is the assumed rate of natural mortality. The selectivity equation is:

$$
s_{a}=1 /\left(1+\exp \left(-\operatorname{Ln}(19) *\left(a-a_{50}\right) /\left(a_{95}-a_{50}\right)\right)\right)
$$

17.2.4 Average length method

Catch curve analysis relies on measurement of the decline in numbers at age of a population in equilibrium under constant levels of fishing pressure. If equilibrium conditions apply, the slope of the right hand limb of an age frequency distribution can be used to estimate fishing mortality. For some SESSF fish populations, otoliths have not been collected or aged, sometimes because of the physical difficulty in doing so. Some species, for example, have very tiny otoliths that are both difficult to collect and age. Normally, however, all quota species are measured by onboard
observers, or in the port data collection program, so we have reasonably large length frequency samples for most quota species in most years.

The current Tier 3 method for dealing with species with length samples but no age samples is to slice the length-frequency distribution into assumed ages based on the age transitions calculated from the von Bertalanffy parameters, and then apply the standard catch curve analysis to the derived age distribution. This method is not optimal compared to an analysis based on age samples at least because it does not account for the distribution of lengths at age - that the lengths of fish at any age follow a distribution that overlaps with lengths at age for adjacent aged fish.

A procedure has been developed as part of the Reducing Uncertainty in Stock Status (RUSS) project that uses length frequency samples alone to estimate fishing mortality, and is described in detail in Klaer et al. (2012). Management Strategy Evaluation (MSE) testing of the procedure indicated that it works in theory, and provides comparable results to the age-based catch curve method. The greatest disadvantage of the procedure determined by testing was that it produced more variable RBC values than standard catch curve analysis.

The key assumption of the average length method is that the relative number of large fish in the population will reduce as fishing pressure increases. This is intuitively true, and the determination of stock status indicators from average length measurements has a long history (e.g. see Pauly 1984).

The procedure implemented here first requires the selection of a reference length $\left(L_{\text {ref }}\right)$ where the stock can be assumed to be fully selected. By default, $L_{\text {ref }}$ is assumed to be 2 cm greater than the length at 50% selection $\left(S_{50}\right)$, as most species are assumed to have relatively knife-edged selection for Tier 3 analyses. The intention was to select a reference length greater than where selectivity effects occur, but as low as possible to allow the largest sample sizes from existing fishery lengthfrequencies.

Using yield-per-recruit calculations, it is possible to calculate what the average length of the catch above $L_{\text {ref }}$ would be for any level of F (Figure 17.2). To determine current $F\left(F_{\text {cur }}\right)$ that corresponds to $F_{\text {cur }}$ using catch curves, calculate the average length of the catch above $L_{\text {ref }}$, then use the relationship in Figure 17.2 to determine $F_{\text {cur }}$. The average length of the catch at the limit F_{20} and target F_{48} are shown as dotted lines in Figure 17.2.

As all current Tier 3 stocks have size at age data, results using the average length method have not been included in this document.

Figure 17.2. Average length reference point calculations.

17.2.5 Harvest control rule

The method used to calculate the Tier 3 RBC has been improved and is described in Klaer et al. 2008 and Wayte and Klaer (2010). The new Tier 3 control rule that has limit and target fishing levels was implemented and applied for the first time for the 2008 stock assessments.

Figure 17.3. Method for selecting $F_{\text {RBC }}$ based on estimated $F_{\text {cur }}$.
Yield per recruit calculations were used to calculate F values that will reduce the spawning biomass to $20 \%\left(F_{20}\right), 40 \%\left(F_{40}\right)$ and $48 \%\left(F_{48}\right)$ of the unexploited level. The relationship given in Figure
17.3 is then used to assign the value of F_{RBC} using $F_{\text {cur }}$. This relationship has properties similar to the Tier 1 harvest control rule, with F_{20} as the limit and F_{48} as the target fishing mortality rate.

The following formula that adjusts current catch according to the ratio of the intended and current exploitation rates is then used to calculate C_{RBC} :

$$
C_{R B C}=\frac{\left(1-e^{-F_{R B C}}\right)}{\left(1-e^{-F_{c u r}}\right)} C_{c u r}
$$

where $F_{\text {cur }}$ is the estimated current fishing mortality, $C_{\text {cur }}$ is current catch, F_{RBC} is the selected F for the recommended biological catch from the control rule, and $C_{\text {RBC }}$ is the recommended biological catch from the control rule.

It can be seen from the above formula that as the $F_{\text {cur }}$ estimate approaches zero, that the multiplier on C_{cur} exponentially increases to infinity at M. Clearly, it is possible for the control rule to generate very large RBC values that are not realistic, and would not result in good behaviour of the HCR. One method for avoiding such behaviour would be to apply direct limits on possible values for the $C_{\text {cur }}$ multiplier. The upper limit of the multiplier on recent average catch was 1.2 in the previous and first implementation of Tier 3 in the SESSF (Klaer and Thomson 2007). To date there has been no agreement via the RAG process on what direct limits may be applied to the new implementation.

The current SESSF application of harvest control rules includes a TAC change limitation rule that was designed to dampen RBC changes from year to year. This applies to all TACs generated from RBCs. In testing the Tier 3 HCR (Wayte and Klaer 2010), the current SESSF catch change limitation rule was also included, which effectively limits the extreme values that may be generated by the Tier 3 HCR. Testing of the Tier 3 rule showed that it was effective in meeting expected management performance measures in the case where the TAC change limitation rule was applied. If such a change limitation rules was not applied, then it is likely that the Tier 3 behaviour would be considerably degraded.

Good performance of the Tier 3 HCR depends on the application of the catch change limitation rule to avoid extreme behaviour. In practice, when the Tier 3 HCR produces unrealistically high or low RBC values due to (1) noise in population age structure data (2) incorrect fixed value for M (3) incorrect biological assumptions in yield-per-recruit calculations (4) incorrect assumptions about fishery selectivity, the behaviour is limited by the TAC change control rule.

In the past, the actual RBC value generated by the Tier 3 HCR has been criticised if it was well above any of the known historical catch levels. The reason why such values are possible using the current HCR have been described here, and how they are correctly dealt with in the overall TAC setting framework. Unexpectedly large RBC values can be generated using the current HCR simply due to the imprecision in the method used to estimate $F_{\text {cur }}$, and it is probably not possible in a short time-frame to determine whether this is the main cause. To avoid misinterpretation of Tier 3 RBCs, both the RBC as generated by the harvest control rule and also the effectively limited values based on the most recent TAC are reported in this document. I can't see where these are both reported.

A Tier 3 analysis that consistently produces inflated RBC values suggests either that the fishery is having a low impact on the stock, or that some assumptions of the method (e.g. M value) need to be re-examined.

17.3 Results

17.3.1 Yield per recruit analyses

SESSF Automated Data Processing - Per Recruit Calculations: Alfonsino

Fspr20 $=0.479$
F2olen $L=31.765$
F48len $L=34.108$
Bmsy $=0.302$
AvLenRef $=27.000$

Figure 17.4. John dory yield per recruit reference point calculations.

Figure 17.5. Alfonsino yield per recruit reference point calculations.

O. 1
Fspr20 $=0.222$
F2olen $L=47.544$
Fspr48 $=0.147$
F48len $L=48.695$
Fmsy $=0.255$
$\begin{array}{ll}\text { Bmsy }= & 0.301 \\ \text { AvLenRef } & =42.000\end{array}$

Figure 17.6. Mirror dory yield per recruit reference point calculations.

Figure 17.7. Tiger flathead yield per recruit reference point calculations.

```
SESSF Automated Data Processing - Per Recruit Calculations: Gemfish East
```



```
FO. \(1=0.266\)
Fspr20 \(=0.252\)
F2olen \(L=51.476\)
Fspr48 \(=0.114\)
F48len \(L=54.143\)
Fmsy \(=0.238\)
\(\begin{array}{ll}\text { Bmsy }= & 0.220 \\ \text { AvLenRef } & =33.700\end{array}\)
```

Figure 17.8. Gemfish east yield per recruit reference point calculations.

Figure 17.9. Gemfish west yield per recruit reference point calculations.

```
SESSF Automated Data Processing - Per Recruit Calculations: Blue Grenadier
```



```
\[
\begin{array}{ll}
\text { FO.1 } & =0.163 \\
\text { Fspr20 } & =0.244 \\
\text { F20len } & =70.362 \\
\text { Fspr48 } & =0.097 \\
\text { F48len L }=74.511 \\
\text { Fmsy } & =0.226 \\
\text { Bmsy } & =0.221 \\
\text { AvLenRef } & =52.730
\end{array}
\]
```

Figure 17.10. Blue grenadier yield per recruit reference point calculations.

Figure 17.11. Pink ling yield per recruit reference point calculations.

Figure 17.12. Jackass morwong yield per recruit reference point calculations.

Figure 17.13. Ribaldo yield per recruit reference point calculations.

Figure 17.14. Redfish yield per recruit reference point calculations.

SESSF Automated Data Processing - Per Recruit Calculations: Ocean Perch

$$
\begin{array}{ll}
\text { Fo.1 } & =0.080 \\
\text { Fspr20 } & =0.096 \\
\text { F2olen L }=29.279 \\
\text { Fspr48 } & =0.041 \\
\text { F48len L } & =30.899 \\
\text { Fmsy } & =0.082 \\
\text { Bmsy } & =0.248 \\
\text { AvLenRef } & =20.230
\end{array}
$$

Figure 17.15. Ocean perch yield per recruit reference point calculations.

Figure 17.16. Blue-eye trevalla yield per recruit reference point calculations.
$\underset{\mathrm{V}}{\text { S } 2.40}$ SSS Automated Data Processing - Per Recruit Calculations: Silver Trevally


```
F0.1 = 0.083
Fspr20 = 0.121
F2Olen L = 31.827
Fspr48 = 0.048
F48len L = 34.191
Fmsy = 0.100
```


Figure 17 17. Silver trevally yield per recruit reference point calculations.

SESSF Automated Data Processing - Per Recruit Calculations: Spotted Warehou

$0.1=0.379$
Fspr20 $=0.765$
F2olen $L=46.632$
Fspr48 = 0.260
F48len $L=47.844$
Fmsy $=0.536$
$\begin{array}{lll}\text { AvLenRef } & 0.284 \\ = & 42.000\end{array}$

Figure 17.18. Silver warehou yield per recruit reference point calculations.

Figure 17.19. Blue warehou yield per recruit reference point calculations.

```
SESSF Automated Data Processing - Per Recruit Calculations: School Whiting
    2.40 12.07.11 CSIRO
```


FO.1 $=0.809$
Fspr20 $=0.922$
F2olen $L=18.364$
Fspr48 $=0.355$
F48len $L=18.862$
Fmsy $=0.919$
Bmsy $=0.201$
AvLenRef $=17.000$

Figure 17.20. School whiting yield per recruit reference point calculations.

17.3.2 Catch curves

The resulting estimates of Z are shown in Figure 17.21 to Figure 17.37. Average catch curve fits to annual age compositions are shown, as well as plots of the estimated Z value versus year per population and fleet.

The results of catch curve analysis are shown together with the total mortality figures (Z) that resulted in spawning biomasses of 20% and 48% of pristine (dotted horizontal lines).

Figure 17.21. Alfonsino catch curve results.

Figure 17.25. John dory catch curve results.

Figure 17.26. Mirror dory catch curve results.

Figure 17.27. Mirror dory catch curve - previous 2012 result.

Figure 17.28. Flathead catch curve results.

Figure 17.29. Gemfish east catch curve results.

Figure 17.30. Gemfish west catch curve results

Figure 17.31. Blue grenadier catch curve results.

Figure 17.32. Pink ling catch curve results.

Figure 17.33. Jackass morwong catch curve results.

Figure 17.34. Redfish catch curve results

Figure 17.35. Ocean perch catch curve results - where are the SEF1 records?

Figure 17.36. Blue-eye trevalla catch curve results.

Figure 17.37. Silver trevally catch curve results.

Figure 17.38. Silver warehou catch curve results.

Figure 17.39 Blue warehou catch curve results (check SEF2 and SANSFR record counts).

Figure 17.37. School whiting catch curve results.

17.3.3 RBC Calculations

A summary of Z and current F estimates from catch curve analysis is given in Table 17.2, and the F values resulting in 20% and 48% depletion from the previous yield analysis are also shown. Recent Z estimates are taken from the values in Figure 17.21 to Figure 17.37 from age-based estimates from fleets that take the majority of catches. The actual values chosen for averaging are highlighted in Appendix 1.

At the SESSFRAG meeting in early 2012 it was agreed to allow the investigation of an M-based threshold to limit the size of the RBC multiplier produced by Tier 3 analyses. In the results here, $F_{\text {cur }}$ has been limited to a lowest possible value of $M / 10$. Alfonsino, John dory and mirror dory all reached this threshold, so have had the RBC limited by this rule. In the Table limit=no means that particular Tier 3 was unaffected by the limit multiplier - not that it wasn't used. Without the limitation, the RBC values were 2,616 t, 2,131 t and 8,104 t respectively.

At Shelf and Slope RAG October 2012 it was agreed to follow the advice from SESSFRAG in 2011 that non-target species MEY target values may be set to $F_{\text {spr40 }}$ rather than $F_{\text {spr48 }}$. In Table 17.2 the $F_{\text {spr }}$ target used for RBC calculations is highlighted in bold, and the targets for John dory, redfish, silver trevally and blue warehou are now $F_{\text {spr40 }}$. Other species also agreed, but not included in the Tier 3 calculations below were ribaldo and elephant fish.

Table 17.2. F reference points, $Z_{\text {cur }}, C_{\text {cur }}$ and RBC estimates (ribaldo to be included). Limit=no means that particular Tier 3 was unaffected by the limit multiplier - not that it wasn't used

Species	$F_{\mathrm{spr} 20}$	$F_{\mathrm{spr} 40}$	$F_{\mathrm{spr} 48}$	Z_{cur}	F_{cur}	p	$y_{\text {min }}$	$y_{\text {max }}$	$\mathrm{C}_{\mathrm{cur}}$	F_{rbc}	Limit?	RBC
Alfonsino	0.479	0.201	0.149	0.230	0.022	6.362	2003	2012	289	0.149	Yes	1,838
John Dory	0.287	0.159	0.126	0.424	0.064	2.371	1994	2011	168	0.159	No	398
Mirror Dory	0.355	0.188	0.147	0.585	0.285	0.242	1994	2011	613	0.062	No	148
Tiger Flathead	0.585	0.251	0.187	0.438	0.168	1.104	1994	2011				
Gemfish E	0.252	0.143	0.114	0.480	0.047	2.337	1994	2012				
Gemfish W	0.252	0.143	0.114	0.480	0.047	2.337	2001	2012				
Blue Grenadier	0.244	0.125	0.097	0.208	0.019	4.903	1994	2009				
Pink Ling E	0.250	0.134	0.105	0.403	0.135	0.774	1994	2006				
Pink Ling W	0.250	0.134	0.105	0.299	0.031	3.221	1994	2006				
Jackass Morwong	0.294	0.135	0.102	0.311	0.161	0.550	1993	2010				
Redfish	0.213	0.098	0.074	0.145	0.045	2.113	1993	2009	1,794	0.098	No	3,791
Ocean Perch	0.096	0.052	0.041	0.213	0.113	0.000	1993	2009				
Blue-eye Trevalla	0.118	0.062	0.049	0.334	0.234	0.000	1994	2009				
Silver Trevally	0.121	0.062	0.048	0.450	0.350	0.000	1994	2010				
Silver Warehou	0.766	0.347	0.260	0.310	0.030	7.747	1993	2011				
Blue Warehou	0.680	0.348	0.269	0.475	0.045	6.679	1993	2012				
School Whiting	0.922	0.461	0.355	1.104	0.504	0.695	2008	2011				

Note: Species that were Tier 3 in 2012 are highlighted in bold.
RBC values for alfonsino, John dory and redfish were greater than reference average catches ($\mathrm{p}>1$). The RBC for mirror dory is lower than the reference catch ($p<1$) which is a result very different to that presented in 2012. The reason is a considerable shift in the average Z fit for catch curves in the east (Figure 17.26) caused by a change in emphasis in the overall fit from younger to older fish. This highlights the possible catch variability inherent in a data-poor procedure such as the Tier 3 (see Klaer and Wayte 2011).

Western gemfish, blue grenadier, pink ling, blue-eye trevalla and silver trevally were unable to be assessed using catch curves due to probable dome-shaped selectivity or high recruitment variability.

17.4 Acknowledgements

Age data was provided by Kyne Krusic-Golub (Fish Ageing Services), parts of the ISMP and AFMA logbook data were processed and provided by John Garvey (AFMA). Mike Fuller (CSIRO) loaded and pre-processed AFMA logbook and CDR data.

17.5 References

Andrew, N.L., Graham, K.J., Hodgson, K.E. and Gordon, G.N.G. 1997. Changes after twenty years in relative abundance and size composition of commercial fishes caught during fishery independent surveys on SEF trawl grounds. NSW Fisheries Final Report Series No. 1. FRDC Project No. 96/139. 210pp.

Bax, N.J., and Knuckey, I.A. 2002. Evaluation of selectivity in the South-East fishery to determine its sustainable yield. Final Report to the Fisheries Research and Development Corporation. FRDC Project 96/140.

Fay, G., Koopman, M. and Smith, T. 2005. Catch curve analysis for Ribaldo (Mora moro). Paper to Slope RAG 2005.

Francis, R. I. C. C. 1992a. Use of risk analysis to assess fishery management strategies: a case study using orange roughy (Hoplostethus atlanticus) on the Chatham Rise, New Zealand. Canadian Journal of Fisheries and Aquatic Sciences. 49: 922-30.

Francis, R. I. C. C. 1992b. Recommendations regarding the calculation of maximum constant yield (MCY) and current annual yield (CAY). New Zealand Fisheries Assessment Research Document.92/8: 29pp.

Gabriel, W.L., Sissenwine, M.P. and Overholtz, W.J. 1989. Analysis of spawning stock biomass per recruit: an example for Georges Bank haddock. North American Journal of Fisheries Management 9,383-391.

Gulland, J.A. and Boerema, L.K. (1973) Scientific advice on catch levels. Fisheries Bulletin (U.S.). 71,325-335.

Haddon, M. 2005. TIER 4 Analyses. Presented to the Shelf and Slope Assessment Groups, 2005.
Klaer, N., Wayte, S., Punt, A., Day, J., Little, R., Smith, A., Thomson, R., Tuck, G. 2008. Simulation testing of alternative Tier 3 assessment methods and control rules for the SESSF. Pager to ShelfRAG and SlopeRAG, August 2008.

Klaer, N. 2003. Yield and total mortality estimates for principal shelf species in the South East Fishery. Presented to the Shelf Assessment Group, June 2003.

Klaer, N. and Thomson, R. 2004. Yield and total mortality estimates for principal shelf species in the South East Fishery. Presented to the Shelf and Slope Assessment Groups, 2004.

Klaer, N.L. 2006. Changes in the structure of demersal fish communities of the south east Australian continental shelf from 1915 to 1961. PhD Thesis, University of Canberra.

Klaer, N. and Thomson, R. 2007. Yield, total mortality and Tier 3 estimates for selected shelf and slope species in the South East Fishery. Presented to the Shelf and Slope Assessment Groups, 2007.

Klaer, N. 2009. Yield, total mortality and Tier 3 estimates for selected shelf and slope speciesin the SESSF. Presented to the Shelf and Slope Assessment Groups, 2009.

Klaer, N. 2010. Yield, total mortality and Tier 3 estimates for selected shelf and slope speciesin the SESSF 2010. Presented to the Shelf and Slope Assessment Groups, 2010.

Klaer, N. 2011a. Yield, total mortality and Tier 3 estimates for selected shelf and slope speciesin the SESSF 2011. Presented to the Shelf and Slope Assessment Groups, 2011.

Klaer, N., 2011b. Tiger flathead (Neoplaycephalus richardsoni) stock assessment based on data up to 2009. In: Tuck, G.N. (Ed.), Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery: 2010, vol. 1. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart, pp. 238-247.

Klaer, N. and Wayte, S. 2011. Demersal MSE for trawl fish in the Southern and Eastern Scalefishand Shark Fishery and other like species. Report prepared for the Department of Agriculture, Fisheries and Forestry as part of the Reducing Uncertainty in Stock Status Project.

Klaer, N. 2012. Yield, total mortality and Tier 3 estimates for selected shelf and slope speciesin the SESSF 2012. Presented to the Shelf and Slope Assessment Groups, 2012.

Klaer, N.L., Wayte, S.E., Fay, G. 2012. An evaluation of the performance of a harvest strategy that uses an average-length-based assessment method, Fisheries Research (2012), doi:10.1016/j.fishres.2012.08.010

Knuckey, I.A., Berrie, S.E. and Gason, S.H. 2001. South East Fishery Integrated Scientific Monitoring Program. 2000 Report to the South East Fishery Assessment Group. 108pp.

Koopman, M.T., Punt, A.E. and Smith, D.C. 2001. Production parameters from the fisheries literature for SEF-like species. Final Report to the Australian Fisheries Management Authority Research Fund.ARF Project R99/0308.

Pauly, D. 1984. Fish population dynamics in tropical waters: a manual for use with programmable calculators. ICLARM Studies and Reviews 8. International Center for Living Aquatic Resources Management, Manila, Philippines. 325 p.

Polacheck, T., Haskard, K., Klaer, N., Betlehem, A. and Preece, A. 1998. An index for weighting results in catch-at-age models based on diagnostic tests for lack of fit. In: Funk, F., Quinn II, T.J., Heifetz, J., Ianelli, J.N., Powers, J.E., Schweigert, J.F., Sullivan, P.J. and Zhang, C.I. (eds). Fishery stock assessment models. University of Alaska Sea Grant, AK-SG-98-01, Fairbanks.

Smith, A.D.M. and Wayte, S.E. (eds) 2002. The South East Fishery 2002. Compiled by the South East Fishery Assessment Group. 271pp.

Smith, A.D.M. 2005. A harvest strategy framework for the SESSF. Presented to the Shelf and Slope and Deepwater Assessment Groups, 2005.

Thomson, R.B. 2002a. South East Fishery data for stock assessment purposes. Draft version. May 2002. 26pp.

Thomson, R.B. 2002b. Automated catch curve analysis of South East Fisheries quota species. Presented to the South East Fishery Assessment Group, July 2002.

Thomson, R.B. 2002c. South East Fishery data for stock assessment purposes. Draft CSIRO Report.
Thomson, R. and Smith, A. 2002. Yield-per-recruit calculations for SEF quota species. CSIRO Report.

Wayte, S.E. and Klaer, N.L. 2010. An effective harvest strategy using improved catch-curves. Fisheries Research 106:310-320.

Zar, J.H. Biostatistical analysis. Second edition. Prentice Hall inc. New Jersey.

17.6 Appendix 1 - details of values that were used as estimates of total Z (shown highlighted)

ALFCCRes	Pop	Flt	Year	Catch	CCType	Iage	Ilen	Zage	Zlen	SSa	SS1
ALFCCRes	All	AllMethods	2008	0	1	-99	-99	0.23	-99	23	0
ALFCCRes	All	AllMethods	2009	14.197	1	-99	-99	0.23	0.415458	148	473
ALFCCRes	All	AllMethods	2010	0.0135	1	-99	-99	-99	-99	0	0
ALFCCRes	All	AllMethods	2011	210.977	1	-99	-99	0.23	0.415458	640	25638
ALFCCRes	All	AllMethods	2012	330.211	1	-99	-99	-99	0.415458	0	32788
DOJCCRes	All	NonTrawl	2008	6.90675	1	-99	-99	0.440459	0.521817	611	804
DOJCCRes	All	NonTrawl	2009	6.08687	1	-99	-99	0.440459	0.521817	611	64
DOJCCRes	All	NonTrawl	2010	4.819	1	-99	-99	0.440459	0.521817	611	450
DOJCCRes	All	NonTrawl	2011	11.0446	1	-99	-99	0.440459	0.521817	611	525
DOJCCRes	All	NonTrawl	2012	6.13983	1	-99	-99	0.440459	0.521817	611	242
DOJCCRes	All	Trawl	2008	106.212	1	-99	-99	0.423801	0.502959	611	1573
DOJCCRes	All	Trawl	2009	84.209	1	-99	-99	0.423801	0.502959	611	3363
DOJCCRes	All	Trawl	2010	55.1425	1	-99	-99	0.423801	0.502959	611	2603
DOJCCRes	All	Trawl	2011	60.3184	1	-99	-99	0.423801	0.502959	611	1890
DOJCCRes	All	Trawl	2012	59.0366	1	-99	-99	0.423801	0.502959	611	2552
DOMCCRes	All	ETrawl	2008	326.319	1	-99	-99	0.859399	0.524908	1634	1601
DOMCCRes	All	ETrawl	2009	343.905	1	-99	-99	0.859399	0.524908	1634	2318
DOMCCRes	All	ETrawl	2010	389.139	1	-99	-99	0.859399	0.524908	1634	2657
DOMCCRes	All	ETrawl	2011	354.116	1	-99	-99	0.859399	0.524908	1634	1757
DOMCCRes	All	ETrawl	2012	290.615	1	-99	-99	0.859399	0.524908	1634	1882
DOMCCRes	All	WTrawl	2008	66.053	1	-99	-99	0.310126	0.441789	1634	75
DOMCCRes	All	WTrawl	2009	131.066	1	-99	-99	0.310126	0.441789	1634	299
DOMCCRes	All	WTrawl	2010	187.747	1	-99	-99	0.310126	0.441789	1634	628
DOMCCRes	All	WTrawl	2011	161.886	1	-99	-99	0.310126	0.441789	1634	658
DOMCCRes	All	WTrawl	2012	71.9615	1	-99	-99	0.310126	0.441789	1634	423
FLDCCRes	All	Trawl	2008	783.441	1	-99	-99	0.51493	0.6982	554	1849
FLDCCRes	All	Trawl	2009	834.012	1	-99	-99	0.51493	0.6982	465	13911
FLDCCRes	All	Trawl	2010	916.38	1	-99	-99	0.51493	0.6982	552	3504
FLDCCRes	All	Trawl	2011	322.192	1	-99	-99	0.51493	0.6982	367	2284
FLDCCRes	All	Trawl	2012	338.257	1	-99	-99	0.51493	0.6982	396	2026
FLDCCRes	All	Survey	2008	0	1	-99	-99	-99	-99	0	0
FLDCCRes	All	Survey	2009	0	1	-99	-99	-99	-99	0	0
FLDCCRes	All	Survey	2010	0	1	-99	-99	-99	-99	0	0
FLDCCRes	All	Survey	2011	0	1	-99	-99	-99	-99	0	0
FLDCCRes	All	Survey	2012	0	1	-99	-99	-99	-99	0	0
FLTCCRes	All	DSeine	2008	1321.42	1	-99	-99	0.456433	0.389983	714	466
FLTCCRes	All	DSeine	2009	1221.38	1	-99	-99	0.456433	0.389983	1093	1100
FLTCCRes	All	DSeine	2010	1231.44	1	-99	-99	0.456433	0.389983	1134	1429
FLTCCRes	All	DSeine	2011	1170.06	1	-99	-99	0.456433	0.389983	1130	2369

FLTCCRes	All	DSeine	2012	1393.84	1	-99	-99	0.456433	0.389983	1080	2577
FLTCCRes	All	ETrawl	2008	1390.34	1	-99	-99	0.41916	0.34237	714	1614
FLTCCRes	All	ETrawl	2009	1126.35	1	-99	-99	0.41916	0.34237	1093	2109
FLTCCRes	All	ETrawl	2010	1157.05	1	-99	-99	0.41916	0.34237	1134	4016
FLTCCRes	All	ETrawl	2011	1158.72	1	-99	-99	0.41916	0.34237	1130	2942
FLTCCRes	All	ETrawl	2012	1216.35	1	-99	-99	0.41916	0.34237	1080	2997
FLTCCRes	All	TasTrawl	2008	175.732	1	-99	-99	0.280002	0.28	714	101
FLTCCRes	All	TasTrawl	2009	102.032	1	-99	-99	0.280002	0.28	1093	176
FLTCCRes	All	TasTrawl	2010	105.253	1	-99	-99	0.280002	0.28	1134	303
FLTCCRes	All	TasTrawl	2011	132.183	1	-99	-99	0.280002	0.28	1130	538
FLTCCRes	All	TasTrawl	2012	164.418	1	-99	-99	0.280002	0.28	1080	536
GEECCRes	East	NonTrawl	2008	15.9079	1	-99	-99	0.48	0.508587	625	37
GEECCRes	East	NonTrawl	2009	11.9662	1	-99	-99	0.48	-99	396	0
GEECCRes	East	NonTrawl	2010	12.2595	1	-99	-99	0.48	0.508587	580	122
GEECCRes	East	NonTrawl	2011	7.258	1	-99	-99	0.48	0.508587	626	551
GEECCRes	East	NonTrawl	2012	6.14025	1	-99	-99	0.48	0.508587	405	363
GEECCRes	East	SumTrawl	2008	27.5237	1	-99	-99	0.48022	0.480324	625	1109
GEECCRes	East	SumTrawl	2009	18.6789	1	-99	-99	0.48022	0.480324	396	218
GEECCRes	East	SumTrawl	2010	15.0915	1	-99	-99	0.48022	0.480324	580	835
GEECCRes	East	SumTrawl	2011	13.6502	1	-99	-99	0.48022	0.480324	626	1281
GEECCRes	East	SumTrawl	2012	15.56	1	-99	-99	0.48022	0.480324	405	920
GEECCRes	East	WinTrawl	2008	79.0505	1	-99	-99	0.480624	0.48108	625	478
GEECCRes	East	WinTrawl	2009	43.5215	1	-99	-99	0.480624	0.48108	396	366
GEECCRes	East	WinTrawl	2010	48.6733	1	-99	-99	0.480624	0.48108	580	471
GEECCRes	East	WinTrawl	2011	31.1313	1	-99	-99	0.480624	0.48108	626	1201
GEECCRes	East	WinTrawl	2012	32.1955	1	-99	-99	0.480624	0.48108	405	689
GEWCCRes	All	NonTrawl	2008	9.5857	1	-99	-99	0.480072	0.94	625	76
GEWCCRes	All	NonTrawl	2009	7.2278	1	-99	-99	-99	-99	0	0
GEWCCRes	All	NonTrawl	2010	9.7671	1	-99	-99	0.480072	0.94	1167	34
GEWCCRes	All	NonTrawl	2011	12.7382	1	-99	-99	0.480072	0.94	925	321
GEWCCRes	All	NonTrawl	2012	5.2559	1	-99	-99	0.480072	0.94	999	50
GEWCCRes	All	Trawl40	2008	4.105	1	-99	-99	0.480408	0.610007	625	105
GEWCCRes	All	Trawl40	2009	5.25825	1	-99	-99	0.480408	0.610007	1002	129
GEWCCRes	All	Trawl40	2010	11.5847	1	-99	-99	0.480408	0.610007	1167	137
GEWCCRes	All	Trawl40	2011	14.872	1	-99	-99	0.480408	0.610007	925	334
GEWCCRes	All	Trawl40	2012	9.2765	1	-99	-99	0.480408	0.610007	999	16
GEWCCRes	All	Trawl50	2008	52.992	1	-99	-99	0.480078	0.48182	625	112
GEWCCRes	All	Trawl50	2009	54.1895	1	-99	-99	0.480078	0.48182	1002	420
GEWCCRes	All	Trawl50	2010	78.3824	1	-99	-99	0.480078	0.48182	1167	729
GEWCCRes	All	Trawl50	2011	44.5025	1	-99	-99	0.480078	0.48182	925	118
GEWCCRes	All	Trawl50	2012	44.1995	1	-99	-99	0.480078	0.48182	999	450
GEWCCRes	All	GABTrawl	2008	104.618	1	-99	-99	0.480001	0.480001	625	117
GEWCCRes	All	GABTrawl	2009	48.9613	1	-99	-99	-99	-99	0	0
GEWCCRes	All	GABTrawl	2010	42.7313	1	-99	-99	0.480001	0.480001	1167	140

GEWCCRes	All	GABTrawl	2011	21.5787	1	-99	-99	-99	-99	0	0
GEWCCRes	All	GABTrawl	2012	35.1163	1	-99	-99	0.480001	0.480001	999	161
GRECCRes	All	TrawlSpawn	2008	2837.64	1	-99	-99	0.199104	0.199208	1848	5366
GRECCRes	All	TrawlSpawn	2009	2723	1	-99	-99	0.199104	0.199208	2086	15241
GRECCRes	All	TrawlSpawn	2010	3383.55	1	-99	-99	0.199104	0.199208	1642	9206
GRECCRes	All	TrawlSpawn	2011	3553.82	1	-99	-99	0.199104	0.199208	2007	7484
GRECCRes	All	TrawlSpawn	2012	3837.58	1	-99	-99	0.199104	0.199208	1771	6821
GRECCRes	All	TrawlSummer	2008	1305.68	1	-99	-99	0.207941	0.19914	1848	1895
GRECCRes	All	TrawlSummer	2009	1144.23	1	-99	-99	0.207941	0.19914	2086	2979
GRECCRes	All	TrawlSummer	2010	1156.58	1	-99	-99	0.207941	0.19914	1642	2499
GRECCRes	All	TrawlSummer	2011	913.108	1	-99	-99	0.207941	0.19914	2007	3321
GRECCRes	All	TrawlSummer	2012	619.961	1	-99	-99	0.207941	0.19914	1771	2743
GRWCCRes	All	TrawlSummer	2008	3.321	1	-99	-99	-99	-99	0	0
GRWCCRes	All	TrawlSummer	2009	0.5625	1	-99	-99	-99	-99	0	0
GRWCCRes	All	TrawlSummer	2010	5.145	1	-99	-99	-99	-99	0	0
GRWCCRes	All	TrawlSummer	2011	4.8425	1	-99	-99	-99	-99	0	0
GRWCCRes	All	TrawlSummer	2012	2.415	1	-99	-99	-99	-99	0	0
GRWCCRes	All	TrawlSpawn	2008	0.27	1	-99	-99	0.538723	0.263261	1848	48
GRWCCRes	All	TrawlSpawn	2009	0	1	-99	-99	-99	-99	0	0
GRWCCRes	All	TrawlSpawn	2010	0.5925	1	-99	-99	-99	-99	0	0
GRWCCRes	All	TrawlSpawn	2011	0.5025	1	-99	-99	-99	-99	0	0
GRWCCRes	All	TrawlSpawn	2012	0.075	1	-99	-99	-99	-99	0	0
LIECCRes	All	LongLine10	2008	0	1	-99	-99	-99	-99	0	0
LIECCRes	All	LongLine10	2009	0.108	1	-99	-99	-99	-99	0	0
LIECCRes	All	LongLine10	2010	0.0418	1	-99	-99	-99	-99	0	0
LIECCRes	All	LongLine10	2011	0	1	-99	-99	-99	-99	0	0
LIECCRes	All	LongLine10	2012	0.0198	1	-99	-99	-99	-99	0	0
LIECCRes	All	LongLine20	2008	163.989	1	-99	-99	0.278188	0.278061	1054	249
LIECCRes	All	LongLine20	2009	96.5261	1	-99	-99	0.278188	0.278061	1452	708
LIECCRes	All	LongLine20	2010	102.562	1	-99	-99	0.278188	0.278061	1312	897
LIECCRes	All	LongLine20	2011	86.2119	1	-99	-99	0.278188	0.278061	1505	446
LIECCRes	All	LongLine20	2012	82.9846	1	-99	-99	0.278188	0.278061	1068	872
LIECCRes	All	LongLine30	2008	66.0834	1	-99	-99	0.279525	0.278001	1054	7
LIECCRes	All	LongLine30	2009	61.7725	1	-99	-99	0.279525	0.278001	1452	230
LIECCRes	All	LongLine30	2010	37.6081	1	-99	-99	0.279525	0.278001	1312	338
LIECCRes	All	LongLine30	2011	71.7383	1	-99	-99	0.279525	0.278001	1505	603
LIECCRes	All	LongLine30	2012	82.1065	1	-99	-99	0.279525	0.278001	1068	242
LIECCRes	All	Trawl10	2008	35.723	1	-99	-99	0.331802	0.302351	1054	200
LIECCRes	All	Trawl10	2009	28.7143	1	-99	-99	0.331802	0.302351	1452	98
LIECCRes	All	Trawl10	2010	42.7996	1	-99	-99	0.331802	0.302351	1312	254
LIECCRes	All	Trawl10	2011	43.5719	1	-99	-99	0.331802	0.302351	1505	153
LIECCRes	All	Trawl10	2012	38.6114	1	-99	-99	0.331802	0.302351	1068	220
LIECCRes	All	Trawl20	2008	295.131	1	-99	-99	0.403479	0.332763	1054	1685
LIECCRes	All	Trawl20	2009	199.448	1	-99	-99	0.403479	0.332763	1452	2233

LIECCRes	All	Trawl20	2010	238.584	1	-99	-99	0.403479	0.332763	1312	2150
LIECCRes	All	Trawl20	2011	258.957	1	-99	-99	0.403479	0.332763	1505	2131
LIECCRes	All	Trawl20	2012	229.095	1	-99	-99	0.403479	0.332763	1068	1444
LIECCRes	All	Trawl30	2008	48.972	1	-99	-99	0.623457	0.476081	1054	179
LIECCRes	All	Trawl30	2009	17.0742	1	-99	-99	-99	-99	0	0
LIECCRes	All	Trawl30	2010	17.5107	1	-99	-99	0.623457	0.476081	1312	119
LIECCRes	All	Trawl30	2011	29.146	1	-99	-99	0.623457	0.476081	1505	317
LIECCRes	All	Trawl30	2012	35.052	1	-99	-99	0.623457	0.476081	1068	425
LIWCCRes	All	LongLine40	2008	35.1416	1	-99	-99	-99	-99	0	0
LIWCCRes	All	LongLine40	2009	44.7203	1	-99	-99	-99	-99	0	0
LIWCCRes	All	LongLine40	2010	76.5216	1	-99	-99	0.305268	0.278001	1312	212
LIWCCRes	All	LongLine40	2011	136.816	1	-99	-99	-99	-99	0	0
LIWCCRes	All	LongLine40	2012	150.554	1	-99	-99	0.305268	0.278001	1068	805
LIWCCRes	All	LongLine50	2008	2.567	1	-99	-99	-99	-99	0	0
LIWCCRes	All	LongLine50	2009	7.202	1	-99	-99	-99	-99	0	0
LIWCCRes	All	LongLine50	2010	16.0016	1	-99	-99	-99	-99	0	0
LIWCCRes	All	LongLine50	2011	8.1297	1	-99	-99	-99	-99	0	0
LIWCCRes	All	LongLine50	2012	8.0215	1	-99	-99	-99	-99	0	0
LIWCCRes	All	LongLine80	2008	102.184	1	-99	-99	0.278008	0.278001	1054	134
LIWCCRes	All	LongLine80	2009	45.766	1	-99	-99	0.278008	0.278001	1452	101
LIWCCRes	All	LongLine80	2010	86.187	1	-99	-99	0.278008	0.278001	1312	1127
LIWCCRes	All	LongLine80	2011	72.3042	1	-99	-99	0.278008	0.278001	1505	374
LIWCCRes	All	LongLine80	2012	42.1772	1	-99	-99	0.278008	0.278001	1068	117
LIWCCRes	All	Trawl40	2008	161.646	1	-99	-99	0.299437	0.278123	1054	113
LIWCCRes	All	Trawl40	2009	210.365	1	-99	-99	0.299437	0.278123	1452	148
LIWCCRes	All	Trawl40	2010	189.41	1	-99	-99	0.299437	0.278123	1312	314
LIWCCRes	All	Trawl40	2011	260.476	1	-99	-99	0.299437	0.278123	1505	475
LIWCCRes	All	Trawl40	2012	282.095	1	-99	-99	0.299437	0.278123	1068	308
LIWCCRes	All	Trawl50	2008	64.4137	1	-99	-99	0.363393	0.279314	1054	20
LIWCCRes	All	Trawl50	2009	61.2257	1	-99	-99	0.363393	0.279314	1452	110
LIWCCRes	All	Trawl50	2010	92.0323	1	-99	-99	0.363393	0.279314	1312	180
LIWCCRes	All	Trawl50	2011	108.134	1	-99	-99	0.363393	0.279314	1505	210
LIWCCRes	All	Trawl50	2012	68.5638	1	-99	-99	0.363393	0.279314	1068	519
LIWCCRes	All	Trawl80	2008	1.7864	1	-99	-99	-99	-99	0	0
LIWCCRes	All	Trawl80	2009	0.132	1	-99	-99	-99	-99	0	0
LIWCCRes	All	Trawl80	2010	4.699	1	-99	-99	-99	-99	0	0
LIWCCRes	All	Trawl80	2011	3.8997	1	-99	-99	-99	-99	0	0
LIWCCRes	All	Trawl80	2012	4.1075	1	-99	-99	-99	-99	0	0
MOWCCRes	All	ETrawl	2008	335.839	1	-99	-99	0.310755	0.377915	751	2475
MOWCCRes	All	ETrawl	2009	243.398	1	-99	-99	0.310755	0.377915	620	2425
MOWCCRes	All	ETrawl	2010	199.266	1	-99	-99	0.310755	0.377915	892	1973
MOWCCRes	All	ETrawl	2011	184.993	1	-99	-99	0.310755	0.377915	855	1362
MOWCCRes	All	ETrawl	2012	181.435	1	-99	-99	0.310755	0.377915	758	1806
MOWCCRes	All	DSeine	2008	36.779	1	-99	-99	0.287874	0.307332	751	635
MOWCCRes	All	DSeine	2009	18.538	1	-99	-99	0.287874	0.307332	620	50

MOWCCRes	All	DSeine	2010	17.3235	1	-99	-99	0.287874	0.307332	892	492
MOWCCRes	All	DSeine	2011	29.405	1	-99	-99	0.287874	0.307332	855	665
MOWCCRes	All	DSeine	2012	14.8215	1	-99	-99	0.287874	0.307332	758	216
MOWCCRes	All	TasTrawl	2008	121.07	1	-99	-99	0.160321	0.66122	751	43
MOWCCRes	All	TasTrawl	2009	55.8167	1	-99	-99	0.160321	0.66122	620	80
MOWCCRes	All	TasTrawl	2010	59.871	1	-99	-99	0.160321	0.66122	892	341
MOWCCRes	All	TasTrawl	2011	50.6332	1	-99	-99	0.160321	0.66122	855	555
MOWCCRes	All	TasTrawl	2012	93.961	1	-99	-99	0.160321	0.66122	758	771
MOWCCRes	All	WTrawl	2008	104.283	1	-99	-99	0.160001	0.282321	751	156
MOWCCRes	All	WTrawl	2009	64.9515	1	-99	-99	0.160001	0.282321	620	140
MOWCCRes	All	WTrawl	2010	40.5487	1	-99	-99	0.160001	0.282321	892	72
MOWCCRes	All	WTrawl	2011	85.874	1	-99	-99	0.160001	0.282321	855	208
MOWCCRes	All	WTrawl	2012	36.3215	1	-99	-99	0.160001	0.282321	758	318
MOWCCRes	All	GABTrawl	2008	89.7646	1	-99	-99	-99	-99	0	0
MOWCCRes	All	GABTrawl	2009	64.352	1	-99	-99	-99	-99	0	0
MOWCCRes	All	GABTrawl	2010	39.1475	1	-99	-99	-99	-99	0	0
MOWCCRes	All	GABTrawl	2011	24.7415	1	-99	-99	-99	-99	0	0
MOWCCRes	All	GABTrawl	2012	5.0125	1	-99	-99	-99	-99	0	0
REBCCRes	All	Trawl	2008	664.902	1	-99	-99	0.11	0.11	561	1875
REBCCRes	All	Trawl	2009	463.432	1	-99	-99	0.11	0.11	668	9093
REBCCRes	All	Trawl	2010	275.407	1	-99	-99	0.11	0.11	429	1926
REBCCRes	All	Trawl	2011	67.8018	1	-99	-99	0.11	0.11	353	2712
REBCCRes	All	Trawl	2012	38.6814	1	-99	-99	0.11	0.11	282	502
REDCCRes	North	Trawl	2008	165.35	1	-99	-99	0.144953	0.169955	7634	583
REDCCRes	North	Trawl	2009	145.515	1	-99	-99	0.144953	0.169955	7634	791
REDCCRes	North	Trawl	2010	136.367	1	-99	-99	0.144953	0.169955	7634	1066
REDCCRes	North	Trawl	2011	76.485	1	-99	-99	0.144953	0.169955	7634	479
REDCCRes	North	Trawl	2012	60.444	1	-99	-99	0.144953	0.169955	7634	592
REDCCRes	South	Trawl	2008	16.6653	1	-99	-99	0.110001	-99	7892	0
REDCCRes	South	Trawl	2009	12.4443	1	-99	-99	-99	-99	0	0
REDCCRes	South	Trawl	2010	13.2126	1	-99	-99	0.110001	0.11	7892	160
REDCCRes	South	Trawl	2011	8.8597	1	-99	-99	0.110001	0.11	7892	3
REDCCRes	South	Trawl	2012	3.1062	1	-99	-99	-99	-99	0	0
REGCCRes	All	NonTrawl	2008	0	1	-99	-99	-99	-99	0	0
REGCCRes	All	NonTrawl	2009	0.035	1	-99	-99	-99	0.110076	0	77
REGCCRes	All	NonTrawl	2010	0	1	-99	-99	-99	0.110076	0	342
REGCCRes	All	NonTrawl	2011	0.005	1	-99	-99	-99	0.110076	0	14
REGCCRes	All	NonTrawl	2012	0.04	1	-99	-99	-99	0.110076	0	191
REGCCRes	All	Trawl	2008	0.844	1	-99	-99	-99	0.213473	0	1414
REGCCRes	All	Trawl	2009	1.272	1	-99	-99	-99	0.213473	0	2590
REGCCRes	All	Trawl	2010	1.32	1	-99	-99	-99	0.213473	0	2746
REGCCRes	All	Trawl	2011	1.39	1	-99	-99	-99	0.213473	0	2400
REGCCRes	All	Trawl	2012	1.562	1	-99	-99	-99	0.213473	0	2200
TBECCRes	All	NonTrawl	2008	226.219	1	-99	-99	0.35477	0.333672	557	624

TBECCRes	All	NonTrawl	2009	310.741	1	-99	-99	0.35477	0.333672	960	1343
TBECCRes	All	NonTrawl	2010	238.743	1	-99	-99	0.35477	0.333672	743	2038
TBECCRes	All	NonTrawl	2011	187.119	1	-99	-99	-99	0.333672	0	2581
TBECCRes	All	NonTrawl	2012	186.416	1	-99	-99	-99	0.333672	0	2303
TBECCRes	All	Trawl	2008	35.8986	1	-99	-99	0.253298	0.314437	557	37
TBECCRes	All	Trawl	2009	39.3857	1	-99	-99	0.253298	0.314437	960	295
TBECCRes	All	Trawl	2010	44.4158	1	-99	-99	0.253298	0.314437	743	95
TBECCRes	All	Trawl	2011	23.3388	1	-99	-99	-99	0.314437	0	162
TBECCRes	All	Trawl	2012	10.7808	1	-99	-99	-99	0.314437	0	115
TRECCRes	All	NonTrawl	2008	1.99725	1	-99	-99	-99	-99	0	0
TRECCRes	All	NonTrawl	2009	1.0371	1	-99	-99	-99	0.388319	0	247
TRECCRes	All	NonTrawl	2010	25.1141	1	-99	-99	-99	0.388319	0	263
TRECCRes	All	NonTrawl	2011	0.2565	1	-99	-99	-99	0.388319	0	212
TRECCRes	All	NonTrawl	2012	0.2492	1	-99	-99	-99	0.388319	0	78
TRECCRes	All	Trawl	2008	101.855	1	-99	-99	-99	0.450013	0	1135
TRECCRes	All	Trawl	2009	142.527	1	-99	-99	-99	0.450013	0	2750
TRECCRes	All	Trawl	2010	203.268	1	-99	-99	-99	0.450013	0	3085
TRECCRes	All	Trawl	2011	186.964	1	-99	-99	-99	0.450013	0	1681
TRECCRes	All	Trawl	2012	133.151	1	-99	-99	-99	0.450013	0	2459
TRSCCRes	All	AllMethods	2008	1378.06	1	-99	-99	0.31003	0.636699	547	1609
TRSCCRes	All	AllMethods	2009	1285.08	1	-99	-99	0.31003	0.636699	821	3521
TRSCCRes	All	AllMethods	2010	1188.8	1	-99	-99	0.31003	0.636699	822	4001
TRSCCRes	All	AllMethods	2011	1106.49	1	-99	-99	0.31003	0.636699	852	2861
TRSCCRes	All	AllMethods	2012	780.292	1	-99	-99	0.31003	0.636699	818	3221
TRTCCRes	All	NonTrawl	2008	6.6546	1	-99	-99	-99	-99	0	0
TRTCCRes	All	NonTrawl	2009	3.8073	1	-99	-99	0.460068	0.85204	274	357
TRTCCRes	All	NonTrawl	2010	11.3836	1	-99	-99	0.460068	0.85204	428	900
TRTCCRes	All	NonTrawl	2011	5.43365	1	-99	-99	-99	0.85204	0	1093
TRTCCRes	All	NonTrawl	2012	4.3962	1	-99	-99	-99	0.85204	0	341
TRTCCRes	All	Trawl	2008	159.262	1	-99	-99	0.475344	0.587272	597	1282
TRTCCRes	All	Trawl	2009	117.136	1	-99	-99	0.475344	0.587272	274	2412
TRTCCRes	All	Trawl	2010	123.18	1	-99	-99	0.475344	0.587272	428	2123
TRTCCRes	All	Trawl	2011	88.4417	1	-99	-99	-99	0.587272	0	1994
TRTCCRes	All	Trawl	2012	42.7666	1	-99	-99	-99	0.587272	0	1068
WHSCCRes	All	NonTrawl	2008	393.335	1	-99	-99	1.10427	1.33394	479	894
WHSCCRes	All	NonTrawl	2009	425.426	1	-99	-99	1.10427	1.33394	421	880
WHSCCRes	All	NonTrawl	2010	359.503	1	-99	-99	1.10427	1.33394	620	1179
WHSCCRes	All	NonTrawl	2011	308.165	1	-99	-99	1.10427	1.33394	581	1222
WHSCCRes	All	NonTrawl	2012	388.682	1	-99	-99	1.10427	1.33394	392	1263
WHSCCRes	All	Trawl	2008	69.1595	1	-99	-99	-99	-99	0	0
WHSCCRes	All	Trawl	2009	29.744	1	-99	-99	0.815239	1.40089	421	288
WHSCCRes	All	Trawl	2010	38.4377	1	-99	-99	-99	-99	0	0
WHSCCRes	All	Trawl	2011	50.7141	1	-99	-99	0.815239	1.40089	581	435
WHSCCRes	All	Trawl	2012	40.8341	1	-99	-99	0.815239	1.40089	392	46

18. Catch Rate Standardizations for Selected Species from the SESSF (data 1986 - 2012)

Malcolm Haddon
CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart, TAS 7001, Australia

18.1 Summary

Catch-per-unit-effort (CPUE) data is an important input to many of the stock assessments conducted within the South East and Southern Shark Fishery (SESSF), where it is used as an index of relative abundance through time. The catch and effort log-book data from the SESSF, which is the source of CPUE data, constitutes shot by shot data derived from a wide range of vessels, areas (zones), months, depths, and fishing gears. The catch rates used in the assessments are standardized to reduce the effects of factors such as which vessel fished, where and when fishing occurred, what gear was used, at what depths fishing was conducted, and whether fishing occurred during the day or night. The intent is to focus on any changes in catch rates that occurred between years as a result of changes in stock size rather than changes that occur in any of these other factors. This intent is not always realized when there are unknown influential factors or factors for which we have no data so interpretation of the catch rate trends should not necessarily be taken at face value. This is especially the case when there have been major management changes, such as the introduction of quotas or the more recent structural adjustment. Such large events can greatly influence fishing behaviour, which in turn influences catch rates. Because these changes affected the whole fleet at the same time it is not possible to standardize for their effects.

Catch rates, generally as kilograms per hour fished (though sometimes as catch per shot e.g. Danish Seine, or non-trawl methods), were natural log-transformed to normalize the data and stabilize the variance before standardization. A General Linear Model was used rather than using a Generalized Linear Model with a log-link. This relatively simple analytical approach means that the exact same methods can be applied to all species/stock combinations in a relatively robust manner. The statistical models were variants on the form: LnCE $=$ Year + Vessel + Month + DepthCategory + Zone + Daynight. For some fisheries weeknumber or gear type was also included. In addition, there were interaction terms which could sometimes be fitted, such as Month:Zone or Month:DepthCategory. The data from all vessels reporting catches of a species were included although a preliminary data selection was made on a given depth range for each species for the zones of interest to focus attention on those depths contributing significantly to the fishery for each assumed stock and to reduce the number of empty categories within the statistical models.

This chapter reports the statistical standardization of the commercial catch and effort data for 21 species, distributed across 50 different combinations of stocks and fisheries ready for inclusion in the annual round of stock assessments. These included School

Whiting, Eastern Gemfish, Jackass Morwong, Flathead, Redfish, Silver Trevally, Royal Red Prawn, Blue Eye, Blue Grenadier, Spotted/Silver Warehou, Blue Warehou, Pink Ling, Western Gemfish, Ocean Perch, John Dory, Mirror Dory, Ribaldo, Ocean Jackets, Deepwater Flathead, and Bight Redfish. The statistical package R was used, with especial use being made of the biglm library, which was necessary because of the large amount of data available for some species. Despite the large numbers of observations available in most analyses, the use of the AIC was able to discriminate between the more complex models. In fact, the visual difference between the CPUE trends exhibited by the top few models tends to be only minor.

Summary graphs are provided across all species (Figure 18.2 and Figure 18.3), as well as more detailed information for each stock. Out of 36 stocks there were 10 whose catch rates have increased over the last 10 years, there were 13 stocks where catch rates were stable (two of which were stable and low; Blue Warehou 102030 and Jackass Morwong 30), and there were 7 stocks whose catch rates have declined over the last 10 years. Many of the species are also examined for trends in catches and geometric catch rates between zones; this was to provide a check that there were only minor year x zone interactions (differences in catch rate trends between zones).

18.2 Introduction

Commercial catch and effort data are used in in very many fishery stock assessments in Australia as an index of relative abundance through time. The assumption is made that there is a direct relationship between catch rates and the amount of exploitable biomass. However, many factors can influence catch rates, including who was fishing with what gear in what depth, in what season, in what area, and whether it was day or night (plus other factors). The use of catch rates as an index of relative abundance means that it would be best to remove the effects of variation due to changes in these other factors on the assumption that what remains will provide a better estimate of the dynamics of the underlying stock biomass. This process of adjusting the time series for the effects of other influential factors is known as standardization and the accepted way of doing this is to use some statistical modelling procedure that focuses attention onto the annual average catch rates adjusted for the variation in the averages brought about by all the other factors identified.

The diversity of species and methods in the SESSF fishery means that each fishery/stock for which standardized catch rates are required entails its own set of conditions and selection of data. The Resource Assessment Groups (RAGs) have direct input on what combinations of depths and area need to be used in the standardization of each species/stock.

18.2.1 The Limits of Standardization

The assumption behind using commercial catch rates in stock assessments is that they reflect the relative abundance of the exploitable biomass through time. The legitimacy behind using commercial catch rates can be questioned when there are factors significantly influencing catch rates which cannot be included in any standardization. Over the last two decades there have been a number of major management interventions in the South East Scalefish and Shark Fishery (SESSF) including the introduction of the
quota management system in 1992 and that of the Harvest Strategy Policy (HSP) and associated structural adjustment in 2005 - 2007. The combination of limited quotas and the HSP is now controlling catches in such a way that many fishers have been altering their fishing behaviour to take into account the availability of quota and their own access to quota needed to land the species taken in the mixed species SESSF.

Some stocks, such as flathead, are near or around their target stock size and catch rates are at historically good levels. As a result of this success, some fishers report having to avoid catching species, such as flathead, so as to avoid having to discard and to stay within the bounds of their own quota holdings. Such influences on catch rates tend to bias the catch rates downwards, or at very least add noise to any CPUE signal, which could lead to misinformation passing to any assessment. Currently, there is no way to handle this issue but care needs to be taken not to provide incorrectly conservative advice or inappropriately high catch targets. Included in the management changes is the on-going introduction of numerous area closures imposed for a range of different reasons.

Another example of catch rates not necessarily reflecting the stock dynamics can be found with BlueEye Autoline catch rates. Some of the closures (e.g. the gulper closures north east of Flinders Island) cover areas where auto-line catch rates were previously relatively high. Fishing continues mostly along the western edge of the St Helens Hill closure (even though this closure is open to Autoline vessels) but the catch rates on the periphery are only about $2 / 3$ the catch rates previously exhibited on the St Helens Hill itself. The geographical scale of these changes is much finer than that already included in the analyses and so the impression gained is that catch rates in general have declined whereas this may be much more about exactly where the fishing is occurring than what the stock is doing. A FRDC funded research project has only recently begun to examine the influence of closures on stock assessments and this exploration is on-going. The preliminary findings, however, indicate that again, great care needs to be taken when trying to interpret the outcomes of the catch rate standardization.

18.3 Methods

18.3.1 Catch Rate Standardization

18.3.1.1 Preliminary Data Selection

The precise methods used when standardizing commercial catch and effort data in the SESSF continue to be discussed in the Commonwealth stock assessment RAGs. This discussion continues because the catch rate time series are very influential in many of the assessments. Previously, various filters were placed on the data available in a preliminary attempt to focus on those vessels that actively target a species. These data filters involved only using vessels that had taken the species for more than two years and those that had taken some minimum annual catch level. The objective of these selections was to remove noise from whatever signal was present in the available data. After examining the effects of these data selections they appear to have only very minor influences on the catch rate trends because the number of records involved was only minor (often differences were not apparent in the graphs, i.e. less effect than the thickness of the lines) and so such selections are again not used this year. Far more influential were restrictions based upon depth of operation. In recognition that there are
records which report activity in unlikely depths, there are usually restrictions placed on the depth range from which records could be validly reported. This is necessary as depth tends to be one of the most influential factors used in the statistical standardizations and rare outlying depths only served to confuse the analysis by introducing many combinations of factors that contained no data. In addition the choice of which particular reporting zones or areas are to be examined also leads to a prior selection of data.

Briefly, initial data selection for a particular species consists of using those data relating to a specific fishery (e.g. SET, GHT, GAB, etc), those data within a specified depth range and taken with a specified method in specified statistical zones within the years specified for the analysis.

The graphical representation of results includes the depiction of the unstandardized geometric mean catch rate along with the optimum statistical model representing the standardized time series. This provides a visual indication of whether the standardization changes any trend away from the nominal catch rate. To avoid visual distortions introduced by scaling the standardization relative to a particular year, the time series have all been scaled relative to the average of each time series of yearly indices, which means that the overall average in each case equates to one; this centres the vertical location of each series but does not change the relative trends through time. In all cases the differences between this year's analysis and last years' were minimal; both are illustrated in the individual stock graphs. In addition, for most analyses there is a graph of the relative contribution made by the different factors considered to the changes in the trend between the geometric mean and the optimum model. The scale of the changes introduced by a factor is not always in the same order as the relative proportion of the variation accounted for by a particular factor.

18.3.1.2 General Linear Modelling

In each case, catch rates, generally as kilograms per hour fished (though sometimes as catch per shot e.g. School Whiting caught by Danish Seine), were natural logtransformed. A General Linear Model was used rather than using a Generalized Linear Model with a log-link; this has advantages in terms of normalizing the data while stabilizing the variance, which the Generalized Linear Model approach does not always achieve appropriately (Venables \& Dichmont, 2004). This relatively simple analytical approach means that the exact same methods can be applied to all species in a relatively robust manner. The statistical models were variants on the form: LnCE = Year + Vessel + Month + DepthCategory + Zone + Daynight. For some fisheries weeknumber or gear type was also included. In addition, there were interaction terms which could sometimes be fitted, such as Month:Zone or Month:DepthCategory. Thus, the CPUE, conditioned on positive catches of the species of interest, was statistically modelled with a normal GLM on log-transformed CPUE data:

$$
\begin{equation*}
\operatorname{Ln}\left(C P U E_{i}\right)=\alpha_{0}+\alpha_{1} x_{i, 1}+\alpha_{2} x_{i, 2}+\sum_{j=3}^{N} \alpha_{j} x_{i j}+\varepsilon_{i} \tag{1}
\end{equation*}
$$

where $\operatorname{Ln}\left(C P U E_{i}\right)$ is the natural logarithm of the catch rate (usually kg / h, but sometimes $\mathrm{kg} /$ shot) for the i-th shot, $x_{i j}$ are the values of the explanatory variables j for the i-th shot and the α_{j} are the coefficients for the N factors j to be estimated (α_{0} is the intercept, α_{1} is the coefficient for the first factor, etc.).

18.3.1.3 The Overall Year Effect

For the lognormal model the expected back-transformed year effect involves a biascorrection to account for the log-normality; this then focuses on the mean of the distribution rather than the median:

$$
\begin{equation*}
C P U E_{t}=e^{\left(\gamma_{t}+\sigma_{t}^{2} / 2\right)} \tag{2}
\end{equation*}
$$

where γ_{t} is the Year coefficient for year t and σ_{t} is the standard deviation of the \log transformed data (obtained from the analysis). The year coefficients were all divided by the average of the year coefficients to simplify the visual comparison of catch rate changes:

$$
\begin{equation*}
C E_{t}=\frac{C P U E_{t}}{\left(\sum C P U E_{t}\right) / n} \tag{3}
\end{equation*}
$$

where CPUE_{t} is the yearly coefficients from the standardization, $\left(\Sigma \mathrm{CPUE}_{\mathrm{t}}\right) / \mathrm{n}$ is the arithmetic average of the yearly coefficients, n is the number of years of observations, and CE_{t} is the final time series of yearly index of relative abundance.

Figure 18.1. A schematic diagram depicting the statistical reporting zones in the SESSF, as used in this document. The GAB fishery is to the west of Zone 50. The main SESSF trawl zones are zones $10-50$. Each zone extends out to the boundary of the EEZ, except for zones 50 and 60, and for zones 92 and 91 , which are bounded by zone 70 .

18.3.1.4 Data Manipulations

A standard set of database extracts were designed to identify positive shots containing the species of interest in each case. For each species the analyses were restricted to particular zones and depth ranges within a particular fishery and using a particular method (Table 18.1).

The statistical software R was used in all analyses (R Development Core Team, 2009), which, because of the large size of the datasets, required the use of the library "biglm".

18.4 Results

Table 18.1. Data characteristics for each analysis. Records show the number of records, the depths, the zones, and other details used in the data selection for the analyses.

	Species	Zone	Depths	Comment	Records
1	School Whiting	60	0-100	Danish Seine, catch per shot.	78769
2	Eastern Gemfish	10-30,40/2	200-500	June-Sept 93 onwards, Spawning	14277
3	Eastern Gemfish	10-30,40/2	0-600	Oct-May 86-09 0-600m, Jun-Sep <300m	36550
4	Jackass Morwong	10-50	70-360		145693
5	Jackass Morwong	10,20	70-300		111210
6	Jackass Morwong	30	70-300		18879
7	Jackass Morwong	40,50	70-360		12433
8	Flathead	10,20	0-400	Trawl	250688
9	Flathead	30	0-400		19983
10	Flathead DS	20,60	0-200	Danish Seine, catch per shot	178743
11	RedFish	10	0-400		70520
12	RedFish	20	0-400		26423
13	Silver Trevally	10,20	0-200	Remove State waters and MPAs	32889
14	Royal Red Prawn	10	200-700		23812
15	Blue Eye	20,30	0-1000		12124
16	Blue Eye	40,50	0-1000		12516
17	Blue Eye	10-50,83-85	200-600	Autolining and Droplining 1997 onwards	14246
18	Blue Grenadier	10-60	0-1000	Except Zone 40 Jun-Aug	129373
19	Silver Warehou	10-50	0-600		125519
20	Blue Warehou	10-30	0-400		36804
21	Blue Warehou	40,50	0-600		12775
22	Blue Warehou	10-50	0-600		50053
23	Pink Ling	10-30	250-600		94864
24	Pink Ling	40,50	200-800		73010
25	Pink Ling	10	250-600	For use in disaggregated analyses	43966
26	Pink Ling	20	250-600	"،	42901
27	Pink Ling	30	250-600	"	7997
28	Pink Ling	40	350-800	"	30455
29	Pink Ling	50	200-800	"	42357
30	Western Gemfish	40,50,GAB	100-600		42103
31	Western Gemfish	40,50	200-600		31327
32	Western Gemfish	GAB	100-600	Only 1995 onwards	9219
33	Off-Ocean Perch	10,20	200-700		77185
34	In-Ocean Perch	10,20	0-200		16017
35	John Dory	10,20	0-200		133067
36	Mirror Dory	10-50	0-600		119543
37	Mirror Dory East	10-30	0-600		89626
38	Mirror Dory West	40,50	0-600		29885
39	Ribaldo (RBD)	10-50	0-1000		19597
40	Ribaldo	20-50,81-85	0-1000	Autoline	4236
41	Ocean Jackets	10-50	0-300		78257
42	Ocean Jackets	82-83	0-300		44831
43	DeepWater Flathead	GAB	0-1000	Trawl only, new more detailed analysis	61685
44	Bight Redfish	GAB	0-1000	Trawl only, new more detailed analysis	45374

Figure 18.2. Summary graph of the optimum standardizations for 19 species and 36 different stocks, methods, or fisheries, each with a linear regression across the last six years (2003-2012). The gradient is at bottom left in each graph and the line colour reflects the gradient: green indicates a positive gradient $>$ 0.015 , blue a flat line with a gradient between 0.0149 and -0.0149 , and red indicates a negative gradient <-0.015. There were 10 selections with a positive gradient, 15 selections with a flat gradient, and 11 selections with a negative gradient. The starting year, 2007 was the year after the structural adjustment and the year of introducing the Harvest Strategy Policy. Composite selections, such as MirrorDory10-50 and TotalOceanPerch are omitted.

MohnDory

Figure 18.3. Summary graph of the optimum standardizations for 19 species and 36 different stocks, methods, or fisheries, each with a linear regression across the last six years (2007-2012). The gradient is at bottom left in each graph and the line colour reflects the gradient: green indicates a positive gradient > 0.015 , blue a flat line with a gradient between 0.0149 and -0.0149 , and red indicates a negative gradient <-0.015. There were 11 selections with a positive gradient, 3 selections with a flat gradient, and 22 selections with a negative gradient. The starting year, 2007 was the year after the structural adjustment and the year of introducing the Harvest Strategy Policy.

18.4.1 School Whiting (WHS - 37330014) Sillago flindersi

School Whiting are taken primarily by Danish Seine (and within State waters). In Commonwealth waters the catches are primarily within Zone 60, and in depths less than or equal to 100 m . All vessels and all records were included in the analysis. Catch rates were expressed as the natural log of catch per shot. There were a total of 80,294 records used.

Table 18.2. School Whiting from Zone 60 in depths 0 to 100 m by Danish Seine. Total Catch is the total reported in the database, Records are the number used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates $(\mathrm{kg} / \mathrm{hr})$. Mth:DepC is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Mth:DepC	StDev
1986	1299.306	5667	1181.583	26	112.3054	1.1634	0.0000
1987	995.251	4119	920.495	23	131.1624	1.2824	0.0293
1988	1251.758	3815	1177.456	25	168.5490	1.6623	0.0299
1989	1060.763	4440	994.408	27	127.0438	1.0976	0.0288
1990	1928.558	6263	1859.923	24	165.2959	1.7010	0.0269
1991	1622.185	4871	1517.794	26	164.1905	1.4401	0.0285
1992	843.104	2980	777.524	23	124.7066	1.0249	0.0327
1993	1675.025	4696	1471.559	23	152.4819	1.4595	0.0289
1994	940.481	4503	879.162	24	93.9314	0.8526	0.0290
1995	1211.626	4270	1065.934	21	122.4731	1.0721	0.0294
1996	893.769	4297	718.814	22	81.4339	0.7020	0.0296
1997	696.620	3314	481.660	20	64.5619	0.5436	0.0319
1998	593.943	2988	464.154	20	66.0158	0.5241	0.0328
1999	678.265	2044	452.215	21	84.3634	0.5996	0.0376
2000	700.465	1913	335.075	17	65.1233	0.6039	0.0380
2001	888.820	1980	425.095	18	93.2089	0.8466	0.0392
2002	787.413	2192	429.218	20	90.8874	0.8685	0.0375
2003	864.291	2352	463.528	20	87.1013	0.8882	0.0368
2004	601.813	1771	334.631	20	79.7648	0.8380	0.0396
2005	660.934	1750	311.428	20	77.2502	0.9476	0.0412
2006	664.547	1428	270.272	18	76.2250	0.8179	0.0431
2007	535.083	1488	347.049	14	89.2381	1.0781	0.0421
2008	502.245	1260	317.058	15	92.3448	1.0854	0.0451
2009	461.891	1569	350.723	15	93.6200	1.1373	0.0418
2010	408.306	1179	273.470	15	88.7190	1.0153	0.0461
2011	372.096	1579	260.300	14	72.0269	0.8322	0.0415
2012	434.952	1566	302.468	14	80.0853	0.9157	0.0418

Figure 18.4. School Whiting in zone 60 in depths 0 to 100 m taken by Danish Seine. The top left is the depth distribution of all records reporting School Whiting, the top right graph depicts the depth distribution of shots containing School Whiting in Zone 60 and depths $0-100 \mathrm{~m}$. The middle left diagram depicts the distribution of catch by depth within zone 60 across all years, the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the School Whiting catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Figure 18.5. School Whiting in zone 60 in depths 0 to 100 m by Danish Seine. The dashed black line represents the geometric mean catch rate, the solid black line the standardized catch rates, and the blue line is last year's analysis. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.3. School Whiting from Zone 60 in depths 0 to 100 m by Danish Seine. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories. DN is DayNight

Model 1	LnCE~Year
Model 2	LnCE~Year+Vessel
Model 3	LnCE~Year+Vessel+DN
Model 4	LnCE~Year+Vessel+DN+Month
Model 5	LnCE~Year+Vessel+DN+Month+DepCat
Model 6	LnCE~Year+Vessel+DN+Month+DepCat+DN:DepCat
Model 7	LnCE~Year+Vessel+DN+Month+DepCat+DepCat:Month
Model 8	LnCE \sim Year+Vessel+DN+Month+DepCat+DN:Month

Table 18.4. School Whiting from Zone 60 in depths 0 to 100 m by Danish Seine. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum was model 7. DN is DayNight, DepC is depth category and Mth is Month.

| | Year | Vessel | DayNight | Month | DepCat | DN:DepC | DepC:Mth | DN:Mth |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| AIC | 56785 | 54742 | 52485 | 50417 | 48942 | 48779 | $\mathbf{4 8 4 0 8}$ | 48793 |
| RSS | 162753 | 158483 | 154078 | 150120 | 146284 | 145936 | $\mathbf{1 4 5 1 3 3}$ | 145885 |
| MSS | 7667 | 11938 | 16342 | 20300 | 24136 | 24484 | $\mathbf{2 5 2 8 7}$ | 24535 |
| Nobs | 80294 | 80294 | 80294 | 80294 | 78769 | 78769 | $\mathbf{7 8 7 6 9}$ | 78769 |
| Npars | 27 | 73 | 76 | 87 | 91 | 103 | $\mathbf{1 3 5}$ | 124 |
| adj_r2 | 4.468 | 6.921 | 9.505 | 11.817 | 14.064 | 14.256 | $\mathbf{1 4 . 6 9 3}$ | 14.263 |
| \%Change | 0.000 | 2.454 | 2.583 | 2.313 | 2.247 | 0.191 | $\mathbf{0 . 4 3 7}$ | -0.430 |

Figure 18.6. The relative influence of each factor used on the final trend in the optimal standardization for School Whiting in Zone 60. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

18.4.2 Eastern Gemfish (GEM - 37439002 - Rexea solandri) Spawning Fishery

Only use June through September from 1993-2012, 300-500m depth, Catch effort > 0.0 , Zones $10-30$ plus below 42 degrees on the west coast of Tasmania (zone 40).

Eastern Gemfish are taken by trawl in the spawning season from June to September in Zones 10, 20, 30, in the bottom half of 40 and between depths of 300 to 500 m . There were 14,377 records used. The spawning run of Eastern Gemfish is considered to be a bycatch fishery. Particular records in the database relating to the Eastern Gemfish surveys in 2007 and 2008 are removed from the data set prior to the analysis.

Table 18.5. Eastern Gemfish, spawning fishery in depths between $300-500 \mathrm{~m}$, taken by trawl. Total Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates $(\mathrm{kg} / \mathrm{hr})$. Zone:Month is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Mth	StDev
1993	178.702	824	133.231	50	17.7598	2.0231	0.0000
1994	64.153	819	49.038	47	11.8880	1.3376	0.0622
1995	33.597	657	21.865	48	7.3973	0.8978	0.0656
1996	150.790	769	135.132	49	10.9438	1.1347	0.0632
1997	308.735	1232	268.590	48	18.9829	1.6483	0.0585
1998	153.176	883	144.676	46	11.5921	1.1003	0.0628
1999	102.124	1065	87.921	45	8.4120	0.9279	0.0610
2000	46.189	1178	37.019	44	4.8857	0.6347	0.0613
2001	43.598	854	32.809	47	4.7139	0.6491	0.0650
2002	29.059	922	22.438	42	3.5128	0.4665	0.0644
2003	38.392	967	31.587	48	4.5797	0.6604	0.0633
2004	29.601	631	19.771	44	4.2927	0.6203	0.0705
2005	36.899	652	21.620	40	4.5977	0.5494	0.0693
2006	46.131	571	34.753	35	7.7674	0.8783	0.0719
2007	32.799	308	25.356	19	8.9499	1.0890	0.0868
2008	49.565	447	35.258	23	10.4210	1.3265	0.0792
2009	47.203	413	37.038	22	9.3924	1.2145	0.0803
2010	50.948	391	41.807	24	10.5766	1.3142	0.0812
2011	33.197	413	27.432	21	7.3130	0.9187	0.0795
2012	33.045	381	28.010	21	6.0729	0.6087	0.0827

7

Figure 18.7. Eastern Gemfish, spawning fishery in depths between $300-500 \mathrm{~m}$, taken by trawl. The top left is the depth distribution of all records reporting Eastern Gemfish, the top right graph depicts the depth distribution of shots containing Eastern Gemfish, spawning fishery in depths between $300-500 \mathrm{~m}$, taken by trawl. The middle left diagram depicts the distribution of catch by depth by SESSF zone, the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the Eastern Gemfish catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Figure 18.8. Eastern Gemfish, spawning fishery in depths between $300-500 \mathrm{~m}$, taken by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.6. Eastern Gemfish, spawning fishery in depths between $300-500 \mathrm{~m}$, taken by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE \sim Year+Vessel+Month
Model 4	LnCE \sim Year+Vessel+Month +DepCat
Model 5	LnCE Year+Vessel+Month +DepCat +DayNight
Model 6	LnCE \sim Year+Vessel+Month +DepCat +DayNight+Zone
Model 7	LnCE \sim Year+Vessel+Month +DepCat +DayNight+Zone+Zone:Month
Model 8	LnCE \sim Year+Vessel+Month +DepCat +DayNight+Zone+Zone:DepCat

Table 18.7. Eastern Gemfish, spawning fishery in depths between $300-500 \mathrm{~m}$, taken by trawl. Model selection criteria, including the AIC, the deviance and the change in deviance. The optimum is model Zone:Month.

	Year	Vesse	DepCat	Mo	DayNight	Zone	Zo	Zone:DepC
AIC	8425	6762	5971	5564	5525	5508	5229	5495
RSS	25761	22629	21410	20692	20627	20593	20169	20489
MSS	3774	6907	8126	8844	8909	8943	9366	9047
Nobs	14377	14377	14377	14277	14277	14277	14277	14277
Npars	20	120	123	133	136	139	148	169
adj_r2	12.663	22.744	26.892	29.290	29.496	29.598	31.001	29.804
\%Change	0.000	10.081	4.148	2.398	0.207	0.101	1.404	-1.19

Figure 18.9. The relative influence of each factor used on the final trend in the optimal standardization for the eastern gemfish spawning fishery. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.
18.4.3 Eastern Gemfish Non-Spawning (GEM - 37439002 - Rexea solandri)

Use October to May 1986-2012, all depths to 600 m , June to September, $<300 \mathrm{~m}$ depth, Zones $10-30$ plus below 42 on the west coast of Tasmania (zone 40).

Table 18.8. Non-spawning Eastern Gemfish from the SET in depths between $0-600 \mathrm{~m}$, taken by trawl. Total Catch is the total reported in the database, Records is the number of records used in the analysis, Catch T is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). Zone:DepCat is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:DepC	StDev
1986	3639.705	2030	390.356	86	14.5833	2.3736	0.0000
1987	4654.845	1894	770.141	74	25.6322	3.1365	0.0429
1988	3515.132	2203	509.587	77	20.2775	2.7031	0.0429
1989	1773.801	1434	148.400	69	11.5170	1.8111	0.0474
1990	1206.660	758	104.135	69	12.7467	1.8021	0.0572
1991	578.584	731	65.995	71	8.7585	1.2263	0.0585
1992	485.696	693	135.106	49	11.2867	1.7144	0.0592
1993	353.153	1536	94.320	58	8.9703	1.3372	0.0478
1994	232.154	1832	63.812	55	6.3021	0.9164	0.0459
1995	181.686	1685	49.977	54	5.5810	0.8339	0.0467
1996	381.614	1947	55.708	61	4.1794	0.6333	0.0459
1997	571.679	1786	66.020	58	4.3644	0.6651	0.0483
1998	404.594	1246	45.635	50	4.3330	0.6289	0.0508
1999	448.384	1344	30.319	53	2.9242	0.4601	0.0502
2000	336.404	1716	32.310	57	2.7970	0.4177	0.0480
2001	330.838	1621	32.019	51	2.0726	0.3438	0.0491
2002	195.597	1617	19.034	50	1.5969	0.2644	0.0493
2003	268.577	1585	20.047	48	1.7227	0.2907	0.0496
2004	524.293	1771	38.563	54	2.6319	0.4134	0.0489
2005	448.035	1745	40.971	48	2.8266	0.4417	0.0485
2006	508.681	1325	32.151	43	2.9593	0.4689	0.0517
2007	458.482	788	28.140	22	4.2429	0.6383	0.0589
2008	251.708	840	35.467	26	5.7070	0.8546	0.0582
2009	189.831	514	27.227	27	6.6449	0.8814	0.0683
2010	218.885	704	22.850	23	4.1887	0.6351	0.0614
2011	147.297	801	22.831	22	3.8210	0.5807	0.0604
2012	147.746	709	21.996	23	3.5107	0.5270	0.0624

Figure 18.10. Non-spawning Eastern Gemfish from the SET in depths between $0-600 \mathrm{~m}$, taken by trawl. The top left is the depth distribution of all records reporting Eastern Gemfish, the top right graph depicts the depth distribution of shots containing Non-spawning Eastern Gemfish from the SET in depths between $0-600 \mathrm{~m}$, taken by trawl. The middle left diagram depicts the distribution of catch by depth by SESSF zone, the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the Eastern Gemfish catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<$ 30 Kg).

Figure 18.11. Non-spawning Eastern Gemfish from the SET in depths between $0-600 \mathrm{~m}$, taken by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The blue line is last year's optimum standardization. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.9. Non-spawning Eastern Gemfish from the SET in depths between $0-600 \mathrm{~m}$, taken by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE~Year+Vessel
Model 3	LnCE \sim Year+Vessel+DepCat
Model 4	LnCE~Year+Vessel+DepCat+Month
Model 5	LnCE \sim Year+Vessel+DepCat+Month+Zone
Model 6	LnCE Year+Vessel+DepCat+Month+Zone+DayNight
Model 7	LnCE \sim Year+Vessel+DepCat + Month+Zone+DayNight+Zone:Month
Model 8	LnCE \sim Year+Vessel+DepCat + Month+Zone+DayNight+Zone:DepCat

Table 18.10. Nonspawning Eastern Gemfish from the SET in depths between $0-600 \mathrm{~m}$, taken by trawl. Model selection criteria, including the AIC, the deviance and the change in deviance. The optimum is model Zone:DepCat.

	Year	Vessel	DepCat	Month	Zone			DayNight
Zone:Mth	Zone:DepC							
AIC	23211	18145	15968	15522	15295	14991	14739	$\mathbf{1 4 5 9 0}$
RSS	69084	59617	55836	55126	54776	54314	53843	$\mathbf{5 3 4 5 7}$
MSS	22748	32215	35996	36706	37056	37518	37988	$\mathbf{3 8 3 7 5}$
Nobs	36855	36855	36550	36550	36550	36550	36550	$\mathbf{3 6 5 5 0}$
Npars	27	210	240	251	254	257	290	$\mathbf{3 4 7}$
adj_r2	24.718	34.710	38.798	39.557	39.936	40.438	40.900	$\mathbf{4 1 . 2 3 2}$
\%Change	0.000	9.992	4.088	0.760	0.379	0.502	0.462	$\mathbf{0 . 3 3 2}$

Figure 18.12. The relative influence of each factor used on the final trend in the optimal standardization for Non-spawning Eastern Gemfish. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor 3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

18.4.4 Jackass Morwong Z10-50 (MOR - 37377003 Nemadactylus macropterus)

Only data from Zones 10 to 50 in depths $70-360 \mathrm{~m}$ taken by trawl.

Table 18.11. Jackass Morwong from zones 10 to 50 in depths $70-360 \mathrm{~m}$ by trawl. Total Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr)}$). Zone:Mth is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Mth	StDev
1986	982.811	5772	873.211	106	22.5592	1.8636	0.0000
1987	1087.450	4948	1000.054	104	26.1917	2.1150	0.0266
1988	1481.882	5984	1314.397	102	29.1554	2.0887	0.0259
1989	1659.362	5434	1500.604	89	33.9001	2.0266	0.0267
1990	1000.682	5022	837.357	86	24.2137	1.6782	0.0277
1991	1127.911	5233	899.685	85	21.1181	1.4883	0.0275
1992	755.788	3483	523.779	63	19.1937	1.2362	0.0307
1993	1012.730	4732	821.881	73	21.3530	1.2543	0.0288
1994	818.025	5660	684.800	71	18.0744	1.0712	0.0274
1995	789.528	5852	705.409	63	16.3623	1.0034	0.0272
1996	827.151	7535	749.574	70	13.8607	0.9215	0.0261
1997	1060.409	7561	934.001	70	16.1581	0.9853	0.0266
1998	838.174	5941	688.705	65	13.4363	0.8471	0.0275
1999	932.828	5801	779.703	66	14.1587	0.8733	0.0277
2000	866.393	6902	732.188	78	10.1983	0.7379	0.0269
2001	781.582	6786	644.178	71	8.3295	0.5590	0.0272
2002	798.666	7761	691.282	65	8.3275	0.5880	0.0268
2003	758.467	6538	601.484	64	7.9077	0.5102	0.0275
2004	764.786	6483	604.476	70	8.6153	0.5097	0.0277
2005	784.116	6376	597.416	58	8.9785	0.5486	0.0277
2006	806.510	5446	616.102	49	11.5427	0.6298	0.0286
2007	601.674	3812	443.366	30	12.2504	0.6369	0.0311
2008	691.699	4491	546.640	33	13.7889	0.7480	0.0301
2009	448.242	3383	344.429	27	11.4713	0.6605	0.0320
2010	356.916	3438	292.104	30	8.5497	0.4886	0.0320
2011	377.016	3526	303.344	28	8.5284	0.4623	0.0319
2012	333.477	3145	305.253	30	8.9426	0.4679	0.0327

Figure 18.13. Jackass Morwong from zones 10 to 50 in depths $70-360 \mathrm{~m}$ by trawl. The top left is the depth distribution of all records reporting Jackass Morwong, the top right graph depicts the depth distribution of shots containing Jackass Morwong from zones 10 to 50 in depths $70-360 \mathrm{~m}$ by trawl. The middle left diagram depicts the distribution of catch by depth within zones 10 to 50 , the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the Jackass Morwong catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Figure 18.14. Jackass Morwong from zones 10 to 50 in depths $70-360 \mathrm{~m}$ by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.12. Jackass Morwong from zones 10 to 50 in depths $70-360 \mathrm{~m}$ by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE~Year+Vessel
Model 3	LnCE \sim Year+Vessel+Month
Model 4	LnCE \sim Year+Vessel+Month+Zone
Model 5	LnCE Year+Vessel+Month+Zone+DepCat
Model 6	LnCE \sim Year+Vessel+Month+Zone+DepCat+DayNight
Model 7	LnCE \sim Year+Vessel+Month+Zone+DepCat+DayNight+Zone:Month
Model 8	LnCE \sim Year+Vessel+Month+Zone+DepCat+DayNight+Zone:DepCat

Table 18.13. Jackass Morwong from zones 10 to 50 in depths $70-360 \mathrm{~m}$ by trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum was model Zone:Month.

	Year	Vessel	Month	DepCat	Zone	DayNight	Zone:Month	Zone:DepCat
AIC	112806	90946	84493	80255	75285	73966	$\mathbf{7 1 8 4 3}$	72482
RSS	316564	272034	260315	251807	243349	241144	$\mathbf{2 3 7 5 1 3}$	238504
MSS	27262	71792	83511	92019	100477	102681	$\mathbf{1 0 6 3 1 3}$	105321
Nobs	147045	147045	147045	145693	145693	145693	$\mathbf{1 4 5 6 9 3}$	145693
Npars	27	243	254	269	273	276	320	336
adj_r2	7.913	20.750	24.158	26.628	29.091	29.732	$\mathbf{3 0 . 7 6 9}$	30.472
\%Change	0.000	12.837	3.408	2.470	2.463	0.641	$\mathbf{1 . 0 3 7}$	-0.297

Figure 18.15. The relative influence of each factor used on the final trend in the optimal standardization for Jackass Morwong in Zones $10-50$. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

Figure 18.16. The trends in catch and geometric mean catch rates for Jackass Morwong taken by trawl across SESSF zones $10-50$. The catch rate trends across zones $10-30$ are very similar, whilst those for zones 40 to 50 are noisy due to low catches until after 1996.

Table 18.14. The split of reported catches in tonnes by zone as taken by trawl in the identified depths. GAB includes zones $82,83,84$, and 85 .

Year	10	20	30	40	50	60	GAB
1986	1937.491	1345.901	2.152	28.394	280.900	3.993	1.200
1987	3471.444	814.932	76.887	17.139	233.879	2.152	13.517
1988	1408.400	1675.268	74.923	36.368	193.848	69.071	36.741
1989	1067.449	474.894	22.890	42.192	114.786	4.198	28.676
1990	838.855	183.976	24.321	5.954	130.706	3.308	10.978
1991	154.864	108.371	6.202	9.788	260.438	0.100	31.430
1992	282.921	45.515	1.101	0.374	89.302	0.090	16.016
1993	164.685	65.712	5.149	12.764	90.140	0.253	6.912
1994	56.539	45.209	11.232	6.081	90.272	0.061	14.815
1995	35.218	27.316	8.903	2.545	82.313	0.108	22.881
1996	146.237	31.378	10.480	6.374	139.626	0.332	20.049
1997	208.555	125.046	19.249	4.229	150.014	0.076	61.912
1998	126.852	45.949	21.314	0.682	121.874	0.306	85.736
1999	79.236	34.113	10.387	1.537	175.645	0.178	147.039
2000	33.049	32.722	5.443	2.887	229.426	0.158	32.230
2001	26.235	28.548	10.269	6.377	164.878	0.051	91.424
2002	18.604	17.914	7.911	2.931	84.183	0.077	43.836
2003	26.824	20.973	5.880	2.185	122.703	0.076	84.758
2004	24.023	20.924	16.445	2.461	105.490	0.108	337.274
2005	27.457	22.799	16.462	8.070	111.122	0.049	260.273
2006	33.590	25.816	13.485	2.543	102.359	0.021	322.633
2007	21.458	19.083	17.422	5.079	59.061	0.127	330.092
2008	28.365	32.561	23.380	4.117	53.580	0.965	108.368
2009	30.093	31.033	12.954	6.121	56.041	0.063	53.486
2010	36.475	25.576	13.515	12.277	80.655	0.359	49.525
2011	24.061	16.288	11.347	16.205	45.389	0.881	31.708
2102	19.056	20.761	13.509	10.761	45.122	0.410	37.905

18.4.5 Jackass Morwong Z1020 (MOR-37377003 N. macropterus)

Only data from zone 10 and 20 were used for trawl vessels only (i.e. exclude Danish Seine vessels), and depths between 70 and 300 m .

Table 18.15. Jackass Morwong from zones 10 and 20 in depths $70-300 \mathrm{~m}$ by trawl. Total Catch is the total reported in the database, Records is the number of reported records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). Zone:Mth is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Mth	StDev
1986	982.811	5045	686.225	87	21.2677	1.8269	0.0000
1987	1087.450	4266	858.475	79	26.2295	2.2168	0.0292
1988	1481.882	5147	1025.256	79	27.6740	2.0875	0.0284
1989	1659.362	4325	929.409	65	27.9306	1.9635	0.0294
1990	1000.682	4127	600.553	59	21.9897	1.6331	0.0304
1991	1127.911	4436	661.796	55	19.4037	1.5462	0.0302
1992	755.788	2842	378.592	46	17.3690	1.2245	0.0340
1993	1012.730	3363	464.955	49	17.0123	1.2876	0.0326
1994	818.025	4470	473.423	49	16.1919	1.1287	0.0306
1995	789.528	4600	435.209	47	14.0323	1.0491	0.0302
1996	827.151	6218	544.828	51	12.3880	0.9501	0.0288
1997	1060.409	6031	672.142	53	14.8970	1.0479	0.0295
1998	838.174	4790	435.779	46	11.3605	0.8474	0.0305
1999	932.828	4429	447.847	50	11.3334	0.8504	0.0311
2000	866.393	5719	479.565	55	8.7637	0.7127	0.0298
2001	781.582	4930	258.551	48	5.8826	0.5006	0.0307
2002	798.666	5702	328.002	44	6.3660	0.5550	0.0301
2003	758.467	4585	237.585	47	5.3371	0.4401	0.0312
2004	764.786	4196	220.279	52	5.4124	0.4346	0.0320
2005	784.116	4378	262.616	39	6.8948	0.5298	0.0317
2006	806.510	3417	275.501	36	8.8173	0.6363	0.0333
2007	601.674	2437	212.373	20	9.2385	0.6017	0.0368
2008	691.699	3167	321.578	25	11.2739	0.7707	0.0348
2009	448.242	2447	228.460	19	10.4057	0.7088	0.0369
2010	356.916	2593	193.811	19	7.6433	0.4980	0.0366
2011	377.016	2401	170.945	18	7.3903	0.4780	0.0376
2012	333.477	2166	175.128	19	7.6279	0.4743	0.0382

Figure 18.17. Jackass Morwong from zones 10 and 20 in depths $70-300 \mathrm{~m}$ by trawl. The top left is the depth distribution of all records reporting Jackass Morwong, the top right graph depicts the depth distribution of shots containing Jackass Morwong from zones 10 and 20 in depths $70-300 \mathrm{~m}$ by trawl. The middle left diagram depicts the distribution of catch by depth within zones 10 and 20 (20 is top red line), the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the Jackass Morwong catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Table 18.16. Jackass Morwong from zones 10 and 20 in depths $70-300 \mathrm{~m}$ by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.
Model 1 LnCE~Year
Model 2 LnCE~Year+Vessel
Model 3 LnCE~Year+Vessel+Month
Model 4 LnCE \sim Year+Vessel+Month+DepCat
Model 5 LnCE~Year+Vessel+Month+DepCat+Zone
Model $6 \quad$ LnCE~Year+Vessel+Month+DepCat+Zone+DayNight
Model $7 \quad$ LnCE \sim Year + Vessel + Month + DepCat + Zone + DayNight + Zone:Month
Model $8 \quad$ LnCE \sim Year + Vessel+Month + DepCat+Zone + DayNight+Zone:DepCat

Figure 18.18. Jackass Morwong from zones 10 and 20 in depths $70-300 \mathrm{~m}$ by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.17. Jackass Morwong from zones 10 and 20 in depths $70-300 \mathrm{~m}$ by trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum was model Zone:Month.

	Year	Vessel	Month	DepCat	Zone	DayNight	Zone:Mth	Zone:DepC
AIC	80338	66125	63348	61193	59303	58043	$\mathbf{5 7 1 8 8}$	57728
RSS	229497	201577	196610	192031	188791	186654	$\mathbf{1 8 5 1 8 8}$	186086
MSS	29575	57496	62462	67041	70281	72418	$\mathbf{7 3 8 8 4}$	72986
Nobs	112227	112227	112227	111210	111210	111210	$\mathbf{1 1 1 2 1 0}$	111210
Npars	27	200	211	223	224	227	$\mathbf{2 3 8}$	239
adj_r2	11.395	22.055	23.968	25.729	26.982	27.806	$\mathbf{2 8 . 3 6 6}$	28.018
\%Change	0.000	10.659	1.913	1.762	1.252	0.825	$\mathbf{0 . 5 6 0}$	-0.348

Figure 18.19. The relative influence of each factor used on the final trend in the optimal standardization for Jackass Morwong in Zones $10-20$. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.
18.4.6 Jackass Morwong Z30 (MOR - 37377003 N. macropterus)

Only data from zone 30 were used, depths between 70 and 300 m taken by trawl.

Table 18.18. Jackass Morwong from zone 30 in depths $70-300 \mathrm{~m}$ by trawl. Total Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates (kg/hr). Month:DepCat is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Month:DepC	StDev
1986	982.811	69	29.887	6	52.3193	1.7824	0.0000
1987	1087.450	210	57.476	13	45.8807	1.8363	0.1774
1988	1481.882	283	207.935	13	90.9064	2.5434	0.1721
1989	1659.362	687	475.039	19	125.0173	3.2012	0.1653
1990	1000.682	386	148.857	26	64.6762	2.2250	0.1661
1991	1127.911	427	189.534	29	68.3860	1.4313	0.1644
1992	755.788	335	106.819	18	50.3448	1.5121	0.1692
1993	1012.730	1042	325.873	27	49.6567	1.2018	0.1592
1994	818.025	762	180.185	22	40.3412	0.8330	0.1602
1995	789.528	826	185.282	19	36.4017	0.8056	0.1611
1996	827.151	890	161.402	19	29.4500	0.8022	0.1602
1997	1060.409	940	202.389	15	32.4284	0.9044	0.1595
1998	838.174	772	191.733	15	38.4649	0.8725	0.1603
1999	932.828	855	246.913	17	46.7614	1.0366	0.1606
2000	866.393	552	123.785	23	30.7755	0.7016	0.1625
2001	781.582	796	108.097	19	16.1559	0.4677	0.1594
2002	798.666	1044	108.944	15	13.9509	0.4161	0.1591
2003	758.467	1126	187.053	19	20.4814	0.5830	0.1582
2004	764.786	1500	201.278	15	18.1516	0.4423	0.1575
2005	784.116	1159	137.710	17	12.3142	0.3197	0.1587
2006	806.510	1127	154.482	14	17.6164	0.4018	0.1593
2007	601.674	714	111.625	8	22.5650	0.5578	0.1616
2008	691.699	768	119.020	9	24.1797	0.5880	0.1614
2009	448.242	463	54.343	10	16.5669	0.4215	0.1650
2010	356.916	372	58.189	9	19.1085	0.4350	0.1678
2011	377.016	452	48.260	8	11.9546	0.2903	0.1655
2012	333.477	561	92.494	8	16.4181	0.3873	0.1640

Figure 18.20. Jackass Morwong from zone 30 in depths $70-300 \mathrm{~m}$ by trawl. The top left is the depth distribution of all records reporting Jackass Morwong, the top right graph depicts the depth distribution of shots containing Jackass Morwong from zone 30 in depths $70-300 \mathrm{~m}$ by trawl. The middle left diagram depicts the distribution of catch by depth within zone 30 , the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the Jackass Morwong catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Figure 18.21. Jackass Morwong from zone 30 in depths $70-300 \mathrm{~m}$ by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.19. Jackass Morwong from zone 30 in depths $70-300 \mathrm{~m}$ by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Month
Model 3	LnCE \sim Year+Month+Vessel
Model 4	LnCE \sim Year+Month+Vessel+DepCat
Model 5	LnCE \sim Year+Month+Vessel+DepCat+DayNight
Model 6	LnCE \sim Year+Month+Vessel+DepCat+DayNight+DayNight:Month
Model 7	LnCE \sim Year+Month+Vessel+DepCat+DayNight+Month:DepCat
Model 8	LnCE \sim Year+Month+Vessel+DepCat+DayNight+DayNight:DepCat

Table 18.20. Jackass Morwong from zone 30 in depths $70-300 \mathrm{~m}$ by trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum was model Month:DepCat.

	Year	Month	Vessel	DepC	DN	DN:Mth	Mth:DepC	DN:DepC
AIC	9601	7753	6632	6048	5906	5859	$\mathbf{5 8 3 6}$	5944
RSS	31501	28565	26683	25622	25423	25271	$\mathbf{2 4 9 7 7}$	25377
MSS	6432	9367	11250	12310	12510	12662	$\mathbf{1 2 9 5 5}$	12555
Nobs	19118	19118	19118	18879	18879	18879	$\mathbf{1 8 8 7 9}$	18879
Npars	27	38	129	141	144	177	$\mathbf{2 7 6}$	180
adj_r2	16.843	24.548	29.183	31.948	32.467	32.753	$\mathbf{3 3 . 1 8 0}$	32.458
\%Change	0.000	7.706	4.635	2.765	0.519	0.286	$\mathbf{0 . 4 2 8}$	-0.722

Figure 18.22. The relative influence of each factor used on the final trend in the optimal standardization for Jackass Morwong in Zone 30. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.
18.4.7 Jackass Morwong Z4050 OT (MOR - 37377003 N. macropterus)

The data restrictions used in selecting the data for analysis were, depths between 70 and 360 m .

Table 18.21. Jackass Morwong from zones 40 and 50 in depths $70-360 \mathrm{~m}$ by trawl. Total Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). Zone:Mth is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Mth	StDev
1986	982.811	551	149.261	19	40.7569	1.8892	0.0000
1987	1087.450	350	58.464	21	24.4475	1.4796	0.0873
1988	1481.882	402	65.444	19	32.2567	2.2158	0.0875
1989	1659.362	346	83.203	21	32.2213	1.5988	0.0923
1990	1000.682	412	80.657	22	28.9610	1.6166	0.0937
1991	1127.911	281	40.380	26	18.6097	1.1066	0.0979
1992	755.788	252	28.878	14	15.3915	0.8955	0.1008
1993	1012.730	248	24.971	17	15.5454	0.8713	0.1020
1994	818.025	312	22.679	16	14.6606	0.8407	0.0953
1995	789.528	295	77.615	17	21.5262	0.8822	0.0963
1996	827.151	346	37.071	17	15.3414	0.9678	0.0935
1997	1060.409	489	53.851	20	12.8372	0.7684	0.0869
1998	838.174	267	54.630	19	14.8359	0.8109	0.0989
1999	932.828	383	77.235	17	15.5951	0.7358	0.0916
2000	866.393	429	118.868	26	22.5254	1.0370	0.0919
2001	781.582	914	273.953	25	34.2135	1.1113	0.0809
2002	798.666	860	251.749	22	33.1596	1.0946	0.0813
2003	758.467	655	171.726	24	30.9832	0.9318	0.0846
2004	764.786	681	176.677	25	30.6678	1.0005	0.0836
2005	784.116	722	190.703	21	28.0502	1.0810	0.0830
2006	806.510	818	183.204	19	21.6176	0.8697	0.0821
2007	601.674	594	115.405	15	19.7196	0.7116	0.0850
2008	691.699	473	101.945	16	24.9534	0.7162	0.0881
2009	448.242	413	59.154	13	14.8023	0.5708	0.0911
2010	356.916	411	38.336	13	10.0135	0.4198	0.0907
2011	377.016	622	82.877	14	12.6506	0.4429	0.0859
2012	333.477	345	34.722	14	10.2040	0.3336	0.0943

Figure 18.23. Jackass Morwong from zones 40 and 50 in depths $70-360 \mathrm{~m}$ by trawl. The top left is the depth distribution of all records reporting Jackass Morwong, the top right graph depicts the depth distribution of shots containing Jackass Morwong from zone 40 and 50 in depths $70-360 \mathrm{~m}$ by trawl. The middle left diagram depicts the distribution of catch by depth within zone 40 and 50 (50 is top red line), the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the Jackass Morwong catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Figure 18.24. Jackass Morwong from zones 40 and 50 in depths $70-360 \mathrm{~m}$ by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.22. Jackass Morwong from zones 40 and 50 in depths $70-360 \mathrm{~m}$ by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+DepCat
Model 3	LnCE \sim Year+DepCat + Month
Model 4	LnCE \sim Year+DepCat + Month+Vessel
Model 5	LnCE \sim Year+DepCat + Month + Vessel+DayNight
Model 6	LnCE \sim Year+DepCat + Month+Vessel+DayNight + Zone
Model 7	LnCE \sim Year+DepCat + Month+Vessel+DayNight + Zone + Zone:Month
Model 8	LnCE \sim Year + DepCat + Month + Vessel + DayNight + Zone + Zone:DepCat

Table 18.23. Jackass Morwong from zones 40 and 50 in depths $70-360 \mathrm{~m}$ by trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum was model 7 .

	Year		DepCat	Month	Vessel	DayNight	Zone	
Zone:Mth	Zone:DepC							
AIC	7635	5345	4160	3556	3478	3389	$\mathbf{3 2 4 6}$	3285
RSS	22946	18985	17229	16194	16086	15968	$\mathbf{1 5 7 5 8}$	15797
MSS	1783	5744	7500	8535	8643	8761	$\mathbf{8 9 7 1}$	8932
Nobs	12525	12433	12433	12433	12433	12433	$\mathbf{1 2 4 3 3}$	12433
Npars	26	41	52	135	138	139	$\mathbf{1 5 0}$	154
adj_2	7.025	22.979	30.041	33.800	34.228	34.702	$\mathbf{3 5 . 5 0 5}$	35.323
\%Change	0.000	15.954	7.062	3.759	0.428	0.474	$\mathbf{0 . 8 0 3}$	-0.182

Figure 18.25. The relative influence of each factor used on the final trend in the optimal standardization for Jackass Morwong in Zones $40-50$. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

18.4.8 Jackass Morwong Z4050 OT (in < 250 m depth)

The data restrictions used in selecting the data for analysis were, depths between 70 and 250 m . This was a special request to determine the effect of the bump of catches between 250 and 360 m . However, doing this removes about 3,400 records from consideration and the fishery has only taken small amounts of catch up until about 2001 after which catches have declined markedly, so it seems possible that any decline in CPUE is being confounded by efforts to avoid catch Jackass Morwong.

Table 18.24. Jackass Morwong from zones 40 and 50 in depths $70-250 \mathrm{~m}$ by trawl. Total Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates $(\mathrm{kg} / \mathrm{hr})$. Zone:Mth is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Mth	StDev
1986	982.811	441	135.545	19	49.3798	1.8616	0.0000
1987	1087.450	257	52.140	20	32.6410	1.4896	0.1018
1988	1481.882	215	48.123	17	40.4386	1.5559	0.1111
1989	1659.362	214	76.518	21	51.8712	1.7655	0.1149
1990	1000.682	300	75.857	22	43.5691	1.8653	0.1113
1991	1127.911	141	29.892	23	32.8280	0.9821	0.1297
1992	755.788	116	21.881	14	23.0810	0.6850	0.1368
1993	1012.730	124	19.139	15	25.8778	0.7715	0.1335
1994	818.025	159	15.761	15	21.7099	0.7900	0.1224
1995	789.528	176	72.990	17	42.3529	1.0772	0.1183
1996	827.151	144	28.915	16	27.3737	0.9200	0.1259
1997	1060.409	206	45.296	18	24.6520	0.8443	0.1126
1998	838.174	130	50.245	16	30.3815	0.9320	0.1286
1999	932.828	209	57.680	15	25.6370	0.9416	0.1126
2000	866.393	264	113.242	23	38.0129	1.2375	0.1109
2001	781.582	719	260.825	23	46.2560	1.1839	0.0916
2002	798.666	685	244.364	22	46.0736	1.1053	0.0915
2003	758.467	507	163.474	24	42.9567	0.9263	0.0962
2004	764.786	536	157.248	23	35.0950	0.9491	0.0943
2005	784.116	540	174.706	21	35.8926	1.1190	0.0936
2006	806.510	663	170.238	19	25.6084	0.8827	0.0916
2007	601.674	497	107.175	15	22.1800	0.7178	0.0944
2008	691.699	393	95.471	16	29.4112	0.6982	0.0981
2009	448.242	356	56.737	13	17.3238	0.5833	0.1010
2010	356.916	338	34.851	13	10.4574	0.3994	0.1018
2011	377.016	541	78.345	14	13.8741	0.4222	0.0954
2012	333.477	284	32.301	14	11.6905	0.2935	0.1054

Figure 18.26. Jackass Morwong from zones 40 and 50 in depths $70-360 \mathrm{~m}$ by trawl. The top left is the depth distribution of all records reporting Jackass Morwong, the top right graph depicts the depth distribution of shots containing Jackass Morwong from zone 40 and 50 in depths $70-360 \mathrm{~m}$ by trawl. The middle left diagram depicts the distribution of catch by depth within zone 40 and 50 (50 is top red line), the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the Jackass Morwong catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Figure 18.27. Jackass Morwong from zones 40 and 50 in depths $70-360 \mathrm{~m}$ by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Figure 18.28. A comparison of the two standardizations, one excluding data from deeper than 250 m the other including data to 360 meters.

Table 18.25. Jackass Morwong from zones 40 and 50 in depths $70-360 \mathrm{~m}$ by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.
Model 1 LnCE~Year

Model 2 LnCE \sim Year + DepCat
Model 3 LnCE \sim Year + DepCat + Month
Model $4 \quad$ LnCE \sim Year + DepCat + Month + Vessel
Model 5 LnCE \sim Year + DepCat+Month+Vessel+DayNight
Model 6 LnCE~Year+DepCat+Month+Vessel+DayNight+Zone
Model 7 LnCE \sim Year + DepCat + Month + Vessel+DayNight+Zone+Zone:Month
Model $8 \quad$ LnCE \sim Year + DepCat + Month+Vessel+DayNight+Zone+Zone:DepCat

Table 18.26. Jackass Morwong from zones 40 and 50 in depths $70-360 \mathrm{~m}$ by trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum was model 7 .

	Year	DepCat	Month	Vessel		DayNight	Zone	
Zone:Mth	Zone:DepC							
AIC	5461	3931	3349	2865	2722	2699	$\mathbf{2 4 3 2}$	2659
RSS	16526	13949	12854	12077	11880	11848	$\mathbf{1 1 4 7 6}$	11772
MSS	1790	4368	5462	6240	6437	6469	$\mathbf{6 8 4 1}$	6545
Nobs	9155	9155	9155	9059	9059	9059	$\mathbf{9 0 5 9}$	9059
Npars	27	38	121	130	133	134	$\mathbf{1 4 5}$	143
adj_r2	9.518	23.536	28.889	33.114	34.183	34.351	$\mathbf{3 6 . 3 3 5}$	34.707
\%Change		14.019	5.353	4.225	1.069	0.168	$\mathbf{1 . 9 8 4}$	0.356

Figure 18.29. The relative influence of each factor used on the final trend in the optimal standardization for Jackass Morwong in Zones 40 - 50. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

18.4.9 Flathead Trawl (FLT - 37296001 - Neoplatycephalus richardsoni)

Figure 18.30. The trends in catches and geometric mean catch rates for flathead as taken by trawl in Zones 10 to 30 . The catch rate trends in 10 and 20 are similar to each other but are different from that expressed in zone 30 . For this reason, zones 10 and 20 are standardized separately from Zone 30 .
18.4.10 Flathead Trawl Z1020(FLT - 37296001 - N. richardsoni)

Only data from zones 10 and 20 were used, depths less than 400 m .

Table 18.27. Flathead from zones 10 and 20 in depths $0-400 \mathrm{~m}$ by trawl. Total Catch is the total reported in the database, Records was the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates (kg/hr). Zone:DepCat is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:DepC	StDev
1986	1889.485	10196	963.031	95	16.7357	0.7988	0.0000
1987	2458.130	8104	1008.332	86	20.4621	1.0669	0.0160
1988	2467.161	9175	1171.699	86	23.7988	1.1668	0.0158
1989	2587.762	8841	1210.472	74	23.9908	1.1636	0.0159
1990	2030.892	7765	1221.459	64	30.1854	1.3835	0.0168
1991	2207.959	7797	1145.652	57	28.7154	1.3128	0.0168
1992	2355.693	6810	871.934	53	23.8898	1.0246	0.0175
1993	1862.912	8782	998.146	58	23.8001	1.0470	0.0166
1994	1708.187	10280	902.906	56	17.9798	0.7592	0.0160
1995	1799.980	10305	994.134	54	18.0790	0.8038	0.0159
1996	1878.592	11089	958.779	59	16.4549	0.7163	0.0158
1997	2355.431	10395	997.137	60	16.8264	0.7162	0.0162
1998	2306.328	9986	999.535	52	17.7430	0.7588	0.0162
1999	3117.011	10377	1129.356	57	20.4344	0.9137	0.0160
2000	2944.056	13110	1696.814	60	24.4338	1.0085	0.0155
2001	2596.801	11957	1375.379	53	22.3118	0.9704	0.0157
2002	2874.139	12357	1444.049	49	22.8273	1.0586	0.0157
2003	3224.755	12879	1593.850	52	22.5536	1.0439	0.0155
2004	3215.761	12220	1343.072	52	19.7879	0.9029	0.0157
2005	2841.270	10703	1154.986	49	17.7159	0.7712	0.0162
2006	2582.725	9137	1148.779	46	22.2550	0.9342	0.0167
2007	2646.745	6337	1076.563	25	31.3544	1.1350	0.0184
2008	2910.286	7292	1330.559	27	31.6602	1.1909	0.0178
2009	2460.023	6311	1060.713	26	30.0219	1.0952	0.0185
2010	2495.298	6872	1124.212	25	29.4565	1.0558	0.0181
2011	2465.166	6768	1096.279	24	28.4013	1.0487	0.0182
2012	2780.222	6884	1162.354	25	30.4796	1.1529	0.0180

Figure 18.31. Flathead from zones 10 and 20 in depths $0-400 \mathrm{~m}$ by trawl. The top left is the depth distribution of all records reporting Jackass Morwong, the top right graph depicts the depth distribution of shots containing Flathead from zones 10 and 20 in depths $0-400 \mathrm{~m}$ by trawl. The middle left diagram depicts the distribution of catch by depth within zones 10 and 20 (20 is top red line), the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the Flathead catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Figure 18.32. Flathead from zones 10 and 20 in depths $0-400 \mathrm{~m}$ by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.28. Flathead from zones 10 and 20 in depths $0-400 \mathrm{~m}$ by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE~Year+Vessel
Model 3	LnCE \sim Year+Vessel+DepCat
Model 4	LnCE~Year+Vessel+DepCat+Month
Model 5	LnCE~Year+Vessel+DepCat+Month+DayNight
Model 6	LnCE~Year+Vessel+DepCat+Month+DayNight+Zone
Model 7	LnCE~Year+Vessel+DepCat+Month+DayNight+Zone+Zone:Month
Model 8	LnCE \sim Year+Vessel+DepCat+Month+DayNight+Zone+Zone:DepCat

Table 18.29. Flathead from zones 10 and 20 in depths $0-400 \mathrm{~m}$ by trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum was model Zone:DepCat.

	Year	Vessel	DepCat	Month	DayNight	Zone	Zone:Month	Zone:DepCat
AIC	45657	17343	9320	8467	8322	8274	6343	$\mathbf{5 2 0 1}$
RSS	302705	270236	259711	258806	258650	258598	256592	$\mathbf{2 5 5 4 0 7}$
MSS	10292	42762	53287	54192	54348	54399	56406	$\mathbf{5 7 5 9 1}$
Nobs	252729	252729	250688	250688	250688	250688	250688	$\mathbf{2 5 0 6 8 8}$
Npars	27	208	228	239	242	243	254	$\mathbf{2 6 3}$
adj_r2	3.278	13.591	16.950	17.235	17.284	17.300	17.938	$\mathbf{1 8 . 3 1 4}$
\%Change	0.000	10.313	3.358	0.286	0.049	0.016	0.638	$\mathbf{0 . 3 7 6}$

Figure 18.33. The relative influence of each factor used on the final trend in the optimal standardization for Flathead in Zones $10-20$. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor 3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.
18.4.11 Flathead Trawl Z30 (FLT - 37296001 - N. richardsoni)

Only data from zone 30 were used, depths less than 400 m .

Table 18.30. Flathead from zone 30 in depths $0-400 \mathrm{~m}$ by trawl. Total Catch is the total reported in the database, Records was the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). Month:DepCat is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Mth:DepC	StDev
1986	1889.485	71	16.754	6	23.1157	0.9552	0.0000
1987	2458.130	90	5.155	9	11.1912	0.5791	0.1897
1988	2467.161	193	39.976	9	21.2587	0.9973	0.1701
1989	2587.762	516	48.443	19	20.5177	0.7477	0.1625
1990	2030.892	253	24.619	27	20.3187	0.7835	0.1647
1991	2207.959	314	33.353	29	15.9189	0.7086	0.1608
1992	2355.693	272	33.897	15	22.4408	0.6741	0.1649
1993	1862.912	902	92.079	24	17.1065	0.6422	0.1563
1994	1708.187	612	64.487	17	18.5289	0.6649	0.1573
1995	1799.980	694	71.349	17	19.8905	0.7276	0.1576
1996	1878.592	714	61.425	17	15.7596	0.6716	0.1573
1997	2355.431	885	104.875	14	20.7052	0.8451	0.1562
1998	2306.328	707	118.552	14	28.8666	0.9967	0.1568
1999	3117.011	770	175.052	17	31.0992	1.0984	0.1570
2000	2944.056	520	83.664	21	25.4446	0.8899	0.1582
2001	2596.801	916	101.308	17	18.0579	0.7588	0.1552
2002	2874.139	1367	212.158	15	30.1174	1.4192	0.1544
2003	3224.755	1454	240.110	21	30.0485	1.4503	0.1538
2004	3215.761	1923	477.416	15	47.0053	1.9138	0.1534
2005	2841.270	1540	388.325	18	43.4956	1.6981	0.1540
2006	2582.725	1315	287.968	13	37.5195	1.3685	0.1548
2007	2646.745	823	173.155	8	33.0381	1.1339	0.1563
2008	2910.286	874	173.739	11	29.3148	1.0469	0.1562
2009	2460.023	600	100.225	10	29.0939	1.0169	0.1577
2010	2495.298	537	104.186	10	28.3260	1.0297	0.1587
2011	2465.166	623	131.274	9	29.1229	0.9714	0.1578
2012	2780.222	756	160.746	9	35.1418	1.2106	0.1570

Figure 18.34. Flathead from zone 30 in depths $0-400 \mathrm{~m}$ by trawl. The top left is the depth distribution of all records reporting Flathead, the top right graph depicts the depth distribution of shots containing Flathead from zone 30 in depths $0-400 \mathrm{~m}$ by trawl. The middle left diagram depicts the distribution of catch by depth within zone 30 , the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the Flathead catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Figure 18.35. Flathead from zone 30 in depths $0-400 \mathrm{~m}$ by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.31. Flathead from zone 30 in depths $0-400 \mathrm{~m}$ by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE~Year+Vessel
Model 3	LnCE~Year+Vessel+DepCat
Model 4	LnCE \sim Year+Vessel+DepCat+DayNight
Model 5	LnCE Year+Vessel+DepCat+DayNight + Month
Model 6	LnCE \sim Year+Vessel+DepCat+DayNight + Month+DayNight:DepCat
Model 7	LnCE Year+Vessel+DepCat+DayNight+Month+Month:DepCat
Model 8	LnCE \sim Year+Vessel+DepCat+DayNight + Month+DayNight:DepCat

Table 18.32. Flathead from zone 30 in depths $0-400 \mathrm{~m}$ by trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum was model 7.

	Year	Vessel	DepCat	DN	Mth	DN:Mth	Mth:DepC	DN:DepC
AIC	2792	1089	-12	-357	-650	-702	$\mathbf{- 1 1 0 2}$	-755
RSS	23173	21116	19701	19358	19055	18943	$\mathbf{1 8 2 2 3}$	18842
MSS	2200	4258	5673	6016	6319	6430	$\mathbf{7 1 5 1}$	6532
Nobs	20241	20241	19983	19983	19983	19983	$\mathbf{1 9 9 8 3}$	19983
Npars	27	116	136	139	150	183	$\mathbf{3 7 0}$	210
adj_r2	8.555	16.304	21.828	23.179	24.339	24.656	$\mathbf{2 6 . 8 3 0}$	24.958
\%Change	0.000	7.749	5.524	1.350	1.160	0.318	$\mathbf{2 . 1 7 4}$	-1.872

Figure 18.36. The relative influence of each factor used on the final trend in the optimal standardization for Flathead from zone 30. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.
18.4.12 Flathead Danish Seine (FLT - 37296001 - N. richardsoni)

Only data from zones 20, and 60 were used, for Danish Seine vessels only (i.e. exclude
Otter Trawl vessels), and depths less than 200 m .

Table 18.33. Flathead from zones 20 and 60 in depths $0-200 \mathrm{~m}$ by Danish Seine. Total Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). Zone:Month is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Mth	StDev
1986	1889.485	5501	763.945	26	45.0535	1.0351	0.0000
1987	2458.130	5651	1366.944	23	88.6187	1.4551	0.0228
1988	2467.161	5823	1097.541	25	88.9194	1.5850	0.0226
1989	2587.762	5412	1142.708	27	78.4955	1.3782	0.0229
1990	2030.892	4653	586.018	25	48.3882	0.9073	0.0242
1991	2207.959	4670	775.768	28	69.8580	1.2672	0.0243
1992	2355.693	6643	1218.041	24	85.5977	1.3677	0.0223
1993	1862.912	5859	539.588	24	39.0251	0.8698	0.0230
1994	1708.187	7332	649.481	25	37.6721	0.7325	0.0219
1995	1799.980	5505	656.665	21	36.2337	0.7512	0.0233
1996	1878.592	7679	755.670	22	33.6052	0.7098	0.0219
1997	2355.431	8480	1150.436	21	60.3446	0.9134	0.0215
1998	2306.328	9904	1134.732	21	60.5323	0.7634	0.0210
1999	3117.011	8818	1702.605	23	98.4160	1.0990	0.0215
2000	2944.056	7092	1037.689	19	64.0436	0.8110	0.0225
2001	2596.801	7457	1004.507	18	62.0182	0.7585	0.0226
2002	2874.139	8218	1144.075	22	75.2709	0.9012	0.0222
2003	3224.755	9006	1210.597	23	80.7627	0.9628	0.0220
2004	3215.761	7784	1253.026	22	83.7818	0.9410	0.0225
2005	2841.270	7212	1125.753	22	87.7421	0.9586	0.0229
2006	2582.725	5563	968.051	21	89.1577	0.9493	0.0240
2007	2646.745	5551	1182.067	15	104.4620	1.1494	0.0239
2008	2910.286	6214	1283.489	15	103.2936	1.0271	0.0235
2009	2460.023	5499	1168.928	15	91.4234	1.0604	0.0239
2010	2495.298	6048	1166.861	15	101.4483	0.9420	0.0235
2011	2465.166	6890	1122.385	14	85.7899	0.8779	0.0230
2012	2780.222	7214	1382.334	14	89.5939	0.8261	0.0229

Figure 18.37. Flathead from zones 20 and 60 in depths $0-200 \mathrm{~m}$ by Danish Seine. The top left is the depth distribution of all records reporting Flathead, the top right graph depicts the depth distribution of shots containing Flathead from zones 20 and 60 in depths $0-200 \mathrm{~m}$ by Danish Seine. The middle left diagram depicts the distribution of catch by depth within zones 20 and 60 , the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the Flathead catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Figure 18.38. The distribution of catches among the reporting zones.

Figure 18.39. Flathead from zones 20 and 60 in depths $0-200 \mathrm{~m}$ by Danish Seine. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.34. Flathead from zones 20 and 60 in depths $0-200 \mathrm{~m}$ by Danish Seine. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.
Model 1 LnCE~Year

Model 2 LnCE~Year+Zone
Model 3 LnCE~Year+Zone+DepCat
Model $4 \quad$ LnCE \sim Year + Zone + DepCat + Vessel
Model 5 LnCE \sim Year+Zone+DepCat+Vessel+Month
Model 6 LnCE~Year+Zone+DepCat+Vessel+Month+DayNight
Model 7 LnCE~Year+Zone+DepCat+Vessel+Month+DayNight+Zone:Month
Model $8 \quad$ LnCE \sim Year+Zone + DepCat + Vessel+Month+DayNight+Zone:DepCat

Table 18.35. Flathead from zones 20 and 60 in depths $0-200 \mathrm{~m}$ by Danish Seine. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum was model Zone:Month.

	Year	Zone	DepCat	Vessel	Month	DayNight	Zone:Mth	Zone:DepC
AIC	141241	106911	75064	67505	56079	53099	$\mathbf{4 8 3 9 6}$	52762
RSS	395189	327140	271916	260504	244342	240295	$\mathbf{2 3 4 0 2 6}$	239818
MSS	20564	88612	143837	155249	171411	175458	$\mathbf{1 8 1 7 2 7}$	175935
Nobs	181678	181678	178743	178743	178743	178743	$\mathbf{1 7 8 7 4 3}$	178743
Npars	27	28	37	89	100	103	$\mathbf{1 1 4}$	112
adj_r2	4.933	21.302	34.584	37.311	41.196	42.169	$\mathbf{4 3 . 6 7 5}$	42.281
\%Change	0.000	16.369	13.282	2.727	3.886	0.973	$\mathbf{1 . 5 0 5}$	-1.393

Figure 18.40. The relative influence of each factor used on the final trend in the optimal standardization for Flathead by Danish Seine in Zones $20 \& 60$. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.
18.4.13 RedFish Zone 10 (RED - 37258003 - Centroberyx affinis)

Only data from zone 10 were used, depths less than 400 m .

Table 18.36. Redfish from zone 10 in depths $0-400 \mathrm{~m}$ by trawl. Total Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). Month:DepCat is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Mth:DepC	StDev
1986	1687.471	4503	1528.926	81	38.3044	1.6365	0.0000
1987	1247.550	3383	1114.805	73	35.9993	1.3134	0.0371
1988	1125.467	2966	904.361	70	37.3114	1.3632	0.0389
1989	694.060	2156	586.942	64	29.4122	1.1309	0.0431
1990	931.360	1894	699.754	49	37.2522	1.5351	0.0453
1991	1414.081	2467	1056.996	44	39.9367	1.5924	0.0421
1992	1624.316	2428	1393.725	41	50.0990	2.0517	0.0430
1993	1911.212	2960	1611.795	47	56.0385	2.5963	0.0407
1994	1486.623	4208	1140.891	49	35.8972	1.8208	0.0378
1995	1240.437	4397	1027.576	46	27.8589	1.1812	0.0368
1996	1342.798	4063	1094.993	50	26.2588	0.9638	0.0375
1997	1397.191	2952	1157.743	50	33.5183	1.1307	0.0405
1998	1553.528	3072	1363.404	43	43.1196	1.4172	0.0401
1999	1116.156	2998	969.424	44	32.7876	1.1127	0.0402
2000	757.894	3300	642.137	48	22.7760	0.7499	0.0398
2001	739.597	3209	607.215	41	17.8301	0.7333	0.0398
2002	802.192	3481	601.823	44	16.4201	0.6250	0.0395
2003	614.096	2690	478.879	43	17.0122	0.5978	0.0417
2004	474.517	2717	390.967	44	15.2541	0.5076	0.0416
2005	483.361	2443	360.961	41	16.1484	0.5194	0.0429
2006	323.977	1768	256.212	34	15.6812	0.4873	0.0472
2007	215.824	1207	149.288	18	15.4678	0.4341	0.0546
2008	183.757	1396	155.290	22	13.9780	0.4057	0.0523
2009	160.487	1171	123.810	20	11.3207	0.3285	0.0557
2010	152.661	1228	112.793	19	10.4815	0.3115	0.0546
2011	87.271	870	63.806	17	8.5118	0.2479	0.0614
2012	66.439	973	54.779	17	7.0022	0.2061	0.0587

Figure 18.41. Redfish from zone 10 in depths $0-400 \mathrm{~m}$ by trawl. The top left is the depth distribution of all records reporting Redfish, the top right graph depicts the depth distribution of shots containing Redfish from zone 10 in depths $0-400 \mathrm{~m}$ by trawl. The middle left diagram depicts the distribution of catch by depth within zone 10 , the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the Redfish catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<$ 30 Kg).

Figure 18 42. Redfish from zone 10 in depths $0-400 \mathrm{~m}$ by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.37. Redfish from zone 10 in depths $0-400 \mathrm{~m}$ by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE \sim Year+Vessel+DepCat
Model 4	LnCE \sim Year+Vessel+DepCat+DayNight
Model 5	LnCE \sim Year+Vessel+DepCat+DayNight+Month
Model 6	LnCE \sim Year+Vessel+DepCat+DayNight+Month+DayNight:DepCat
Model 7	LnCE \sim Year+Vessel+DepCat+DayNight+Month+Month:DepCat
Model 8	LnCE \sim Year+Vessel+DepCat+DayNight+Month+DayNight:DepCat

Table 18.38. Redfish from zone 10 in depths $0-400 \mathrm{~m}$ by trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum was model Month:DepCat.

	Year	Vessel	DepC	DN	Mth	DN:Mth	Mth:DepC	DN:DepC
AIC	74949	66947	62011	61423	60926	60794	$\mathbf{5 9 6 5 1}$	60143
RSS	203899	181399	168987	167570	166342	165874	$\mathbf{1 6 2 3 4 4}$	164225
MSS	15491	37990	50402	51819	53048	53515	57045	55165
Nobs	70900	70900	70520	70520	70520	70520	$\mathbf{7 0 5 2 0}$	70520
Npars	27	171	191	194	205	238	$\mathbf{4 2 5}$	265
adj_r2	7.027	17.118	22.766	23.410	23.960	24.138	$\mathbf{2 5 . 5 5 4}$	24.863
\%Change	0.000	10.091	5.648	0.644	0.550	0.178	$\mathbf{1 . 4 1 6}$	-0.691

Figure 18.43. The relative influence of each factor used on the final trend in the optimal standardization for Redfish in Zone 10. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.
18.4.14 RedFish Zone 20 (RED - 37258003 - Centroberyx affinis)

Only data from zone 20 were used, depths less than 400 m .

Table 18.39. Redfish from zone 20 in depths $0-400 \mathrm{~m}$ by trawl. Total Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr} \mathrm{)}. \mathrm{Month:DepCat} \mathrm{is} \mathrm{the} \mathrm{optimum} \mathrm{model} \mathrm{and} \mathrm{StDev} \mathrm{is} \mathrm{the} \mathrm{standard}$ deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Mth:DepC	StDev
1986	1687.471	838	69.648	34	12.7888	1.2743	0.0000
1987	1247.550	548	70.567	28	16.3056	1.5868	0.0866
1988	1125.467	1008	174.671	35	22.5742	2.2402	0.0784
1989	694.060	567	57.490	32	13.8221	1.3698	0.0880
1990	931.360	699	95.090	34	16.4273	1.6000	0.0863
1991	1414.081	886	181.397	27	20.9240	1.9871	0.0851
1992	1624.316	691	100.149	25	18.2135	1.6212	0.0901
1993	1911.212	836	175.486	25	23.8774	1.9861	0.0870
1994	1486.623	1291	212.848	26	22.1556	1.8584	0.0819
1995	1240.437	1316	169.079	24	14.7891	1.1671	0.0804
1996	1342.798	1751	210.919	26	11.8255	1.2022	0.0788
1997	1397.191	1456	196.332	28	10.9003	0.9734	0.0811
1998	1553.528	1237	164.642	24	11.9357	1.0259	0.0821
1999	1116.156	947	122.433	25	9.4628	0.8961	0.0852
2000	757.894	1364	92.988	27	5.0564	0.5876	0.0824
2001	739.597	1345	113.456	24	5.9658	0.5992	0.0830
2002	802.192	1725	172.165	24	6.7628	0.6881	0.0818
2003	614.096	1428	77.081	26	4.5183	0.4434	0.0831
2004	474.517	1248	59.212	22	4.2622	0.4535	0.0854
2005	483.361	1353	92.209	20	5.5759	0.5760	0.0840
2006	323.977	821	46.469	21	4.7612	0.5045	0.0895
2007	215.824	673	59.701	11	5.6299	0.5859	0.0935
2008	183.757	536	24.505	17	4.1887	0.4690	0.0982
2009	160.487	448	30.527	12	4.9795	0.4900	0.1018
2010	152.661	644	34.686	15	4.4782	0.4279	0.0970
2011	87.271	538	20.309	11	2.6875	0.2539	0.0994
2012	66.439	381	7.552	11	1.5820	0.1324	0.1074

Figure 18.44. Redfish from zone 20 in depths $0-400 \mathrm{~m}$ by trawl. The top left is the depth distribution of all records reporting Redfish, the top right graph depicts the depth distribution of shots containing Redfish from zone 20 in depths $0-400 \mathrm{~m}$ by trawl. The middle left diagram depicts the distribution of catch by depth within zone 20 , the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the Redfish catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<$ 30 Kg).

Figure 18.45. Redfish from zone 20 in depths $0-400 \mathrm{~m}$ by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.40. Redfish from zone 20 in depths $0-400 \mathrm{~m}$ by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE \sim Year+Vessel+DepCat
Model 4	LnCE \sim Year+Vessel+DepCat+DayNight
Model 5	LnCE \sim Year+Vessel+DepCat+DayNight+Month
Model 6	LnCE \sim Year+Vessel+DepCat+DayNight+Month+DayNight:DepCat
Model 7	LnCE \sim Year+Vessel+DepCat+DayNight+Month+Month:DepCat
Model 8	LnCE \sim Year+Vessel+DepCat+DayNight+Month+DayNight:DepCat

Table 18.41. Redfish from zone 20 in depths $0-400 \mathrm{~m}$ by trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum was model Month:DepCat.

	Year	Vessel	DepCat	Mth	DayNight	DN:Mth	Mth:DepCat	DN:DepCat
AIC	24544	21173	19404	18966	18929	18894	$\mathbf{1 8 6 8 2}$	18816
RSS	66786	58368	54440	53500	53413	53209	52043	52944
MSS	10637	19055	22982	23922	24009	24213	$\mathbf{2 5 3 8 0}$	24478
Nobs	26575	26575	26423	26423	26423	26423	$\mathbf{2 6 4 2 3}$	26423
Npars	27	132	152	163	166	199	386	226
adj_r2	13.654	24.238	29.280	30.472	30.577	30.755	$\mathbf{3 1 . 7 8 7}$	31.029
\%Change	0.000	10.584	5.042	1.192	0.105	0.178	$\mathbf{1 . 0 3 2}$	-0.758

Figure 18.46. The relative influence of each factor used on the final trend in the optimal standardization for Redfish in Zone 20. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

18.4.15 Silver Trevally (TRE - 37337062 - Pseudocaranx dentex)

Only data from zones 10 and 20 combined were used, depths less than 200 m . In order to discount the influence of catches taken within the Batemans Bay MPA, all data in Commonwealth waters within the MPA have been excluded from the analysis. The selection of which records to exclude is improved over last year's analysis through the use of improved GIS.

Table 18.42. Silver Trevally from Zones 10 and 20 in depths 0 to 200 m , excluding data taken in State waters (Bateman's Bay MPA). Total Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates (kg/hr). Zone:Month is the optimum model and StDev is the standard deviation relating to the data in the optimum model.							
Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Mth	StDev
1986	469.508	1765	278.628	74	17.0086	1.1540	0.0000
1987	197.212	1090	116.317	63	17.5072	1.3641	0.0596
1988	278.179	1299	226.620	52	23.7642	1.8041	0.0549
1989	373.313	1838	278.037	62	23.0657	1.9185	0.0503
1990	450.291	1841	288.809	52	23.2975	2.2806	0.0521
1991	328.521	1909	213.903	49	18.1137	2.0451	0.0524
1992	292.516	1194	108.366	44	12.0774	1.1704	0.0588
1993	375.426	1262	132.861	47	13.4863	1.2771	0.0578
1994	390.173	1839	139.154	46	9.4912	0.9802	0.0533
1995	413.434	1570	136.637	43	10.2789	1.1131	0.0554
1996	340.376	1883	129.536	47	7.5806	0.9028	0.0539
1997	328.647	1450	88.499	48	6.2012	0.8527	0.0575
1998	210.133	1023	48.972	40	5.2414	0.6199	0.0613
1999	165.978	882	41.568	39	4.9696	0.6205	0.0646
2000	154.748	1020	43.620	43	3.6777	0.4567	0.0618
2001	268.318	1536	82.085	43	4.1345	0.5340	0.0556
2002	232.562	1474	67.852	40	3.0864	0.4323	0.0574
2003	311.137	1124	57.733	45	3.3755	0.4233	0.0597
2004	440.997	1345	84.499	42	4.5401	0.5859	0.0581
2005	290.070	673	59.560	40	4.7971	0.5181	0.0694
2006	246.983	493	48.824	32	5.7178	0.7261	0.0769
2007	172.440	463	47.115	20	7.4274	0.8055	0.0798
2008	128.386	818	69.665	23	8.0833	0.8328	0.0662
2009	164.047	838	94.881	23	9.2632	0.8479	0.0654
2010	240.011	967	135.510	24	11.7000	1.0767	0.0637
2011	192.082	862	139.334	20	11.0895	0.9727	0.0656
2012	134.522	665	88.070	21	7.6670	0.6850	0.0706

Figure 18.47. Silver Trevally from Zones 10 and 20 in depths 0 to 200 m, excluding data taken in State waters (Bateman's Bay MPA). The top left is the depth distribution of all records reporting Silver Trevally, the top right graph depicts the depth distribution of shots containing Silver Trevally from Zones 10 and 20 in depths 0 to 200 m by trawl, excluding data taken in State waters (Bateman's Bay MPA). The middle left diagram depicts the distribution of catch by depth within zones 10 and 20 (20 is top red line), the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the Silver Trevally catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Figure 18.48. Silver Trevally from Zones 10 and 20 in depths 0 to 200 m , excluding data taken in State waters (Bateman's Bay MPA). The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The blue line is last year's analysis. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.43. Silver Trevally from Zones 10 and 20 in depths 0 to 200 m , excluding data taken in State waters (Bateman's Bay MPA). Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE \sim Year+Vessel+DepCat
Model 4	LnCE \sim Year+Vessel+DepCat+Month
Model 5	LnCE \sim Year+Vessel+DepCat+Month+DayNight
Model 6	LnCE \sim Year+Vessel+DepCat + Month+DayNight + Zone
Model 7	LnCE \sim Year+Vessel+DepCat + Month+DayNight+Zone + Zone:Month
Model 8	LnCE \sim Year+Vessel+DepCat + Month + DayNight + Zone + Zone: DepCat

Table 18.44. Silver Trevally from Zones 10 and 20 in depths 0 to 200 m, excluding data taken in State waters (Bateman's Bay MPA). Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum is model Zone:Month.

	Year	Vessel	DepCat	Month	DayNight	Zone		Zone:Mth
Zone:DepC								
AIC	30754	24056	23041	22340	21970	21918	$\mathbf{2 1 8 4 6}$	21896
RSS	83687	67753	65523	64098	63369	63264	$\mathbf{6 3 0 8 4}$	63185
MSS	13492	29427	31656	33081	33810	33915	$\mathbf{3 4 0 9 5}$	33994
Nobs	33123	33123	32889	32889	32889	32889	$\mathbf{3 2 8 8 9}$	32889
Npars	27	176	186	197	200	201	$\mathbf{2 1 2}$	211
adj_r2	13.816	29.910	32.194	33.646	34.395	34.501	$\mathbf{3 4 . 6 6 5}$	34.563
\%Change	0.000	16.094	2.283	1.452	0.749	0.106	$\mathbf{0 . 1 6 4}$	0.062

Figure 18.49. The relative influence of each factor used on the final trend in the optimal standardization for Silver Trevally in Zones 10 and 20. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor 3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

18.4.15.1 Alternative Treatments of the MPA

The current Tier 4 analysis uses all the Silver Trevally catches but the catch rates relate only to records taken outside the MPA. It has been proposed to run the Tier 4 in three ways, 1) All catches and CPUE from outside the MPA, 2) all catches and CPUE from all records inside and outside the MPA, and 3) catches and CPUE from records outside the MPA. This means a further CPUE analysis using all available records for the CPUE is required.

Table 18.45. Silver Trevally from Zones 10 and 20 in depths 0 to 200 m , including all data taken in State
waters (Bateman's Bay MPA). Total Catch is the total reported in the database, Records is the number of
records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and
Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates (kg/hr).
Zone:Month is the optimum model and StDev is the standard deviation relating to the data in the
optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Mth	StDev
1986	469.508	1978	306.504	74	17.5551	1.0402	0.0000
1987	197.212	1260	135.059	64	17.4271	1.2330	0.0572
1988	278.179	1581	243.906	56	20.1929	1.4170	0.0521
1989	373.313	2194	332.452	62	24.2894	1.7729	0.0482
1990	450.291	2101	349.032	53	24.1445	2.0276	0.0498
1991	328.521	2221	251.122	50	18.0221	1.8146	0.0500
1992	292.516	1620	195.772	44	13.4364	1.0322	0.0536
1993	375.426	2280	282.038	49	15.1230	1.1101	0.0497
1994	390.173	3307	361.967	48	13.0062	0.9447	0.0465
1995	413.434	3352	380.192	49	14.3268	1.0790	0.0462
1996	340.376	3237	315.198	54	10.8969	0.9774	0.0467
1997	328.647	2869	298.116	55	11.5325	0.9615	0.0479
1998	210.133	2281	177.057	46	9.4314	0.7327	0.0494
1999	165.978	1859	115.382	45	8.3770	0.7143	0.0517
2000	154.748	2010	122.637	49	6.0305	0.5512	0.0508
2001	268.318	3219	226.349	46	7.6285	0.6656	0.0465
2002	232.562	2766	207.474	44	5.9678	0.6240	0.0482
2003	311.137	2763	281.980	49	8.0079	0.6650	0.0478
2004	440.997	3339	367.812	45	10.6839	0.8146	0.0467
2005	290.070	2324	242.142	43	11.1271	0.7116	0.0500
2006	246.983	1687	209.165	39	13.2846	0.7714	0.0530
2007	172.440	836	115.558	22	11.7896	0.7619	0.0644
2008	128.386	1065	95.896	23	9.1077	0.8675	0.0602
2009	164.047	1154	136.726	23	10.5771	0.8627	0.0587
2010	240.011	1265	192.014	24	13.7711	1.1179	0.0578
2011	192.082	1125	179.459	20	12.5672	0.9676	0.0595
2012	134.522	966	131.553	21	11.0919	0.7617	0.0617

Figure 18.50. Silver Trevally from Zones 10 and 20 in depths 0 to 200 m , including all data taken in State waters (Bateman's Bay MPA). The top left is the depth distribution of all records reporting Silver Trevally, the top right graph depicts the depth distribution of shots containing Silver Trevally from Zones 10 and 20 in depths 0 to 200 m by trawl, including data taken in State waters (Bateman's Bay MPA). The middle left diagram depicts the distribution of catch by depth within zones 10 and 20 (20 is top red line), the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the Silver Trevally catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Figure 18.51. Silver Trevally from Zones 10 and 20 in depths 0 to 200 m , including data taken in State waters (Bateman's Bay MPA). The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.46. Silver Trevally from Zones 10 and 20 in depths 0 to 200 m , including data taken in State waters (Bateman's Bay MPA). Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE~Year+Vessel
Model 3	LnCE~Year+Vessel+DepCat
Model 4	LnCE~Year+Vessel+DepCat+Month
Model 5	LnCE~Year+Vessel+DepCat+Month+DayNight
Model 6	LnCE~Year+Vessel+DepCat+Month+DayNight+Zone
Model 7	LnCE~Year+Vessel+DepCat+Month+DayNight+Zone+Zone:Month
Model 8	LnCE~Year+Vessel+DepCat+Month+DayNight+Zone+Zone:DepCat

Table 18.47. Silver Trevally from Zones 10 and 20 in depths 0 to 200 m , excluding data taken in State waters (Bateman's Bay MPA). Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum is model Zone:Month.

	Year	Vessel	DepCat	Month	DayNight	Zone	Zone:Mth	Zone:DepC
AIC	59054	45874	42361	41667	41065	41051	$\mathbf{4 0 9 3 9}$	41015
RSS	160511	126518	118633	117133	115874	115840	$\mathbf{1 1 5 5 6 5}$	115725
MSS	7665	41658	49543	51043	52302	52336	$\mathbf{5 2 6 1 1}$	52451
Nobs	56659	56659	56222	56222	56222	56222	$\mathbf{5 6 2 2 2}$	56222
Npars	27	179	189	200	203	204	$\mathbf{2 1 5}$	214
adj_r2	4.514	24.534	29.222	30.103	30.851	30.870	$\mathbf{3 1 . 0 2 1}$	30.926
\%Change	0.000	20.020	4.689	0.881	0.748	0.019	$\mathbf{0 . 1 5 1}$	0.056

Figure 18.52. Average reported depth of trawling for Silver Trevally from Zones 10 and 20 in depths 0 to 200 m , including data taken in State waters (Bateman's Bay MPA). The effect of the introduction of the Batesman's Bay MPA in increasing the average depth fished is apparent from 2008 onwards.

Figure 18.53. Catch by Depth for Silver Trevally from Zones 10 and 20 in depths 0 to 200 m , including data taken in State waters (Bateman's Bay MPA). The black lines are all data from 1986-2007 while the red line is data from 2008.

Figure 18 54. Comparison of the CPUE series with and without the data from inside the MPA. The All Data is less variable than the series that excludes data from the MPA.
18.4.16 Royal Red Prawn (PRR - 28714005 - Haliporoides sibogae)

Only data from Zone 10 were used, depths between $200-700 \mathrm{~m}$.

Table 18.48. Royal Red Prawn from zone 10 in depths $200-700 \mathrm{~m}$ by trawl. Total Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). Month:DepCat is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Mth:DepC	StDev
1986	277.717	1592	231.844	47	27.7627	0.6918	0.0000
1987	351.294	1764	324.716	47	41.9857	0.8829	0.0380
1988	362.445	1395	344.457	41	49.1496	0.9778	0.0409
1989	322.714	1143	310.760	39	45.8268	0.8333	0.0429
1990	335.111	727	311.118	25	95.1525	1.5634	0.0491
1991	334.061	734	299.370	29	79.4866	1.3943	0.0495
1992	166.860	434	146.081	19	70.3817	1.0408	0.0580
1993	298.749	673	232.774	21	68.5216	1.1942	0.0494
1994	359.830	661	240.363	26	77.7193	1.1348	0.0496
1995	334.852	1070	252.905	25	58.4998	0.9016	0.0436
1996	358.146	1216	272.675	25	60.5827	0.8127	0.0421
1997	252.693	855	166.703	21	51.9861	0.7652	0.0464
1998	233.298	1234	190.732	23	39.1713	0.8236	0.0428
1999	367.042	1607	348.804	25	49.7799	0.8162	0.0405
2000	434.931	1538	398.474	27	49.6136	1.0253	0.0409
2001	276.786	1307	228.699	22	35.9685	0.8726	0.0431
2002	484.129	1740	417.370	23	47.9208	1.0496	0.0402
2003	230.495	801	163.184	26	39.7063	1.0933	0.0491
2004	193.311	579	170.681	22	50.4687	1.1214	0.0536
2005	173.626	601	159.805	21	47.1225	1.0284	0.0536
2006	192.034	455	178.579	17	55.0038	1.2332	0.0581
2007	121.170	324	116.430	9	48.8072	0.8421	0.0662
2008	75.799	252	70.605	8	39.0864	0.7242	0.0749
2009	68.785	250	67.607	9	59.2670	0.9315	0.0787
2010	96.765	343	82.821	9	40.3732	0.8879	0.0662
2011	110.923	291	108.960	8	82.0762	1.3371	0.0706
2012	126.519	363	122.777	9	57.3988	1.0207	0.0652

Figure 18.55. Royal Red Prawn from zone 10 in depths $200-700 \mathrm{~m}$ by trawl. The top left is the depth distribution of all records reporting Royal Red Prawn, the top right graph depicts the depth distribution of shots containing Royal Red Prawn from zone 10 in depths $200-700 \mathrm{~m}$ by trawl. The middle left diagram depicts the distribution of catch by depth within zone 10 , the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the Royal Red Prawn catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Figure 18.56. Royal Red Prawn from zone 10 in depths $200-700 \mathrm{~m}$ by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.49. Royal Red Prawn from zone 10 in depths $200-700 \mathrm{~m}$ by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+DepCat
Model 3	LnCE \sim Year+DepCat+Vessel
Model 4	LnCE \sim Year+DepCat+Vessel+Month
Model 5	LnCE \sim Year+DepCat+Vessel+Month+DayNight
Model 6	LnCE \sim Year+DepCat+Vessel+Month+DayNight+DayNight:DepCat
Model 7	LnCE \sim Year+DepCat+Vessel+Month+DayNight+Month:DepCat
Model 8	LnCE \sim Year+DepCat+Vessel+Month+DayNight+DayNight:DepCat

Table 18.50. Royal Red Prawn from zone 10 in depths 200 - 700m by trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum was model Month:DepCat.

| | Year | DepCat | Vessel | Mth | | DayNight | DN:Mth | Mth:DepCat |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | DN:DepCat

Figure 18.57. The relative influence of each factor used on the final trend in the optimal standardization for Royal Red Prawn in Zone 10. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor 3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

18.4.16.1 Comparison between Different Mesh Sizes

Royal Red Prawns are targeted with so-called prawn nets that are significantly smaller meshed than usual trawl nets (Figure 18.58). The smaller mesh nets, $<60 \mathrm{~mm}$, have significantly higher catch rates than larger mesh nets with rates between 4 and 6 times higher than meshes $>80 \mathrm{~mm}$ (Figure 18.59).

Figure 18.58. A scatter plot depicting the size distribution of reported mesh sizes used when Royal Red Prawn were landed. Each individual operation has been varied slightly (jittered) so as to illustrate the concentrations of mesh size and related catch rates. Thus, there are concentrations around $40-45 \mathrm{~mm}$, another at around $60-65 \mathrm{~mm}$, and another around 90 mm . The three red lines depict the average log catch rates for the three clusters of data points, with the larger values relating to the clusters left to right.

Figure 18.59. The geometric mean catch rates ($\mathrm{kg} / \mathrm{hr}$) of shots using nets with meshes less than 60 mm and those with meshes greater than 80 mm .

While it is undoubtedly true that the absolute catch rates of Royal Red Prawn are much higher than when fishing with a normal trawl net the important aspect for the assessment of the relative abundance through time is any trend in the catch rates through time. By re-scaling all catch rates to a mean of 1.0 the trends in the catch rates from the different data sets can be directly compared (Figure 18.60).

The trends exhibited by the different data selections are noisy but essentially track a similar path. The optimum model, that uses all available data but doesn't distinguish between mesh sizes, is less variable than the smaller and larger mesh categories. Nevertheless, all series exhibit a rise between 2006 and 2007, and a further rise from average in 2011. These trend lines are clearly noisy about the average in each case, with
the variation being greater from $>=80 \mathrm{~mm},<60 \mathrm{~mm}$, and the Optimum series, which reflects the number of records in each data set. The conclusion remains that the use of the total dataset provides a good representation of the changes in the catch rates and can continue to be used in the Tier 4 assessment.

Figure 18.60. A comparison of the standardized catch rates, scaled to a mean of 1.0 , for the optimum model using all data, and the separate statistical models for those data from meshes $<60 \mathrm{~mm}$ and those $>$ 80 mm . The CV for the optimum series is 17.8%, for $<60 \mathrm{~mm}$ it is 26.9% and for the $>=80 \mathrm{~mm}$ it is 37.8%. The CVs in each case also reflect the relative amount of data available in each analysis.

Table 18.51. The scaled standardized catch rate data for different data selections. The Geomean and Optimum relate to all available data, <60 relates to data from net meshes $<60 \mathrm{~mm},>=80$ relate to data from meshes $>=80 \mathrm{~mm}$, and BothMeshes relates to a standardization that includes data from both <60 and $>=80 \mathrm{~mm}$, using mesh size as a factor in the standardization, where it is, not surprisingly, highly influential. Columns $3-5$ contain the data plotted in Figure 18.60.

Year	GeoMean	Optimum	<60	$>=80$	BothMeshes
2002	0.93993	1.02359	0.64274	0.94438	1.03085
2003	0.77881	1.06722	0.67969	0.79677	0.98518
2004	0.98991	1.09235	0.99474	0.49541	1.03903
2005	0.92427	0.99593	0.76834	0.86704	0.94001
2006	1.07886	1.19880	1.08025	1.55634	1.15983
2007	0.95732	0.82842	1.53417	1.54000	1.02956
2008	0.76665	0.71378	1.12281	0.76311	0.82392
2009	1.16248	0.90847	0.91818	0.93033	0.80293
2010	0.79189	0.86951	1.02308	0.66411	0.88371
2011	1.60987	1.30193	1.23600	1.44252	1.30499

18.4.17 Blue Eye, Z2030 (TBE - 37445001 - Hyperoglyphe antarctica)

Trawling data from zones 20 and 30, depths less than 1000 m .

Table 18.52. BlueEye from zones 20 and 30 in depths $0-1000 \mathrm{~m}$ by trawl. Total Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). Zone:DepCat is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:DepC	StDev
1986	37.962	166	9.117	17	10.0553	2.0812	0.0000
1987	15.495	190	10.026	14	9.8390	1.9572	0.1367
1988	105.177	307	19.433	21	14.4132	2.4327	0.1293
1989	87.740	315	33.371	32	14.6333	2.7395	0.1317
1990	79.208	264	39.845	36	24.1892	3.4875	0.1343
1991	75.681	474	29.189	37	9.3594	1.8698	0.1264
1992	49.280	313	14.232	23	8.3976	1.3942	0.1334
1993	59.644	736	37.789	31	7.9893	1.1168	0.1235
1994	109.975	855	89.033	33	10.7324	1.2935	0.1227
1995	58.572	489	28.335	29	5.8281	0.8610	0.1274
1996	71.684	648	35.518	29	5.7645	0.6964	0.1251
1997	463.319	604	19.921	31	4.6731	0.6382	0.1272
1998	448.146	475	18.704	24	4.1103	0.7277	0.1294
1999	548.067	633	41.733	27	3.5948	0.7572	0.1262
2000	653.775	657	37.661	34	2.7104	0.4821	0.1241
2001	579.726	692	25.038	24	2.2460	0.4230	0.1245
2002	476.739	700	33.732	28	3.0245	0.4227	0.1263
2003	565.203	723	14.094	25	2.2565	0.4224	0.1257
2004	598.770	623	15.171	28	2.7233	0.4141	0.1273
2005	447.053	502	17.919	26	2.6096	0.4092	0.1305
2006	544.834	327	36.782	17	3.9462	0.5016	0.1347
2007	559.007	248	10.629	11	3.1268	0.3940	0.1405
2008	342.397	434	13.654	15	5.6341	0.3674	0.1344
2009	424.099	246	22.849	14	5.4891	0.3698	0.1417
2010	380.558	199	11.939	13	3.5048	0.2541	0.1471
2011	458.658	228	7.870	12	2.2147	0.2635	0.1439
2012	340.782	150	1.333	11	1.6617	0.2232	0.1537

Figure 18.61. BlueEye from zones 20 and 30 in depths $0-1000 \mathrm{~m}$ by trawl. The top left is the depth distribution of all records reporting BlueEye, the top right graph depicts the depth distribution of shots containing BlueEye from zones 20 and 30 in depths $0-1000 \mathrm{~m}$ by trawl. The middle left diagram depicts the distribution of catch by depth within zones 20 and 30 (30 is top red line), the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the BlueEye catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Figure 18.62. BlueEye from zones 20 and 30 in depths $0-1000 \mathrm{~m}$ by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.53. BlueEye from zones 20 and 30 in depths $0-1000 \mathrm{~m}$ by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE \sim Year+Vessel+Zone
Model 4	LnCE \sim Year+Vessel+Zone+DepCat
Model 5	LnCE \sim Year+Vessel+Zone+DepCat+DayNight
Model 6	LnCE \sim Year+Vessel+Zone+DepCat+DayNight+Month
Model 7	LnCE \sim Year+Vessel+Zone+DepCat+DayNight+Month+Zone:Month
Model 8	LnCE \sim Year+Vessel+Zone+DepCat+DayNight+Month+Zone:DepCat

Table 18.54. BlueEye from zones 20 and 30 in depths $0-1000 \mathrm{~m}$ by trawl. Model selection criteria, including the AIC, the deviance and the change in deviance. The optimum was model Zone:DepCat.

	Year	Vessel	Zone	DepCat		DayNight	Month	Zone:Mth	
Zone:DepC									
AIC	10633	4566	4167	4054	3939	3925	3905	$\mathbf{3 7 2 9}$	
RSS	29036	17317	16756	16402	16239	16191	16135	$\mathbf{1 5 8 0 6}$	
MSS	4761	16481	17041	17395	17558	17606	17662	$\mathbf{1 7 9 9 1}$	
Nobs	12198	12198	12198	12124	12124	12124	12124	$\mathbf{1 2 1 2 4}$	
Npars	27	146	147	195	198	209	220	$\mathbf{2 5 7}$	
adj_r2	13.902	48.147	49.821	50.680	51.159	51.257	51.381	$\mathbf{5 2 . 2 2 4}$	
\%Change	0.000	34.245	1.674	0.859	0.479	0.098	0.125	$\mathbf{0 . 8 4 3}$	

Figure 18.63. The relative influence of each factor used on the final trend in the optimal standardization for BlueEye in Zones $20-30$. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.
18.4.18 Blue Eye, Z4050 (TBE - 37445001 - H. antarctica)

Data from zones 40 and 50, depths less than 1000 m .

Table 18.55. BlueEye from Zones 40 and 50 in depths 0 to 1000 m by Trawl. Total Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). Zone:Month is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Mth	StDev
1986	37.962	194	15.955	18	13.1296	0.9224	0.0000
1987	15.495	56	3.145	14	11.6895	0.7767	0.1754
1988	105.177	142	76.410	15	41.5696	2.3316	0.1559
1989	87.740	238	43.985	24	25.5841	1.9103	0.1376
1990	79.208	157	30.910	16	13.0702	2.0108	0.1580
1991	75.681	129	18.954	18	17.4424	1.6436	0.1563
1992	49.280	129	28.643	15	21.8842	1.9319	0.1562
1993	59.644	289	18.109	19	8.5334	0.8815	0.1399
1994	109.975	348	16.282	19	8.8991	0.9358	0.1365
1995	58.572	500	26.381	21	6.4723	0.8366	0.1327
1996	71.684	523	30.184	24	8.0361	0.8664	0.1333
1997	463.319	788	82.371	18	6.5139	0.8851	0.1300
1998	448.146	780	58.946	19	5.3540	1.0561	0.1314
1999	548.067	877	46.303	19	6.4046	1.0845	0.1303
2000	653.775	1109	44.729	23	5.2927	0.9462	0.1295
2001	579.726	955	42.188	26	5.7866	0.8893	0.1311
2002	476.739	802	32.268	26	5.0532	0.7470	0.1312
2003	564.693	392	11.023	25	3.1895	0.6814	0.1377
2004	594.290	852	31.296	24	4.2166	0.6014	0.1313
2005	444.114	508	12.750	22	3.6280	0.5534	0.1346
2006	544.834	533	16.279	17	3.6218	0.5682	0.1342
2007	556.619	538	26.188	16	4.4303	0.6054	0.1341
2008	334.297	324	16.371	14	4.9605	0.7811	0.1392
2009	411.616	343	15.751	13	4.0530	0.7226	0.1390
2010	380.394	430	31.436	14	5.5190	0.7586	0.1362
2011	458.642	381	14.696	14	2.8213	0.5975	0.1373
2012	340.633	261	9.007	11	1.8380	0.4746	0.1465

Figure 18.64. BlueEye from Zones 40 and 50 in depths 0 to 1000 m by Trawl. The top left is the depth distribution of all records reporting BlueEye, the top right graph depicts the depth distribution of shots containing BlueEye from Zones 40 and 50 in depths 0 to 1000 m by Trawl. The middle left diagram depicts the distribution of catch by depth within zones 40 and 50 (50 is top red line), the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the BlueEye catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Figure 18.65. BlueEye from Zones 40 and 50 in depths 0 to 1000 m by Trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.56. BlueEye from Zones 40 and 50 in depths 0 to 1000 m by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE~Year+Vessel
Model 3	LnCE~Year+Vessel+DepCat
Model 4	LnCE~Year+Vessel+DepCat+DayNight
Model 5	LnCE~Year+Vessel+DepCat+DayNight+Month
Model 6	LnCE~Year+Vessel+DepCat+DayNight+Month+Zone
Model 7	LnCE~Year+Vessel+DepCat+DayNight+Month+Zone+Zone:Month
Model 8	LnCE~Year+Vessel+DepCat+DayNight + Month+Zone+Zone:DepCat

Table 18.57. BlueEye from Zones 40 and 50 in depths 0 to 1000 m by Trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum was model Zone:DepCat.

	Year		Vessel	DepCat	DayNight	Month	Zone	Zone:Mth	
Zone:DepC									
AIC	8184	2817	2400	2153	2112	2057	2048	$\mathbf{2 0 4 0}$	
RSS	24006	15467	14786	14490	14417	14352	14317	$\mathbf{1 4 2 2 1}$	
MSS	3023	11562	12243	12539	12611	12677	12712	$\mathbf{1 2 8 0 8}$	
Nobs	12578	12578	12516	12516	12516	12516	12516	$\mathbf{1 2 5 1 6}$	
Npars	27	108	157	160	171	172	183	$\mathbf{2 2 1}$	
adj_r2	11.001	42.284	44.606	45.701	45.925	46.167	46.250	$\mathbf{4 6 . 4 4 4}$	
\%Change	0.000	31.283	2.322	1.095	0.224	0.242	0.084	$\mathbf{0 . 1 9 4}$	

Figure 18.66. The relative influence of each factor used on the final trend in the optimal standardization for BlueEye in Zones $40-50$. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor 3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.
18.4.19 Blue Eye, AL (TBE - 37445001 - H. antarctica)

Depths between $200-600 \mathrm{~m}$. All data from auto-longlining. 1997 was omitted as being unrepresentative due to very lower numbers of records.

Table 18.58. BlueEye from the SESSF in depths $200-600 \mathrm{~m}$ by AutoLongLine. Total Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates (kg/hr). Zone:DepCat is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:DepC	StDev
1998	448.146	28	14.989	2	249.6862	0.6273	0.0000
1999	548.067	50	47.670	2	536.1933	1.9629	0.3311
2000	653.775	29	28.299	2	608.0267	1.5990	0.3683
2001	579.726	65	40.232	2	246.5002	0.9087	0.3184
2002	476.739	228	131.686	4	162.2961	0.7609	0.2906
2003	564.693	434	157.016	7	133.4303	1.2342	0.2932
2004	594.290	1145	268.210	11	71.8292	1.2049	0.2893
2005	444.114	1135	299.978	7	77.6456	0.9193	0.2893
2006	544.834	1067	345.481	9	102.2372	0.9642	0.2883
2007	556.619	658	453.819	6	364.8943	1.2126	0.2903
2008	334.297	604	277.917	6	232.1695	0.8136	0.2904
2009	411.616	550	313.987	6	289.6046	0.9347	0.2902
2010	380.394	483	230.042	5	184.8051	0.6099	0.2913
2011	458.642	526	225.716	5	209.8939	0.6487	0.2910
2012	340.633	427	180.740	6	170.2138	0.5991	0.2920

Table 18.59. BlueEye from the SESSF in depths $200-600 \mathrm{~m}$ by Auto-LongLine. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE \sim Year+Vessel+Month
Model 4	LnCE \sim Year+Vessel+Month+Zone
Model 5	LnCE Year+Vessel+Month+Zone+DayNight
Model 6	LnCE \sim Year+Vessel+Month+Zone+DayNight+DepCat
Model 7	LnCE \sim Year+Vessel+Month+Zone+DayNight+DepCat+Zone:Month
Model 8	LnCE \sim Year+Vessel+Month+Zone+DayNight+DepCat+Zone:DepCat

Figure 18.67. BlueEye from the SESSF in depths $200-600 \mathrm{~m}$ by Auto-LongLine. The top left is the depth distribution of all records reporting BlueEye, the top right graph depicts the depth distribution of shots containing BlueEye from the SESSF in depths $200-600 \mathrm{~m}$ by Auto-LongLine. The middle left diagram depicts the distribution of catch by depth across the zones of the SESSF, the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the BlueEye catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Figure 18.68. BlueEye from the SESSF in depths $200-600 \mathrm{~m}$ by Auto-LongLine. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates. The lower graph illustrates the impact on the relative uncertainty of the relatively small number of records, especially in the early years.

Table 18.60. BlueEye from the SESSF in depths $200-600 \mathrm{~m}$ by Auto-LongLine. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum was model Zone:Month.

	Year	Vessel	Month	Zone	DayNight	DepCat	Zone:Mth	Zone:DepC
AIC	6826	4788	4156	3995	3977	3944	$\mathbf{3 9 2 5}$	3950
RSS	18544	14051	12866	12585	12545	12403	$\mathbf{1 2 3 3 5}$	12346
MSS	2383	6877	8062	8342	8383	8524	$\mathbf{8 5 9 3}$	8582
Nobs	7429	7429	7429	7428	7428	7404	$\mathbf{7 4 0 4}$	7404
Npars	15	27	38	39	42	62	$\mathbf{7 3}$	81
adj_r2	11.221	32.623	38.215	39.552	39.724	40.239	$\mathbf{4 0 . 4 8 0}$	40.362
\%Change	0.000	21.402	5.592	1.337	0.171	0.515	$\mathbf{0 . 2 4 1}$	-0.118

Figure 18.69. The relative influence of each factor used on the final trend in the optimal standardization for BlueEye in by Auto-Longline. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor 3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.
18.4.20 Blue Eye, DL (TBE - 37445001 - H. antarctica)

Depths between $200-600 \mathrm{~m}$. All data from Drop-lining. All vessels reporting blue eye by drop line are included. There is a slight change in the trajectory because depth data since 2005 has now been linked to Drop Line data.

Table 18.61. BlueEye from the SET and GHT fishery in depths between $200-600 \mathrm{~m}$, taken by Drop Line. Total Catch is the total reported in the database, Records is the number of records used in the analysis, Catch T is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). Zone:Month is the optimum model and StDev is the standard deviation relating to the data in the optimum model.							
Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Mth	StDev
1997	463.319	542	254.094	38	261.5525	1.8101	0.0000
1998	448.146	730	325.907	29	225.2953	1.3460	0.0763
1999	548.067	876	339.371	29	178.7355	1.1628	0.0787
2000	653.775	1057	377.853	33	171.7160	1.1638	0.0825
2001	579.726	740	318.270	26	200.2441	1.2764	0.0864
2002	476.739	570	180.454	22	164.7123	1.0629	0.0919
2003	564.693	535	167.969	22	162.1292	0.8457	0.0996
2004	594.290	490	149.016	23	160.0459	0.9671	0.1026
2005	444.114	342	80.625	16	134.2685	0.7784	0.1111
2006	544.834	301	101.649	13	222.2480	1.0081	0.1189
2007	556.619	125	45.123	10	208.7957	1.3151	0.1440
2008	334.297	80	15.580	7	117.4039	0.7950	0.1641
2009	411.616	81	17.818	9	124.4663	0.5296	0.1761
2010	380.394	197	28.964	9	76.1903	0.4522	0.1478
2011	458.642	166	32.368	9	104.9216	0.7107	0.1588
2012	340.633	93	17.928	8	105.1590	0.7761	0.2005

Figure 18.70. BlueEye catches by zone from the SESSF in depths $200-600 \mathrm{~m}$ by DropLine.

Table 18.62. BlueEye from the SET and GHT fishery in depths between $200-600 \mathrm{~m}$, taken by Drop Line. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE \sim Year+Vessel+Month
Model 4	LnCE \sim Year+Vessel+Month+Zone
Model 5	LnCE \sim Year+Vessel+Month+Zone+DayNight
Model 6	LnCE \sim Year+Vessel+Month+Zone+DayNight+DepCat
Model 7	LnCE \sim Year+Vessel+Month+Zone+DayNight + DepCat+Zone:Month
Model 8	LnCE \sim Year+Vessel+Month+Zone+DayNight + DepCat + Zone:DepCat

Figure 18.71. BlueEye from the SET and GHT fishery in depths between $200-600 \mathrm{~m}$, taken by Drop Line. The top left is the depth distribution of all records reporting BlueEye, the top right graph depicts the depth distribution of shots containing BlueEye from the SET and GHT fishery in depths between 200 600 m , taken by Drop Line. The middle left diagram depicts the distribution of catch by depth by SESSF zone, the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the BlueEye catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Figure 18.72. BlueEye from the SEN and GHT fishery in depths between $200-600 \mathrm{~m}$, taken by Drop Line. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.63. BlueEye from the SET and GHT fishery in depths between $200-600 \mathrm{~m}$, taken by Drop Line. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum is Zone:Month.

| | Year | Vessel | Month | Zone | DayNight | DepCat | | Zone:Mth |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | Zone:DepC

Figure 18.73. The relative influence of each factor used on the final trend in the optimal standardization for BlueEye in by Drop-line. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

18.4.21 Blue Eye, AL \& DL (TBE - 37445001 - H. antarctica)

Depths between $200-600 \mathrm{~m} \mathrm{~m}$. All data from auto-longlining and droplining combined. Zones $20-50$, and $83-85$ included ($83-85$ are in the GAB).

Table 18.64. BlueEye from the SEN and GHT in depths $200-600 \mathrm{~m}$ by Auto Long Line and Drop Line. Total Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). Zone:Month is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Mth	StDev
1997	463.319	545	254.361	39	258.9752	1.9604	0.0000
1998	448.146	758	340.896	30	226.1524	1.3375	0.0797
1999	548.067	926	387.041	30	189.6587	1.1768	0.0817
2000	653.775	1086	406.152	34	177.6127	1.1240	0.0845
2001	579.726	805	358.502	27	203.6327	1.1817	0.0875
2002	476.739	798	312.140	24	164.0183	0.8899	0.0885
2003	564.693	969	324.984	25	148.5823	0.9941	0.0907
2004	594.290	1635	417.226	29	91.3225	1.0449	0.0885
2005	444.114	1477	380.603	23	88.1440	0.8302	0.0910
2006	544.834	1368	447.130	19	121.2856	0.9562	0.0916
2007	556.619	783	498.943	15	333.7817	1.1731	0.0966
2008	334.297	684	293.497	13	214.3734	0.7572	0.0978
2009	411.616	631	331.806	15	259.8521	0.8553	0.0988
2010	380.394	680	259.006	14	142.9654	0.5414	0.0988
2011	458.642	692	258.084	14	177.7306	0.6190	0.0987
2012	340.633	520	198.668	14	156.1670	0.5584	0.1031

Table 18.65. BlueEye from the SEN and GHT in depths $200-600 \mathrm{~m}$ by Auto Long Line and Drop Line.
Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE~Year+Vessel
Model 3	LnCE~Year+Vessel+DepCat
Model 4	LnCE~Year+Vessel+DepCat+Month
Model 5	LnCE~Year+Vessel+DepCat+Month+DayNight
Model 6	LnCE~Year+Vessel+DepCat+Month+DayNight+Zone
Model 7	LnCE~Year+Vessel+DepCat+Month+DayNight+Zone+Method
Model 8	LnCE~Year+Vessel+DepCat+Month+DayNight+Zone + Method+Zone:Month
Model 9	LnCE~Year+Vessel+DepCat+Month+DayNight+Zone+Method+Zone:DepCat
Model 10	LnCE~Year+Vessel+DepCat+Month+DayNight+Zone+Method+Zone:Method
Model 11	LnCE~Year+Vessel+DepCat+Month+DayNight+Zone+Method+Month:Method

Figure 18.74. BlueEye from the SEN and GHT in depths $200-600 \mathrm{~m}$ by Auto Long Line and Drop Line. The top left is the depth distribution of all records reporting BlueEye, the top right graph depicts the depth distribution of shots containing BlueEye from the SEN and GHT in depths $200-600 \mathrm{~m}$ by Auto Long Line and Drop Line. The middle left diagram depicts the distribution of catch by depth, the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the BlueEye catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Figure 18.75. BlueEye from the SEN and GHT in depths $200-600 \mathrm{~m}$ by Auto Long Line and Drop Line. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.66. BlueEye from the SEN and GHT in depths $200-600 \mathrm{~m}$ by Auto Long Line and Drop Line. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum is model Zone, though Zone:Month is very close. DepC is Depth Category, Mth is Month, DN is DayNight, Meth is Method and Zon is Zone.

	Year	Vessel	DepC	Mth	DN	Zone	Meth	Zon:Mth Zon:DepC Zon:Meth	Mth:Meth		
AIC	11471	7966	7846	6996	6934	$\mathbf{6 7 5 6}$	6786	6758	6767	6773	6822
RSS	31849	24611	24279	22841	22732	$\mathbf{2 2 4 1 7}$	22417	22338	22324	22349	21959
MSS	2097	9335	9668	11105	11214	$\mathbf{1 1 5 3 0}$	11530	11608	11622	11597	11987
Nobs	14357	14357	14282	14282	14282	$\mathbf{1 4 2 4 6}$	14246	14246	14246	14246	14246
Npars	16	114	134	145	148	$\mathbf{1 4 9}$	150	175	184	165	329
adj_r2	6.080	26.925	27.807	32.028	32.339	$\mathbf{3 3 . 2 7 1}$	33.267	33.381	33.381	33.397	33.787
\%Change	0.000	20.845	0.882	4.221	0.311	$\mathbf{0 . 9 3 2}$	-0.004	0.114	-0.001	0.016	0.390

Figure 18.76. The relative influence of each factor used on the final trend in the optimal standardization for BlueEye by AL and DL. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

18.4.22 Blue Grenadier Non-Spawning (GRE - 37227001 - M. novaezelandiae)

Data from zones 10 to 60 except Zone 40 in months June to August, depths less than 1000 m and greater than 0 m .

Table 18.67. Blue Grenadier from the SET in depths between $200-600 \mathrm{~m}$, taken by Trawl, omitting the Spawning fishery (zone 40 between June and August). Total Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). Zone:Month is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Mth	StDev
1986	1450.316	3189	1183.307	92	36.7375	1.5053	0.0000
1987	2244.428	3569	1437.434	91	37.3307	1.9781	0.0338
1988	1843.477	3961	1470.196	102	36.6778	2.1430	0.0338
1989	1887.630	4309	1813.501	99	45.3866	2.2189	0.0338
1990	2277.944	3577	1625.146	92	47.9497	2.1902	0.0357
1991	3647.541	4308	2392.687	86	48.2874	1.5761	0.0344
1992	2470.286	3228	1505.799	61	40.5408	1.2980	0.0367
1993	2474.305	4203	1619.049	63	33.2638	0.9795	0.0351
1994	2315.097	4491	1309.563	66	29.5414	0.8805	0.0346
1995	1930.333	5076	1015.261	61	19.4025	0.6073	0.0339
1996	2304.114	5370	1055.340	73	15.8910	0.5537	0.0337
1997	3654.671	6194	994.604	73	13.3293	0.5734	0.0333
1998	4224.977	6599	1452.552	65	18.8682	0.9410	0.0331
1999	7571.998	8045	2051.946	65	22.7820	0.9948	0.0324
2000	7503.080	7679	1751.230	70	16.8751	0.7095	0.0327
2001	8369.949	7279	1013.774	60	11.4735	0.4060	0.0331
2002	7977.284	6344	1125.943	57	13.3454	0.4074	0.0337
2003	7946.792	5675	670.745	56	10.1345	0.3407	0.0340
2004	6090.023	6393	1206.698	56	16.9690	0.5734	0.0338
2005	4505.559	5346	1174.711	54	19.8341	0.6857	0.0344
2006	3542.434	4362	1308.840	42	26.9839	0.9109	0.0356
2007	3125.396	3659	1204.518	27	25.1832	0.8113	0.0366
2008	4152.329	3407	1276.536	26	28.8353	0.8895	0.0371
2009	3874.659	3443	1128.896	23	25.9256	0.8260	0.0370
2010	4552.205	3308	1136.546	25	25.9279	0.8097	0.0374
2011	4476.805	3968	897.672	26	19.3008	0.6567	0.0365
2012	4464.290	3210	613.624	29	15.0049	0.5333	0.0379

Figure 18.77. Blue Grenadier from the SET in depths between $200-600 \mathrm{~m}$, taken by Trawl, omitting the Spawning fishery (zone 40 between June and August). The top left is the depth distribution of all records reporting Blue Grenadier, the top right graph depicts the depth distribution of shots containing Blue Grenadier from the SET in depths between $200-600 \mathrm{~m}$, taken by Trawl, omitting the Spawning fishery (zone 40 between June and August). The middle left diagram depicts the distribution of catch by depth by SESSF zone, the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the Blue Grenadier catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<$ 30 Kg).

Figure 18.78. Blue Grenadier from the SET in depths between $200-600 \mathrm{~m}$, taken by Trawl, omitting the Spawning fishery (zone 40 between June and August). The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.68. Blue Grenadier from the SET in depths between $200-600 \mathrm{~m}$, taken by Trawl, omitting the Spawning fishery (zone 40 between June and August). Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE \sim Year+Vessel+DepCat
Model 4	LnCE \sim Year+Vessel+DepCat+Month
Model 5	LnCE \sim Year+Vessel+DepCat+Month+Zone
Model 6	LnCE \sim Year+Vessel+DepCat+Month+Zone+DayNight
Model 7	LnCE \sim Year+Vessel+DepCat+Month+Zone+DayNight+Zone:Month
Model 8	LnCE \sim Year+Vessel+DepCat+Month+Zone+DayNight+Zone:DepCat

Table 18.69. Blue Grenadier from the SET in depths between $200-600 \mathrm{~m}$, taken by Trawl, omitting the Spawning fishery (zone 40 between June and August). Model selection criteria, including the AIC, the deviance and the change in deviance. The optimum is model 7.

	Year	Vessel	DepCat	Month	Zone			DayNight
Zone:Mth	Zone:DepC							
AIC	120683	96414	82462	77356	74603	72212	$\mathbf{6 8 9 9 8}$	70859
RSS	328836	272107	243718	234248	229299	225089	$\mathbf{2 1 9 3 7 9}$	221974
MSS	24963	81692	110081	119551	124500	128710	$\mathbf{1 3 4 4 2 0}$	131825
Nobs	130192	130191	129373	129373	129373	129373	$\mathbf{1 2 9 3 7 3}$	129373
Npars	27	219	264	275	280	283	$\mathbf{3 3 8}$	508
adj_r2	7.037	22.961	30.974	33.650	35.050	36.241	$\mathbf{3 7 . 8 3 1}$	37.013
\%Change	0.000	15.924	8.013	2.676	1.399	1.191	$\mathbf{1 . 5 9 1}$	-0.818

Figure 18.79. The relative influence of each factor used on the final trend in the optimal standardization for Blue Grenadier non-spawning fishery. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.
18.4.23 Silver Warehou (TRS - 37445006 - Seriolella punctata)

Data from zones 10 to 50 , depths between $0-600 \mathrm{~m}$.

Figure 18.80. The trends in catches and catch rates for zones $10-50$, split east and west.

The catch rates in the east show approximately the same trends, though there are some differences between 2000 and 2003. In the west the same pattern of noisy but flat from 1992 to 2006 followed by a decline are exhibited. But the trends are different between the east and west.

Table 18.70. Silver Warehou from Zones 10 to 50 and depths $0-600 \mathrm{~m}$ by trawl. Total Catch is the total reported in the database, Records is the number of records use din the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates (kg/hr). Zone:Month is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Mth	StDev
1986	1149.503	2438	1135.296	86	32.2897	1.4578	0.0000
1987	782.151	1509	757.298	76	35.5040	1.5375	0.0562
1988	1646.027	2249	1617.240	87	42.9346	1.9596	0.0510
1989	925.352	2049	907.420	80	30.7291	1.5983	0.0539
1990	1346.441	1983	1290.959	81	40.6488	1.6895	0.0544
1991	1443.557	2289	1207.361	78	25.6848	1.1874	0.0532
1992	733.567	1857	625.074	55	27.9469	1.0405	0.0558
1993	1814.391	3866	1735.163	61	33.2988	1.1751	0.0487
1994	2309.000	4519	2300.083	57	34.7142	1.2561	0.0477
1995	2002.851	5016	1969.857	58	29.7825	1.1350	0.0470
1996	2188.244	6080	2137.373	67	22.7319	1.0664	0.0463
1997	2561.905	5765	2305.785	61	25.3481	1.0937	0.0469
1998	2166.021	4702	1976.667	57	26.6416	1.0527	0.0478
1999	2834.052	5148	2685.678	58	31.2330	0.9059	0.0474
2000	3399.963	6738	3324.009	64	26.0708	0.8281	0.0463
2001	2969.114	7293	2789.412	59	21.7853	0.6968	0.0461
2002	3830.902	8418	3656.597	57	22.9919	0.7532	0.0456
2003	2904.709	7402	2782.813	64	20.4815	0.7615	0.0461
2004	3195.654	7860	3032.860	58	23.3323	0.8452	0.0459
2005	2647.052	6920	2558.282	56	20.0277	0.8309	0.0464
2006	2190.930	5663	2076.280	47	18.2160	0.7316	0.0473
2007	1815.868	4657	1665.236	33	20.1239	0.6931	0.0484
2008	1380.959	4400	1279.929	32	16.1202	0.6233	0.0487
2009	1285.286	4387	1109.646	28	15.8837	0.6437	0.0488
2010	1189.318	4481	1082.522	28	13.2653	0.5328	0.0487
2011	1107.591	4940	1042.774	30	12.6164	0.4973	0.0483
2012	780.514	3768	750.557	29	10.4075	0.4068	0.0501

Figure 18.81. Silver Warehou from Zones 10 to 50 and depths $0-600 \mathrm{~m}$ by trawl. The top left is the depth distribution of all records reporting Silver Warehou, the top right graph depicts the depth distribution of shots containing Silver Warehou from Zones 10 to 50 and depths $0-600 \mathrm{~m}$ by trawl.. The middle left diagram depicts the distribution of catch by depth within zones 10 to 50 , the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the Silver Warehou catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Figure 18.82. Silver Warehou from Zones 10 to 50 and depths $0-600 \mathrm{~m}$ by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.71. Silver Warehou from Zones 10 to 50 and depths $0-600 \mathrm{~m}$ by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE~Year+Vessel
Model 3	LnCE~Year+Vessel+Month
Model 4	LnCE \sim Year+Vessel+Month+Zone
Model 5	LnCE Year+Vessel+Month+Zone+DepCat
Model 6	LnCE \sim Year+Vessel+Month+Zone+DepCat + DayNight
Model 7	LnCE \sim Year+Vessel+Month+Zone+DepCat + DayNight + Zone:Month
Model 8	LnCE \sim Year+Vessel+Month+Zone + DepCat + DayNight + Zone:DepCat

Table 18.72. Silver Warehou from Zones 10 to 50 and depths $0-600 \mathrm{~m}$ by trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum is Zone:Month (model 7).

	Year	Vessel	Month	Zone	DepCat	DayNight	Zone:Month	Zone:DepCat
AIC	151901	129881	123588	121315	118746	118519	$\mathbf{1 1 6 6 6 6}$	117144
RSS	420218	351943	334787	328571	321897	321299	$\mathbf{3 1 6 3 6 9}$	317191
MSS	12001	80276	97432	103648	110323	110920	$\mathbf{1 1 5 8 5 0}$	115028
Nobs	126397	126375	126375	125519	125519	125519	$\mathbf{1 2 5 5 1 9}$	125519
Npars	27	223	234	264	268	271	315	391
adj_r2	2.757	18.430	22.399	23.821	25.366	25.503	$\mathbf{2 6 . 6 2 0}$	26.385
\%Change	0.000	15.673	3.969	1.422	1.545	0.137	$\mathbf{1 . 1 1 7}$	-0.235

Figure 18.83. The relative influence of each factor used on the final trend in the optimal standardization for Silver Warehou in Zones $10-50$. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor 3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

18.4.24

Blue Warehou Zones 10, 20, 30 (TRT - 37445005 - Seriolella brama)
Data from zones 10,20 , and 30 , depths less than or equal to 400 m .

Table 18.73. Blue Warehou from zones 10 to 30 in depths $0-400 \mathrm{~m}$ by trawl. Total Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). Zone:DepCat is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:DepC	StDev
1986	211.877	702	138.822	40	22.9216	1.9418	0.0000
1987	405.851	457	168.152	40	23.2716	2.3584	0.1047
1988	543.976	775	334.047	33	34.8726	2.8779	0.0953
1989	770.582	1178	664.709	41	52.6588	3.6492	0.0925
1990	872.888	826	508.270	42	46.5510	3.3387	0.0976
1991	1277.006	1567	465.158	54	23.0208	1.7949	0.0919
1992	933.335	1343	406.749	39	24.3304	1.4771	0.0925
1993	829.263	2195	431.735	45	20.7054	1.1518	0.0892
1994	943.873	2449	473.899	44	17.5997	1.1110	0.0881
1995	815.384	2646	467.825	44	15.3567	1.0166	0.0879
1996	724.128	3551	531.223	49	14.6415	1.0478	0.0872
1997	916.699	2481	404.281	42	11.8760	1.0217	0.0895
1998	903.212	2556	457.247	39	13.8592	0.9546	0.0890
1999	590.533	1643	131.641	39	5.7097	0.5292	0.0920
2000	470.238	2217	185.083	41	5.0072	0.4393	0.0901
2001	285.096	1470	57.242	33	2.7867	0.2615	0.0937
2002	290.256	1856	62.867	36	2.2036	0.1982	0.0922
2003	233.466	1324	42.078	38	1.8331	0.1538	0.0952
2004	232.060	1249	52.051	38	2.7248	0.2087	0.0969
2005	289.033	830	21.286	33	1.8011	0.1395	0.1013
2006	379.495	776	25.720	28	2.2327	0.1656	0.1025
2007	177.624	583	16.757	14	1.8677	0.1745	0.1074
2008	163.260	738	27.441	18	2.6539	0.2439	0.1031
2009	135.220	447	36.884	15	3.5956	0.2875	0.1121
2010	129.874	374	12.266	15	2.1227	0.1840	0.1175
2011	103.243	435	9.812	13	1.7081	0.1490	0.1135
2012	52.187	356	9.901	14	1.6727	0.1238	0.1188

Figure 18.84. Blue Warehou from zones 10 to 30 in depths $0-400 \mathrm{~m}$ by trawl. The top left is the depth distribution of all records reporting Blue Warehou, the top right graph depicts the depth distribution of shots containing Blue Warehou from zones 10 to 30 in depths $0-400 \mathrm{~m}$ by trawl. The middle left diagram depicts the distribution of catch by depth within zones 10 to 30 , the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the Blue Warehou catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Figure 18.85. Blue Warehou from zones 10 to 30 in depths $0-400 \mathrm{~m}$ by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.74. Blue Warehou from zones 10 to 30 in depths $0-400 \mathrm{~m}$ by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE \sim Year+Vessel+DepCat
Model 4	LnCE \sim Year+Vessel+DepCat+Month
Model 5	LnCE \sim Year+Vessel+DepCat+Month+Zone
Model 6	LnCE \sim Year+Vessel+DepCat+Month+Zone+DayNight
Model 7	LnCE \sim Year+Vessel+DepCat+Month+Zone+DayNight+Zone:Month
Model 8	LnCE \sim Year+Vessel+DepCat+Month+Zone+DayNight+Zone:DepCat

Table 18.75. Blue Warehou from zones 10 to 30 in depths $0-400 \mathrm{~m}$ by trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum is Zone:DSepCat (model 8).

	Year	Vessel	DepCat	Month	Zone		DayNight		
Zone:Mth	Zone:DepC								
AIC	37094	32362	31717	31518	31048	31046	30791	$\mathbf{3 0 7 6 1}$	
RSS	100684	87832	86144	85630	84533	84515	83832	$\mathbf{8 3 6 8 0}$	
MSS	37450	50302	51990	52504	53601	53619	54302	$\mathbf{5 4 4 5 4}$	
Nobs	37024	37024	36804	36804	36804	36804	36804	$\mathbf{3 6 8 0 4}$	
Npars	27	189	209	220	222	225	247	$\mathbf{2 6 5}$	
adj_r2	27.060	36.091	37.283	37.639	38.434	38.442	38.903	$\mathbf{3 8 . 9 8 3}$	
\%Change	0.000	9.031	1.192	0.356	0.795	0.008	0.461	$\mathbf{0 . 0 8 1}$	

Figure 18.86. The relative influence of each factor used on the final trend in the optimal standardization for Blue Warehou in Zone $10-30$. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.
18.4.25 Blue Warehou Z4050 (TRT - 37445005 - S. brama)

Data from zones $40-50$ depths less than or equal to 600 m .

Table 18.76. Blue Warehou from zones 40 and 50 in depths $0-600 \mathrm{~m}$ by trawl. Total Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). Zone:Month is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Mth	StDev
1986	211.877	159	71.389	14	34.3927	3.3898	0.0000
1987	405.851	183	215.645	10	153.6342	3.2398	0.2437
1988	543.976	180	197.989	12	104.5294	1.3376	0.2531
1989	770.582	56	81.343	13	91.5270	3.3688	0.3135
1990	872.888	444	298.296	14	55.8069	1.4738	0.2389
1991	1277.006	597	647.537	18	159.6429	2.3199	0.2369
1992	933.335	538	430.133	17	88.9759	1.3324	0.2389
1993	829.263	495	362.854	21	92.3447	0.9834	0.2403
1994	943.873	824	449.901	21	67.3117	1.0772	0.2360
1995	815.384	825	325.150	22	45.1964	0.7260	0.2336
1996	724.128	700	183.550	24	26.4215	0.4958	0.2351
1997	916.699	431	243.547	23	35.6095	0.5195	0.2405
1998	903.212	582	354.483	19	58.9967	0.7874	0.2390
1999	590.533	688	174.376	19	32.5226	0.4387	0.2383
2000	470.238	650	203.390	24	28.0473	0.3523	0.2385
2001	285.096	685	194.156	23	27.5825	0.3768	0.2374
2002	290.256	530	218.017	23	35.4216	0.4992	0.2400
2003	233.466	363	175.478	19	28.1023	0.4553	0.2457
2004	232.060	437	159.255	21	28.4995	0.5094	0.2424
2005	289.033	461	257.801	18	53.5991	0.8063	0.2428
2006	379.495	695	337.473	16	31.8482	0.5689	0.2393
2007	177.624	466	148.640	16	22.9820	0.4872	0.2430
2008	163.260	353	117.774	12	20.3955	0.3823	0.2453
2009	135.220	308	89.003	11	18.4388	0.2859	0.2476
2010	129.874	407	105.291	12	17.5511	0.3290	0.2429
2011	103.243	519	77.907	14	14.3950	0.2809	0.2418
2012	52.187	262	32.758	14	8.1485	0.1766	0.2529

Figure 18.87. Blue Warehou from zones 40 and 50 in depths $0-600 \mathrm{~m}$ by trawl. The top left is the depth distribution of all records reporting Blue Warehou, the top right graph depicts the depth distribution of shots containing Blue Warehou from zones 40 and 50 in depths $0-600 \mathrm{~m}$ by trawl. The middle left diagram depicts the distribution of catch by depth within zones 40 and 50 (50 is top red line), the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the Blue Warehou catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Figure 18.88. Blue Warehou from zones 40 and 50 in depths $0-600 \mathrm{~m}$ by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.77. Blue Warehou from zones 40 and 50 in depths $0-600 \mathrm{~m}$ by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE \sim Year+Vessel+Month
Model 4	LnCE \sim Year+Vessel+Month+DepCat
Model 5	LnCE \sim Year+Vessel+Month+DepCat+DayNight
Model 6	LnCE \sim Year+Vessel+Month+DepCat+DayNight+Zone
Model 7	LnCE \sim Year+Vessel+Month+DepCat+DayNight+Zone+Zone:Month
Model 8	LnCE \sim Year+Vessel+Month+DepCat+DayNight+Zone+Zone:DepCat

Table 18.78. Blue Warehou from zones 40 and 50 in depths $0-600 \mathrm{~m}$ by trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum is Zone:Month (model 7).

	Year	Vessel	Month	DepCat	DayNight	Zone	Zone:Mth		Zone:DepC
AIC	14361	13211	12188	11391	11229	11228	$\mathbf{1 1 1 8 3}$	11236	
RSS	39128	35331	32569	30447	30049	30042	$\mathbf{2 9 8 8 5}$	29921	
MSS	5218	9015	11778	13899	14297	14305	$\mathbf{1 4 4 6 1}$	14426	
Nobs	12838	12837	12837	12775	12775	12775	$\mathbf{1 2 7 7 5}$	12775	
Npars	27	107	118	148	151	152	$\mathbf{1 6 3}$	182	
adj_r2	11.587	19.666	25.883	30.543	31.434	31.446	$\mathbf{3 1 . 7 4 5}$	31.560	
\%Change	0.000	8.079	6.217	4.660	0.891	0.012	$\mathbf{0 . 2 9 8}$	-0.185	

Figure 18.89. The relative influence of each factor used on the final trend in the optimal standardization for Blue Warehou in Zone $40-50$. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

18.4.26 Blue Warehou Z10-50 (TRT - 37445005 - S. brama)

Only data from Zones 10 to 50 in depths $0-600 \mathrm{~m}$. Only vessels present in the fishery for more than 2 years were included.

Figure 18.90. Trends in the catches and geometric mean catch rates for Blue Warehou across each of the zones $10-50$, split east and west. The extreme catch rates in zone 40 reflect very small catches

The severe depletion in the east is evident but in the west the catch rates are noisy then flat. They are depressed primarily because of early high values that reflect very low catches or relatively high catches. Zone 50 is the main part of the western Blue Warehou fishery.

Table 18.79. Blue Warehou from zones 10 to 50 in depths $0-600 \mathrm{~m}$ by trawl. Total Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr)}$. Zone:Mth is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Mth	StDev
1986	211.877	863	210.321	54	24.6419	2.0703	0.0000
1987	405.851	655	384.556	51	38.9818	2.3727	0.0921
1988	543.976	963	532.358	45	42.2791	2.6488	0.0892
1989	770.582	1239	746.152	50	53.5132	3.6574	0.0876
1990	872.888	1284	822.419	56	49.3618	2.5841	0.0889
1991	1277.006	2193	1119.788	66	38.9026	2.0552	0.0845
1992	933.335	1902	840.304	56	34.9011	1.5133	0.0854
1993	829.263	2717	797.308	58	27.0143	1.1760	0.0832
1994	943.873	3300	927.228	58	24.5388	1.1348	0.0820
1995	815.384	3497	794.697	58	19.7435	0.9631	0.0817
1996	724.128	4278	715.754	66	16.0446	0.9765	0.0813
1997	916.699	2925	648.139	57	13.9027	0.9728	0.0835
1998	903.212	3152	813.727	50	18.0335	0.9660	0.0829
1999	590.533	2372	309.696	57	9.5323	0.5210	0.0848
2000	470.238	2899	389.591	59	7.2891	0.4484	0.0837
2001	285.096	2208	253.279	53	5.6327	0.3021	0.0857
2002	290.256	2408	281.036	53	4.0433	0.2549	0.0854
2003	233.466	1709	218.370	51	3.2843	0.2065	0.0880
2004	232.060	1700	211.509	51	4.9660	0.2822	0.0887
2005	289.033	1297	279.429	45	6.0446	0.2635	0.0910
2006	379.495	1474	363.242	36	7.8259	0.2645	0.0900
2007	177.624	1051	165.406	25	5.6784	0.2444	0.0936
2008	163.260	1100	145.318	27	5.0903	0.2754	0.0927
2009	135.220	766	126.232	24	6.9116	0.2752	0.0976
2010	129.874	785	117.741	22	6.3388	0.2207	0.0975
2011	103.243	966	91.479	23	5.5254	0.2025	0.0950
2012	52.187	633	46.421	25	3.2664	0.1477	0.1019

Figure 18.91. Blue Warehou from zones 10 to 50 in depths $0-400 \mathrm{~m}$ by trawl. The top left is the depth distribution of all records reporting Blue Warehou, the top right graph depicts the depth distribution of shots containing Blue Warehou from zones 10 to 50 in depths $0-400 \mathrm{~m}$ by trawl. The middle left diagram depicts the distribution of catch by depth within zones 1050 , the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the Blue Warehou catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$)

Figure 18.92. Blue Warehou from zones 10 to 50 in depths $0-400 \mathrm{~m}$ by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.80. Blue Warehou from zones 10 to 50 in depths $0-400 \mathrm{~m}$ by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE \sim Year+Vessel+DepCat
Model 4	LnCE \sim Year+Vessel+DepCat+Zone
Model 5	LnCE Year+Vessel+DepCat+Zone+Month
Model 6	LnCE \sim Year+Vessel+DepCat+Zone+Month+DayNight
Model 7	LnCE \sim Year+Vessel+DepCat+Zone+Month+DayNight+Zone:Month
Model 8	LnCE \sim Year+Vessel+DepCat+Zone+Month+DayNight+Zone:DepCat

Table 18.81. Blue Warehou from zones 10 to 50 in depths $0-400 \mathrm{~m}$ by trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum is Zone:Month (model 7).

	Year	Vessel	DepCat Zone	Month	DayNight	Zone:Mth	Zone:DepC	
AIC	62101	48148	46842	45746	45025	44957	$\mathbf{4 3 9 5 9}$	44262
RSS	172669	129872	126342	123584	121764	121584	$\mathbf{1 1 8 9 7 5}$	119333
MSS	31963	74759	78290	81047	82868	83047	$\mathbf{8 5 6 5 6}$	85299
Nobs	50336	50335	50053	50053	50053	50053	$\mathbf{5 0 0 5 3}$	50053
Npars	27	219	249	253	264	267	$\mathbf{3 1 1}$	387
adj_r2	15.576	36.257	37.951	39.301	40.182	40.266	$\mathbf{4 1 . 4 9 7}$	41.231
\%Change	0.000	20.681	1.694	1.349	0.881	0.085	$\mathbf{1 . 2 3 0}$	-0.266

Figure 18.93. The relative influence of each factor used on the final trend in the optimal standardization for Blue Warehou in Zone $10-50$. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor 3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

Figure 18.94. Trends in the catches and geometric mean catch rates for Pink Ling taken by trawler across zones $10-50$ split between east and west.

The trends in the geometric mean catch rates in the east all follow approximately the same trajectory, albeit with some noise. In the west, however, zones 40 and 50 appear to follow rather different trajectories with rates increasing since 2005 in zone 40 whilst staying flat in zone 50 . However, this may simply reflect that catches were increasing in zone 40 and were decreasing in zone 50 .
18.4.28 Pink Ling, Z102030 (LIG - 37228002 - G. blacodes)

Data from zones 10,20 and 30 , depths greater than 250 m and less than 600 m .

Table 18.82. Pink Ling from zones 10 to 30 in depths between $250-600 \mathrm{~m}$ by trawl. Total Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates (kg/hr). Zone:Month is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Mth	StDev
1986	678.801	4512	498.298	80	20.6651	1.1112	0.0000
1987	764.910	4260	492.314	77	19.4237	1.1786	0.0224
1988	582.895	3613	400.077	77	20.2595	1.1234	0.0235
1989	677.150	3879	422.077	77	19.1575	0.9652	0.0233
1990	673.624	2794	413.082	68	26.8201	1.4198	0.0256
1991	719.965	2938	370.297	72	26.3050	1.4201	0.0256
1992	567.627	2417	324.371	57	24.8497	1.0966	0.0269
1993	891.448	3525	504.474	59	25.3075	1.0313	0.0245
1994	894.766	4066	470.265	63	23.5158	1.0448	0.0236
1995	1208.577	4361	586.686	57	25.8106	1.3164	0.0231
1996	1233.106	4268	667.583	63	27.6570	1.3170	0.0233
1997	1693.734	4808	732.654	62	27.9375	1.3472	0.0229
1998	1591.848	4909	730.458	57	26.0156	1.3413	0.0227
1999	1651.457	5964	832.655	59	25.2286	1.2284	0.0222
2000	1507.199	5113	660.280	63	22.4049	1.0837	0.0231
2001	1392.361	4544	484.022	52	19.0624	0.8413	0.0239
2002	1329.946	3898	360.465	52	15.8660	0.7343	0.0248
2003	1351.687	4309	445.759	57	18.2929	0.7492	0.0243
2004	1492.255	3359	347.369	54	16.7984	0.6719	0.0259
2005	1202.739	3454	329.969	51	16.3335	0.6280	0.0255
2006	1069.111	2593	323.101	38	21.3189	0.7491	0.0274
2007	875.503	1652	204.307	23	20.5015	0.7292	0.0316
2008	980.268	2382	329.036	24	25.1511	0.8466	0.0287
2009	774.735	1947	212.362	27	18.2953	0.6172	0.0303
2010	905.925	1990	271.121	23	20.7211	0.7541	0.0300
2011	1081.607	2201	294.896	22	23.4304	0.7997	0.0293
2012	1024.601	1972	273.323	24	24.3541	0.8544	0.0302

Figure 18.95. Pink Ling from zones 10 to 30 in depths between $250-600 \mathrm{~m}$ by trawl. The top left is the depth distribution of all records reporting Pink Ling, the top right graph depicts the depth distribution of shots containing Pink Ling from zones 10 to 30 in depths between $250-600 \mathrm{~m}$ by trawl. The middle left diagram depicts the distribution of catch by depth within zones 10 to 30 , the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the Pink Ling catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Figure 18.96. Pink Ling from zones 10 to 30 in depths between $250-600 \mathrm{~m}$ by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.83. Pink Ling from zones 10 to 30 in depths between $250-600 \mathrm{~m}$ by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE~Year+DepCat
Model 3	LnCE~Year+DepCat+Vessel
Model 4	LnCE~Year+DepCat+Vessel+Month
Model 5	LnCE~Year+DepCat+Vessel+Month+Zone
Model 6	LnCE~Year+DepCat+Vessel+Month+Zone+DayNight
Model 7	LnCE~Year+DepCat+Vessel+Month+Zone+DayNight+Zone:Month
Model 8	LnCE~Year+DepCat+Vessel+Month+Zone+DayNight+Zone:DepCat

Table 18.84. Pink Ling from zones 10 to 30 in depths between $250-600 \mathrm{~m}$ by trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum is Zone:Month (model 7).

	Year	DepCat	Vessel	Month	Zone DayNight			
Zone:Mth	Zone:DepC							
AIC	32436	25193	4487	663	39	-3	$\mathbf{- 1 1 2 0}$	-994
RSS	134261	123602	98984	95051	94424	94376	$\mathbf{9 3 2 2 8}$	93324
MSS	2732	13390	38009	41942	42568	42616	$\mathbf{4 3 7 6 4}$	43668
Nobs	95728	94864	94864	94864	94864	94864	$\mathbf{9 4 8 6 4}$	94864
Npars	27	45	226	238	240	243	$\mathbf{2 6 5}$	279
adj_r2	1.967	9.733	27.573	30.442	30.899	30.932	$\mathbf{3 1 . 7 5 6}$	31.676
\%Change	0.000	7.765	17.841	2.869	0.457	0.033	$\mathbf{0 . 8 2 4}$	0.744

Figure 18.97. The relative influence of each factor used on the final trend in the optimal standardization for Pink Ling from zones 10 to 30 . The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor 3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.
18.4.29 Pink Ling, Z4050 (LIG - 37228002 - G. blacodes)

Data from zones 40 and 50 , depths greater than 200 m and less or equal to 800 m .

Table 18.85. Pink Ling from zones 40 and 50 in depths between $200-800 \mathrm{~m}$ by trawl. Total Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates (kg/hr). Zone:Mth is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Mth	StDev
1986	678.801	1265	112.944	23	17.1417	1.1748	0.0000
1987	764.910	1310	206.341	28	24.0155	1.3485	0.0376
1988	582.895	1026	95.703	32	17.6676	1.0515	0.0406
1989	677.150	1469	183.121	34	21.9840	1.0854	0.0388
1990	673.624	1524	147.412	32	16.9021	0.9755	0.0393
1991	719.965	1897	198.945	37	16.3936	1.0397	0.0375
1992	567.627	1633	102.164	24	11.9963	0.7746	0.0385
1993	891.448	2253	235.485	24	17.1332	1.0500	0.0373
1994	894.766	2110	247.793	24	20.5621	1.2634	0.0372
1995	1208.577	3516	426.907	25	20.0613	1.2941	0.0350
1996	1233.106	3403	448.044	26	19.9984	1.3698	0.0353
1997	1693.734	3732	577.434	24	21.1891	1.4378	0.0350
1998	1591.848	3710	558.641	21	22.4111	1.4223	0.0353
1999	1651.457	3794	427.920	24	18.0495	1.1241	0.0351
2000	1507.199	4655	509.304	28	16.3679	1.0063	0.0347
2001	1392.361	5061	500.022	28	14.7513	0.8993	0.0346
2002	1329.946	4631	429.572	27	13.4100	0.7773	0.0347
2003	1351.687	3821	360.388	27	12.6444	0.7796	0.0351
2004	1492.255	3901	306.551	25	11.7195	0.7283	0.0353
2005	1202.739	2663	195.741	23	9.9467	0.6063	0.0365
2006	1069.111	2322	209.985	21	10.6509	0.6469	0.0373
2007	875.503	2532	287.345	16	12.6778	0.7116	0.0368
2008	980.268	1795	214.232	17	14.6108	0.9105	0.0383
2009	774.735	1976	260.609	13	14.0039	0.8931	0.0378
2010	905.925	2337	272.103	14	13.1465	0.8604	0.0371
2011	1081.607	2791	356.784	16	13.2647	0.8442	0.0366
2012	1024.601	2342	344.973	14	14.5232	0.9246	0.0376

Figure 18.98. Pink Ling from zones 40 and 50 in depths between $200-800 \mathrm{~m}$ by trawl. The top left is the depth distribution of all records reporting Pink Ling, the top right graph depicts the depth distribution of shots containing Pink Ling from zones 40 and 50 in depths between $200-800 \mathrm{~m}$ by trawl. The middle left diagram depicts the distribution of catch by depth within zones 40 and 50 (50 is top red line), the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the Pink Ling catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Figure 18.99. Pink Ling from zones 40 and 50 in depths between $200-800 \mathrm{~m}$ by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.86. Pink Ling from zones 40 and 50 in depths between $200-800 \mathrm{~m}$ by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+DepCat
Model 3	LnCE \sim Year+DepCat+Vessel
Model 4	LnCE \sim Year+DepCat+Vessel+Month
Model 5	LnCE \sim Year+DepCat+Vessel+Month+Zone
Model 6	LnCE \sim Year+DepCat+Vessel+Month+Zone+DayNight
Model 7	LnCE \sim Year+DepCat+Vessel+Month+Zone+DayNight+Zone:Month
Model 8	LnCE \sim Year+DepCat+Vessel+Month+Zone+DayNight+Zone:DepCat

Table 18.87. Pink Ling from zones 40 and 50 in depths between $200-800 \mathrm{~m}$ by trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum is Zone:Month (model 7).

	Year	DepCat	Vessel	Month	Zone	DayNight		Zone:Mth	Zone:DepC
AIC	96	-9960	-16177	-18501	-19307	-19330	$\mathbf{- 2 0 6 6 7}$	-20019	
RSS	73511	63600	58260	56417	55797	55774	54746	55205	
MSS	3893	13803	19144	20986	21607	21629	$\mathbf{2 2 6 5 8}$	22198	
Nobs	73469	73010	73010	73010	73010	73010	$\mathbf{7 3 0 1 0}$	73010	
Npars	27	57	150	161	162	165	$\mathbf{1 7 6}$	195	
adj_r2	4.996	17.770	24.578	26.953	27.756	27.781	$\mathbf{2 9 . 1 0 2}$	28.489	
\%Change	0.000	12.774	6.808	2.375	0.803	0.026	$\mathbf{1 . 3 2 1}$	-0.614	

Figure 18.100. The relative influence of each factor used on the final trend in the optimal standardization for Pink Ling from zones 40 and 50 . The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor 3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.
18.4.30 Pink Ling, Z10 (LIG - 37228002 - G. blacodes)

Data from zone 10, depths greater than 250 m and less or equal to 600 m .

Table 18.88. Pink Ling from zone 10 in depths between $250-600 \mathrm{~m}$ by trawl. Total Catch is the total Pink Ling catch from all zones reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in this analysis, and Vessels relates to all vessels used in the analysis. Geomean is the unstandardized geometric mean of catch rates $(\mathrm{kg} / \mathrm{hr})$. Vessel:Mth is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Vessel:Mth	StDev
1986	678.801	3324	314.213	69	18.2806	1.1840	0.0000
1987	764.910	3017	270.907	65	15.1828	1.1356	0.0271
1988	582.895	2154	207.947	62	16.5795	1.1610	0.0296
1989	677.150	2356	177.865	61	13.2037	0.8887	0.0293
1990	673.624	1436	157.171	50	18.6577	1.2915	0.0332
1991	719.965	1319	145.022	39	23.1009	1.5801	0.0345
1992	567.627	1171	167.548	42	26.4272	1.4105	0.0357
1993	891.448	1613	224.873	43	24.5764	1.1705	0.0323
1994	894.766	1865	231.643	44	26.4614	1.4306	0.0308
1995	1208.577	2366	246.588	42	22.3982	1.5391	0.0290
1996	1233.106	2343	278.016	45	21.7797	1.3625	0.0291
1997	1693.734	2505	328.403	46	24.4094	1.4602	0.0287
1998	1591.848	2873	356.785	42	21.4118	1.4364	0.0280
1999	1651.457	3066	382.112	39	20.6881	1.3709	0.0279
2000	1507.199	2235	250.746	40	18.7962	1.1798	0.0305
2001	1392.361	1376	118.901	34	14.0899	0.8736	0.0351
2002	1329.946	1464	106.843	37	11.8033	0.7157	0.0343
2003	1351.687	1428	114.389	39	13.7771	0.6920	0.0350
2004	1492.255	1028	67.395	41	10.9097	0.5067	0.0382
2005	1202.739	1292	75.762	35	11.1472	0.4627	0.0353
2006	1069.111	795	63.499	27	12.5966	0.4744	0.0420
2007	875.503	397	31.023	16	11.4186	0.4903	0.0554
2008	980.268	559	48.896	17	15.1211	0.6017	0.0495
2009	774.735	421	39.817	15	15.9787	0.5314	0.0558
2010	905.925	636	72.524	15	17.9099	0.7021	0.0476
2011	1081.607	576	54.275	14	17.1346	0.6080	0.0486
2012	1024.601	577	58.242	15	19.5964	0.7401	0.0490

Figure 18.101. Pink Ling from zone 10 in depths between $250-600 \mathrm{~m}$ by trawl. The top left is the depth distribution of all records reporting Pink Ling from zone 10 taken in the SET down to 1000 m , the top right graph depicts the depth distribution of shots containing Pink Ling from zone 10 in depths between $250-600 \mathrm{~m}$ by trawl. The middle left diagram depicts the distribution of catch by depth within zone 10 , the middle right hand graph depicts the number of vessels reporting Pink Ling catches through time. The bottom left reflects the number of records used in analysis, and bottom right is the Pink Ling catches (top line, black is total catches, all zones, all methods, the middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Figure 18.102. Pink Ling from zone 10 in depths between $250-600 \mathrm{~m}$ by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates; giving a mean for the series of 1.0.

Table 18.89. Pink Ling from zone 10 in depths between $250-600 \mathrm{~m}$ by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE \sim Year+Vessel +DepCat
Model 4	LnCE Year+Vessel +DepCat + Month
Model 5	LnCE \sim Year+Vessel +DepCat + Month+DayNight
Model 6	LnCE Year+Vessel +DepCat + Month +DayNight+ Vessel:Month
Model 7	LnCE \sim Year+Vessel +DepCat + Month +DayNight+ Month:DepCat

Table 18.90. Pink Ling from zone 10 in depths between $250-600 \mathrm{~m}$ by trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum is Vessel:Month (model 6).

| | Year | Vessel | DepCat | Month | DayNight | Vessel:Month Month:DepCat | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| AIC | 19419 | 6644 | 2705 | -525 | -549 | $\mathbf{- 1 3 5 1}$ | -1184 |
| RSS | 68494 | 51000 | 46387 | 43080 | 43050 | $\mathbf{3 9 6 3 0}$ | 42053 |
| MSS | 2808 | 20303 | 24916 | 28223 | 28253 | $\mathbf{3 1 6 7 3}$ | 29250 |
| Nobs | 44192 | 44192 | 43966 | 43966 | 43966 | $\mathbf{4 3 9 6 6}$ | 43966 |
| Npars | 27 | 156 | 174 | 185 | 188 | $\mathbf{1 6 0 7}$ | 386 |
| adj_r2 | 3.882 | 28.222 | 34.686 | 39.328 | 39.366 | $\mathbf{4 2 . 3 1 2}$ | 40.501 |
| \%Change | 0.000 | 24.340 | 6.464 | 4.642 | 0.037 | $\mathbf{2 . 9 4 7}$ | -1.811 |

Figure 18.103. The relative influence of each factor used on the final trend in the optimal standardization for Pink Ling in Zone 10. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph for Vessel has the geometric mean (grey line) and the effect of adding Year + Vessel (model 2). In the third graph, for DepCat, the grey line represents model 2 and the black line the effect of adding DepCat to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.
18.4.31 Pink Ling, Z20 (LIG - 37228002 - G. blacodes)

Data from zone 20, depths greater than 250 m and less or equal to 600 m .

Table 18.91. Pink Ling from zone 20 in depths between $250-600 \mathrm{~m}$ by trawl. Total Catch is the total Pink Ling catch from all zones reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in this analysis, and Vessels relates to all vessels used in the analysis. Geomean is the unstandardized geometric mean of catch rates $(\mathrm{kg} / \mathrm{hr})$.Mth:DepCat is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Mth:DepCat	StDev
1986	678.801	1173	182.189	38	29.2240	1.0127	0.0000
1987	764.910	1207	219.162	37	36.1063	1.4593	0.0431
1988	582.895	1409	187.752	39	27.1962	0.9889	0.0422
1989	677.150	1462	236.224	34	34.1990	1.0640	0.0420
1990	673.624	1253	247.526	33	40.5063	1.2793	0.0453
1991	719.965	1243	196.325	31	32.4251	1.0350	0.0461
1992	567.627	1112	151.017	25	25.4253	0.8514	0.0472
1993	891.448	1585	258.998	25	27.3764	0.8885	0.0444
1994	894.766	1713	210.108	24	22.5143	0.7882	0.0437
1995	1208.577	1584	303.948	24	33.0905	1.2646	0.0441
1996	1233.106	1544	353.759	26	41.1747	1.4004	0.0446
1997	1693.734	1860	358.577	28	36.3858	1.3060	0.0442
1998	1591.848	1870	355.885	23	35.8703	1.3513	0.0440
1999	1651.457	2421	409.166	26	34.3684	1.2096	0.0428
2000	1507.199	2493	375.436	32	27.0471	1.0389	0.0426
2001	1392.361	2427	304.034	24	23.7631	0.8141	0.0430
2002	1329.946	1934	218.025	24	20.1429	0.7759	0.0445
2003	1351.687	2473	301.477	30	22.0973	0.8268	0.0431
2004	1492.255	1954	253.007	25	22.4000	0.8540	0.0450
2005	1202.739	1768	212.464	24	20.8376	0.7847	0.0455
2006	1069.111	1542	228.071	20	27.6927	0.9660	0.0459
2007	875.503	1025	141.086	12	24.5067	0.8052	0.0494
2008	980.268	1458	235.294	13	30.6898	0.9527	0.0466
2009	774.735	1291	156.773	16	20.0214	0.6689	0.0475
2010	905.925	1175	182.205	13	22.6841	0.7740	0.0489
2011	1081.607	1363	212.576	13	27.4133	0.9032	0.0477
2012	1024.601	1104	181.406	14	28.3891	0.9363	0.0495

Figure 18.104. Pink Ling from zone 20 in depths between $250-600 \mathrm{~m}$ by trawl. The top left is the depth distribution of all records reporting Pink Ling from zone 20 taken in the SET down to 1000 m , the top right graph depicts the depth distribution of shots containing Pink Ling from zone 20 in depths between $250-600 \mathrm{~m}$ by trawl. The middle left diagram depicts the distribution of catch by depth within zone 20, the middle right hand graph depicts the number of vessels reporting Pink Ling catches through time. The bottom left reflects the number of records used in analysis, and bottom right is the Pink Ling catches (top line, black is total catches, all zones, all methods, the middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Figure 18.105. Pink Ling from zone 20 in depths between $250-600 \mathrm{~m}$ by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates; giving a mean for the series of 1.0.

Table 18.92. Pink Ling from zone 20 in depths between $250-600 \mathrm{~m}$ by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE \sim Year+Vessel +DepCat
Model 4	LnCE Year+Vessel +DepCat + Month
Model 5	LnCE \sim Year+Vessel +DepCat + Month+DayNight
Model 6	LnCE Year+Vessel +DepCat + Month +DayNight+ Vessel:Month
Model 7	LnCE \sim Year+Vessel +DepCat + Month +DayNight+ Month:DepCat

Table 18.93. Pink Ling from zone 20 in depths between $250-600 \mathrm{~m}$ by trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum is Month:DepCat (model 7).

	Year	Vessel	DepCat	Month	DayNight	Vessel:Month Month:DepCat	
AIC	8082	-818	-2150	-3339	-3432	-3461	$\mathbf{- 3 7 1 1}$
RSS	52261	42002	40486	39358	39268	36843	$\mathbf{3 8 6 5 5}$
MSS	1942	12201	13718	14845	14936	17361	$\mathbf{1 5 5 4 9}$
Nobs	43443	42901	42901	42901	42901	42901	$\mathbf{4 2 9 0 1}$
Npars	27	45	167	179	182	1535	$\mathbf{3 8 0}$
adj_r2	3.526	22.431	25.018	27.085	27.248	29.508	$\mathbf{2 8 . 0 5 0}$
\%Change	0.000	18.905	2.587	2.067	0.163	2.260	$\mathbf{- 1 . 4 5 7}$

Figure 18.106. The relative influence of each factor used on the final trend in the optimal standardization for Pink Ling in Zone 20. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph for Vessel has the geometric mean (grey line) and the effect of adding Year + Vessel (model 2). In the third graph, for DepCat, the grey line represents model 2 and the black line the effect of adding DepCat to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.
18.4.32 Pink Ling, Z30 (LIG - 37228002 - G. blacodes)

Data from zone 30, depths greater than 250 m and less or equal to 600 m .

Table 18.94. Pink Ling from zone 30 in depths between $250-600 \mathrm{~m}$ by trawl. Total Catch is the total Pink Ling catch from all zones reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in this analysis, and Vessels relates to all vessels used in the analysis. Geomean is the unstandardized geometric mean of catch rates $(\mathrm{kg} / \mathrm{hr})$. DayNight is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	DayNight	StDev
1986	678.801	15	1.896	3	22.1580	2.0133	0.0000
1987	764.910	36	2.245	5	16.8408	1.0347	0.2888
1988	582.895	50	4.378	4	28.4036	2.1886	0.2768
1989	677.150	61	7.988	11	31.1539	1.3795	0.2730
1990	673.624	105	8.385	17	27.9919	1.5107	0.2518
1991	719.965	376	28.950	27	20.7784	0.9696	0.2409
1992	567.627	134	5.806	14	12.0005	0.5688	0.2463
1993	891.448	327	20.603	17	19.9815	0.9597	0.2381
1994	894.766	488	28.514	22	17.4518	0.7857	0.2360
1995	1208.577	411	36.150	17	22.4107	1.0328	0.2367
1996	1233.106	381	35.808	18	23.9592	1.1065	0.2372
1997	1693.734	443	45.674	17	19.7673	0.9230	0.2376
1998	1591.848	166	17.788	16	20.3063	0.9330	0.2424
1999	1651.457	477	41.377	15	18.8073	0.9816	0.2368
2000	1507.199	385	34.098	19	18.3481	0.8837	0.2364
2001	1392.361	741	61.087	19	16.2336	0.7975	0.2330
2002	1329.946	500	35.598	17	14.9854	0.7724	0.2347
2003	1351.687	408	29.893	19	15.6988	0.7402	0.2365
2004	1492.255	377	26.968	14	12.2641	0.6305	0.2364
2005	1202.739	394	41.743	14	19.1660	0.8846	0.2373
2006	1069.111	256	31.531	11	22.6012	0.8686	0.2402
2007	875.503	230	32.198	8	25.4173	1.0663	0.2407
2008	980.268	365	44.846	8	24.7573	1.0032	0.2388
2009	774.735	235	15.772	10	14.2097	0.5898	0.2409
2010	905.925	179	16.392	8	19.2029	0.7405	0.2427
2011	1081.607	262	28.045	7	20.6001	0.8384	0.2396
2012	1024.601	291	33.675	8	20.9485	0.7969	0.2397

Figure 18.107. Pink Ling from zone 30 in depths between $250-600 \mathrm{~m}$ by trawl. The top left is the depth distribution of all records reporting Pink Ling from zone 30 taken in the SET down to 1000 m , the top right graph depicts the depth distribution of shots containing Pink Ling from zone 30 in depths between $250-600 \mathrm{~m}$ by trawl. The middle left diagram depicts the distribution of catch by depth within zone 30 , the middle right hand graph depicts the number of vessels reporting Pink Ling catches through time. The bottom left reflects the number of records used in analysis, and bottom right is the Pink Ling catches (top line, black is total catches, all zones, all methods, the middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Figure 18.108. Pink Ling from zone 30 in depths between $250-600 \mathrm{~m}$ by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates; giving a mean for the series of 1.0. The confidence intervals are wider due to the relatively low number of records.

Table 18.95. Pink Ling from zone 30 in depths between $250-600 \mathrm{~m}$ by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE \sim Year+Vessel +DepCat
Model 4	LnCE \sim Year+Vessel +DepCat +Month
Model 5	LnCE \sim Year+Vessel +DepCat +Month+DayNight
Model 6	LnCE \sim Year+Vessel +DepCat +Month +DayNight+ Vessel:Month
Model 7	LnCE \sim Year+Vessel +DepCat +Month +DayNight+ Month:DepCat

Table 18.96. Pink Ling from zone 30 in depths between $250-600 \mathrm{~m}$ by trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum is DayNight (model 5).

	Year	Vessel	DepCat	Month	DayNight	Vessel:Month	Month:DepCat
AIC	-1159	-1817	-2229	-2295	$\mathbf{- 2 3 5 7}$	-1540	-2277
RSS	6967	6304	5873	5809	$\mathbf{5 7 6 0}$	5189	5536
MSS	319	981	1413	1477	$\mathbf{1 5 2 6}$	2096	1749
Nobs	8093	8093	7997	7997	$\mathbf{7 9 9 7}$	7997	7997
Npars	27	102	120	131	$\mathbf{1 3 4}$	959	332
adj_r2	4.069	12.378	18.172	18.955	$\mathbf{1 9 . 6 1 0}$	19.079	20.731
\%Change	0.000	8.309	5.794	0.783	$\mathbf{0 . 6 5 5}$	-0.530	1.652

Figure 18.109. The relative influence of each factor used on the final trend in the optimal standardization for Pink Ling in Zone 30. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph for Vessel has the geometric mean (grey line) and the effect of adding Year + Vessel (model 2). In the third graph, for DepCat, the grey line represents model 2 and the black line the effect of adding DepCat to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.
18.4.33 Pink Ling, Z40 (LIG - 37228002 - G. blacodes)

Data from zone 40 , depths greater than 350 m and less or equal to 800 m .

Table 18.97. Pink Ling from zone 40 in depths between $350-800 \mathrm{~m}$ by trawl. Total Catch is the total Pink Ling catch from all zones reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in this analysis, and Vessels relates to all vessels used in the analysis. Geomean is the unstandardized geometric mean of catch rates $(\mathrm{kg} / \mathrm{hr})$. Mth:DepCat is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Mth:DepCat	StDev
1986	678.801	340	50.622	12	24.8664	1.1499	0.0000
1987	764.910	464	149.303	17	61.5525	1.7200	0.0811
1988	582.895	323	52.147	20	26.7665	0.9310	0.0852
1989	677.150	727	134.342	20	31.2668	0.9870	0.0783
1990	673.624	543	92.429	22	29.7271	0.9310	0.0784
1991	719.965	597	97.883	29	23.7829	0.8730	0.0770
1992	567.627	483	39.702	17	14.1316	0.5946	0.0799
1993	891.448	841	118.853	19	20.2159	0.8953	0.0755
1994	894.766	775	133.541	21	27.0651	1.1061	0.0756
1995	1208.577	1564	211.632	18	20.1818	1.0920	0.0718
1996	1233.106	1205	235.651	17	26.7059	1.2174	0.0746
1997	1693.734	1419	340.323	16	27.8818	1.3225	0.0734
1998	1591.848	1671	349.366	16	26.2074	1.2766	0.0731
1999	1651.457	1628	241.419	18	21.1431	0.9797	0.0729
2000	1507.199	2060	338.192	24	23.8936	1.0576	0.0724
2001	1392.361	2531	359.654	24	20.5368	0.9530	0.0720
2002	1329.946	2290	298.182	21	17.3590	0.7591	0.0721
2003	1351.687	1814	251.303	22	17.1223	0.7794	0.0729
2004	1492.255	1292	143.083	20	14.1120	0.6109	0.0744
2005	1202.739	966	114.114	18	14.2226	0.6051	0.0757
2006	1069.111	826	129.898	16	17.2693	0.7498	0.0766
2007	875.503	1254	221.488	15	20.4467	0.8852	0.0745
2008	980.268	806	151.663	14	24.2630	1.2056	0.0764
2009	774.735	965	200.785	13	24.1352	1.1457	0.0750
2010	905.925	947	182.003	10	22.1986	1.0330	0.0752
2011	1081.607	1168	251.898	12	22.2616	0.9763	0.0737
2012	1024.601	1259	276.501	13	22.6473	1.1632	0.0743

Figure 18.110. Pink Ling from zone 40 in depths between $350-800 \mathrm{~m}$ by trawl. The top left is the depth distribution of all records reporting Pink Ling from zone 40 taken in the SET down to 1000 m , the top right graph depicts the depth distribution of shots containing Pink Ling from zone 40 in depths between $350-800 \mathrm{~m}$ by trawl. The middle left diagram depicts the distribution of catch by depth within zone 40 , the middle right hand graph depicts the number of vessels reporting Pink Ling catches through time. The bottom left reflects the number of records used in analysis, and bottom right is the Pink Ling catches (top line, black is total catches, all zones, all methods, the middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Figure 18.111. Pink Ling from zone 40 in depths between $350-800 \mathrm{~m}$ by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates; giving a mean for the series of 1.0. The confidence intervals are wider due to the relatively low number of records.

Table 18.98. Pink Ling from zone 40 in depths between $350-800 \mathrm{~m}$ by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE~Year+Vessel
Model 3	LnCE~Year+Vessel +DepCat
Model 4	LnCE~Year+Vessel +DepCat +Month
Model 5	LnCE \sim Year+Vessel +DepCat +Month+DayNight
Model 6	LnCE Year+Vessel +DepCat +Month +DayNight+ Vessel:Month
Model 7	LnCE \sim Year+Vessel +DepCat +Month +DayNight+ Month:DepCat

Table 18.99. Pink Ling from zone 40 in depths between $350-800 \mathrm{~m}$ by trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum is Month:DepCat (model 7).

	Year	Vessel	DepCat	Month	DayNight	Vessel:Month Month:DepCat	
AIC	4132	543	-2052	-3377	-3425	-3177	$\mathbf{- 4 7 1 5}$
RSS	35119	30901	28357	27000	26953	25573	$\mathbf{2 5 4 0 9}$
MSS	1748	5965	8509	9866	9914	11293	$\mathbf{1 1 4 5 8}$
Nobs	30758	30455	30455	30455	30455	30455	$\mathbf{3 0 4 5 5}$
Npars	27	50	61	145	148	1072	$\mathbf{4 0 1}$
adj_r2	4.660	16.046	22.929	26.415	26.536	28.105	$\mathbf{3 0 . 1 6 2}$
\%Change	0.000	11.386	6.883	3.485	0.122	1.569	$\mathbf{2 . 0 5 7}$

Figure 18.112. The relative influence of each factor used on the final trend in the optimal standardization for Pink Ling in Zone 40. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph for Vessel has the geometric mean (grey line) and the effect of adding Year + Vessel (model 2). In the third graph, for DepCat, the grey line represents model 2 and the black line the effect of adding DepCat to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model. Note that the influence, which is simply the deviations between the two lines squared, are not always reflective of the adj-r2 for each factor.
18.4.34 Pink Ling, Z50 (LIG - 37228002 - G. blacodes)

Data from zone 50, depths greater than 200 m and less or equal to 800 m .

Table 18.100. Pink Ling from zone 50 in depths between $200-800 \mathrm{~m}$ by trawl. Total Catch is the total Pink Ling catch from all zones reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in this analysis, and Vessels relates to all vessels used in the analysis. Geomean is the unstandardized geometric mean of catch rates (kg/hr). Vessel:Mth is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Vessel:Mth	StDev
1986	678.801	923	62.212	17	14.9346	1.1098	0.0000
1987	764.910	841	54.428	23	14.1775	1.1232	0.0398
1988	582.895	701	42.836	25	14.5280	1.1521	0.0437
1989	677.150	729	45.389	25	15.3818	1.1827	0.0435
1990	673.624	957	47.873	18	11.9104	0.9798	0.0434
1991	719.965	1294	100.787	20	13.8309	1.1309	0.0409
1992	567.627	1150	62.462	17	11.1987	0.8849	0.0414
1993	891.448	1410	116.532	12	15.5287	1.1969	0.0406
1994	894.766	1335	114.252	14	17.5302	1.4059	0.0402
1995	1208.577	1950	214.425	18	19.9408	1.5963	0.0381
1996	1233.106	2197	211.853	23	17.0478	1.4723	0.0378
1997	1693.734	2311	236.711	21	17.8914	1.5382	0.0376
1998	1591.848	2039	209.275	18	19.7137	1.5648	0.0383
1999	1651.457	2159	186.384	17	16.0778	1.2605	0.0380
2000	1507.199	2587	170.657	19	12.1381	0.9915	0.0376
2001	1392.361	2504	138.777	21	10.5409	0.8442	0.0379
2002	1329.946	2318	129.610	20	10.4073	0.8205	0.0380
2003	1351.687	1991	108.241	20	9.6163	0.7697	0.0384
2004	1492.255	2589	162.033	20	10.7076	0.7760	0.0378
2005	1202.739	1689	80.704	19	8.0776	0.5891	0.0395
2006	1069.111	1494	79.938	17	8.1572	0.5848	0.0404
2007	875.503	1270	64.909	13	7.8759	0.5731	0.0410
2008	980.268	987	62.435	14	9.6601	0.7242	0.0426
2009	774.735	1009	58.834	9	8.3008	0.6639	0.0426
2010	905.925	1382	89.591	12	9.1906	0.7145	0.0408
2011	1081.607	1618	104.411	13	9.1288	0.6855	0.0407
2012	1024.601	1079	67.990	10	8.6391	0.6647	0.0431

Figure 18.113. Pink Ling from zone 50 in depths between $200-800 \mathrm{~m}$ by trawl. The top left is the depth distribution of all records reporting Pink Ling from zone 50 taken in the SET down to 1000 m , the top right graph depicts the depth distribution of shots containing Pink Ling from zone 50 in depths between $200-800 \mathrm{~m}$ by trawl. The middle left diagram depicts the distribution of catch by depth within zone 50 , the middle right hand graph depicts the number of vessels reporting Pink Ling catches through time. The bottom left reflects the number of records used in analysis, and bottom right is the Pink Ling catches (top line, black is total catches, all zones, all methods, the middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Figure 18.114. Pink Ling from zone 50 in depths between 200 - 800 m by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates; giving a mean for the series of 1.0. The confidence intervals are wider due to the relatively low number of records.

Table 18.101. Pink Ling from zone 50 in depths between $200-800 \mathrm{~m}$ by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE Year+Vessel +DepCat
Model 4	LnCE \sim Year+Vessel +DepCat + Month
Model 5	LnCE Year+Vessel +DepCat +Month+DayNight
Model 6	LnCE \sim Year+Vessel +DepCat + Month +DayNight+ Vessel:Month
Model 7	LnCE Year+Vessel +DepCat + Month +DayNight+ Month:DepCat

Table 18.102. Pink Ling from zone 50 in depths between $200-800 \mathrm{~m}$ by trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum is Vessel:Month (model 6).

	Year	Vessel	DepCat	Month	DayNight	Vessel:Month	Month:DepCat
AIC	-	-18735	-20971	-21175	-21299	$\mathbf{- 2 1 4 9 5}$	-21518
RSS	13693	30767	27143	25658	25521	25443	$\mathbf{2 4 3 7 0}$
MSS	3711	7335	8820	8956	9035	$\mathbf{1 0 1 0 7}$	24921
Nobs	42513	42357	42357	42357	42357	$\mathbf{4 2 3 5 7}$	42357
Npars	27	57	131	142	145	$\mathbf{9 5 9}$	475
adj_r2	10.709	21.169	25.353	25.730	25.952	$\mathbf{2 7 . 6 8 0}$	26.902
\%Change	0.000	10.460	4.184	0.377	0.222	$\mathbf{1 . 7 2 8}$	-0.778

Figure 18.115. The relative influence of each factor used on the final trend in the optimal standardization for Pink Ling in Zone 50. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph for Vessel has the geometric mean (grey line) and the effect of adding Year + Vessel (model 2). In the third graph, for DepCat, the grey line represents model 2 and the black line the effect of adding DepCat to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model. Note that the influence, which is simply the deviations between the two lines squared, are not always reflective of the adj-r2 for each factor.
18.4.35 Western Gemfish and GAB (GEM - 37439002 - Rexea solandri)

Data from zones 40 and 50 with $82,83,84$, and 85 (the GAB) above -42°, depths greater than 100 and less than or equal to 600 m .

Table 18.103. Western Gemfish from zones 40 and 50 , and the GAB (zones $82,83,84$, and 85) in depths between $200-600 \mathrm{~m}$ by trawl (now represented by TW and TDO. Total Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). Zone:Mth is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Mth	StDev
1986	3639.705	1721	308.061	25	28.8362	2.1528	0.0000
1987	4654.845	1284	262.356	29	30.7827	2.1367	0.0460
1988	3515.132	1427	261.309	36	25.6522	2.0036	0.0478
1989	1773.801	1405	184.753	38	19.0566	1.5117	0.0489
1990	1206.660	1261	146.900	38	14.3866	1.3284	0.0527
1991	578.584	1592	280.530	35	19.1105	1.3073	0.0493
1992	485.696	801	96.906	21	15.0886	0.9604	0.0567
1993	353.153	902	109.371	21	11.5160	0.8198	0.0556
1994	232.154	1053	110.188	26	11.3093	0.8407	0.0531
1995	181.686	1316	107.533	26	9.0719	0.8050	0.0506
1996	381.614	1631	164.827	32	9.5592	0.9376	0.0488
1997	571.679	2106	215.362	28	8.9766	0.8402	0.0470
1998	404.594	1967	206.881	26	10.1690	1.0097	0.0478
1999	448.384	2347	323.256	25	11.9957	1.0104	0.0467
2000	336.404	2357	260.267	32	9.5636	0.8314	0.0472
2001	330.838	2335	255.222	31	9.9454	0.7822	0.0473
2002	195.597	1770	129.588	29	6.4625	0.6015	0.0490
2003	268.577	1642	203.076	34	8.8216	0.6781	0.0497
2004	524.293	1952	434.958	32	10.3074	0.7327	0.0497
2005	448.035	1816	359.400	27	12.3888	0.7310	0.0503
2006	508.681	1599	399.243	26	11.5504	0.6769	0.0513
2007	476.942	1412	382.551	22	10.3604	0.6378	0.0522
2008	288.883	1265	152.175	21	6.6254	0.6554	0.0527
2009	189.831	1275	105.771	16	5.8778	0.6932	0.0525
2010	218.885	1703	129.526	18	6.0572	0.7423	0.0499
2011	147.297	1376	77.795	17	5.5705	0.7792	0.0522
2012	147.746	974	83.610	19	5.9162	0.7941	0.0574

Figure 18.116. Western Gemfish from zones 40 and 50, and the GAB (zones 82, 83, 84, and 85) in depths between $200-600 \mathrm{~m}$ by trawl. The top left depicts the depth distribution of shots containing Western Gemfish from zones 40 and 50 , and the GAB (zones 82, 83, 84, and 85) in depths between $200-600 \mathrm{~m}$ by trawl. The top right diagram depicts the distribution of catch by depth within zones, the middle left hand graph depicts the number of vessels through time. The middle right reflects the number of records used in analysis, bottom left is the Gemfish catches across east and west (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$), western gemfish catches are given at bottom right but without total catches for that species.

Figure 18.117. Western Gemfish from zones 40 and 50, and the GAB (zones 82, 83, 84, and 85) in depths between $200-600 \mathrm{~m}$ by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.104. Western Gemfish from zones 40 and 50, and the GAB (zones 82, 83, 84, and 85) in depths between $200-600 \mathrm{~m}$ by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE~Year+DepCat
Model 3	LnCE~Year+DepCat+Vessel
Model 4	LnCE~Year+DepCat+Vessel+Zone
Model 5	LnCE \sim Year+DepCat+Vessel+Zone+DayNight
Model 6	LnCE \sim Year+DepCat+Vessel+Zone+DayNight+Month
Model 7	LnCE \sim Year+DepCat+Vessel+Zone+DayNight+Month+Zone:Month
Model 8	LnCE \sim Year+DepCat+Vessel+Zone+DayNight+Month+Zone:DepCat

Table 18.105. Western Gemfish from zones 40 and 50, and the GAB (zones 82, 83, 84, and 85) in depths between $200-600 \mathrm{~m}$ by trawl. Model selection criteria, including the AIC, the deviance and the change in deviance. The optimum is Zone:Month (model 7).

| | Year | DepCat | Vessel | Zone | DayNight | Month | | Zone:Mth |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | Zone:DepC \(~\left(\begin{array}{lrrrrr}12689

AIC \& 36139 \& 22340 \& 15198 \& 14421 \& 13722

13334 \& \mathbf{1 2 3 1 6} \& 56093

RSS \& 99267 \& 71397 \& 59946 \& 58836 \& 57858

57299 \& \mathbf{5 5 7 8 4} \& 5093

MSS \& 8399 \& 36269 \& 47720 \& 48830 \& 49808

50367 \& \mathbf{5 1 8 8 2} \& 51573

Nobs \& 42289 \& 42103 \& 42103 \& 42103 \& 42103

42103 \& \mathbf{4 2 1 0 3} \& 42103

Npars \& 27 \& 52 \& 161 \& 166 \& 169

180 \& \mathbf{2 3 5} \& 305

adj_r2 \& 7.745 \& 33.606 \& 44.110 \& 45.139 \& 46.046

\%Change \& 0.000 \& 25.862 \& 10.504 \& 1.029 \& 0.907

\hline\end{array}\right.\)

Figure 18.118. The relative influence of each factor used on the final trend in the optimal standardization for Western Gemfish from zones 40 and 50 and the GAB. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.
18.4.36 Western Gemfish Z4050 (GEM - 37439002 - R. solandri)

Data from zones 40 and 50, depths greater than 200 and less than or equal to 600 m .

Table 18.106. Western Gemfish from zones 40 and 50 in depths between $200-600 \mathrm{~m}$ by trawl. Total
Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT
is the reported catch in the area and depth used in the analysis., and Vessels relates to all vessels used in
the analysis. Geomean is the geometric mean of catch rates (kg/hr). Zone:Mth is the optimum model and
StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Mth	StDev
1986	3639.705	1687	306.861	24	29.5835	2.2547	0.0000
1987	4654.845	1209	248.879	26	31.5896	2.2580	0.0451
1988	3515.132	1235	226.956	27	26.9924	2.2045	0.0473
1989	1773.801	1082	156.578	29	23.3363	1.8127	0.0496
1990	1206.660	1057	136.085	29	15.9031	1.3844	0.0528
1991	578.584	1384	249.415	28	22.0062	1.3339	0.0493
1992	485.696	665	80.930	15	16.7792	0.9334	0.0575
1993	353.153	718	102.489	17	16.5820	0.9003	0.0570
1994	232.154	839	95.378	20	16.2263	0.9698	0.0543
1995	181.686	990	84.688	21	12.0017	0.8493	0.0520
1996	381.614	1182	145.588	26	13.4563	0.9350	0.0499
1997	571.679	1389	153.589	21	13.2702	0.8366	0.0484
1998	404.594	1259	121.661	20	13.2167	0.9026	0.0498
1999	448.384	1694	176.323	19	12.8407	0.8569	0.0475
2000	336.404	1932	228.165	28	12.4996	0.8804	0.0475
2001	330.838	1694	169.890	27	12.1589	0.7110	0.0484
2002	195.597	1418	86.261	24	7.1243	0.5418	0.0496
2003	268.577	1077	123.722	24	11.3050	0.6601	0.0521
2004	524.293	1232	105.674	24	7.9049	0.6457	0.0522
2005	448.035	1073	117.678	18	10.6004	0.6721	0.0532
2006	508.681	889	101.417	18	8.9869	0.5481	0.0560
2007	476.942	715	61.053	16	7.4717	0.5320	0.0583
2008	288.883	770	53.096	16	7.5220	0.5927	0.0571
2009	189.831	925	56.810	12	6.4871	0.6726	0.0546
2010	218.885	1364	86.888	14	6.3681	0.6984	0.0507
2011	147.297	1159	57.922	13	5.6449	0.7323	0.0528
2012	147.746	820	50.697	14	5.3756	0.6807	0.0587

Figure 18.119. Western Gemfish from zones 40 and 50 in depths between $200-600 \mathrm{~m}$ by trawl. The top left is the depth distribution of all records reporting Gemfish, the top right graph depicts the depth distribution of shots containing Western Gemfish from zones 40 and 50 in depths between $200-600 \mathrm{~m}$ by trawl.. The middle left diagram depicts the distribution of catch by depth within zones 40 and 50 (50 is top red line), the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the Gemfish catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Figure 18.120. Western Gemfish from zones 40 and 50 in depths between $200-600 \mathrm{~m}$ by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.107. Western Gemfish from zones 40 and 50 in depths between $200-600 \mathrm{~m}$ by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE~Year+Vessel
Model 3	LnCE~Year+Vessel+DepCat
Model 4	LnCE~Year+Vessel+DepCat+DayNight
Model 5	LnCE~Year+Vessel+DepCat+DayNight + Month
Model 6	LnCE~Year+Vessel+DepCat+DayNight+Month+Zone
Model 7	LnCE~Year+Vessel+DepCat+DayNight+Month+Zone+Zone:Month
Model 8	LnCE~Year+Vessel+DepCat + DayNight + Month + Zone + Zone:DepCat

Table 18.108. Western Gemfish from zones 40 and 50 in depths between $200-600 \mathrm{~m}$ by trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum is Zone:Month (model 7).

	Year	Vessel	DepCat	DayNight	Month	Zone		
Zone:Mth	Zone:DepC							
AIC	21329	14035	7526	7013	6752	6752	$\mathbf{6 4 7 5}$	6592
RSS	61865	48783	39475	38826	38476	38475	$\mathbf{3 8 1 0 9}$	38217
MSS	7705	20788	30096	30745	31094	31096	$\mathbf{3 1 4 6 2}$	31354
Nobs	31458	31458	31327	31327	31327	31327	$\mathbf{3 1 3 2 7}$	31327
Npars	27	117	142	145	156	157	$\mathbf{1 6 8}$	182
adj_r2	11.002	29.621	43.003	43.934	44.420	44.420	$\mathbf{4 4 . 9 2 9}$	44.748
\%Change	0.000	18.619	13.382	0.932	0.485	0.000	$\mathbf{0 . 5 0 9}$	-0.181

Figure 18.121. The relative influence of each factor used on the final trend in the optimal standardization for Western Gemfish from zones 40 and 50 . The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor 3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.
18.4.37 Western Gemfish GAB (GEM - 37439002 - R. solandri)

Data from zones $82,83,84$, and 85 (the GAB), depths greater than 100 and less than or equal to 600 m . All vessels included

Table 18.109. Western Gemfish in the GAB (zones 82, 83, 84, and 85) in depths between 100 and 600 m by trawl (codes TW and TDO. Total Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr)}$. Zone:Month is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Mth	StDev
1995	181.686	326	22.845	6	3.8779	0.7615	0.0000
1996	381.614	449	19.239	7	3.8858	1.0273	0.0945
1997	571.679	717	61.773	9	4.2096	1.0098	0.0902
1998	404.592	708	85.220	8	6.3801	1.5098	0.0921
1999	448.384	653	146.933	7	10.0539	1.9202	0.0943
2000	336.404	425	32.102	6	2.8318	0.6429	0.1004
2001	330.838	641	85.332	8	5.8477	1.0447	0.0952
2002	194.969	352	43.326	8	4.3633	0.9147	0.1033
2003	267.435	565	79.354	11	5.4980	0.8186	0.0984
2004	567.943	722	372.961	12	16.9525	1.0743	0.0988
2005	461.283	743	253.840	10	16.0998	0.9237	0.1004
2006	544.555	709	333.242	11	16.7217	0.8970	0.0988
2007	514.814	697	358.005	10	15.2782	0.8301	0.0976
2008	294.123	495	104.326	7	5.4956	0.8582	0.0999
2009	189.853	350	48.961	4	4.5291	0.7483	0.1062
2010	218.931	339	42.638	4	4.9524	0.9000	0.1070
2011	147.693	224	21.229	4	5.3076	0.7732	0.1186
2012	147.806	158	33.004	5	9.6345	1.3458	0.1323

Figure 18.122. Western Gemfish in the GAB (zones 82, 83, 84, and 85) in depths between 100 and 600 m by trawl. The top left depicts the depth distribution of shots containing Western Gemfish from the GAB (zones $82,83,84$, and 85) in depths between $100-600 \mathrm{~m}$ by trawl. The top right diagram depicts the distribution of catch by depth within zones, the middle left hand graph depicts the number of vessels through time. The middle right reflects the number of records used in analysis, bottom left are all Western Gemfish catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$); western gemfish catches in the GAB are given at bottom right but without total catches for that species.

Figure 18.123. Western Gemfish in the GAB (zones 82, 83, 84, and 85) in depths between 100 and 600 m by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.110. Western Gemfish in the GAB (zones 82, 83, 84, and 85) in depths between 100 and 600 m by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+DepCat
Model 3	LnCE \sim Year+DepCat+Vessel
Model 4	LnCE \sim Year+DepCat+Vessel+Month
Model 5	LnCE \sim Year+DepCat+Vessel+Month+DayNight
Model 6	LnCE \sim Year+DepCat+Vessel+Month+DayNight+Zone
Model 7	LnCE \sim Year+DepCat+Vessel+Month+DayNight+Zone+Zone:Month
Model 8	LnCE \sim Year+DepCat+Vessel+Month+DayNight+Zone+Zone:DepCat

Table 18.111. Western Gemfish in the GAB (zones 82, 83, 84, and 85) in depths between 100 and 600 m by trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum is Zone:Month (model 7).

	Year	DepCat	Vessel	Month	DayNight	Zone	Zone:Mth	Zone:DepC
AIC	10580	6796	5477	4863	4607	4378	$\mathbf{4 0 9 7}$	4302
RSS	28914	19088	16455	15357	14927	14551	$\mathbf{1 4 0 1 5}$	14200
MSS	3000	12826	15460	16557	16987	17363	$\mathbf{1 7 8 9 9}$	17714
Nobs	9260	9219	9219	9219	9219	9219	$\mathbf{9 2 1 9}$	9219
Npars	18	43	68	79	82	85	$\mathbf{1 1 8}$	160
adj_r2	9.235	39.915	48.064	51.469	52.813	53.987	$\mathbf{5 5 . 5 2 1}$	54.725
\%Change	0.000	30.680	8.149	3.405	1.344	1.173	$\mathbf{1 . 5 3 5}$	0.738

Figure 18.124. The relative influence of each factor used on the final trend in the optimal standardization for Western Gemfish in the GAB (zones 82, 83, 84, and 85). The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

18.4.38 Offshore Ocean Perch, Z1020 (REG - 37287001 - H. percoides) 200m

In the November 2009 Slope RAG meeting the depth distribution of offshore Ocean Perch was revised to $300-700 \mathrm{~m}$ to avoid overlap with inshore Ocean Perch; however, this decision was reversed in 2010 and so the analysis was repeated using 200-700 m.

[^0] StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Mth	StDev
1986	262.042	3479	207.363	77	12.1440	1.0273	0.0000
1987	198.128	3140	132.797	70	8.9237	0.9524	0.0255
1988	186.616	2808	150.765	73	10.5074	1.0646	0.0265
1989	205.493	3036	160.004	67	10.6494	1.0226	0.0264
1990	180.438	1970	115.943	57	12.0207	1.3618	0.0296
1991	217.910	2093	138.991	53	13.4339	1.4388	0.0293
1992	169.419	1845	114.079	47	11.9264	1.2143	0.0302
1993	258.950	2924	199.186	53	12.9555	1.2142	0.0269
1994	256.441	3014	180.955	49	11.8001	1.1338	0.0266
1995	239.854	3146	150.341	50	10.4874	1.0258	0.0263
1996	262.985	3411	176.808	53	9.8364	0.9196	0.0259
1997	296.072	3725	193.773	54	9.7119	0.9729	0.0257
1998	277.782	3850	194.629	49	9.4285	0.8631	0.0254
1999	289.340	4406	219.065	52	9.7566	0.9696	0.0252
2000	269.170	4178	180.750	53	7.5464	0.7723	0.0256
2001	280.878	4038	183.911	43	8.3956	0.8676	0.0258
2002	253.420	3646	150.622	45	7.3709	0.8247	0.0265
2003	322.179	3960	185.006	53	7.6242	0.8799	0.0262
2004	314.899	3129	150.459	46	8.0648	0.8767	0.0276
2005	316.334	3089	170.080	46	9.3641	0.9852	0.0275
2006	236.835	2326	113.168	39	7.8433	0.8429	0.0294
2007	178.228	1528	94.900	22	9.9183	1.0503	0.0331
2008	182.642	1843	101.836	23	9.1917	0.9672	0.0316
2009	173.256	1694	99.608	23	9.0355	0.9630	0.0326
2010	194.732	1759	118.107	21	9.8647	0.9863	0.0321
2011	186.024	1874	116.696	22	9.0998	0.8673	0.0316
2012	177.420	1693	114.141	22	9.9671	0.9357	0.0324

Figure 18.125. Offshore Ocean Perch from zones 10 and 20 in depths $200-700 \mathrm{~m}$ by trawl. The top left is the depth distribution of all records reporting Ocean perch, the top right graph depicts the depth distribution of shots containing Offshore Ocean Perch from zones 10 and 20 in depths $200-700 \mathrm{~m}$ by trawl. The middle left diagram depicts the distribution of catch by depth within zones 10 and 20 (20 is top red line), the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the Ocean Perch catches (top line, black is total catches, middle line, red, are those used in the analysis).

Figure 18.126. Offshore Ocean Perch from zones 10 and 20 in depths $200-700 \mathrm{~m}$ by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.113. Offshore Ocean Perch from zones 10 and 20 in depths 200 - 700m by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE~Year+DepCat
Model 3	LnCE~Year+DepCat+Vessel
Model 4	LnCE~Year+DepCat+Vessel+Month
Model 5	LnCE~Year+DepCat+Vessel+Month+DayNight
Model 6	LnCE~Year+DepCat+Vessel+Month+DayNight+Zone
Model 7	LnCE \sim Year+DepCat+Vessel+Month+DayNight+Zone+Zone:Month
Model 8	LnCE \sim Year+DepCat+Vessel+Month+DayNight+Zone+Zone:DepCat

Table 18.114. Offshore Ocean Perch from zones 10 and 20 in depths $200-700 \mathrm{~m}$ by trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum is Zone:Month (model 7).

	Year	DepCat	Vessel	Month	DayNight	Zone	Zone:	Zone:DepC
AIC	21365	9608	1220	-894	-1128	-1159	-3118	-1546
RSS	102128	87299	77991	75862	75627	75595	73679	75168
MSS	2100	16929	26237	28366	28601	28633	30549	29060
Nobs	77604	77185	77185	77185	77185	77185	77185	77185
Npars	27	52	209	220	223	224	235	249
adj_r2	1.982	16.187	24.970	27.008	27.231	27.262	29.095	27.649
\%Change	0.000	14.205	8.783	2.038	0.223	0.031	1.833	-1.446

Figure 18.127. The relative influence of each factor used on the final trend in the optimal standardization for Offshore Ocean Perch from zones 10 and 20. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

Figure 18.128. Offshore Ocean Perch, depths > 200 for trawl and AutoLongLine, in zones 10 and 20. Catches through time taken by trawl and by AutoLongLine. Some of the decline in trawl catches in recent years have been made up by the AutoLong Lining. Geometric mean catch rates for Offshore Ocean Perch in depth $200-700$ metres for both trawl and autolongline; scaled to the mean of each series for comparison.

Figure 18.129. Depth distribution of catches of Offshore Ocean Perch, depths 200-700 for trawl, 0-1000m for AutoLongLine. Most catches by AutoLongLine are taken in the same depths as trawl catches.

18.4.39 Inshore Ocean Perch, Z1020 (REG - 37287001 - H. percoides) 0200m

In the November 2009 Slope RAG meeting a separate analysis was required for the Inshore Ocean Perch. These were defined as all those Ocean Perch reported as caught between $0-299 \mathrm{~m}$ to avoid overlap with Offshore Ocean Perch. However, in 2010 this decision was reversed and so the analysis was repeated for depths 0-200 m.

Table 18.115. Inshore Ocean Perch from zones 10 and 20 in depths $0-200 \mathrm{~m}$ by trawl. Total Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr)}$. Zone:DepCat is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:DepC	StDev
1986	262.042	339	15.239	50	6.8543	0.8440	0.0000
1987	198.128	406	11.971	58	5.9511	0.9873	0.0920
1988	186.616	518	16.548	59	7.2891	1.1256	0.0885
1989	205.493	443	15.392	52	8.0367	1.0802	0.0925
1990	180.438	450	15.614	45	7.7738	1.1551	0.0937
1991	217.910	498	20.364	43	8.1374	1.2906	0.0928
1992	169.419	258	13.830	28	9.5229	1.7155	0.1043
1993	258.950	467	25.080	38	10.1873	1.9258	0.0957
1994	256.441	558	23.340	35	9.4326	1.7529	0.0926
1995	239.854	600	21.200	35	8.7548	1.2956	0.0902
1996	262.985	688	21.307	39	7.0539	1.1461	0.0898
1997	296.072	572	16.365	40	5.9056	1.0647	0.0925
1998	277.782	646	15.628	41	5.7524	0.9289	0.0911
1999	289.340	675	15.978	40	4.9974	0.8336	0.0903
2000	269.170	1326	30.551	39	4.5708	0.9928	0.0862
2001	280.878	1035	23.397	34	4.2075	0.9850	0.0879
2002	253.420	1422	25.185	36	2.6164	0.7049	0.0867
2003	322.179	1085	17.438	40	2.3132	0.5446	0.0876
2004	314.899	962	15.461	41	2.2440	0.5539	0.0892
2005	316.334	898	19.849	41	2.9880	0.6252	0.0899
2006	236.835	602	9.339	35	2.2501	0.5197	0.0931
2007	178.228	395	8.745	21	3.5455	0.7315	0.0995
2008	182.642	330	7.969	21	4.2486	0.8917	0.1033
2009	173.256	289	6.671	21	4.1335	0.7600	0.1069
2010	194.732	307	7.136	21	3.8363	0.8047	0.1055
2011	186.024	275	6.431	19	3.6642	0.9396	0.1079
2012	177.420	392	8.076	20	3.5117	0.8006	0.1005

Figure 18.130. Inshore Ocean Perch from zones 10 and 20 in depths $0-200 \mathrm{~m}$ by trawl. The top left is the depth distribution of all records reporting Ocean Perch, the top right graph depicts the depth distribution of shots containing Inshore Ocean Perch from zones 10 and 20 in depths $0-200 \mathrm{~m}$ by trawl. The middle left diagram depicts the distribution of catch by depth within zones 10 and 20 (20 is top red line), the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the Ocean Perch catches (top line, black is total catches, middle line, red, are those used in the analysis.

Figure 18.131. Inshore Ocean Perch from zones 10 and 20 in depths $0-200 \mathrm{~m}$ by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.116. Inshore Ocean Perch from zones 10 and 20 in depths $0-200 \mathrm{~m}$ by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE \sim Year + Vessel
Model 3	LnCE~Year+Vessel+DepCat
Model 4	LnCE~Year+Vessel+DepCat+Month
Model 5	LnCE \sim Year + Vessel+DepCat+Month+DayNight
Model 6	LnCE~Year+Vessel+DepCat+Month+DayNight+Zone
Model 7	LnCE \sim Year+Vessel+DepCat+Month+DayNight+Zone+Zone:Month
Model 8	LnCE~Year+Vessel+DepCat+Month+DayNight+Zone+Zone:DepCat

Table 18.117. Inshore Ocean Perch from zones 10 and 20 in depths $0-200 \mathrm{~m}$ by trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum is Zone:DepCat (model 8).

	Year	Vessel	DepCat	Month	DayNight	Zone		Zone:Mth
Zone:DepC								
AIC	5856	2362	1423	1349	1299	1218	1217	$\mathbf{1 1 2 4}$
RSS	23394	18585	17114	17012	16952	16864	16840	$\mathbf{1 6 7 4 5}$
MSS	3804	8613	10085	10186	10246	10334	10358	$\mathbf{1 0 4 5 3}$
Nobs	16436	16436	16017	16017	16017	16017	16017	$\mathbf{1 6 0 1 7}$
Npars	27	171	181	192	195	196	207	$\mathbf{2 0 6}$
adj_r2	13.851	30.954	36.363	36.698	36.908	37.231	37.277	$\mathbf{3 7 . 6 3 6}$
\%Change	0.000	17.102	5.409	0.335	0.211	0.323	0.046	$\mathbf{0 . 3 5 9}$

Figure 18.132. The relative influence of each factor used on the final trend in the optimal standardization for Inshore Ocean Perch from zones 10 and 20. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

18.4.40 John Dory (DOJ - 37264004) Zeus faber

Zones 10 and 20 in depths $0-200 \mathrm{~m}$

Table 18.118. John Dory from Zones 10 and 20 in depths 0 to 200 m by trawl. Total Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). Zone:DepCat is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:DepC	StDev
1986	231.654	6418	202.235	90	7.6948	1.5766	0.0000
1987	205.585	4663	181.591	78	8.5155	1.8050	0.0208
1988	181.874	4538	161.563	73	8.3856	1.6952	0.0211
1989	215.607	4813	188.443	70	9.5319	1.8594	0.0210
1990	167.764	3700	136.764	60	8.7451	1.6799	0.0230
1991	168.592	4041	126.696	53	7.1954	1.3793	0.0227
1992	129.762	3809	100.026	48	5.6282	1.1422	0.0231
1993	237.387	5446	181.622	56	7.0963	1.4786	0.0214
1994	267.438	6573	209.897	55	6.7516	1.3946	0.0204
1995	185.603	6070	168.531	52	5.9610	1.1844	0.0205
1996	160.332	6411	146.769	59	4.5279	0.9272	0.0204
1997	87.690	4473	79.224	60	3.3776	0.7205	0.0224
1998	108.987	5091	98.479	53	3.6350	0.7458	0.0215
1999	132.835	5553	121.021	56	3.9411	0.8748	0.0212
2000	164.043	7094	147.876	59	3.5716	0.8088	0.0203
2001	129.204	6789	116.224	51	2.9450	0.6769	0.0205
2002	150.867	6670	136.130	49	3.1506	0.6678	0.0208
2003	156.580	6559	137.336	51	3.1538	0.6480	0.0207
2004	165.431	7093	147.526	51	3.4191	0.6859	0.0204
2005	107.279	4934	88.640	48	2.6772	0.5702	0.0222
2006	85.241	3727	71.625	43	2.8463	0.6420	0.0237
2007	62.463	2844	51.685	23	2.8023	0.5811	0.0259
2008	16.789	3852	102.992	26	4.3014	0.8665	0.0239
2009	91.677	3148	79.746	23	4.1921	0.8057	0.0252
2010	61.689	3074	52.258	24	2.6414	0.5191	0.0256
2011	72.180	3428	57.400	22	2.7461	0.5402	0.0248
2012	65.944	3387	56.579	22	2.8174	0.5241	0.0246

Figure 18.133. John Dory from Zones 10 and 20 in depths 0 to 200 m by trawl. The top left is the depth distribution of all records reporting John Dory, the top right graph depicts the depth distribution of shots containing John Dory from Zones 10 and 20 in depths 0 to 200 m by trawl. The middle left diagram depicts the distribution of catch by depth within zones 10 and 20 (20 is top red line), the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the John Dory catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Figure 18.134. John Dory from Zones 10 and 20 in depths 0 to 200 m by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.119. John Dory from Zones 10 and 20 in depths 0 to 200 m by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1 LnCE~Year
Model 2 LnCE~Year+Vessel
Model 3 LnCE \sim Year+Vessel+DepCat
Model $4 \quad$ LnCE \sim Year+Vessel+DepCat+DayNight
Model 5 LnCE \sim Year+Vessel+DepCat+DayNight+Month
Model $6 \quad$ LnCE \sim Year+Vessel+DepCat+DayNight+Month+Zone
Model 7 LnCE~Year+Vessel+DepCat+DayNight+Month+Zone+Zone:Month
Model $8 \quad$ LnCE \sim Year+Vessel+DepCat + DayNight + Month+Zone+Zone:DepCat

Table 18.120. John Dory from Zones 10 and 20 in depths 0 to 200 m by trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum is Zone:DepCat (model 8).

	Year	Vessel	DepCat	DayNight	Month	Zone	Zone:Mth	Zone:DepC
AIC	26890	11360	9699	7968	7277	7238	6418	$\mathbf{6 0 4 9}$
RSS	163906	145642	142701	140850	140098	140055	139171	$\mathbf{1 3 8 7 8 7}$
MSS	23353	41617	44558	46409	47162	47205	48088	$\mathbf{4 8 4 7 2}$
Nobs	134198	134198	133067	133067	133067	133067	133067	$\mathbf{1 3 3 0 6 7}$
Npars	27	189	199	202	213	214	225	$\mathbf{2 2 4}$
adj_r2	12.454	22.115	23.681	24.670	25.066	25.088	25.555	$\mathbf{2 5 . 7 6 1}$
\%Change	0.000	9.661	1.566	0.988	0.396	0.022	0.466	$\mathbf{0 . 2 0 6}$

Figure 18.135. The relative influence of each factor used on the final trend in the optimal standardization for John Dory from Zones 10 and 20. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor 3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.
18.4.41 Mirror Dory (DOM - 37264003 Zenopsis nebulosus)

Only data from Zones 10 to 50 in depths $0-600 \mathrm{~m}$. All vessels reporting Mirror Dory were included.

Figure 18.136. The catches and geometric mean catch rates from 1986 - 2012 for Mirror Dory split between east (Zones 10-30) and west (zones 40 and 50. The general trends in catch rates, in periods of significant catches, are similar across zones within the east and west. This implies that the assumption that there are no year x zone interactions is valid.

Table 18.121. Mirror Dory from Zones 10 to 50 in depths 0 to 600 m by trawl. Total Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates (kg/hr). Zone:Month is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Mth	StDev
1986	401.792	3199	375.385	91	18.6423	1.2143	0.0000
1987	449.654	3103	429.090	92	19.7476	1.2174	0.0310
1988	345.894	3189	328.220	88	16.9455	1.1918	0.0308
1989	589.920	3068	524.863	84	23.1957	1.4711	0.0313
1990	295.669	1906	264.346	73	20.6077	1.3573	0.0359
1991	230.138	2230	183.737	77	13.9567	1.1606	0.0345
1992	166.835	2228	147.170	71	11.3487	1.0060	0.0347
1993	305.379	3290	285.221	72	13.7999	1.1016	0.0316
1994	297.238	3828	280.195	70	11.4667	0.9869	0.0307
1995	244.924	4209	234.433	70	10.0782	0.9147	0.0302
1996	351.587	5835	327.514	84	8.9039	0.8809	0.0289
1997	459.626	6681	436.446	80	9.6820	0.9361	0.0286
1998	355.794	5572	346.706	68	9.0983	0.8501	0.0292
1999	309.471	5543	298.167	74	8.0995	0.6989	0.0294
2000	171.046	5613	165.229	80	4.6519	0.4882	0.0296
2001	243.341	7016	233.924	75	5.1157	0.5725	0.0290
2002	449.313	8199	435.035	69	7.1647	0.7646	0.0285
2003	612.264	7796	560.887	71	8.6661	0.9308	0.0285
2004	506.183	6485	452.616	69	8.2044	0.8942	0.0293
2005	579.706	6190	523.814	66	9.3924	0.9902	0.0294
2006	419.448	4293	363.075	54	9.7517	0.9763	0.0310
2007	289.571	3400	268.103	33	9.5152	0.9435	0.0327
2008	396.242	3377	376.364	34	12.2034	1.1278	0.0327
2009	476.503	3567	461.781	32	13.1797	1.2442	0.0324
2010	578.768	3702	561.230	32	12.8612	1.1866	0.0323
2011	516.299	3921	506.205	33	10.8184	1.0983	0.0319
2012	365.268	2757	357.995	33	8.9809	0.7952	0.0343

Figure 18.137. Mirror Dory from Zones 10 to 50 in depths 0 to 600 m by trawl. The top left is the depth distribution of all records reporting Mirror Dory, the top right graph depicts the depth distribution of shots containing Mirror Dory from Zones 10 to 50 in depths 0 to 600 m by trawl. The middle left diagram depicts the distribution of catch by depth within zones 10 to 50 , the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the Mirror Dory catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Figure 18.138. Mirror Dory from Zones 10 to 50 in depths 0 to 600 m by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.122. Mirror Dory from Zones 10 to 50 in depths 0 to 600 m by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE~Year+Vessel
Model 3	LnCE~Year+Vessel+Month
Model 4	LnCE~Year+Vessel+Month+DepCat
Model 5	LnCE~Year+Vessel+Month+DepCat+DayNight
Model 6	LnCE \sim Year+Vessel+Month + DepCat + DayNight + Zone
Model 7	LnCE \sim Year+Vessel+Month + DepCat + DayNight + Zone + Zone:Month
Model 8	LnCE \sim Year+Vessel+Month + DepCat + DayNight + Zone + Zone:DepCat

Table 18.123. Mirror Dory from Zones 10 to 50 in depths 0 to 600 m by trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum is Zone:Month (model 7).

	Year	Vessel	DepCat	Month	DayNight	Zone	Zone:Mth	Zone:DepC
AIC	75097	53633	51943	41088	39786	39061	$\mathbf{3 4 7 0 6}$	38143
RSS	224407	187082	184436	167819	165992	164978	$\mathbf{1 5 8 9 5 8}$	163387
MSS	16260	53585	56231	72849	74676	75690	$\mathbf{8 1 7 0 9}$	77280
Nobs	120197	120197	120197	119543	119543	119543	$\mathbf{1 1 9 5 4 3}$	119543
Npars	27	228	239	269	272	276	$\mathbf{3 2 0}$	396
adj_r2	6.736	22.118	23.213	30.113	30.872	31.292	$\mathbf{3 3 . 7 7 4}$	31.886
\%Change	0.000	15.382	1.095	6.900	0.759	0.420	$\mathbf{2 . 4 8 2}$	-1.889

Figure 18.139. The relative influence of each factor used on the final trend in the optimal standardization for Mirror Dory from Zones 10 to 50 . The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor 3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.
18.4.42 Mirror Dory East (DOM - 37264003 Zenopsis nebulosus)

Only data from Zones 10 to 30 in depths $0-600 \mathrm{~m}$. All vessels reporting Mirror Dory were included.

Table 18.124. Mirror Dory from Zones 10 to 30 in depths 0 to 600 m by trawl. Total Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates (kg/hr). Zone:Month is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Mth	StDev
1986	401.792	3141	367.985	80	18.7487	1.1544	0.0000
1987	449.654	2961	413.571	70	19.9429	1.1514	0.0324
1988	345.894	3067	313.237	77	16.8882	1.1314	0.0320
1989	589.92	2997	513.736	70	23.1617	1.3706	0.0325
1990	295.669	1811	254.38	61	20.5538	1.2855	0.0375
1991	230.138	2021	170.954	68	14.2052	1.1310	0.0368
1992	166.8353	2022	138.871	56	11.7312	0.9827	0.0369
1993	305.379	3013	267.091	62	14.1976	1.0769	0.0334
1994	297.238	3498	262.033	62	11.6924	0.9440	0.0325
1995	244.924	3500	196.29	59	10.2913	0.8593	0.0324
1996	351.587	4397	212.369	69	7.7998	0.7517	0.0312
1997	459.6263	4775	288.136	65	8.6425	0.7960	0.0311
1998	355.7935	4103	230.495	55	8.0944	0.7223	0.0317
1999	309.471	4225	234.873	59	7.8713	0.6464	0.0318
2000	171.0464	4633	142.7675	64	4.7885	0.4998	0.0317
2001	243.3413	4570	128.644	55	4.0443	0.5029	0.0320
2002	449.313	5038	194.4326	53	5.2594	0.6270	0.0315
2003	612.2641	5362	405.6785	58	7.7688	0.9220	0.0310
2004	506.183	4275	292.676	57	7.2635	0.8749	0.0323
2005	579.7056	4417	423.631	55	9.9946	1.1179	0.0321
2006	419.4475	3230	297.5593	44	10.3893	1.1214	0.0339
2007	289.5706	2223	203.162	22	11.4463	1.2150	0.0372
2008	396.2424	2495	317.705	26	14.4563	1.3541	0.0366
2009	476.5034	2232	338.4877	27	15.8458	1.4297	0.0376
2010	578.7681	2105	383.48	25	14.3976	1.1956	0.0379
2011	516.2987	2254	347.067	26	12.7502	1.1932	0.0374
2012	365.2682	1739	287.778	24	11.2957	0.9430	0.0400

Figure 18.140. Mirror Dory from Zones 10 to 30 in depths 0 to 600 m by trawl. The top left is the depth distribution of all records reporting Mirror Dory, the top right graph depicts the depth distribution of shots containing Mirror Dory from Zones 10 to 30 in depths 0 to 600 m by trawl. The middle left diagram depicts the distribution of catch by depth within zones 10 to 30 , the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the Mirror Dory catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Figure 18.141. Mirror Dory from Zones 10 to 30 in depths 0 to 600 m by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.125. Mirror Dory from Zones 10 to 30 in depths 0 to 600 m by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE \sim Year+Vessel+DepCat
Model 4	LnCE \sim Year+Vessel+DepCat+Month
Model 5	LnCE \sim Year+Vessel+DepCat+Month+DayNight
Model 6	LnCE \sim Year+Vessel+DepCat+Month+DayNight+Zone
Model 7	LnCE \sim Year+Vessel+DepCat+Month+DayNight+Zone+Zone:Month
Model 8	LnCE \sim Year+Vessel+DepCat+Month+DayNight+Zone+Zone:DepCat

Table 18.126. Mirror Dory from Zones 10 to 30 in depths 0 to 600 m by trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum is Zone:Month (model 7).

	Year	Vessel	DepCat	Month	DayNight	Zone	Zone:Mth	Zone:DepC
AIC	61299	45584	35492	33794	33122	32432	$\mathbf{3 0 9 1 9}$	32166
RSS	177803	148768	132485	129966	128987	127993	$\mathbf{1 2 5 7 8 8}$	127442
MSS	18505	47540	63823	66342	67321	68315	$\mathbf{7 0 5 1 9}$	68866
Nobs	90104	90104	89626	89626	89626	89626	$\mathbf{8 9 6 2 6}$	89626
Npars	27	202	232	243	246	248	$\mathbf{2 7 0}$	308
adj_r2	9.400	24.048	32.337	33.616	34.113	34.620	$\mathbf{3 5 . 7 3 0}$	34.857
\%Change	0.000	14.647	8.290	1.278	0.498	0.507	$\mathbf{1 . 1 1 0}$	-0.873

Figure 18.142. The relative influence of each factor used on the final trend in the optimal standardization for Mirror Dory from Zones 10 to 30. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor 3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.
18.4.43 Mirror Dory West (DOM - 37264003 Zenopsis nebulosus)

Only data from Zones 40 to 50 in depths $0-600 \mathrm{~m}$. All vessels reporting Mirror Dory were included.

Table 18.127. Mirror Dory from Zones 40 to 50 in depths 0 to 600 m by trawl. Total Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). Zone:Month is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Mth	StDev
1986	401.792	57	7.374	10	13.7130	2.4486	0.0000
1987	449.654	142	15.519	23	16.0832	1.6108	0.1997
1988	345.894	122	14.983	17	18.4525	1.3227	0.2085
1989	589.920	71	11.127	15	24.6757	1.6770	0.2200
1990	295.669	95	9.966	14	21.6631	1.1269	0.2236
1991	230.138	209	12.783	17	11.7670	0.8009	0.1971
1992	166.835	205	8.289	20	8.1608	0.6650	0.1987
1993	305.379	276	18.010	18	10.1017	0.7842	0.1939
1994	297.238	330	18.162	20	9.3264	0.6901	0.1924
1995	244.924	709	38.143	23	9.0896	0.8794	0.1894
1996	351.587	1438	115.145	26	13.3473	1.2517	0.1893
1997	459.626	1906	148.310	24	12.8686	1.2660	0.1888
1998	355.794	1469	116.211	20	12.6121	1.2261	0.1893
1999	309.471	1318	63.294	23	8.8763	0.8060	0.1895
2000	171.046	980	22.461	28	4.0569	0.4399	0.1904
2001	243.341	2446	105.280	29	7.9361	0.7588	0.1887
2002	449.313	3156	240.252	28	11.7181	1.1130	0.1884
2003	612.264	2429	154.899	27	11.0165	0.9545	0.1887
2004	506.183	2208	159.809	25	10.3786	0.9571	0.1889
2005	579.706	1769	100.006	23	8.0456	0.7563	0.1891
2006	419.448	1061	65.351	19	8.0395	0.6419	0.1902
2007	289.571	1177	64.941	16	6.7120	0.5779	0.1900
2008	396.242	879	58.533	17	7.5767	0.6475	0.1906
2009	476.503	1333	123.246	14	9.7010	0.9881	0.1894
2010	578.768	1596	177.550	14	11.0745	1.1728	0.1893
2011	516.299	1662	157.806	16	8.6510	0.8995	0.1892
2012	365.268	1018	70.217	15	6.0700	0.5376	0.1904

Figure 18.143. Mirror Dory from Zones 40 to 50 in depths 0 to 600 m by trawl. The top left is the depth distribution of all records reporting Mirror Dory, the top right graph depicts the depth distribution of shots containing Mirror Dory from Zones 40 to 50 in depths 0 to 600 m by trawl. The middle left diagram depicts the distribution of catch by depth within zones 40 to 50 , the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the Mirror Dory catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Table 18.128. Mirror Dory from Zones 40 to 50 in depths 0 to 600 m by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE~Year+Vessel
Model 3	LnCE~Year+Vessel+Month
Model 4	LnCE~Year+Vessel+Month+DepCat
Model 5	LnCE~Year+Vessel+Month+DepCat+DayNight
Model 6	LnCE~Year+Vessel+Month+DepCat+DayNight+Zone
Model 7	LnCE~Year+Vessel+Month+DepCat+DayNight+Zone+Zone:Month
Model 8	LnCE~Year+Vessel+Month+DepCat+DayNight+Zone+Zone:DepCat

Figure 18.144. Mirror Dory from Zones 40 to 50 in depths 0 to 600 m by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.129. Mirror Dory from Zones 40 to 50 in depths 0 to 600 m by trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum is Zone:Month (model 7).

	Year	Vessel	Month	DepCat	DayNight	Zone		Zone:Mth	Zone:DepC
AIC	10144	3223	1721	433	-253	-605	$\mathbf{- 9 6 6}$	-648	
RSS	42050	33208	31567	30020	29333	28987	$\mathbf{2 8 6 1 9}$	28902	
MSS	2231	11074	12715	14261	14948	15294	$\mathbf{1 5 6 6 3}$	15380	
Nobs	30061	30061	30061	29885	29885	29885	$\mathbf{2 9 8 8 5}$	29885	
Npars	27	115	126	149	152	153	$\mathbf{1 6 4}$	176	
adj_r2	4.957	24.722	28.416	31.869	33.421	34.204	$\mathbf{3 5 . 0 1 7}$	34.347	
\%Change	0.000	19.765	3.693	3.453	1.552	0.783	$\mathbf{0 . 8 1 3}$	-0.670	

Figure 18.145. The relative influence of each factor used on the final trend in the optimal standardization for Mirror Dory from Zones 40 - 50. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.
18.4.44 Ribaldo (RBD - 37224002 - Mora moro)

Only data from Zones 10 to 50 in depths $0-1000 \mathrm{~m}$.

Table 18.130. Ribaldo from Zones 10 to 50 in depths 0 to 1000 m by trawl. Total Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates (kg/hr). Zone:Mth is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Mth	StDev
1986	4.104	72	3.524	11	14.6630	2.2751	0.0000
1987	7.941	158	7.292	14	10.2593	1.2766	0.1388
1988	10.868	123	8.049	22	16.5570	1.9946	0.1552
1989	11.342	136	7.711	14	18.2556	1.8008	0.1535
1990	3.668	58	2.259	11	8.9113	1.4191	0.1740
1991	7.688	145	5.162	22	7.9930	1.3807	0.1532
1992	13.333	226	11.689	26	9.7616	1.3643	0.1450
1993	22.485	330	19.762	37	11.2449	1.1334	0.1448
1994	26.056	423	23.622	30	11.8156	1.2752	0.1424
1995	90.004	1147	86.299	26	12.3128	1.3346	0.1390
1996	82.278	1492	77.012	32	10.1757	1.0110	0.1388
1997	103.045	1714	96.567	30	9.8023	0.8805	0.1385
1998	99.824	1667	92.015	33	9.6696	0.8523	0.1386
1999	71.983	1133	59.668	32	8.7093	0.7859	0.1395
2000	66.536	1174	53.845	38	7.4217	0.7236	0.1394
2001	79.763	1122	52.390	37	6.7639	0.6772	0.1393
2002	157.033	1142	57.271	30	6.7944	0.6324	0.1395
2003	174.002	1310	66.180	35	6.7153	0.6250	0.1392
2004	180.109	1257	66.417	33	7.2233	0.6759	0.1395
2005	89.618	671	30.046	32	6.3488	0.5916	0.1413
2006	122.400	637	32.083	34	6.3304	0.6254	0.1414
2007	74.696	404	15.571	24	3.2493	0.4183	0.1441
2008	78.338	367	17.618	24	4.7326	0.5781	0.1447
2009	104.956	572	33.410	20	5.6978	0.6424	0.1419
2010	92.079	685	37.305	22	5.5851	0.6603	0.1410
2011	94.025	864	44.555	20	5.8331	0.6703	0.1401
2012	103.062	759	42.445	19	6.1631	0.6954	0.1410

Figure 18.146. Ribaldo from Zones 10 to 50 in depths 0 to 1000 m by trawl. The top left is the depth distribution of all records reporting Ribaldo, the top right graph depicts the depth distribution of shots containing Ribaldo from Zones 10 to 50 in depths 0 to 1000 m by trawl. The middle left diagram depicts the distribution of catch by depth within zones 10 to 50 , the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the Ribaldo catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Table 18.131. Ribaldo from Zones 10 to 50 in depths 0 to 1000 m by trawl. Statistical model structures used in this analysis. DepCat is a series of 50 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE~Year+Vessel
Model 3	LnCE~Year+Vessel+DepCat
Model 4	LnCE~Year+Vessel+DepCat+Zone
Model 5	LnCE~Year+Vessel+DepCat+Zone+DayNight
Model 6	LnCE~Year+Vessel+DepCat+Zone+DayNight+Month
Model 7	LnCE~Year+Vessel+DepCat+Zone+DayNight+Month+Zone:Month
Model 8	LnCE~Year+Vessel+DepCat+Zone+DayNight+Month+Zone:DepCat

Figure 18.147. Ribaldo from Zones 10 to 50 in depths 0 to 1000 m by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 18.132. Ribaldo from Zones 10 to 50 in depths 0 to 1000 m by trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum is Zone:Month (model 7).

	Year	Vessel	DepCat	Zone	DayNight	Mon	Zone:Mth	pC
AIC	-1879	-3714	-6250	-6953	-7057	-7087	-7592	-7382
RSS	17946	16157	13962	13465	13389	13354	12956	12888
MSS	1652	3441	5636	6133	6209	6244	6642	6710
Nobs	19788	19785	19597	19597	19597	19597	19597	19597
Npars	27	147	197	201	204	215	259	415
adj_r2	8.308	16.945	28.039	30.586	30.966	31.110	33.009	32.817
\%Change	0.000	8.638	11.093	2.547	0.379	0.145	1.899	-0.192

Figure 18.148. The relative influence of each factor used on the final trend in the optimal standardization for Ribaldo from Zones 10 to 50 . The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

Figure 18.149. Ribaldo, all zones $10-50$, plus the GAB and north of Barrenjoey. Catches by the two main methods, trawl and AutoLongLine. As with trawling, most catches by AutoLongLine are taken in zones 20-50.

18.4.44.1 The Effect of Closures

An alternative analysis was conducted (Haddon (2010) that included a factor for inside and outside of the current deepwater closures. After the other single factors had been included in the standardization there was no significant effect of being inside or outside of a closure.

By considering the current deepwater closures and identifying each shot with respect to its starting position the catches within and outside the closures can be characterized (Figure 18.150, Figure 18.151,Table 18.133).

Figure 18.150. The annual catches of Ribaldo taken by trawl inside and outside of declared deepwater closures. The low catches taken from 2008 onwards derive from the precision of the available location data to discern all shots that are taken along the outer edge of a closure.

Figure 18.151. The annual catches of Ribaldo taken by AutoLine inside and outside of declared deepwater closures. The low catches taken from 2008 onwards derive from the precision of the available location data to discern all shots that are taken along the outer edge of a closure.

Year	Trawl		AutoLine	
	Open	Closed	Open	Closed
1986	3.054	0.470		
1987	6.173	1.119		
1988	6.082	1.967		
1989	5.266	2.445		
1990	2.144	0.115		
1991	4.278	0.884		
1992	11.354	0.335		
1993	18.539	1.223		
1994	21.175	2.447		
1995	54.787	31.512		
1996	57.647	19.365		
1997	67.066	29.501	1.375	0.030
1998	59.008	33.007	1.753	
1999	33.724	25.944	1.687	0.260
2000	33.332	20.513	8.486	0.553
2001	30.350	22.040	15.110	0.610
2002	35.577	21.695	88.474	7.023
2003	42.289	23.891	93.960	8.922
2004	43.108	23.309	87.052	9.537
2005	21.626	8.421	33.177	4.013
2006	22.564	9.520	63.046	2.329
2007	14.802	0.769	27.887	0.239
2008	16.348	1.271	56.655	0.118
2009	30.393	3.017	66.447	1.827
2010	35.040	2.265	50.216	1.472
2011	41.630	2.925	46.364	0.113

18.4.45 Ribaldo (RBD - 37224002 - Mora moro) AutoLine

Table 18.134. Ribaldo taken by Autoline in Zones $20,3040,50,81,82,83,84,85$ in depths 0 to 1000 m . Total Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). Zone:Month is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Month	StDev
2001	79.763	63	15.720	2	157.4316	1.0324	0.0000
2002	157.033	259	95.497	4	135.9460	2.3532	0.3821
2003	174.002	337	102.882	7	75.0323	1.7211	0.3901
2004	180.109	714	96.589	11	51.6307	1.4747	0.3879
2005	89.618	308	37.189	7	44.5029	0.8430	0.3919
2006	122.400	605	65.374	8	39.5786	0.8635	0.3879
2007	74.696	393	28.125	6	25.0254	0.5236	0.3908
2008	78.338	401	56.772	6	39.2440	0.6206	0.3879
2009	104.956	433	68.273	6	49.5683	0.6195	0.3883
2010	92.079	381	51.687	5	47.4986	0.5930	0.3890
2011	94.025	356	46.476	5	45.6603	0.7078	0.3889
2012	103.062	295	58.847	6	60.9351	0.6476	0.3887

Figure 18.152. Standardized catch rates for Ribaldo by Autoline. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates. The vertical black lines represent 1.96 times the standard errors. The same statistical models that were used for the trawl analysis were also used here (Table 18.131).

Figure 18.153. Ribaldo by Autoline. The top left is the depth distribution of all records reporting Ribaldo taken by autoline, the top right graph depicts the depth distribution of shots containing Ribaldo taken by Autoline as used in the standardization. The middle left diagram depicts the distribution of catch by depth within each zone, the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the Ribaldo catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Table 18.135. Ribaldo taken by Autoline. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum is Zone:Month (model 7).

	Year	Vessel	DepCat	Zone		DayNight	Month	
Zone:Mth	Zone:DepC							
AIC	3784	2277	1991	1925	1903	1841	1707	2113
RSS	10300	7185	6580	6455	6413	6287	5874	5875
MSS	648	3764	4369	4493	4536	4661	5074	5074
Nobs	4250	4250	4236	4236	4236	4236	4236	4236
Npars	11	23	63	70	73	84	161	364
adj_r2	5.700	34.036	39.011	40.063	40.413	41.428	44.240	41.314
\%Change	0.000	28.337	4.974	1.053	0.350	1.014	2.812	-0.114

18.4.46 Ocean Jackets (LTC - 37465006 - Nelusetta ayraudi) Alternate: LeatherJackets (LTH - 37465000)

Only data from Zones 10 to 50 in depths $0-300 \mathrm{~m}$. All vessels and records reporting leatherjackets are included. This is the first year this data has been considered.

Table 18.136. Ocean Jackets from Zones 10 to 50 in depths 0 to 300 m by trawl. Total Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr)}$). Zone:DepCat is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:DepCat	StDev
1986	56.429	2473	44.715	75	5.0337	0.6676	0.0000
1987	53.249	1445	28.151	61	5.1085	0.7043	0.0361
1988	66.199	1911	45.725	66	6.2067	0.8544	0.0335
1989	70.961	1808	32.778	65	4.8860	0.7349	0.0341
1990	90.954	1548	33.157	46	4.9715	0.7195	0.0360
1991	170.170	1329	24.788	46	4.4265	0.6269	0.0379
1992	88.453	1127	22.074	40	4.7352	0.6250	0.0396
1993	71.645	1342	29.245	42	5.0852	0.6997	0.0384
1994	74.338	1455	35.044	45	5.9717	0.7850	0.0370
1995	140.159	2237	59.316	42	5.9904	0.7934	0.0334
1996	199.569	2576	72.307	54	6.3230	0.8183	0.0327
1997	177.394	2009	52.492	51	5.4540	0.7433	0.0344
1998	189.864	2488	68.017	44	5.2603	0.7352	0.0330
1999	202.805	2691	88.415	52	7.0029	0.8601	0.0325
2000	198.801	2983	73.176	52	5.1836	0.6873	0.0322
2001	222.507	3160	63.794	55	4.2040	0.6095	0.0320
2002	377.963	4863	199.088	61	5.4894	0.7270	0.0301
2003	482.065	5503	187.624	58	5.0890	0.6933	0.0296
2004	691.983	6214	313.391	60	8.3226	1.1299	0.0292
2005	890.143	5162	342.889	54	9.8920	1.3135	0.0301
2006	741.356	4636	301.737	50	10.2758	1.4563	0.0306
2007	564.345	3092	285.396	27	14.0314	1.7657	0.0329
2008	490.402	3554	318.317	29	13.7150	1.6679	0.0324
2009	609.940	3260	376.112	28	16.0145	1.8741	0.0328
2010	482.686	3258	300.273	29	13.2712	1.5658	0.0328
2011	487.064	3224	277.268	29	12.3518	1.4520	0.0328
2012	417.243	3443	343.840	30	14.4818	1.6902	0.0326

Figure 18.154. Ocean Jackets from Zones 10 to 50 in depths 0 to 300 m by trawl. The top left is the depth distribution of all records reporting Leatherjackets, the top right graph depicts the depth distribution of shots containing Ocean Jackets from Zones 10 to 50 in depths 0 to 300 m by trawl. The middle left diagram depicts the distribution of catch by depth within zones 10 to 50 , the middle right hand graph depicts the number of vessels through time. The bottom left reflects the number of records used in analysis, and bottom right is the Leatherjacket catches (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$).

Figure 18.155. Ocean Jackets from Zones 10 to 50 in depths 0 to 300 m by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates. The fine vertical lines are the 95% confidence intervals. The horizontal blue line is at one, which is the average of the time series. If the standardization is only applied to data from Zones 10 and 20 differences occur only at the third decimal place in the standardization.

Table 18.137. Ocean Jackets from Zones 10 to 50 in depths 0 to 300 m by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE \sim Year+Vessel+DepCat
Model 4	LnCE \sim Year+Vessel+DepCat+Month
Model 5	LnCE \sim Year+Vessel+DepCat+Month+Zone
Model 6	LnCE \sim Year+Vessel+DepCat+Month+Zone+DayNight
Model 7	LnCE \sim Year+Vessel+DepCat+Month+Zone+DayNight+Zone:Month
Model 8	LnCE \sim Year+Vessel+DepCat+Month+Zone+DayNight+Zone:DepCat

Table 18.138. Ocean Jackets from Zones 10 to 50 in depths 0 to 300 m by trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum is Zone:DepCat (model 8).

	Year	Vessel	DepCat	Month	Zone DayNight			Zone:Mth
	Zone:DepC							
AIC	15796	2294	1908	1324	850	802	620	$\mathbf{- 3 0}$
RSS	96216	80720	79761	79146	78662	78608	78359	$\mathbf{7 7 6 8 7}$
MSS	14282	29778	30737	31352	31835	31889	32138	$\mathbf{3 2 8 1 0}$
Nobs	78791	78791	78257	78257	78257	78257	78257	$\mathbf{7 8 2 5 7}$
Npars	27	194	209	220	223	226	259	$\mathbf{2 7 1}$
adj_r2	12.896	26.769	27.624	28.172	28.608	28.654	28.850	$\mathbf{2 9 . 4 5 0}$
\%Change	0.000	13.873	0.855	0.548	0.436	0.046	0.196	$\mathbf{0 . 5 9 9}$

Figure 18.156. The relative influence of each factor used on the final trend in the optimal standardization for Ocean Jackets from Zones 10 to 50 . The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

Figure 18.157. Ocean Jackets from Zones 10 to 50 in depths 0 to 300 m by trawl. The catches taken in each of the four main SESSF zones is depicted with the total catch across these zones. The scale on the axis changes between graphs.

18.4.47 Ocean Jackets - GAB (LTC - 37465006 - N. ayraudi) Alternate: LeatherJackets (LTH - 37465000)

Only data from Zones 82 and 83 in the GAB in depths $0-300 \mathrm{~m}$. All vessels and records reporting leatherjackets are included. This is the first year this data has been considered.

Table 18.139. Ocean Jackets from Zones 82 and 83 in depths 80 to 220 m by trawl. Total Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates $(\mathrm{kg} / \mathrm{hr})$. Zone:Month is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Month	StDev
1986	56.429	141	8.490	1	11.5206	1.2715	0.0000
1987	53.249	212	22.632	3	13.7002	1.0553	0.1111
1988	66.199	245	15.590	7	14.0350	1.2370	0.1943
1989	70.961	576	34.714	7	11.9652	1.2531	0.1926
1990	90.954	920	51.380	11	11.1086	0.8494	0.1901
1991	170.170	1252	139.797	8	15.0694	1.0859	0.1895
1992	88.453	954	59.534	7	9.0287	0.9544	0.1894
1993	71.645	819	38.764	4	6.3105	0.6511	0.1893
1994	74.338	745	36.660	5	5.7741	0.5640	0.1901
1995	140.159	1316	78.832	5	6.2242	0.7423	0.1887
1996	199.569	1725	123.469	6	7.8262	0.8645	0.1883
1997	177.394	2135	121.064	9	6.4622	0.7165	0.1883
1998	189.864	1799	116.437	9	7.1373	0.7774	0.1884
1999	202.805	1585	108.970	7	7.8084	0.8977	0.1887
2000	198.801	1540	121.614	5	7.8119	0.9227	0.1889
2001	222.507	1877	138.429	6	8.7175	0.9532	0.1888
2002	377.963	1788	147.551	6	9.0818	1.0050	0.1888
2003	482.065	2837	279.605	9	10.8621	1.1472	0.1885
2004	691.983	3433	364.440	9	12.7575	1.2347	0.1884
2005	890.143	4317	522.910	10	13.9012	1.3257	0.1884
2006	741.356	3609	408.448	11	12.0564	1.0220	0.1885
2007	564.345	2647	254.851	8	10.2989	0.9186	0.1887
2008	490.402	2351	146.362	6	7.4758	0.8009	0.1888
2009	609.940	2160	219.965	4	10.4196	1.1030	0.1888
2010	482.686	1792	168.203	4	12.6091	1.2590	0.1892
2011	487.064	1849	190.713	4	13.1684	1.2726	0.1891
2012	417.243	623	53.039	5	12.2457	1.1153	0.1920

Figure 18.158. Ocean Jackets from Zones 82 and 83 in depths 80 to 220 m by trawl. The top left graph depicts the depth distribution of shots containing Ocean Jackets from Zones 82 and 83 in depths 80 to 220 m by trawl. The top right diagram depicts the distribution of catch by depth within zones 82 and 83 , the middle left hand graph depicts the number of vessels through time and the middle right reflects the number of records used in analysis, bottom left are all catches of Leatherjackets (top line, black is total catches, middle line, blue, are those used in the analysis, and bottom, red, are catches $<30 \mathrm{Kg}$), and bottom right focuses only on catches within the GAB.

Figure 18.159. Ocean Jackets from Zones 82 and 83 in depths 80 to 220 m by trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates. The fine vertical lines are the 95% confidence intervals. The horizontal blue line is at one, which is the average of the time series. This is the first time this analysis has been conducted.

Table 18.140. Ocean Jackets from Zones 82 and 83 in depths 80 to 220 m by trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE \sim Year+Vessel+DepCat
Model 4	LnCE \sim Year+Vessel+DepCat+Zone
Model 5	LnCE \sim Year+Vessel+DepCat+Zone+DayNight
Model 6	LnCE \sim Year+Vessel+DepCat+Zone+DayNight+Month
Model 7	LnCE \sim Year+Vessel+DepCat+Zone+DayNight+Month+Zone:Month
Model 8	LnCE \sim Year+Vessel+DepCat+Zone+DayNight+Month+Zone:DepCat

Table 18 141. Ocean Jackets from Zones 82 and 83 in depths 80 to 220 m by trawl. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum is Zone:Month (model 8).

	Year	Vessel	DepCat	Zone		DayNight	Month Zone:Mth Zone:DepC	
AIC	5647	884	-1361	-3626	-4807	-4836	$\mathbf{- 5 0 7 7}$	-4855
RSS	51200	46078	43403	41198	40108	40080	$\mathbf{3 9 8 4 6}$	40036
MSS	3238	8360	11035	13240	14330	14357	$\mathbf{1 4 5 9 2}$	14402
Nobs	45247	45247	44831	44831	44831	44831	$\mathbf{4 4 8 3 1}$	44831
Npars	27	30	45	81	92	93	$\mathbf{1 0 4}$	108
adj_r2	5.894	15.302	20.192	24.185	26.174	26.223	$\mathbf{2 6 . 6 3 7}$	26.279
\%Change	0.000	9.409	4.890	3.993	1.988	0.049	$\mathbf{0 . 4 1 4}$	0.057

Figure 18.160. The relative influence of each factor used on the final trend in the optimal standardization for Ocean Jackets from Zones 82 and 83. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor 3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

Figure 18.161. Trends in catches and geometric mean catch rates for Ocean Jackets in zones 82 and 83 in the GAB. The catches in the other zones remains too low to be informative about catch rates.

18.4.48 DeepWater Flathead (FLD - 37296002 - Platycephalus conatus)

Data from the GAB fishery, depths between $0-1000 \mathrm{~m}$, taken by trawl. Previous analyses have restricted analyses to vessels present for more than 2 years and which caught an average annual catch $>4 \mathrm{t}$. However, these data filters have only very minor effects upon the observed trend in catch rates and so now all trawl data between $0-$ 1000 m are used in the analysis.

Table 18.142. Deepwater Flathead taken by trawl in the GAB in depths between $0-1000 \mathrm{~m}$. Total Catch is the total Deepwater Flathead catch from all zones and methods reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in this analysis, and Vessels relates to all vessels used in the analysis. Geomean is the unstandardized geometric mean of catch rates $(\mathrm{kg} / \mathrm{hr})$. Zone:Vessel is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

	TotCatch	Records	CatchT	Vessels	GeoMean	Optimum	StDev
$1987 / 1988$	80.334	453	76.840	9	27.6907	0.4820	0.0874
$1988 / 1989$	317.249	815	314.074	9	56.0806	0.9951	0.1011
$1989 / 1990$	402.557	1126	397.497	7	53.0361	1.0168	0.1013
$1990 / 1991$	430.231	1501	423.226	11	49.0776	1.0348	0.1006
$1991 / 1992$	621.115	1780	611.014	13	54.4990	0.8915	0.0997
$1992 / 1993$	524.062	984	509.217	4	76.9248	1.0654	0.1005
$1993 / 1994$	593.110	899	585.635	6	91.8668	1.4614	0.1007
$1994 / 1995$	1285.933	1744	1255.393	6	106.1909	1.8239	0.0993
$1995 / 1996$	1585.124	1862	1559.439	5	125.2137	1.7726	0.0993
$1996 / 1997$	1499.226	2784	1466.636	8	79.3934	1.2271	0.0989
$1997 / 1998$	1029.988	2908	1012.471	10	50.9703	0.8615	0.0989
$1998 / 1999$	690.389	2558	682.171	7	34.6696	0.6520	0.0990
$1999 / 2000$	571.050	2089	542.529	7	39.1053	0.7726	0.0996
$2000 / 2001$	846.620	2315	748.818	6	43.0243	0.8562	0.0994
$2001 / 2002$	973.944	2408	901.784	6	51.8098	1.0113	0.0994
$2002 / 2003$	1711.533	3136	1628.631	8	73.4512	1.4302	0.0990
$2003 / 2004$	2272.762	4535	2186.227	10	68.3726	1.3748	0.0989
$2004 / 2005$	2159.306	5552	2100.483	10	55.0485	1.0985	0.0988
$2005 / 2006$	1433.132	5348	1358.167	11	37.5207	0.7087	0.0988
$2006 / 2007$	1015.479	4253	969.049	11	32.9304	0.6263	0.0988
$2007 / 2008$	1041.333	4003	971.174	7	35.9047	0.6944	0.0991
$2008 / 2009$	813.921	3118	775.737	5	40.6974	0.8168	0.0992
$2009 / 2010$	849.830	3205	829.729	4	39.1349	0.7532	0.0992
$2010 / 2011$	970.039	2805	930.288	4	50.8878	0.9495	0.0993
$2011 / 2012$	965.051	3268	788.402	4	38.5737	0.7432	0.0996
$2012 / 2013$	776.465	2661	665.138	5	39.1414	0.8632	0.1022

Figure 18.162. The depth distribution of records from the Deepwater flathead fishery taken by trawl in the GAB.

Year	Unknown	AL	BL	DL	GN	DS	OTT	TDO	TW
1987/1988									80.334
1988/1989									317.249
1989/1990									402.557
1990/1991	0.375								429.856
1991/1992	0.832								620.283
1992/1993	0.400								523.662
1993/1994									593.110
1994/1995	7.120								1278.813
1995/1996	2.750								1582.374
1996/1997	1.410								1497.816
1997/1998	0.090								1029.898
1998/1999	0.300			0.010					690.079
1999/2000	11.539								559.511
2000/2001	26.772				0.001				819.847
2001/2002	11.247				0.003				962.694
2002/2003	3.560				0.009				1707.964
2003/2004					0.009				2272.753
2004/2005		0.001	0.021		0.112				2159.172
2005/2006					0.002				1433.130
2006/2007					0.001				1015.478
2007/2008									1041.333
2008/2009									813.921
2009/2010									849.830
2010/2011						5.303		24.529	940.207
2011/2012						136.677	13.505	606.967	207.902
2012/2013						83.980	0.426	414.184	277.875

An examination of the depth distribution of catches suggests that this could be modified to become $100-300 \mathrm{~m}$ with essentially no loss of information and the outcomes do not differ from the base case adopted here (Figure 18.162 and Figure 18.164; All Vessels and $0-1000 \mathrm{~m}$).

Figure 18.163. Schematic map of the distribution of catches of deepwater flathead from 1987/1988 to 2011/2012 taken by all methods (Table 18.143). Whether the catches reported around the south of Tasmania are correctly reported is questionable.

Figure 18.164. Deepwater Flathead taken by trawl in the GAB in depths between $0-1000 \mathrm{~m}$. All_vessels_1_10 puts no restrictions on which vessels are included, except that effort hours <1 and >10 are excluded, no restrictions at all are used in All_GAB_TW, and the red line sits on top of the black. The gt2y_lt4t_1_10 has the effort restriction and also excludes vessels in the fishery for less than 3 years and those with an average annual catch $<4 \mathrm{t}$; the only difference occurs in 1988/1989. The 'Original' is the standardized CPUE trend taken from Klaer (2013).

Figure 18.165. The standardized CPUE for Deepwater Flathead from the trawl fishery in the GAB. The dashed line depicts the geometric mean catchrate and the solid line is the optimum model. The vertical bars are the approximate 95% confidence intervals around the mean year parameter estimates.

Table 18.144. Deepwater Flathead from the trawl fishery in the GAB by trawl from $0-1000 \mathrm{~m}$. Statistical model structures used in this analysis. DepCat is a series of 50 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE~Year+Vessel
Model 3	LnCE~Year+Vessel + Zone
Model 4	LnCE~Year+Vessel + Zone + DepCat
Model 5	LnCE \sim Year+Vessel + Zone + DepCat + Month
Model 6	LnCE \sim Year+Vessel + Zone + DepCat + Month + DayNight
Model 7	LnCE \sim Year+Vessel + Zone + DepCat + Month + DayNight + Zone:Month
Model 8	LnCE~Year+Vessel + Zone + DepCat + Month + DayNight + Zone:Vessel
Model 9	LnCE~Year+Vessel + Zone + DepCat + Month + DayNight + Zone:DepCat

Table 18.145. Deepwater Flathead from the trawl fishery in the GAB by trawl from $0-1000 \mathrm{~m}$. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum is Zone:Vessel (model 8).

	Year	Vessel	Zone	DepCat	Month	DayNight	Zone:Mth	Zone:Vess	Zone:DepCat
AIC	-24644	-29035	-32751	-33513	-36266	-37611	-38520	-39603	-37846
RSS	41333	38466	36211	35193	33629	32894	32337	31706	32741
MSS	7373	10240	12496	13513	15077	15813	16369	17000	15965
Nobs	61684	61684	61684	61049	61049	61049	61049	61049	61049
Npars	26	47	53	57	68	71	137	197	95
adj_r2	15.104	20.965	25.593	27.678	30.879	32.388	33.459	34.694	32.675
\%Change	0.000	5.861	4.628	2.085	3.202	1.509	1.071	2.306	0.287

18.4.49 Bight Redfish (FLD - 37258004 - Platycephalus conatus)

Data from the GAB fishery, depths between $0-1000 \mathrm{~m}$, taken by trawl. Analyses were restricted to vessels present for more than 2 years and which caught an average annual catch $>4 \mathrm{t}$, and that trawled for more than 1 hour but less than 10 hours. Instead of 5 degree zones across the GAB 2.5 degree zones were employed to allow better resolution of location based differences in CPUE. An examination of the depth distribution of catches suggests that this could be modified to become $100-250 \mathrm{~m}$ with essentially no loss of information and the outcomes do not differ from the base case adopted here (Figure 18.162 and Figure 18.164; All Vessels and 0 - 1000m). Catches in 1986/1987 were relatively low and only taken by a single vessel and so are omitted from the analysis.

Table 18.146. Bight Redfish taken by trawl in the GAB in depths between $0-1000 \mathrm{~m}$. Total Catch is the total Bight Redfish catch from all zones and methods reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in this analysis, and Vessels relates to all vessels used in the analysis. Geomean is the unstandardized geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). Zone:Vessel is the optimum model and StDev is the standard deviation relating to the data in the optimum model.

	TotCatch	Records	CatchT	Vessels	GeoMean	Optimum	StDev
$1987 / 1988$	45.269	277	41.917	6	21.8563	2.2185	0.0000
$1988 / 1989$	87.151	495	85.953	8	32.6898	2.0368	0.1063
$1989 / 1990$	172.544	827	171.577	7	31.8857	1.4693	0.1043
$1990 / 1991$	285.010	1170	281.389	12	36.4443	1.3668	0.1021
$1991 / 1992$	266.799	1242	266.351	10	27.7067	1.3278	0.0997
$1992 / 1993$	121.338	718	120.188	3	18.3377	0.9769	0.1025
$1993 / 1994$	107.978	695	107.418	5	16.2182	0.9113	0.1030
$1994 / 1995$	160.099	1282	159.907	6	11.9237	0.6362	0.0983
$1995 / 1996$	175.302	1395	175.277	5	11.8016	0.7490	0.0985
$1996 / 1997$	331.957	2039	330.077	7	15.3484	0.8403	0.0968
$1997 / 1998$	373.604	2000	372.269	9	15.7012	0.8944	0.0970
$1998 / 1999$	441.461	1812	440.296	7	20.2349	1.0491	0.0970
$1999 / 2000$	325.221	1475	324.211	7	17.2082	0.9472	0.0994
$2000 / 2001$	398.739	1623	370.068	5	15.4846	0.8065	0.0986
$2001 / 2002$	232.204	1610	223.570	6	10.9135	0.6086	0.0987
$2002 / 2003$	377.966	2113	363.642	8	13.4561	0.6598	0.0974
$2003 / 2004$	862.194	3155	841.995	10	20.1184	0.9742	0.0970
$2004 / 2005$	889.540	3964	874.520	10	19.5259	0.9009	0.0965
$2005 / 2006$	803.259	3688	746.434	11	17.4128	0.8367	0.0965
$2006 / 2007$	961.509	3294	873.760	10	21.7641	0.9230	0.0962
$2007 / 2008$	758.751	3026	734.810	7	19.2748	0.9241	0.0972
$2008 / 2009$	665.394	2443	648.786	4	21.9054	0.9812	0.0978
$2009 / 2010$	463.725	2298	445.717	4	17.3788	0.8482	0.0980
$2010 / 2011$	275.709	1785	267.936	4	14.1527	0.7119	0.0987
$2011 / 2012$	66.019	512	60.305	3	10.8753	0.7544	0.1092
$2012 / 2013$	38.739	435	37.524	4	11.9492	0.6470	0.1142

Figure 18.166. The depth distribution of records from the Bight Redfish fishery taken by trawl in the GAB.

Table 18.147. Reported catch of Bight Redfish by method across all methods and years.							
Year	Unknown	Line	GN	PS	DS	TW	
$1987 / 1988$						45.269	
$1988 / 1989$						87.151	
$1989 / 1990$						172.544	
$1990 / 1991$						285.010	
$1991 / 1992$					0.010	266.799	
$1992 / 1993$						121.328	
$1993 / 1994$						107.978	
$1994 / 1995$						160.099	
$1995 / 1996$						175.302	
$1996 / 1997$						331.957	
$1997 / 1998$						373.604	
$1998 / 1999$						441.461	
$1999 / 2000$	0.210		1.037			325.011	
$2000 / 2001$	17.463					380.239	
$2001 / 2002$	2.105	0.004	2.979			227.116	
$2002 / 2003$	0.670	0.006	3.265			374.026	
$2003 / 2004$		0.017	5.135			857.042	
$2004 / 2005$	0.011	0.004	5.225		0.004	884.296	
$2005 / 2006$		0.245	6.506	30.000		766.508	
$2006 / 2007$		0.178	7.997			953.335	
$2007 / 2008$		0.055	7.780			750.916	
$2008 / 2009$		0.039	8.097			657.258	
$2009 / 2010$		0.088	5.380			458.257	
$2010 / 2011$		0.036	2.330		1.269	272.074	
$2011 / 2012$		0.087	2.014		3.198	60.720	
$2012 / 2013$		0.130	0.095		0.456	38.059	

Figure 18.167. Schematic map of the distribution of catches of Bight Redfish from 1987/1988 to 2011/2012 taken by all methods (Table 18.143). Catches and catchrates are higher in the east of the GAB.

Figure 18.168. Bight Redfish taken by trawl in the GAB in depths between $0-1000 \mathrm{~m}$. The 'Original' is the standardized CPUE trend taken from Klaer (2013). The other three only show differences in the first three years. Klaer (2013) did not include DayNight or interaction terms in his analysis, the two trends remain approximately similar, especially once the uncertainty of the mean estimates is included (Figure 18.169).

Figure 18.169. The standardized CPUE for Bight Redfish from the trawl fishery in the GAB. The dashed line depicts the geometric mean catchrate and the solid line is the optimum model. The vertical bars are the approximate 95% confidence intervals around the mean year parameter estimates.

Table 18.148. Bight Redfish from the trawl fishery in the GAB by trawl from $0-1000 \mathrm{~m}$. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE~Year+DayNight
Model 3	LnCE Year+ DayNight + Zone
Model 4	LnCE~Year+ DayNight + Zone + Month
Model 5	LnCE~Year+ DayNight + Zone + Month + Vessel
Model 6	LnCE \sim Year + DayNight + Zone + Month + Vessel + DepCat
	LnCE~Year + DayNight + Zone + Month + Vessel + DepCat +
Model 7	Zone:Month
	LnCE~Year+ DayNight + Zone + Month + Vessel + DepCat +
Model 8	Zone:Vessel
Model 9	LnCE~Year+ DayNight + Zone + Month + Vessel + DepCat + Zone:DepCat

Table 18.149. Bight Redfish from the trawl fishery in the GAB by trawl from $0-1000 \mathrm{~m}$. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum is Zone:Vessel (model 8). Zone was four 2.5 degree slices through the GAB.

	Year	DayNight	Zone	Month	Vessel	DepCat	Zone:Month	Zone:Vessel	Zone:DepCat
AIC	30462	25349	21723	18772	17614	16955	16766	16757	16728
RSS	88689	79228	73139	68500	66669	65130	64824	64739	64699
MSS	3085	12546	18634	23274	25105	26643	26949	27034	27074
Nobs	45373	45373	45373	45373	45373	44851	44851	44851	44851
Npars	26	29	30	41	77	112	123	148	147
adj_r2	3.308	13.617	20.254	25.294	27.233	28.856	29.172	29.226	29.271
\%Change	0.000	10.309	6.637	5.040	1.939	1.622	0.317	0.370	0.415

18.5 Acknowledgements

Thanks are due to Mike Fuller and Neil Klaer of CSIRO Hobart, for their preliminary processing of the catch and effort data as received from the Australian Fisheries management Authority. Thanks also to Ian Knuckey for providing reports from the Eastern Gemfish surveys that allowed the individual shots to be removed from consideration to be identified.

18.6 Bibliography

A collection of publications relating to the analysis of catch rates, only some of which are referred to explicitly here but the rest are included as a resource for anyone interested in pursuing this subject further.

Aitchison, J. (1955) On the distribution of a positive random variable having a discrete probability mass at the origin. Journal of the American Statistical Association 50: 901-908.

Barry, S. C. and A. H. Welsh (2002). Generalized additive modelling and zero inflated count data. Ecological Modelling 157: 179-188.

Bishop, J., Die, D. and Y-G Wang (2000). A generalized estimating equations approach for analysis of the impact of new technology on a trawl fishery. Australian and New Zealand Journal of Statistics 42(2): 159-177.

Bishop, J., Venables, W.N. and Y-G Wang (2004). Analysing commercial catch and effort data from a Penaeid trawl fishery. A comparison of linear models, mixed models, and generalized estimating equations approaches. Fisheries Research 70: 179-193.

Brooks, E. N., Ortiz, M. and L.K. Beerkircher (2005). Standardized catch rates for blue shark and shortfin mako shark from the U.S. pelagic logbook and U.S. pelagic observer program, and U.S. weighout landings. Collected Volume of Scientific Papers ICCAT 58(3): 1054-1072.

Brynjarsdottir, J. and G. Stefansson (2004). Analysis of cod catch data from Icelandic groundfish surveys using generalized linear models. Fisheries Research 70: 195208.

Dick, E. J. (2004). Beyond "lognormal versus gamma": discrimination among error distributions for generalized linear models. Fisheries Research 70: 351-366.

Helser, T. E., Punt, A. E. and R.D. Methot (2004). A generalized linear mixed model analysis of a multi-vessel fishery resource survey. Fisheries Research 70: 251-264.

Hoyle, S. D. and M. N. Maunder (2006). Standardization of yellowfin and bigeye CPUE data from Japanese longliners, 1976-2004. Inter-American Tropical Tuna Commission Document SAR-7-07: 19p.

Kawaguchi, S., Candy, S. G. and S. Nicol (2005). Analysis of trends in Japanese krill fishery CPUE data, and its possible use as a krill abundance index. CCAMLR Science 12: 1-28.

Kimura, D.K. (1981) Standardized measures of relative abundance based on modelling $\log (\mathrm{c}$. p.u.e.), and their application to pacific ocean perch (Sebastes alutus). Journal du Conseil International pour l'Exploration de la Mer. 39: 211-218.

Martin, T. G., Wintle, B.A., Rhodes, J.R., Kuhnert, P.M., Field, S.A., Low-Choy, S.J., Tyre, A.J. and H.P. Possingham (2005). Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecology Letters 8: 1235-1246.

Maunder, M. N. and A. E. Punt (2004). Standardizing catch and effort data: a review of recent approaches. Fisheries Research 70: 141-159.

Myers, R. A. and P. Pepin (1990). The robustness of Lognormal-based estimators of abundance. Biometrics 46: 1185-1192.

Neter, J., Kutner, M.H., Nachtsheim, C.J, and W. Wasserman (1996) Applied Linear Statistical Models. Richard D. Irwin, Chicago. 1407p.

Pennington, M. (1983). "Efficient estimators of abundance, for fish and plankton surveys." Biometrics 39: 281-286.

Punt, A. E., Walker, T.I., Taylor, B.L. and F. Pribac (2000). Standardization of catch and effort data in a spatially-structured shark fishery. Fisheries Research 45: 129145.

R Development Core Team (2009). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

Rodriguez-Marin, E., Arrizabalaga, H., Ortiz, M., Rodriguez-Cabello, C., Moreno, G. and L.T. Kell (2003). Standardization of bluefin tuna, Thunnes thynnus, catch per unit effort in the baitboat fishery of the Bay of Biscay (Eastern Atlantic). ICES Journal of Marine Science 60: 1216-1231.

Stefánsson, G. (1996) Analysis of groundfish survey abundance data: combining the GLM and delta approaches. ICES Journal of Marine Sciences 53: 577-588.

Stephens, A. and A. MacCall (2004). A multispecies approach to subsetting logbook data for purposes of estimating CPUE. Fisheries Research 70: 299-310.

Syrjala, S. E. (2000). Critique on the use of the delta distribution for the analysis of trawl survey data. ICES Journal of Marine Science 57: 831-842.

Venables, W. and C. M. Dichmont (2004). GLMs, GAMs and GLMMs: an overview of theory for applications in fisheries research. Fisheries Research 70: 319-337.

Ye, Y., Al-Husaini, M., and A. Al-Baz (2001). Use of generalized linear models to analyze catch rates having zero values: the Kuwait driftnet fishery. Fisheries Research 53: 151-168.

19. Standardization of Bight Redfish in the GAB 2000/2001 Feb 2012/2013. Catch rate Update.

Malcolm Haddon
CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart, TAS 7001, Australia

19.1 Summary

The change in catch rates between 2011/2012 and July-Feb 2012/2013 is less than 20\% (-13.29) (Figure 19.3; Table 19.7), therefore the control rule suggests no change should be made to the default TAC.

19.2 Methods

Data was provided from July 2000 to February 2013 for catches of bight redfish from the GAB (Table 19.1, Table 19.2, Table 19.3).

Records were only included in the analysis that adhered to the following selection criteria:

Depths were between 50 - 500 metres (Table 19.2; Figure 19.1),
Non-zero catches of bight redfish,
Shot length >1.0 and <10 hours,
Only from Zone 80 (GAB),
The DayNight factor only used Day, Night, and Mixed (Unknown was omitted).
The analysis conducted included all vessels which had reported catches of bight redfish as well as adhering to the conditions listed above (Table 19.3).

Seven statistical models (Table 19.4) were examined using six different factors:
Fishing Year (July - June),
Vessel,
Depth Category (50 metre categories),
Month,
SubZone (5 degree of longitude subdivisions),
DayNight (Day, Night, Mixed - a small number of Unknown were omitted).
All statistical models were plotted after dividing each series by the average of each series. This means that the average of each series becomes one, and this ensures they are all on the same scale and hence directly comparable.

The percent difference of the catch rates between years is calculated as:

$$
\% \mathrm{D}=100 \times\left(\mathrm{CE}_{10 / 11}-\mathrm{CE}_{09 / 10}\right) / \mathrm{CE}_{09 / 10}
$$

19.3 Results

Catch rates exhibited a highly skewed distribution which was approximately lognormally distribution but a log transformation approximately normalizes the data prior to analysis (Figure 19.2). There are numerous records grouped around catch rates of 1, $2,5,10,15$, and $30 \mathrm{~kg} / \mathrm{hr}$, which appear as spikes in the observed log of catch rates; this seems likely to be due to rounding to nearest convenient weight of catch.

The optimum statistical model was the most complex having the most parameters (Table 19.5; Table 19.6; Figure 19.3).

Catch rates for bight redfish from the GAB initially increased to a peak in 2003/2004 after which catch rates have remained relatively stable varying slightly up and down until 2009/2010 when they started to decline. In the latest year, 2012/2013, catch rates decreased by about -13\% (Figure 19.3; Table 19.7) and, importantly, the estimates from last year reversed direction from being slightly positive to being slightly negative.

The standardization analysis with this year's data follows essentially the same trajectory as that produced by last year's analysis (Figure 19.4). However, the analysis for 2011/2012 indicated that instead of a small positive increase in catchrates the outcome was actually a small decrease.

The GABTF Harvest Strategy decision rules, applied to both deepwater flathead and bight redfish are:

The FIS and the collection of age and length frequency data as well as the monitoring of catch and effort information will be ongoing regardless of whether an assessment is to take place in that year. The information obtained from these sources will be analysed and presented to the RAG each year well prior to the date at which a decision on the TAC for the next year is made.

- Any adjustment to the TAC limit through the application of the decision rules would apply to the default TAC
- When the Fishery Independent Survey (FIS) has been conducted in two consecutive years, the catch rates from the first leg of the survey will be the indicator of abundance used to make any adjustment to the default TAC.
- In a year when the Fishery Independent Survey (FIS) is not conducted, the standardised commercial catch rate for the period July-February inclusive is the indicator of abundance used to make any adjustment to the default TAC, comparing the current year to the immediately preceding year.
- If there is a change of $\geq 20 \%$ to the indicator of abundance, a 10% (increase or decrease) to the default TAC will occur.
- If the RAG is concerned with any indicators over the period between stock assessments (length frequency distributions, standardised commercial catch rates, age distributions etc), then it can decide to undertake a full assessment in that year

19.4 Conclusion

The change in catch rates between 2011/2012 and July-Feb 2012/2013 is less than 20\% (-13.29) (Figure 19.3; Table 19.7), therefore the control rule suggests no change should be made to the default TAC. Questions need to be asked again about the use of the abbreviated data now that more years are available and they illustrate that use of partyear data can be misleading more often than previously thought.

19.5 Acknowledgements

John Garvey of AFMA is thanked for providing the original data extract. Dr Neil Klaer of CSIRO is especially thanked for pre-processing the catch and effort data so rapidly.

Table 19.1. The frequency of catch rate observations in each month and fishing year (financial year July/June) for Bight Redfish from the GAB following data selection.

	7	8	9	10	11	12	1	2	3	4	5	6	Total
$00 / 01$	41	39	143	181	161	99	124	159	176	211	210	71	1615
$01 / 02$	33	89	156	219	216	89	114	159	180	134	133	93	1615
$02 / 03$	77	63	147	136	201	103	235	259	225	218	204	169	2037
$03 / 04$	188	211	181	337	338	192	304	276	289	272	242	118	2948
$04 / 05$	152	185	305	317	346	241	485	492	521	290	234	230	3798
$05 / 06$	178	222	253	294	287	224	437	371	363	313	248	343	3533
$06 / 07$	187	231	335	316	321	198	219	235	332	325	169	215	3083
$07 / 08$	142	204	280	281	307	244	334	229	223	230	208	171	2853
$08 / 09$	159	108	196	268	229	164	206	192	197	189	227	181	2316
$09 / 10$	145	152	196	211	200	163	184	207	248	261	153	125	2245
$10 / 11$	68	67	186	177	180	155	181	144	202	157	195	133	1845
$11 / 12$	121	213	208	182	200	182	228	211	172	167	174	99	2157
$12 / 13$	90	76	80	168	172	183	166	185	80	0	0	0	1200

Table 19.2. The relative frequency of depths records for Bight Redfish from the GAB see (Figure 19.1).

Depth M	Count
0	0
50	10
100	7500
150	21834
200	1700
250	184
300	9
350	0
400	1
450	4
500	3

Table 19.3. Summary statistics characterizing the data included in the standardization.

| | Records | Catches | Effort | GeomCE | Vessels |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| $2000 / 2001$ | 1615 | 261.868 | 8422 | 13.448 | 5 |
| $2001 / 2002$ | 1615 | 200.533 | 8459 | 10.426 | 5 |
| $2002 / 2003$ | 2037 | 294.920 | 11034 | 12.630 | 8 |
| $2003 / 2004$ | 2948 | 541.632 | 16041 | 17.453 | 10 |
| $2004 / 2005$ | 3798 | 712.731 | 20591 | 18.617 | 10 |
| $2005 / 2006$ | 3533 | 586.826 | 18928 | 16.236 | 11 |
| $2006 / 2007$ | 3083 | 599.814 | 16194 | 19.014 | 9 |
| $2007 / 2008$ | 2853 | 532.261 | 14876 | 17.290 | 7 |
| $2008 / 2009$ | 2316 | 470.236 | 11975 | 19.573 | 4 |
| $2009 / 2010$ | 2245 | 396.187 | 11644 | 16.682 | 4 |
| $2010 / 2011$ | 1845 | 277.004 | 9463 | 14.269 | 4 |
| $2011 / 2012$ | 2157 | 300.460 | 11527 | 14.154 | 4 |
| $2012 / 2013$ | 1200 | 143.870 | 6317 | 13.940 | 4 |

Table 19.4. The seven statistical models examined for Bight Redfish from the GAB.

```
Model 1 Fyear
Model 2 Fyear + Vessel
Model 3 Fyear + Vessel + DepCat
Model 4 Fyear + Vessel + DepCat + Month
Model 5 Fyear + Vessel + DepCat + Month + SubZone
Model 6 Fyear + Vessel + DepCat + Month + SubZone + DN
Model 7 Fyear + Vessel + DepCat + Month + SubZone + DN + DepCat:Month
```

Table 19.5. The standardized catch rates for the alternative statistical models for Bight Redfish from the GAB in depths 50 to 500 m . Values are relative to the mean of the standardized catch rates so that the average of the series remains 1.0 . Fishing Years were from July/June, DepCat were 50 m categories, Subzones were 5° of Longitude, and DN relates to DayNight categories.

	FYear	DN	Month	Subzone	Vessel	DepCat	DepCat:Mth	StErr
$00 / 01$	0.8612	0.8696	0.8535	0.8247	0.9264	0.9269	$\mathbf{0 . 9 1 8 0}$	0.0000
$01 / 02$	0.6684	0.6599	0.6630	0.6777	0.7625	0.7694	$\mathbf{0 . 7 7 0 2}$	0.0401
$02 / 03$	0.8096	0.8083	0.7756	0.7874	0.8603	0.8601	$\mathbf{0 . 8 6 0 3}$	0.0387
$03 / 04$	1.1187	1.1426	1.1464	1.1200	1.1856	1.1910	$\mathbf{1 . 1 8 7 2}$	0.0379
$04 / 05$	1.1932	1.2246	1.1445	1.2128	1.2047	1.2075	$\mathbf{1 . 2 0 6 1}$	0.0370
$05 / 06$	1.0406	1.0336	1.0212	1.0938	1.1079	1.1024	$\mathbf{1 . 0 9 9 4}$	0.0372
$06 / 07$	1.2187	1.2575	1.2820	1.2170	1.1159	1.1122	$\mathbf{1 . 1 1 3 0}$	0.0377
$07 / 08$	1.1082	1.1485	1.1796	1.1654	1.1114	1.1198	$\mathbf{1 . 1 4 9 8}$	0.0390
$08 / 09$	1.2546	1.3001	1.3612	1.2314	1.1968	1.2105	$\mathbf{1 . 2 0 4 7}$	0.0400
$09 / 10$	1.0693	1.0388	1.0258	1.0616	1.0341	1.0430	$\mathbf{1 . 0 4 1 5}$	0.0404
$10 / 11$	0.9147	0.8670	0.8704	0.9137	0.8909	0.8753	$\mathbf{0 . 8 6 6 3}$	0.0427
$11 / 12$	0.9073	0.8492	0.8618	0.9065	0.8677	0.8568	$\mathbf{0 . 8 4 8 2}$	0.0417
$12 / 13$	0.8354	0.8004	0.8150	0.7881	0.7357	0.7250	$\mathbf{0 . 7 3 5 4}$	0.0493

Table 19.6. Model selection criteria, including the AIC, the adjusted r^{2}, and the proportional change in adj R^{2}. Optimal model was model 7: FYear + Vessel + DepCat + Month + SubZone + DayNight + DepCat:Month. The Daynight factor is clearly the most influential with Bight Redfish.

	Year	DN	Month	Subzone	Vessel	DepCat	DepCat:Month
AIC	18235	13453	10455	8792	7822	7740	7582
RSS	55900	47942	43515	41251	39951	39825	39507
MSS	880	8838	13265	15529	16829	16955	17273
Nobs	31165	31165	31165	31165	31165	31165	31165
Npars	13	15	26	27	41	49	95
Adj_r2	1.512	15.527	23.300	27.288	29.548	29.753	30.211
\%Change		14.015	7.773	3.988	2.260	0.205	0.458

Table 19.7. The optimum standardized catch rate model relative to the unstandardized geometric mean catch rates (Fyear) with the percent difference between years for each. The value of interest is at the bottom right showing the difference between 10/11 and 11/12.

	Fyear	Diff	Optimum	Diff
$00 / 01$	0.8612		$\mathbf{0 . 9 1 8 0}$	
$01 / 02$	0.6684	-22.38	$\mathbf{0 . 7 7 0 2}$	-16.10
$02 / 03$	0.8096	21.12	$\mathbf{0 . 8 6 0 3}$	11.70
$03 / 04$	1.1187	38.18	$\mathbf{1 . 1 8 7 2}$	38.00
$04 / 05$	1.1932	6.66	$\mathbf{1 . 2 0 6 1}$	1.60
$05 / 06$	1.0406	-12.79	$\mathbf{1 . 0 9 9 4}$	-8.85
$06 / 07$	1.2187	17.11	$\mathbf{1 . 1 1 3 0}$	1.24
$07 / 08$	1.1082	-9.06	$\mathbf{1 . 1 4 9 8}$	3.30
$08 / 09$	1.2546	13.21	$\mathbf{1 . 2 0 4 7}$	4.77
$09 / 10$	1.0693	-14.77	$\mathbf{1 . 0 4 1 5}$	-13.54
$10 / 11$	0.9147	-14.46	$\mathbf{0 . 8 6 6 3}$	-16.83
$11 / 12$	0.9073	-0.81	$\mathbf{0 . 8 4 8 2}$	-2.09
$12 / 13$	0.8354	-7.92	$\mathbf{0 . 7 3 5 4}$	-13.29

Figure 19.1. The relative frequency of depth records from Bight Redfish from the GAB. The lower graph is a repeat of the upper graph except with more detail. Data is from 2000/2001 - Feb 2012/2013; after data selection.

Figure 19.2. The catch rates for Bight Redfish are normalized by a natural log transformation. Data is from 2000/2001 - Feb 2012/2013. The spikes in the distribution, which distort the distribution away from a strict log-normal, relate to catch rates of $1,2,5,10,15$, and $30 \mathrm{~kg} / \mathrm{hr}$. There are a very few very large catch rates, but they are so few they do not influence the standardized catch rate trend.

Figure 19.3. The standardized catch rates for Bight Redfish from the GAB. The dashed line is the unstandardized geometric mean catch rates see Table 19.7. The lower graph depicts the percent difference between consecutive fishing years (see Table 19.7).

Figure 19.4. Comparison of this year's analysis (black line) with last year's (red line - scaling this year's analysis to the mean of $00 / 01-11 / 12$ to make it comparable with last year's analysis).

20. Standardization of Deepwater Flathead in the GAB 2000/2001 - Feb 2012/2013. Catch rate Update.

Malcolm Haddon
CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart, TAS 7001, Australia

20.1 Summary

The change in catch rates between 2011/2012 and July-Feb 2012/2013 is relatively slight at -1.45% (Figure 20.3; Table 20.8). However, importantly, it can also be seen that last year's estimate was biased larger than it eventually became. Last year the decrease in catch rates appeared to be about -25% whereas this year, with all available data it appears to be about -17.5%, which would not have triggered a change. If a decrease in TAC occurred last year then this analysis suggests that should be reversed.

20.2 Methods

Data was provided from July 2000 to February 2013 for catches of deepwater flathead from the GAB (Table 20.1, Table 20.2, Table 20.3).

Records were only included in the analysis that adhered to the following selection criteria (Table 20.4):

Depths were between 50 - 500 metres (Table 20.3; Figure 20.1),
Non-zero catches of deepwater flathead,
Shot length >0.5 and <10 hours,
Only from Zone 80 (GAB),
The DayNight factor only used Day, Night, and Mixed (Unknown was omitted).
Only Vessels in the fishery for more than 2 years were included.
Seven statistical models (Table 20.5) were examined using six different factors:
Fishing Year (July - June),
Vessel,
Depth Category (50 metre categories),
Month,
SubZone (5 degree of longitude subdivisions),
DayNight (Day, Night, Mixed - a small number of Unknown were omitted).
Catch rates are log-normally distributed but a \log transformation successfully normalizes the data prior to analysis (Figure 20.2).

The percent difference between years is calculated as:

$$
\% \mathrm{D}=100 \mathrm{x}\left(\mathrm{CE}_{11 / 12}-\mathrm{CE}_{10 / 11}\right) / \mathrm{CE}_{10 / 11}
$$

20.3 Results

The optimum statistical model was the most complex having the most parameters (Table 20.6; Table 20.7; Figure 20.3).

Catch rates for Deepwater Flathead from the GAB initially increased to a peak in 2002/2003 and 2003/2004 and then declined to half the maximum levels in 2005/2006 after which catch rates have exhibited a slow increase. In the most recent year catch rates have remained stable exhibiting almost no change between 2001/2012 and 2012/2013 (Figure 20.3; Table 20.8).

The standardization analysis with this year's data follows essentially the same trajectory as that produced by last year's analysis (Figure 20.4), however, there is a large difference between this year's estimate of the catch rate in 2011/2012 and last year's estimate. This is contrary to previous findings that data up until February are generally sufficient to predict the eventual complete difference.

The GABTF Harvest Strategy decision rules, applied to both deepwater flathead and bight redfish are:

The FIS and the collection of age and length frequency data as well as the monitoring of catch and effort information will be ongoing regardless of whether an assessment is to take place in that year. The information obtained from these sources will be analysed and presented to the RAG each year well prior to the date at which a decision on the TAC for the next year is made.

- Any adjustment to the TAC limit through the application of the decision rules would apply to the default TAC
- When the Fishery Independent Survey (FIS) has been conducted in two consecutive years, the catch rates from the first leg of the survey will be the indicator of abundance used to make any adjustment to the default TAC.
- In a year when the Fishery Independent Survey (FIS) is not conducted, the standardised commercial catch rate for the period July-February inclusive is the indicator of abundance used to make any adjustment to the default TAC, comparing the current year to the immediately preceding year.
- If there is a change of $\geq 20 \%$ to the indicator of abundance, a 10% (increase or decrease) to the default TAC will occur.
- If the RAG is concerned with any indicators over the period between stock assessments (length frequency distributions, standardised commercial catch rates, age distributions etc), then it can decide to undertake a full assessment in that year

20.4 Conclusion

As the change in catch rates between 2011/2012 and July-Feb 2012/2013 is very small at only -1.45% (Figure 20.3; Table 20.8) the control rule suggests no changes should be made to the default TAC. However, because the estimate of catch rates from 2011/2012 have changed significantly so that they are no longer greater than -20%, if the TAC was reduced last year then consideration should be given to reversing that conclusion this year. Questions need to be asked again about the use of the abbreviated data now that more years are available and they illustrate that use of part-year data can be misleading more often than previously thought.

20.5 Acknowledgements

John Garvey of AFMA is thanked for providing the original data extract. Dr Neil Klaer of CSIRO is especially thanked for pre-processing the catch and effort data so rapidly.

Table 20.1. The frequency of catch rate observations in each month and fishing year (financial year July/June) for deepwater flathead from the GAB following data selection.													
		8	9	10	11	12		2	3		5	6	otal
	60	57	206	250	268	186	213	189	255	268	298	2	362
02	53	136	21	296	331	61	18	24	259		194	14	2
03	111	106	208	240	31	154	319	38	35	35	322	250	3
/04	237	288	295	50	469	275	429	412	49	49	39	242	475
05	287	301	423	473	48	367	648	595	624	414	46	418	50
05/06	282	335	380	402	47	358	62	55	480	460	43	49	5275
06/07	270	312	421	391	419	275	304	31	401	43	310	314	4166
07/08	184	261	277	337	403	28	392	28	301	36	345	222	365
08/09	185	129	226	337	3	22	28	26	28	285	312	234	3077
09/10	205	198	248	298	320	24	278	30	315	332	22	207	3175
10/11	131	106	293	269	275	25	236	177	267	310	287	221	2823
11/12	189	316	288	291	327	281	329	278	272	262	280	170	3283
/13	179	20	20	33	310	310	308	32	0	0	0	0	2172

Table 20.2. The frequency of observations in each depth category (down to 600 m) and fishing year (financial year - July/June) for deepwater flathead from the GAB following data selection.

	0	50	100	150	200	250	300	350	400	450	500	550	600
$00 / 01$	3	0	261	1901	226	14	4	2	20	6	1	0	0
$01 / 02$	4	2	244	2048	126	15	5	11	13	1	0	0	0
$02 / 03$	37	0	148	2738	232	26	12	0	0	1	0	0	0
$03 / 04$	70	1	452	3581	361	108	44	5	2	0	1	1	1
$04 / 05$	55	1	830	4158	267	192	77	6	2	1	4	0	2
$05 / 06$	81	2	1145	3701	284	162	52	3	0	0	0	1	5
$06 / 07$	91	1	675	3175	204	108	66	6	2	1	0	0	0
$07 / 08$	98	7	557	2771	454	118	65	2	0	0	0	0	0
$08 / 09$	51	0	273	2503	302	32	9	1	0	0	0	0	0
$09 / 10$	40	0	550	2356	261	54	12	0	0	0	0	0	0
$10 / 11$	0	0	1858	832	116	28	2	1	0	0	0	1	0
$11 / 12$	1	7	2329	789	134	49	5	0	0	0	0	0	1
$12 / 13$	0	3	1604	583	71	23	4	0	0	1	0	0	0

[^1]| Depth M | Count |
| ---: | ---: |
| 0 | 531 |
| 50 | 24 |
| 100 | 10926 |
| 150 | 31136 |
| 200 | 3038 |
| 250 | 929 |
| 300 | 357 |
| 350 | 37 |
| 400 | 39 |
| 450 | 11 |
| 500 | 6 |
| 550 | 3 |
| 600 | 9 |
| 650 | 2 |
| 750 | 2 |
| 800 | 3 |
| 850 | 3 |
| 900 | 1 |
| 950 | 3 |
| 1000 | 1 |
| 1100 | 1 |
| 1250 | 1 |
| 1350 | 1 |
| 1500 | 1 |

Table 20.4. Summary statistics characterizing the data included in the standardization.

	Records	Catches	Effort	GeomCE	Vessels
$2000 / 2001$	2362	769.847	12145.79	45.17164	5
$2001 / 2002$	2402	905.885	12411.32	53.99376	5
$2002 / 2003$	3113	1613.01	16750.27	73.61459	8
$2003 / 2004$	4475	2157.485	24114.9	68.52785	10
$2004 / 2005$	5501	2086.372	29691.95	55.28965	10
$2005 / 2006$	5275	1340.978	28017.44	37.64308	11
$2006 / 2007$	4166	950.308	21768.83	33.05358	10
$2007 / 2008$	3658	908.836	18420.31	37.57405	6
$2008 / 2009$	3077	775.535	15763.12	41.03474	4
$2009 / 2010$	3175	805.6285	16332.58	38.67861	4
$2010 / 2011$	2823	932.788	14351.13	50.70244	4
$2011 / 2012$	3283	838.817	17281.38	41.345	5
$2012 / 2013$	2172	568.733	11332.63	41.0382	5

Table 20.5. The seven statistical models examined for Deepwater Flathead from the GAB.

```
Model 1 Fyear
Model 2 Fyear + Vessel
Model 3 Fyear + Vessel + DepCat
Model 4 Fyear + Vessel + DepCat + Month
Model 5 Fyear + Vessel + DepCat + Month + SubZone
Model 6 Fyear + Vessel + DepCat + Month + SubZone + DN
Model 7 Fyear + Vessel + DepCat + Month + SubZone + DN + DepCat:Month
```

Table 20.6. The standardized catch rates for the alternative statistical models for Deepwater Flathead from the GAB in depths 50 to 500 m . Values are relative to the mean of the standardized catch rates so that the average of the series remains 1.0. Fishing Years were from July/June, DepCat were 50 m categories, Subzones were 5° of Longitude, and DN relates to DayNight categories.

	FYear	Vessel	DepCat	Month	Subzone	DN	DepCat:Mth	StErr
$00 / 01$	0.9505	0.9339	0.9496	0.9371	0.9465	0.9461	$\mathbf{0 . 9 7 0 5}$	0.0000
$01 / 02$	1.1365	1.1332	1.1476	1.1449	1.1174	1.1189	$\mathbf{1 . 1 3 7 9}$	0.0196
$02 / 03$	1.5494	1.5717	1.6019	1.5898	1.5539	1.5515	$\mathbf{1 . 5 5 8 1}$	0.0189
$03 / 04$	1.4423	1.5081	1.5391	1.5341	1.5484	1.5485	$\mathbf{1 . 5 3 6 6}$	0.0187
$04 / 05$	1.1637	1.2145	1.2428	1.2515	1.2282	1.2294	$\mathbf{1 . 1 8 7 7}$	0.0183
$05 / 06$	0.7923	0.8025	0.8014	0.8050	0.7877	0.7886	$\mathbf{0 . 7 7 5 2}$	0.0184
$06 / 07$	0.6957	0.6643	0.6677	0.6784	0.7078	0.7076	$\mathbf{0 . 6 9 7 5}$	0.0189
$07 / 08$	0.7908	0.7266	0.7414	0.7403	0.7659	0.7661	$\mathbf{0 . 7 6 4 0}$	0.0195
$08 / 09$	0.8637	0.8438	0.8678	0.8684	0.9223	0.9223	$\mathbf{0 . 9 2 4 2}$	0.0201
$09 / 10$	0.8141	0.8141	0.8289	0.8376	0.8195	0.8180	$\mathbf{0 . 8 2 3 2}$	0.0201
$10 / 11$	1.0672	1.0487	0.9860	0.9888	0.9797	0.9819	$\mathbf{0 . 9 9 4 8}$	0.0210
$11 / 12$	0.8702	0.8665	0.8108	0.8188	0.8100	0.8085	$\mathbf{0 . 8 2 1 1}$	0.0207
$12 / 13$	0.8638	0.8721	0.8149	0.8053	0.8127	0.8125	$\mathbf{0 . 8 0 9 2}$	0.0226

Table 20.7. Model selection criteria, including the AIC, the adjusted r^{2}, and the proportional change in adj R^{2} Optimal model was model 7: FYear + Vessel + DepCat + Month + SubZone + DayNight +							
	FYear	Vessel	DepCat	Month	subzone	DN	DepCat:Month
AIC	-23845	-27903	-29390	-30951	-32534	-33032	-36043
RSS	26909	24597	23797	22983	22195	21952	20487
MSS	2692	5004	5804	6618	7406	7649	9114
Nobs	45482	45482	45482	45482	45482	45482	45482
Npars	13	27	36	47	48	50	115
Adj_r2	9.069	16.856	19.547	22.280	24.941	25.761	30.616
\%Change		7.787	2.691	2.733	2.661	0.820	4.855

Table 20.8. The optimum standardized catch rate model relative to the unstandardized geometric mean catch rates (Fyear) with the percent difference between years for each. The value of interest is at the bottom right showing the difference between 10/12 and 11/13. Importantly, with the updated information it can be seen that the predicted decline of $\sim 25 \%$ last year was an over-estimate.

	Fyear	Diff	Optimum	Diff
$00 / 01$	0.9505		$\mathbf{0 . 9 7 0 5}$	
$01 / 02$	1.1365	19.56	$\mathbf{1 . 1 3 7 9}$	17.25
$02 / 03$	1.5494	36.34	$\mathbf{1 . 5 5 8 1}$	36.92
$03 / 04$	1.4423	-6.91	$\mathbf{1 . 5 3 6 6}$	-1.38
$04 / 05$	1.1637	-19.32	$\mathbf{1 . 1 8 7 7}$	-22.70
$05 / 06$	0.7923	-31.92	$\mathbf{0 . 7 7 5 2}$	-34.73
$06 / 07$	0.6957	-12.19	$\mathbf{0 . 6 9 7 5}$	-10.02
$07 / 08$	0.7908	13.68	$\mathbf{0 . 7 6 4 0}$	9.54
$08 / 09$	0.8637	9.21	$\mathbf{0 . 9 2 4 2}$	20.97
$09 / 10$	0.8141	-5.74	$\mathbf{0 . 8 2 3 2}$	-10.93
$10 / 11$	1.0672	31.09	$\mathbf{0 . 9 9 4 8}$	20.84
$11 / 12$	0.8702	-18.46	$\mathbf{0 . 8 2 1 1}$	-17.46
$12 / 13$	0.8638	-0.74	$\mathbf{0 . 8 0 9 2}$	-1.45

Figure 20.1. The relative frequency of depth records from Deepwater Flathead from the GAB. The lower graph is a repeat of the upper graph except with more detail. Data is from 2000/2001 - Feb 2012/2013.

Figure 20.2. The catch rates for Deepwater Flathead are normalized by a natural log transformation. Data is from 2000/2001 - Feb 2012/2013.

Figure 20.3. The standardized catch rates for Deepwater Flathead from the GAB. The dashed line is the unstandardized geometric mean catch rates see Table 20.8. The lower graph depicts the percent difference between consecutive fishing years (see Table 20.8).

Figure 20.4. Comparison of this year's analysis (black line) with last year's (red line - scaling this year's analysis to the mean of $00 / 01-11 / 12$ to make it comparable with last year's analysis).

21. Standardized Catch Rates for the SESSF Gummy Shark Fishery: Data from 1976-2012

Malcolm Haddon
CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart, TAS 7001, Australia

21.1 Summary

Reported catches of gummy sharks have declined from a high in 2008, although interpreting this is made more complex because of the 16 month TAC put in place for the 2007/2008 season. Nevertheless, the recent decline in catches is real and is related to the decline in catches from South Australia being greater than the increase in catches in Tasmania and the now relatively stable catches in Bass Strait. Catches from South Australia started to decline seriously in 2011 and continued to decrease further in 2012 until they are now of the same order as in the early 1980s and are only about 50% the catches in 2009. These changes are related to the introduction of gillnet fishery closures to protect Australian Sea Lions and dolphins in South Australian waters. The proportion of catches taken by gillnets in 2012 remained the same as in 2011, despite catches being down overall.

Standardized catch rates in South Australia have also exhibited a decline since 2008, however, the general trend since 1984 remains flat but noisy. The most recent mean estimate is below the long term average, which again is thought to be related to the influence of the marine closures in South Australia rather than any change in the resource status. However, the recent large reduction in catch and the large changes in the spatial distribution of catches means that accurate knowledge of the status of the South Australian gummy shark stock is currently compromised. How best to include this data in any stock assessment is not immediately obvious and may require further data exploration. There is a difference between the standardized CPUE for positive shots from the CANDE12 data set and the standard extracts from the SESSF database. The confluence of the two trends from 2005 reflects the fact that the CANDE12 data set is updated directly from the SESSF database each year.

In Bass Strait, standardized catch rates have also declined since 2008 but they are now still above or at the long term average depending on how the standardization for positive shots is combined with the standardization of the probability of obtaining a positive shot. Catches in the gummy shark fishery continue to be greatest in Bass Strait. In Bass Strait there are also differences between the standardized CPUE for positive shots from the CANDE12 data set and the standard extracts from the SESSF database from 1997 to 2004. Again the confluence of the two trends from 2005 reflects the fact that the CANDE12 data set is updated directly from the SESSF database each year.

Standardized catch rates in Tasmania also remain noisy but flat. There is some indication of a very slow decline since about 2000 but given the variation surrounding the mean estimates the apparent decline is not yet statistically significant; for example,
the trend in 2012, the latest year, exhibits a very slight upturn. Given the noise in the outcome of the analysis, the differences between the CANDE12 analysis and that based on the SESSF database are not significant.

The assumption that it is simple to identify targeted shots in the shark fishery is used to include the proportion of zero shots in the standardization. However, there is an array of factors that call this assumption into doubt. The first factor is that up until 2000 there were amounts of catches reported as 'comb' when no catches were reported in either school or gummy sharks and this was mostly a problem within South Australia; from 2000 onwards, however, the amounts are greatly reduced. This adds greatly to the uncertainty over whether a zero recorded in the gummy column is only seemingly a zero. A second factor is that many changes in effort and fisher behaviour occurred in the fishery sometime between 1991 and 1995. These changes are so marked and would have greatly influenced how the fishery was conducted, and yet the standardization assumes that it is valid to estimate mean parameters across the complete time series. It raises the question of whether there are two time series of catches and catch rates, one up to about 1994 and the other from 1995 onwards, or whether the current assumption of a single time series is valid. The standardization of the positive catches is not greatly affected by separating the time series into 1976-1994 and 1995-2012, which reflects the fact that these time series are generally noisy but flat about the long term average. However, given the transition that occurs around about 1995 it would influence the analysis of the presence or absence of positive shots more significantly. It is unknown whether these two factors would alter the trend expressed in the analysis of presence or absence and so it remains questionable whether or not to include the analysis of zero shots in the overall analysis of catch rate trends.

The early data, meaning that before about 1997, is difficult to combine with the later data. Details regarding how it has been collated appear to have been lost but there are clearly individual shots together with monthly aggregate data records. The large and sudden change in the proportion of positive shots remains an anomaly which is possible related to the advent of universal reporting of individual shots. Unless some way of transitioning between these two periods is determined it could be recommended that the early data not be used in CPUE standardizations. However, there is the possibility of using data in time blocks as long as means of linking those time blocks can be found. Unfortunately the character of the fishery appears to have changed so much that this may not be possible but it will be explored further as an option.

21.2 Introduction

The shark fishery off southern Australia has a long history starting with a long-line fishery which began in the 1920s which switched to gillnets in the 1960s and 1970s when the primary target also switched to gummy sharks (Mustelus antarcticus; Punt et al., 2000; Punt \& Gason, 2006; Thomson \& Punt, 2010). This gillnet fishery now mainly targets gummy sharks although used to target relatively large quantities of School sharks (Galeorhinus galeus) but this is now a bycatch only species. In this shark fishery there are significant amounts of the common saw shark (Pristiophorus cirratus) and southern saw shark (P. nudipinnis; not distinguished from each other in the catch effort records) as well as elephant fish (Callorhinchus milii) taken as bycatch.

21.2.1 Major Management Changes

In 1990 - 1995 some major management changes were introduced. These included the amalgamation of endorsements and a reduction in the net unit from 6000 m to $4,200 \mathrm{~m}$ (by 1993 in Bass Strait and by 1995 in South Australia and Tasmania). With respect to gummy sharks the next big change came in 2001 when Individual Transferable Quotas (based on catch histories from 1994 - 1997) were introduced for both gummy and school sharks. The structural adjustment package which started in Nov 2005 and finished in Nov 2006 led to 26 gillnet vessel SFRs and 17 shark hook vessel SFRs leaving the fishery. In 2012 the option of increasing the length of gillnets set to 6000 m was introduced (Figure 21.2).

Previous attempts to standardize commercial catch rates for sharks in Australia began with Punt et al. (2000) who used the Delta method, which analyses any trend in the probability of obtaining a positive shot and, separately, any trends in catch rates in the positive shots and then combining these two trends to obtain a single standardized catch rate for the fishery. Punt et al. (2000) focused on school sharks but their method was revised and extended when it was later applied to Gummy sharks (Punt \& Gason, 2006; Thomson \& Punt, 2010).

As Kimura (1981, p211) says: "Since the 1950s it has been recognized that fishing power generally differs among vessels, and if c.p.u.e. is to be proportional to abundance, effort measurements must be standardized." The most commonly used method of standardization is to include the various factors thought to effect catch rates into a generalized linear model and to include Year as a factor, in this way the parameters derived for each year become the indices of relative abundance (Venables \& Dichmont, 2004).

After standardization we are left with a set of yearly coefficients that represent the catch rate relative to some reference year (usually with reference to the mean of the time series, which simplifies visual comparisons with other times series). Unfortunately, even if the standardization accounts for a large proportion of the variability in the data there are no guarantees that catch effort, even standardized catch effort, can act as a good proxy for stock size. Instead of the statistical success of the standardization, one should be able to argue from the nature of the fishery and the species concerned whether or not there is likely to be even an approximate relationship between catch rates and the exploitable biomass.

In this present work we focus on the catch rates for gummy shark, treating South Australia, Bass Strait, and Tasmania separately, because this reflects the assumed stock structure.

21.3 Methods

21.3.1 Catch Rate Standardization

The original data was provided by Dr Robin Thomson of CSIRO, in a text file named CANDE12.dat. This contained 478,513 records each with 23 fields (Table 18.17). The data provided received some pre-treatment in order to add the catch rate variables of interest and identify those records for inclusion in the analyses. Catch rates were calculated where there were positive catches of gummy sharks associated with positive
effort levels. Where catch rates could be calculated they were also log transformed in preparation for the log-linear modelling of positive catches. Depth information, where present, was sub-divided into 10 metre depth categories for inclusion in the standardization. A field was added that identified which records contained positive catches of gummy sharks. This latter was necessary as a separate analysis is conducted to characterize the occurrence of zero shots (the complement of positive shots) and whether their incidence has altered through time (see below). Finally, a field was added that generated net length categories in steps of 500 m to simplify some of the comparisons of effort types through time.

In previous standardizations (Punt \& Gason, 2006; Thomson \& Punt, 2010) a wide array of criteria were used to select records for analysis. An important aspect of any standardization where the trend in the probability of zero shots is included is how to identify zero shots, which relate to targeted effort that fails to catch the species of interest. In the SESSF trawl fishery identifying those shots that might have captured a species but didn't is extremely difficult because targeting is so difficult to establish. Fortunately, in the shark gillnet fishery this is less of a problem because gillnet shark fishers are targeting sharks, especially gummy sharks. The problem thus becomes one of focusing attention on those vessels and areas where the fishery is a main focus of effort. The primary data selection criteria are to select the years where the fishery was operating normally (as defined by the SharkRAG), to use records only where gillnets with mesh sizes of $6 ", 6.5 "$ and 7 " were used, to select only those vessels catching a defined minimum total catch per year and a defined number of years in the fishery, to include only those areas which were the main focus of the fishery, and to exclude those records with effort less than 1000 m . In addition, records used were limited to particular gears and finally, those vessels that only caught small amounts of gummy shark across the years of the study were also excluded. The sensitivity of the analyses to the specific values selected as being a minimum reported catch for each area and vessel was tested by comparing an array of different combinations. In addition, the minimum number of years for a vessel to be active in the fishery was also considered.

It has previously been considered that the identification of zero shots could be made easily in the gummy shark fishery. However, there is a field in the database in which gummy shark and school shark catches are reported when combined. There are 9,665 records where there are no data for gummy sharks or for school sharks and yet there is catch data in the 'comb' field (Table 21.1). This is unfortunate because it remains unknown whether the reported catches were gummy or school sharks. What this means is that there may be a significant proportion of catches of gummy sharks which appear to be zero shots but were not in fact zero, they only appear that way. The unattributed catches are greatest in Bass Strait, although South Australia exhibits a few years of increased unattributed catches from 1990 through to 1995 (Table 21.1).

This adds a good deal of uncertainty to the zero shots as previously analysed. An alternative to attempting to identify zero shorts might be to consider the relatively small shots ($<10 \mathrm{~kg}$), which is an option examined by Bradford (2001). In this way those small shots represented in the gummy shark catch field may be a representative sample of all small gummy shark shots. However, it is possible that small shots of both gummy and school sharks were differentially included in the 'comb' field so the outcome of this analysis will remain uncertain.

Table 21.1. The catch in tonnes reported in the separate gummy shark field, and the combined gummy and school shark catches field when there were no data in either the gummy or the school shark fields. It remains unknown whether these catches reported in 'comb' are school or gummy sharks.

	Bass Strait						South Australia			
Year	Gummy	Comb	Gummy	Comb	Tasmania					
1976	660.697	192.790	168.679	74.494	0.250					
1977	812.060	170.102	223.378	65.130	8.165					
1978	745.308	110.671	223.522	14.868						
1979	639.389	92.882	241.416	1.926						
1980	734.394	123.888	332.315							
1981	823.858	123.052	321.379	9.756						
1982	953.134	132.193	295.701	34.104	0.054					
1983	998.303	126.334	262.410	15.244						
1984	962.745	60.208	428.028	24.856						
1985	921.939	98.617	436.553	1.324	7.004					
1986	992.087	105.184	483.357	0.606	2.170					
1987	877.866	107.214	543.542	24.662						
1988	777.049	108.477	609.177	18.789	14.993					
1989	963.005	155.063	670.768	2.873						
1990	835.802	57.606	543.310	97.907	7.355					
1991	908.738	21.708	496.037	132.421						
1992	1033.879	28.198	438.799	180.499	0.329					
1993	1199.372	112.922	428.101	158.216	0.637					
1994	846.529	113.598	457.405	81.042						
1995	1007.847	86.788	466.245	107.501	2.100					
1996	790.020	57.135	553.914	59.086	0.116					
1997	689.712	5.736	700.073	30.942	0.152					
1998	794.510		531.081	24.614						
1999	1026.668		598.994	6.162						
2000	1042.436		525.847	0.256						

21.3.2 The Delta Distribution

Including zero shots has two parts: 1) First, determine the relative probability of obtaining a positive catch. 2) Secondly, conduct a log-linear standardization on those records containing positive catches. These two analyses are then combined to provide the overall estimate of the yearly changes in catch rates required for inclusion in stock assessments.

21.3.3 Caveat to the Identification of Zero Shots

The assumption that it is simple to identify targeted shots in the shark fishery is used to include the proportion of zero shots in the standardization. However, there is an array of factors that call this assumption into doubt. The first factor is that up until 2000 there were amounts of catches reported as 'comb' when no catches were reported in either school or gummy sharks and this was mostly a problem within South Australia; from 2000 onwards, however, the amounts are greatly reduced. This adds greatly to the uncertainty over whether a zero recorded in the gummy column is only seemingly a
zero. A second factor is that many changes in effort and fisher behaviour occurred in the fishery sometime between 1991 and 1995. These changes are so marked and would have greatly influenced how the fishery was conducted, and yet the standardization assumes that it is valid to estimate mean parameters across the complete time series. It raises the question of whether there are two time series of catches and catch rates, one up to about 1994 and the other from 1995 onwards, or whether the current assumption of a single time series is valid. The standardization of the positive catches is not greatly affected by separating the time series into 1976 - 1994 and 1995 - 2012, which reflects the fact that these time series are generally noisy but flat about the long term average. However, given the transition that occurs around about 1995 it would influence the analysis of the presence or absence of positive shots more significantly. It is unknown whether these two factors would alter the trend expressed in the analysis of presence or absence and so it remains questionable whether or not to include the analysis of zero shots in the overall analysis of catch rate trends.

21.3.4 Zero Catches

To estimate the probability of a positive observation (i.e. the species of interest is present in a shot) a binomial GLM (using a logit link function) is used to determine the effect of an array of factors on the probability p_{i}, which is the probability that the species of interest is present in the $i^{\text {th }}$ shot:

$$
\begin{equation*}
\ln \left(\frac{p_{i}}{1-p_{i}}\right)=\beta_{0}+\beta_{1} x_{i, 1}+\beta_{2} x_{i, 2}+\sum_{j=3}^{N} \beta_{j} x_{i j} \tag{4}
\end{equation*}
$$

where p_{i} is the probability that the species of interest was present in the $i^{\text {th }}$ shot, and $x_{i j}$ are the values of the explanatory variables, j, for the $i^{t h}$ shot and the β_{j} are the coefficients for the N factors j, to be estimated (β_{0} is the intercept, β_{I} the coefficient for the first factor, etc.).

The catch rate standardizations all used individual records from the database, which in a number of cases appeared to be aggregated data, potentially aggregated within months, although there were also many individual shots recorded. This is apparent because the reported effort as net length is sometimes in the 100's of thousands of metres for a single record. The catch rate data for positive catches were normalized by using a natural-log transformation. General Linear Models were used with this transformed data rather than using Generalized Linear Models on the untransformed data with a log-link; the approach used has advantages in terms of normalizing the data while stabilizing the variance, which the Generalized Linear Model approach does not always achieve appropriately (Venables \& Dichmont, 2004).

Up to eight different log-linear models were fitted and compared in an effort to account for the effects of year, area, month of fishing, vessel, which depth category was used, which gear was used, and any interactions between area and month, and area and gear (see Haddon, 2011). All variables were treated as categorical variables (alternatively termed factors). The optimum statistical model was selected on the basis of the Akaike's Information Criterion (Burnham \& Anderson, 1998), and the adjusted r^{2} (Neter et al.,1996). The resulting optimal model was plotted in comparison with the geometric mean catch rate, both being scaled to the mean of each series for ease of
visual comparison. The standardized catch rates for the year factor can be used in assessment models as the index of relative abundance through time.

Standard analyses were conducted in each case and all were coded in the statistical software R (R development Core Team, 2009). In each case, catch rates, as kilograms per metre of gillnet fished, were natural log-transformed to normalize the data and stabilize the variance. The General Linear Models all had the same form:

$$
\begin{equation*}
\operatorname{Ln}\left(C P U E_{i}\right)=\alpha_{0}+\alpha_{1} x_{i, 1}+\alpha_{2} x_{i, 2}+\sum_{j=3}^{N} \alpha_{j} x_{i j}+\varepsilon_{i j} \tag{5}
\end{equation*}
$$

where $\operatorname{Ln}\left(C P U E_{i}\right)$ is the natural logarithm of the catch rate $(\mathrm{kg} / \mathrm{m})$ for the i-th record, $x_{i j}$ are the values of the explanatory variables j for the i-th shot (i.e. Year, Disting, Month, etc), and the α_{j} are the coefficients for the N factors j to be estimated (α_{0} is the intercept, α_{1} is the coefficient for the first factor, etc.), and $\varepsilon_{i j}$ are the normal random residual errors.

21.3.5 The Year Effect

The standardised overall year effect for the fishery is calculated as the product of the Year coefficients from the binomial and log-linear GLMs (Eqs (4) and 1) transformed back onto their original scales. For back-transformation all other predictor variables were set to zero, indicating the reference level of each categorical factor. The expected probability (back-transformed from logit) of a non-zero catch in year t is therefore

$$
\begin{equation*}
\hat{p}_{t}=\frac{\exp \left(\beta_{0}+\lambda_{t}\right)}{1+\exp \left(\beta_{0}+\lambda_{t}\right)} \tag{6}
\end{equation*}
$$

where p_{t} is the probability of a non-zero catch in year t, β_{0} is the intercept and the λ_{t} is the Year coefficient for year t. As a test of the procedure the back transformation of the simple PA = Year model should deliver the annual proportion of positive shots.

For the log-normal model the expected back-transformed year effect involves a biascorrection for log-normality; the back transformation without the correction estimates the median of the distribution rather than the mean, adding $\sigma^{2} / 2$ before backtransformation improves the approximation to the mean of the distribution:

$$
\begin{equation*}
C P U E_{t}=e^{\left(\gamma_{t}+\sigma_{t}^{2} / 2\right)} \tag{7}
\end{equation*}
$$

where γ_{t} is the Year coefficient for year t and σ_{t} is its standard error. Total standardised catch rates for year t are calculated as the product of Eqs (6) and (7), stated relative to the average of all values:

$$
\begin{equation*}
\bar{Y}=\frac{\sum_{t=1}^{n} p_{t} C P U E_{t}}{n} \tag{8}
\end{equation*}
$$

where n is the number of years of data. So the standardized catch rates are given relative to the mean of the series. This implies that the average of the time series of standardized
catch rates will always be one, and hence each series is directly comparable with all the others:

$$
\begin{equation*}
Y_{t}=\frac{p_{t} C P U E_{t}}{\bar{Y}} \tag{9}
\end{equation*}
$$

The factors considered in the analyses were all taken as categorical variables and were:
Year the standard calendar year,
Disting each vessel is uniquely and confidentially identified,
Month standard calendar months,
Area Standard shark statistical reporting blocks (Figure 21.1).
Gear $6.0^{\prime \prime}, 6.5$ ", or $7.0^{\prime \prime}$ mesh nets.
DepCat $\quad 10 \mathrm{~m}$ categories (novel this year)
Area:Month An interaction term used to include any seasonal changes across areas.

21.3.6 Data Selection Gummy Sharks

Data selection occurred with the years of data used by zone, the gear used, the depths, used, and with areas only being included if total catches exceeded a given limit, vessels were only included if their average annual catches exceeded a given limit, and they were reporting catches for more than a given number of years in the fishery (Table 21.2).

Table 21.2. Criteria for selecting which records to include in the standardization of gummy sharks.

Criteria	Values
South Australia: years	$1984-2010$
Bass Strait: years	$1976-2010$
Tasmania: years	$1990-2010$
Gear Types	$6 ", 6.5 "$, and $7 "$ mesh gillnet
Depth	10 m depth classes $1-240 \mathrm{~m}$
Areas	Reporting $>10 \mathrm{t}$ over years.
Vessels	Average annual catch $>2 \mathrm{t}$
Vessels	In fishery for >2 years
Effort	$>=1000 \mathrm{~m}$

Useful depth data was not provided from South Australia until after 1997 so depth cannot be included in the South Australia standardization, although from 2000 onwards it would be useful.

There are a large number of vessels contributing to the final analysis, even with the restricted number of years and areas used. To remove noise generated by those vessels reporting very small amounts of gummy sharks those vessels reporting less than an average of 2 tonne per year (for the years in which they reported sharks) were removed from the analysis. In addition, if they reported for less than 3 years they were excluded.

21.3.7 Disjunction around 1995

Major changes appear to have occurred in the data from the fishery during the early 1990s. To illustrate this disjunction the catch per vessel per year (as identified by their distinguishing marks) can be tabulated. From this table it is possible to sum the catches per vessel from 1976-1993 and, separately, the catches by vessel from 1994-2010. These data can then be used to estimate the proportional representation of the catches by vessel across these two periods. In addition to the vessel changes there were changes in how fishing occurred with a major alteration in the net length used in the fishery (Figure 21.2). These changes in net length occurred at about the same time as the vessel changes although there were differences between zones.

Such large changes bring into doubt whether or not the time series of catch rates through the decades remain comparable and raise the question whether or not to treat the data as two time series in which the fishery operated sufficiently differently as to require separate treatment. In fact, separate treatment does not appear to have much impact on the analysis of positive catches but there remains a marked difference in the proportion of zero shots.

21.4 Results

21.4.1 The Shark Fishery

Figure 21.1. Map of shark statistical reporting areas along with the statistical regions. WA is Western Australia, WSA is Western South Australia, CSA is Central South Australia, ESA is Eastern South Australia (sometimes known as SAV - South Australia Victoria), WBS is Western Bass Strait, EBS is Eastern Bass Strait, NSW is New South Wales, ETS is Eastern Tasmania and WTS is Western Tasmania.

Figure 21.2. The relative number of records in the shark fishery in each year reporting different net lengths of effort. The radical change just before 1995 is clear. The 13000 line is $>=13000 \mathrm{~m}$.

21.4.2 The Gummy Shark Fishery

Following the decline in the school shark fishery, the non-trawl shark fishery is now dominated by the gummy shark fishery (Figure 21.3, Figure 21.4; Table 21.18).

Figure 21.3. The total annual catch and number of records for the three main regions in the Gummy shark fishery for all gears. The thick lines represent the range of years chosen by the SharkRAG to represent the fishery, while the fine lines represent the available data in the CANDE12 log book data base. The grey vertical lines relate to 1995 and 2009.

Figure 21.4. Total reported catches of gummy sharks, 1970 - 2012 from the log-books. The grey lines relate to the individual regions. These data relate to all gillnet catches by all mesh sizes. The vertical grey lines relate to 1995 and 2009

There is a clear disjunction between the available data across the period 1995-1997, with changes first becoming apparent depending on location (Figure 21.3, Figure 21.4, and Figure 21.5). The impact on the number of records is more strongly marked than with the reporting of catches, which indicates that the earlier period contains many amalgamated days or trips; this is especially the case in South Australia and in Bass Strait. Such a transition also becomes apparent in the standardized catch rates with a transition in character sometime between 1995 and 1997. Total catches have been relatively stable since 1995 although have been declining since 2009, primarily in South Australia, where the Australian Sea Lion closures began to impact the gummy shark fishery.

Figure 21.5. The relationship between the number of records and the resulting catch each year in each of the three regions. This data relate only to catches taken with 6 ", 6.5 " and 7 " nets are include data from all years 1970 to 2012. Note the different x and Y axes for the different regions.

Reported catches of gummy sharks has declined from a relative high in 2008, although interpreting this is made more complex because of the 16 month TAC put in place for the 2007/2008 season (Table 21.3; Figure 21.8). Nevertheless, the recent decline is real and is related to parallel declines of catches in South Australia and Bass Strait. Catches from South Australia decreased further in 2012 but recovered slightly in Bass Strait. Catches by Drop Line and AutoLine are beginning to rise in the last two years. These various recent changes are attributed to the introduction of gillnet closures to protect Australian Sea Lions and dolphins in South Australian waters.

At the same time the proportion of catches taken by gillnets declined over the period 2001-2012 (Table 21.3).

Figure 21.6. The total catches of gummy sharks across years and areas by the three main mesh sizes and Line methods.

Figure 21.7. The total catch of gummy sharks across years and areas by the five main methods reported in the AFMA logbook database (all gillnet mesh sizes in the top panel).

Table 21.3. A comparison of reported weights with landed weights from the CDR database. Quotas were only introduced in 2001, which was when this data began to be reported in the CDRs. LogBook relate to all methods, GillNets relates to GillNet catches reported in the logbooks.

Year	Total Landed	Log-Books	GillNets	\%LogBook	\%GillNet	TAC
2001	1726.384	1655.552	1521.001	95.90	91.9	1717
2002	1604.916	1491.241	1352.829	92.92	90.7	1717
2003	1676.143	1616.064	1454.115	96.42	90.0	1717
2004	1738.575	1651.195	1484.008	94.97	89.9	1717
2005	1644.973	1566.541	1388.905	95.23	88.7	1717
2006	1646.440	1572.912	1405.758	95.53	89.4	1717
2007	1678.090	1574.136	1413.702	93.81	89.8	2467
2008	1892.140	1727.565	1561.977	91.30	90.4	1717
2009	1645.739	1499.297	1320.881	91.10	88.1	1717
2010	1537.398	1403.149	1212.363	91.27	86.4	1717
2011	1514.216	1364.609	1130.857	90.12	82.9	1717
2012	1328.018	1269.284	991.932	95.58	78.1	1717

Figure 21.8. A comparison of the annual landings reported against quota in the CDRs and catches reported in the log-books, both across all methods and for Gill Nets only. The TAC in 2008 appears less than the catch but this is a reflection of a 16 month season at that time.

The reduction in catches, especially in gillnets is clearly due to reductions in central South Australia. Catches in Tasmania have risen on both the east and west coasts but only by relatively small amounts (Figure 21.8 and Figure 21.9).

Figure 21.9. The catches reported in the main fishery regions in the logbooks taken in the gillnet, hook, and trap fishery (and its historical antecedents).

Figure 21.10. Comparisons of all catch rate data for each zone across years with their respective normal distribution. A natural log-transformation is used to normalize the data in each case. There is slight overrepresentativeness of smaller catch rates and under-representation of larger catch rates but the normal distribution appear to be a reasonable approximation.

21.4.3 South Australia

The standardization of the South Australian gummy shark catch-rates reduces the variation exhibited by the trend through time, with the geometric mean catch rates having a CV of 8.6% while the optimum model has a CV of 9.5% (Figure 21.11; Table 21.4); although these values are overly small through having so many data records. Nevertheless, each mean estimate is relatively uncertain, as indicated by the 95% confidence intervals on the graphs) and only a few years could be considered statistically significant. It should be noted that the width of these confidence intervals are likely to be under-estimates owing to the various influential factors that have not been able to be included in the analysis. The uncertainty in the analysis of positive shots is even greater (Figure 21.11).

Figure 21.11. Standardized catch rates for South Australia gummy sharks using data relating to $6.0^{\prime \prime}, 6.5$ ", and 7.0 " mesh gear, from areas that reported more than 10 tonnes across the 28 years considered (1984 2011), and from vessels with average catches greater than 2 tonnes per annum which had been present in the fishery for at least 3 years. At top is the probability of obtaining a positive catch, the dashed line being the proportion of positive catches in the raw data and the solid line being the statistical optimum model (with 95% error bars surrounding the trend). The central panel represents the log-linear modelling of positive catches. The dashed line is the geometric mean while the solid line is the optimal model, again with 95% confidence limits on the mean estimates. The bottom panel represents the final standardized catch rates, combining the results from the log-linear modelling and the binomial modelling of the probability of a positive catch. The fine black line is the combination of the standardized catch rates and the probability of a positive catch in the raw data, which in this case makes little difference. All trends have been scaled to the mean of each series to ease visual comparison.

When the analysis of positive catches is combined with the analysis of the relative incidence of positive shots then there does not appear to have been the overall trend through time. Perhaps catch rates were lower pre-1995 and generally higher after 1995.

The decline from the high in 2008 is associated with a reduction in the catch landed in South Australia and with a reduction of greater than 50% in the number of records in 2012, relative to 2009, brought about by the Australian sea lion closures. These closures appear likely to lead to a decline in observed catch rates.

The overall conclusion is that the catch rates for gummy shark in South Australia were effectively flat and noisy about the long term average, but that they are now declining for reasons other than stock status.

Figure 21.12. South Australian Gummy shark: The relative influence of each factor used on the final trend in the optimal standardization. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

Table 21.4. The different standardization models fitted to the South Australian gummy shark data. The models are cumulative across the table with the optimum being the Area:Month model.

Year	GeoMean	Vessel	NetLen	Gear	Area	Month	Area:Month
1984	1.4643	1.2866	1.4215	1.2927	1.3670	1.3004	$\mathbf{1 . 3 3 9 3}$
1985	1.3701	1.3320	1.3812	1.2258	1.2469	1.1742	$\mathbf{1 . 1 9 7 8}$
1986	1.0359	1.1390	1.0459	0.9194	0.9692	0.9403	$\mathbf{0 . 9 8 2 3}$
1987	0.7288	0.7195	0.7228	0.6423	0.6725	0.6484	$\mathbf{0 . 6 5 7 3}$
1988	1.0027	1.0378	0.9844	0.9012	0.9564	0.9203	$\mathbf{0 . 9 1 9 3}$
1989	1.0059	1.0537	0.9838	0.9242	0.9473	0.9131	$\mathbf{0 . 9 1 5 8}$
1990	1.0127	1.1262	1.0112	0.9697	0.9284	0.9131	$\mathbf{0 . 8 9 8 4}$
1991	0.9457	1.0388	1.0289	1.0055	0.9631	0.9595	$\mathbf{0 . 9 5 4 1}$
1992	0.8800	0.9607	1.1060	1.0891	1.0588	1.0640	$\mathbf{1 . 0 4 1 8}$
1993	0.8937	1.0290	1.2985	1.1984	1.2277	1.2091	$\mathbf{1 . 1 7 4 6}$
1994	1.0883	1.1895	1.4491	1.3755	1.3541	1.3451	$\mathbf{1 . 3 6 1 8}$
1995	1.2718	1.0926	1.1301	1.1014	1.0153	0.9762	$\mathbf{0 . 9 9 5 5}$
1996	1.6424	1.4510	1.4851	1.4700	1.3908	1.3615	$\mathbf{1 . 3 6 3 2}$
1997	0.8775	0.8451	0.8181	0.8671	0.8974	0.8777	$\mathbf{0 . 8 8 5 8}$
1998	0.5525	0.5780	0.5596	0.5939	0.5967	0.6076	$\mathbf{0 . 6 1 3 8}$
1999	0.6617	0.7049	0.6326	0.6711	0.6613	0.6803	$\mathbf{0 . 6 9 3 4}$
2000	0.9051	0.9119	0.8115	0.8620	0.8643	0.8872	$\mathbf{0 . 8 9 5 0}$
2001	0.9659	0.9275	0.8193	0.8735	0.8672	0.8831	$\mathbf{0 . 8 7 3 2}$
2002	1.0756	1.0293	0.9497	1.0139	0.9897	1.0132	$\mathbf{1 . 0 1 1 3}$
2003	1.0689	1.0324	0.9859	1.0526	1.0831	1.1108	$\mathbf{1 . 1 0 7 6}$
2004	1.0682	1.0505	1.0269	1.0958	1.1325	1.1617	$\mathbf{1 . 1 5 5 2}$
2005	0.9922	1.0235	1.0196	1.0892	1.0990	1.1362	$\mathbf{1 . 1 1 7 7}$
2006	0.9980	1.0104	1.0155	1.0825	1.0730	1.1055	$\mathbf{1 . 0 9 2 0}$
2007	1.0463	1.0356	1.0405	1.1093	1.1112	1.1422	$\mathbf{1 . 1 2 6 5}$
2008	1.2403	1.2145	1.2121	1.2946	1.2933	1.3325	$\mathbf{1 . 2 9 9 4}$
2009	0.9859	0.9952	0.9344	0.9988	1.0039	1.0339	$\mathbf{1 . 0 4 5 9}$
2010	0.8183	0.8304	0.8168	0.8741	0.8989	0.9261	$\mathbf{0 . 9 0 6 9}$
2011	0.7446	0.7440	0.7390	0.7927	0.7669	0.7941	$\mathbf{0 . 7 8 4 5}$
2012	0.6567	0.6104	0.5701	0.6137	0.5639	0.5826	$\mathbf{0 . 5 9 0 6}$
CV	0.0865	0.0887	0.0961	0.0976	0.0960	0.0956	0.0949

Table 21.5. The statistical diagnostics for the South Australian gummy shark standardization. The smallest AIC and largest adjusted r^{2} indicates the optimum statistical model.

	GeoMean	Vessel	NetLen	Gear	Area	Month	Area:Month
AIC	28941	24135	22209	22151	19179	18459	$\mathbf{1 6 5 6 1}$
RSS	119468	112659	109456	109377	105553	104636	$\mathbf{1 0 1 5 8 9}$
MSS	4323	11131	14334	14413	18238	19154	$\mathbf{2 2 2 0 2}$
Nobs	85077	85077	85077	85077	85077	85077	$\mathbf{8 5 0 7 7}$
Npars	29	122	386	388	416	427	735
adj_r2	3.460	8.862	11.178	11.240	14.315	15.048	$\mathbf{1 7 . 2 2 1}$
\%Change	0.000	5.402	2.315	0.062	3.075	0.733	$\mathbf{2 . 9 0 6}$

Figure 21.13. A comparison of the standardization obtained for South Australia obtained from positive catches from the CANDE12 database and the SESSF GenLog log book database. The overlap since the structural adjustment is extremely close but that reflects the fact that the CANDE database is updated from 2005 onwards using the GenLog database.

Table 21.6. Standardization of positive shots using data from the SESSF logbooks (Figure 21.13).

	Year	Vessel	DepCat	Area	Month	DayNight	Area:Month	Area:DepCat
1997	1.0424	1.1517	1.1782	1.1790	1.0895	1.0633	1.0665	1.0795
1998	0.7665	0.8499	0.8757	0.8751	0.8597	0.8447	0.8447	0.8485
1999	0.9999	1.0161	1.0250	1.0241	1.0189	1.0066	1.0077	1.0107
2000	1.5288	1.4883	1.4888	1.4884	1.4858	1.4847	1.4819	1.4841
2001	0.8156	0.7965	0.7892	0.7885	0.7804	0.7817	0.7827	0.7811
2002	0.9177	0.8776	0.8739	0.8737	0.8643	0.8652	0.8647	0.8621
2003	0.9438	0.9305	0.9390	0.9374	0.9294	0.9327	0.9333	0.9309
2004	0.9596	0.9569	0.9741	0.9739	0.9734	0.9775	0.9771	0.9738
2005	1.0715	1.0278	1.0260	1.0255	1.0409	1.0446	1.0464	1.0479
2006	1.1049	1.0687	1.0677	1.0687	1.0891	1.0944	1.0941	1.0878
2007	1.1738	1.1344	1.1346	1.1369	1.1482	1.1541	1.1579	1.1543
2008	1.3369	1.3417	1.3314	1.3339	1.3546	1.3623	1.3609	1.3603
2009	0.9960	1.0319	1.0209	1.0223	1.0300	1.0367	1.0366	1.0355
2010	0.8728	0.8966	0.8773	0.8781	0.8959	0.9027	0.9019	0.9031
2011	0.8114	0.8174	0.7875	0.7867	0.8160	0.8211	0.8194	0.8169
2012	0.6584	0.6139	0.6109	0.6079	0.6238	0.6277	0.6243	0.6234
StErr	0.0246	0.0273	0.0273	0.0273	0.0274	0.0293	0.0293	0.0293

21.4.4 Bass Strait

The transition in the character of the gillnet commercial catch and effort data before and after 1995 or 1996 is clearly apparent in the catch rate standardization, although in the case of Bass Strait this is only apparent in the standardization of the probability of obtaining a positive shot. Zero shots for gummy sharks became far less likely following 1995 (Figure 21.14), which corresponds to changes in allowable net length and other related management changes. This transition is very apparent in the plot of the influence of each factor on the trend in the standardized catch rates (Figure 21.15); although see Haddon (2012) for data on net length and other changes in the fishery at that time.

Figure 21.14. Standardized catch rates for Bass Strait gummy sharks using data relating to $6.0^{\prime \prime}, 6.5^{\prime \prime}$, and 7.0 " mesh gear, from areas that reported more than 10 tonnes across the 37 years considered ($1976-$ 2012), and from vessels with average catches greater than 2 tonnes per annum which had been present in the fishery for at least 3 years. The top panel represents the probability of obtaining a positive catch, the dashed line being the proportion of positive catches in the raw data and the solid line being the statistical optimum model (with the 95% error bars surrounding the trend). The central panel represents the loglinear modelling of positive catches. The dashed line is the geometric mean while the solid line is the optimal model, and again the bars are the 95% confidence limits on the mean estimates. The bottom panel represents the final standardized catch rates, combining the results from the log-linear modelling and the binomial modelling of the probability of a positive catch. The fine black line is the combination of the standardized catch rates and the probability of a positive catch in the raw data. All trends have been scaled to the mean of each series to ease visual comparison.

As with the positive catches in South Australia, the gummy shark catch rates in Bass Strait are noisy and flat relative to the long term catch rate. The probability of a positive catch, however, undergoes a significant change between 1993 - 1997. Thus, when the two series are combined the net result is stable catch rates from 1976 to about 1990 followed by a gradual increase up until 2008, followed by a decline to the present day. There is no simple mitigation for the uncertainty over the estimation of zero catches brought about by the presence of combined school shark and gummy shark records when there are no data for school or gummy sharks (Table 21.19). Despite the decline the catch rates since 2008 the catch rates are still above the long term average. This is even the case if the simple proportion of positive shots is used instead of the standardized time series. The catch rates (for the positive catches only) for both South Australia and Bass Strait (Figure 21.14) follow approximately the same trajectory through time (Figure 21.17).

Figure 21.15. The relative influence of each factor used on the final trend in the optimal standardization for Bass Strait Gummy shark. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

Despite the large change in the fishery between about 1994 and 1995 when the available data are analysed separately pre and post 1995, while there are more deviations from the original single time series trend in the pre-1995 data than post-1994, no important differences in the trends are apparent (Figure 21.16).

Figure 21.16. A comparison of the standardization when all Bass Strait data are analysed at once with an analysis of only those data from 1976-1994, and those data from 1995-2012.

Figure 21.17. A comparison of the optimum standardized catch rates for positive catches for South Australia (SA) and Bass Strait (BS), both scaled to a mean of 1.0 over the years 1984 - 2012.

Table 21.7. The statistical diagnostics for the Bass Strait gummy shark standardization. The smallest AIC and largest adjusted r^{2} indicates the optimum statistical model.

	GeoMean	Vessel	Area	Depth	Gear	Month	Area:Month
AIC	43836	38302	33226	31945	31932	31185	28587
RSS	196698	189061	182540	180882	180862	179909	176249
MSS	5539	13176	19697	21355	21375	22328	25988
Nobs	145651	145651	145651	145651	145651	145651	145651
Npars	37	154	172	196	198	209	407
adj_r2	2.715	6.417	9.633	10.439	10.448	10.913	12.607
\%Change	0.000	3.702	3.216	0.806	0.009	0.465	2.159

Table 21.8. The different standardization models fitted to the Bass Strait gummy shark data. The models are cumulative across the table with the optimum being the Area:Month model. The CVs reflect the relative variability of each time series. The CVs for each series are again very small, which is a reflection of the large number of observations available.

Year	GeoMean	Vessel	Area	Depth	Gear	Month	Area:Month
1976	1.3899	1.2408	1.2628	1.2576	1.2255	1.2189	1.1917
1977	1.4174	1.2151	1.2160	1.2308	1.2390	1.2498	1.2260
1978	1.1011	1.0371	1.0690	1.0983	1.1020	1.1228	1.1248
1979	0.8370	0.7957	0.8226	0.8360	0.8333	0.8379	0.8622
1980	0.9176	0.8911	0.8969	0.9147	0.9123	0.9004	0.9004
1981	1.0031	1.0014	1.0175	1.0316	1.0263	1.0204	1.0398
1982	1.0321	1.0478	1.0714	1.0891	1.0845	1.0750	1.0824
1983	0.8582	0.8804	0.9150	0.9415	0.9388	0.9329	0.9442
1984	0.7215	0.7681	0.7870	0.8099	0.8089	0.8094	0.8164
1985	0.7311	0.7493	0.7736	0.7780	0.7817	0.7790	0.7941
1986	0.7474	0.7280	0.7591	0.7717	0.7752	0.7758	0.7733
1987	0.7020	0.6779	0.7081	0.7227	0.7259	0.7262	0.7286
1988	0.8183	0.8093	0.8381	0.8558	0.8589	0.8525	0.8581
1989	0.9744	0.9540	0.9346	0.9475	0.9511	0.9454	0.9607
1990	0.9605	0.9688	0.9512	0.9675	0.9697	0.9723	0.9958
1991	0.8815	0.8790	0.8965	0.9102	0.9120	0.9169	0.9331
1992	1.2166	1.2336	1.2728	1.3036	1.3039	1.3088	1.3130
1993	1.2553	1.2712	1.2970	1.3162	1.3176	1.3289	1.3415
1994	0.9350	0.9607	0.9953	1.0039	1.0049	1.0096	1.0267
1995	1.1157	1.1239	1.1798	1.1995	1.2008	1.2007	1.1919
1996	0.8655	0.8584	0.8820	0.8945	0.8955	0.8894	0.9030
1997	0.6635	0.6411	0.6441	0.6524	0.6530	0.6510	0.6569
1998	0.7731	0.7633	0.7599	0.7595	0.7602	0.7558	0.7657
1999	0.9232	0.9033	0.8843	0.8791	0.8798	0.8780	0.8880
2000	0.9250	0.9148	0.8992	0.8820	0.8829	0.8832	0.8879
2001	1.2109	1.1955	1.1446	1.1199	1.1209	1.1270	1.1218
2002	0.9636	0.9613	0.9238	0.8999	0.9007	0.9011	0.8956
2003	0.9837	0.9848	0.9472	0.9174	0.9181	0.9123	0.9062
2004	0.9638	0.9755	0.9531	0.9276	0.9280	0.9355	0.9155
2005	1.0935	1.1283	1.0702	1.0412	1.0420	1.0417	1.0286
2006	1.1622	1.1924	1.1237	1.0933	1.0941	1.0897	1.0660
2007	1.4271	1.4637	1.3949	1.3536	1.3545	1.3523	1.3295
2008	1.5098	1.5855	1.5375	1.4989	1.4999	1.5023	1.4755
2009	1.2435	1.3142	1.2801	1.2546	1.2556	1.2635	1.2399
2010	1.0010	1.0426	1.0337	1.0142	1.0150	1.0136	0.9960
2011	0.8678	0.9503	0.9536	0.9343	0.9352	0.9295	0.9300
2012	0.8070	0.8918	0.9039	0.8915	0.8923	0.8906	0.8895
CV	0.0423	0.0442	0.0436	0.0438	0.0443	0.0442	0.0439

Table 21.9. The statistical diagnostics for the Bass Strait gummy shark standardization using the CANDE12 dataset. The smallest AIC and largest adjusted r^{2} indicates the optimum statistical model. DN is daynight and DepCat is a series of 20 m depth categories.

	Year	Disting	Area	DepCat	Gear	Month	Area:Month	Area:Gear
AIC	43836	38302	33226	31945	31932	31185	28587	31028
RSS	196698	189061	182540	180882	180862	179909	176249	179626
MSS	5539	13176	19697	21355	21375	22328	25988	22611
Nobs	145651	145651	145651	145651	145651	145651	145651	145651
Npars	37	154	172	196	198	209	407	245
adj_r2	2.715	6.417	9.633	10.439	10.448	10.913	12.607	11.031
\%Change	0.000	3.702	3.216	0.806	0.009	0.465	2.159	0.118

Table 21.10. Standardization of positive shots using data from the SESSF logbooks (Figure 21.18).

	Year	Vessel	SArea	DepCat	Month	DN	SArea:Mth	SArea:DepCat
1997	0.5862	0.6389	0.6314	0.6594	0.6624	0.6736	0.6763	0.6731
1998	0.7649	0.8227	0.8235	0.8426	0.8405	0.8583	0.8594	0.8589
1999	0.9092	1.0379	1.0318	1.0485	1.0499	1.0623	1.0651	1.0610
2000	0.9770	1.1035	1.1016	1.1132	1.1047	1.1016	1.1010	1.0985
2001	0.9177	0.9936	0.9815	0.9812	0.9864	0.9838	0.9863	0.9883
2002	0.7632	0.8056	0.7990	0.7968	0.7959	0.7936	0.7912	0.7915
2003	0.7699	0.8198	0.8200	0.8083	0.8045	0.8028	0.8057	0.8109
2004	0.8577	0.8725	0.8727	0.8632	0.8669	0.8648	0.8643	0.8635
2005	1.0116	0.9783	0.9703	0.9594	0.9637	0.9603	0.9616	0.9545
2006	1.1738	1.1095	1.0936	1.0811	1.0762	1.0729	1.0670	1.0616
2007	1.5152	1.3667	1.3659	1.3434	1.3392	1.3345	1.3328	1.3371
2008	1.5757	1.4603	1.4634	1.4458	1.4466	1.4426	1.4353	1.4368
2009	1.3233	1.2513	1.2565	1.2529	1.2617	1.2575	1.2556	1.2575
2010	1.0658	0.9911	1.0001	0.9971	0.9978	0.9944	0.9949	1.0031
2011	0.9157	0.8852	0.9077	0.9116	0.9068	0.9037	0.9055	0.9060
2012	0.8729	0.8631	0.8810	0.8956	0.8969	0.8934	0.8980	0.8977
StErr	0.0254	0.0264	0.0262	0.0262	0.0262	0.0292	0.0292	0.0292

Figure 21.18. A comparison of the standardization obtained for positive catches from the CANDE12 database and the SESSF GenLog log book database for Bass Strait. The overlap since the structural adjustment is extremely close but that reflects the fact that the CANDE database is updated from 2005 onwards using the GenLog database.

Figure 21.19. Comparison of the standardized CPUE (solid line) from the SESSF logbooks with the geometric mean CPUE (dashed line). The bars are 95% error bars about the mean estimates.

Table 21.11. The statistical diagnostics for the Bass Strait gummy shark standardization using the SESSF database. The smallest AIC and largest adjusted r^{2} indicates the optimum statistical model. DN is daynight and DepCat is a series of 20 m depth categories.

	Year	Vessel	Zone	DepCa	Month	DayNigh	Zone:Mont	Zone:DepCa
AIC	34744	27483	26661	25379	24999	24969	24866	24588
RSS	12621	11536	11422	11191	11137	111325	111157	110750
RSS	8	5	6	6	4	111325	11157	110750
MSS	4385	15237	16377	18686	19229	19277	19446	19852
Nobs	83136	83136	83135	82575	82575	82575	82575	82575
Npars	16	123	124	136	147	150	161	173
adj_r2	3.340	11.537	12.410	14.167	14.572	14.606	14.724	15.024
\%Chang	0.000	8.197	0.873	1.757	0.405	0.034	0.118	0.418

21.4.5 Tasmania

Even though the RAG decided to use the years 1990 onwards there are major changes prior to 1995. The catches in the standardized data are all <20 trom $1979-1994$, and the number of records jumps from <200 to >350 in 1995 (Table 21.18). Nevertheless, as a result of the great variation in the data the trend in the probability of a positive catch is effectively flat throughout the time series and so is the standardized catch rates for positive shots, at least since 1996 (Figure 21.20)

Figure 21.20. Standardized catch rates for Tasmanian gummy sharks using data relating to $6.0^{\prime \prime}, 6.5^{\prime \prime}$, and 7.0 " mesh gear, from areas that reported more than 10 tonnes across the 23 years considered (1990 2012), and from vessels with average catches greater than 2 tonnes per annum which had been present in the fishery for at least 3 years. The top panel represents the probability of obtaining a positive catch, the dashed line being the proportion of positive catches in the raw data and the solid line being the statistical optimum model (with the 95% error bars surrounding the trend). The central panel represents the loglinear modelling of positive catches. The dashed line is the geometric mean while the solid line is the optimal model, and again the bars are the 95% confidence limits on the mean estimates. The bottom panel represents the final standardized catch rates, combining the results from the log-linear modelling and the binomial modelling of the probability of a positive catch. The fine black line is the combination of the standardized catch rates and the probability of a positive catch in the raw data. All trends have been scaled to the mean of each series to ease visual comparison.
In Tasmania, the standardization of positive shots has reduced the variation apparent in the overall trend (Figure 21.20). It is perhaps a coincidence that there are almost no data in the combined data field where catches of gummy and school sharks are confused (Table 21.19).

Figure 21.21. The relative influence of each factor used on the final trend in the optimal standardization for Tasmanian Gummy shark. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor 3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

Some large changes occurred in the Tasmanian fishery prior to 1997 with respect to both the vessels doing the fishing and the gear that was used (6", 6.5", or 7"; Haddon, 2012). Otherwise there were few differences between the geometric mean catch rates and the optimum model, so other factors only contributed very little to changes in the observed trend.

Table 21.12. The different standardization models fitted to the Tasmanian gummy shark data. The models are cumulative across the table with the optimum being the Area:Month model. The CVs reflect the relative variability of each time series.

Year	GeoMean	Vessel	Area	Depth	Gear	Month	Area:Month
1990	0.5131	0.4770	0.5154	0.4880	0.4768	0.5119	0.4893
1991	0.7149	0.7921	0.8104	0.8266	0.7841	0.7486	0.7287
1992	1.1225	0.9200	0.8900	0.8779	0.9942	1.0261	0.9691
1993	0.7481	1.3306	1.3574	1.3653	1.5606	1.6685	1.6740
1994	0.8542	1.7311	1.7221	1.6943	1.8103	1.9811	1.9584
1995	2.2756	1.5808	1.5733	1.7494	1.7566	1.7830	1.7261
1996	1.6577	1.1378	1.1419	1.2571	1.2624	1.2685	1.2772
1997	1.1966	0.9890	1.0112	1.0060	1.0589	1.0365	1.0440
1998	0.8445	0.9303	0.9416	0.9391	0.8884	0.9055	0.9411
1999	0.8379	0.9959	1.0046	0.9992	0.9469	0.9550	0.9966
2000	0.6753	0.7481	0.7602	0.7610	0.7638	0.7600	0.8182
2001	1.4429	1.2886	1.3152	1.2720	1.2316	1.2033	1.2467
2002	0.9652	0.9492	0.9640	0.9408	0.8924	0.8613	0.8629
2003	0.8681	1.0962	1.0936	1.0776	1.0243	0.9903	1.0204
2004	0.9880	1.0995	1.0951	1.0755	1.0030	0.9715	1.0037
2005	0.9576	0.8969	0.8893	0.8746	0.8187	0.7871	0.7947
2006	1.2758	1.0812	1.0414	1.0168	1.0213	0.9667	0.9382
2007	0.7755	0.8561	0.8442	0.8259	0.8236	0.8150	0.8121
2008	0.7164	0.7482	0.7340	0.7173	0.7112	0.6991	0.6877
2009	0.8684	0.9013	0.8907	0.8734	0.8567	0.8310	0.8353
2010	0.9209	0.8913	0.8764	0.8673	0.8487	0.8172	0.8023
2011	1.0330	0.7635	0.7526	0.7363	0.7211	0.6848	0.6561
2012	0.7476	0.7951	0.7753	0.7587	0.7445	0.7280	0.7169
CV	0.1235	0.1344	0.1351	0.1378	0.1398	0.1388	0.1396

Table 21.13. The statistical diagnostics for the Tasmanian gummy shark standardization. The smallest AIC and largest adjusted r^{2} indicates the optimum statistical model.

	GeoMean	Vessel	Area	Depth	Gear	Month	Area:Month
AIC	3833	524	482	458	437	207	-10
RSS	15352	11243	11187	11114	11089	10833	10489
MSS	839	4949	5004	5077	5102	5358	5702
Nobs	10818	10818	10818	10818	10818	10818	10818
Npars	23	54	60	83	85	96	162
adj_r2	4.989	30.221	30.530	30.834	30.978	32.499	34.236
\%Change	0.000	25.232	0.309	0.304	0.143	1.521	1.737

Figure 21.22. A comparison of the standardization obtained for Tasmania from positive catches from the CANDE12 database and the SESSF GenLog log book database. The overlap since the structural adjustment is extremely close but that reflects the fact that the CANDE database is updated from 2005 onwards using the GenLog database.

Figure 21.23. Comparison of the standardized CPUE (solid line) from the SESSF logbooks with the geometric mean CPUE (dashed line) for Tasmania. The bars are 95% error bars about the mean estimates.

Table 21.14. Standardization of positive shots using data from the SESSF logbooks (Figure 21.23).

	Year	Vessel	Month	DepCat	DN	Area	Area:Mth	Area:DepCat
1997	0.7500	0.8168	0.7968	0.8290	0.9107	0.9134	0.9670	0.9714
1998	0.9239	0.7367	0.7480	0.7678	0.8314	0.8334	0.8374	0.8478
1999	1.0831	0.8710	0.8946	0.9244	0.9584	0.9668	0.9788	0.9870
2000	1.3685	1.0831	1.1038	1.1677	1.1468	1.1517	1.1636	1.1795
2001	0.8741	1.1780	1.1566	1.1682	1.1425	1.1460	1.1254	1.1290
2002	0.7818	1.0286	1.0066	1.0103	0.9946	0.9975	0.9877	0.9951
2003	0.7770	1.1772	1.1402	1.1314	1.1145	1.1215	1.1047	1.1173
2004	0.7764	1.1168	1.1116	1.1114	1.0986	1.1046	1.1053	1.1170
2005	1.0399	1.0222	1.0045	0.9943	0.9862	0.9880	1.0021	1.0015
2006	1.4941	1.2338	1.2065	1.1818	1.1695	1.1635	1.1544	1.1520
2007	0.9048	0.9817	1.0069	0.9840	0.9722	0.9702	0.9549	0.9521
2008	0.8293	0.8511	0.8745	0.8578	0.8462	0.8436	0.8372	0.8324
2009	1.0268	1.0146	1.0280	1.0017	0.9901	0.9846	0.9866	0.9686
2010	1.2161	1.0344	1.0492	1.0337	1.0241	1.0164	1.0135	0.9988
2011	1.3571	0.9394	0.9311	0.9117	0.9002	0.8933	0.8870	0.8707
2012	0.7970	0.9145	0.9409	0.9250	0.9142	0.9055	0.8946	0.8797
StErr	0.1099	0.1241	0.1234	0.1246	0.1324	0.1325	0.1335	0.1338

Table 21.15. The statistical diagnostics for the Tasmanian gummy shark standardization. The smallest AIC and largest adjusted r^{2} indicates the optimum statistical model. DN is daynight and DepCat is a series of 20 m depth categories.

	Year	Vessel	Month	DepCat	DN	Area	Area:Mth	Area:DepCat
AIC	5235	621	396	365	351	354	325	330
RSS	16560	10132	9876	9711	9691	9678	9627	9610
MSS	467	6895	7151	7316	7336	7349	7400	7417
Nobs	9668	9668	9668	9557	9557	9543	9543	9543
Npars	16	84	95	106	109	110	121	132
adj_r2	2.591	39.977	41.429	42.334	42.433	42.506	42.741	42.776
\%Change	0.000	37.386	1.452	0.905	0.099	0.073	0.236	0.034

21.5 Extra Tables

Table 21.16. The final combined analyses for each zone. These should be used if the probability of a positive catch is to be included in the assessment.

Year	BS	SA	TAS
1976	0.657816		
1977	0.919666		
1978	1.033815		
1979	0.65019		
1980	0.654582		
1981	0.621516		
1982	0.65994	0.9675058	
1983	0.641005	0.759408	0.395995
1984	0.524362	0.519877	0.873703
1985	0.494253	0.896784	1.09718
1986	0.573726	0.711507	1.465948
1987	0.520346	0.687006	1.499091
1988	0.561601	0.837051	1.155247
1989	0.629708	0.833322	0.928108
1990	0.760013	1.017533	0.846442
1991	0.77771	0.821202	0.911791
1992	1.075849	1.366473	0.910573
1993	1.233562	0.961287	1.236792
1994	0.942944	0.668498	0.952764
1995	1.217083	0.756255	1.142914
1996	0.978781	1.003006	1.136708
1997	0.769438	0.977275	0.898011
1998	0.943452	1.165447	1.092003
1999	1.120007	1.203587	0.84658
2000	1.157581	1.330072	0.973146
2001	1.447686	1.313557	0.936212
2002	1.173542	1.31988	0.766698
2003	1.119147	1.360139	0.837532
2004	1.189954	1.259269	
2005	1.339402	1.095339	
2006	1.424885	0.945783	
2007	1.776393	0.704511	
2008	1.976022		
2009	1.662934		
2010	1.334452		
2011	1.244737		
2012	1.191899		

Table 21.17. Data fields contained in the original file, CANDE12.dat, used in the analyses. The fields from CE down $(24-29)$ were added prior to analysis.		
Field	Column	Contents
1	Year	Calendar Year
2	Month	Calendar Month
3	Vessel	Vessel Name - only available consistently in two years
4	Disting	Vessel Distinguishing mark - across all years
5	orig	Presumably region of original port
6	op	Operation within the month
7	Gear	Type of fishing gear mesh size, hooks, or unknown
8	Region	Fishery Region
9	Zone	Fishery zone name : BS, SA, TS, or UN
10	Gummy	Gummy shark catches
11	School	School shark catches
12	Comb	Combined School and Gummy shark catches
13	Saw	Saw shark catches
14	Eleph	Elephant fish/shark catches
15	other	Other sharks - seven gill, etc.
16	Scale	Scalefish catches
17	Effort	Fishing effort: -1 = no data
18	sh	Number of shots per records $(0=1$!).
19	Area	Statistical reporting area
20	dmin	minimum depth
21	dmax	maximum depth
22	gear2	Second type of gear when used
23	effort2	Effort in second type of gear where used.
24	dav	Average depth - the average of dmin and dmax
25	depcat	10 metre depth categories 0-9 = 0, 10-19 = $10,20-29=20$, etc
26	PA	Positive gummy shark catches vs zero gummy shark catch
27	netlen	500 m net length categories $1000,1500,2000,2500$, etc.
28	LnCE	Log of CE, where CE is valid
29	CE	Catch rate where catches >0 and effort>0

Table 21.18. The annual catches and reported number of records for each of the three main regions. The greyed cells illustrate the years used in the analyses for each region.

	Bass Strait		South Australia		Tasmania		Unknown	
Year	Catch	Records	Catch	Records	Catch	Records	Catch	Records
1976	660.697	3273	168.679	1367	77.043	247		
1977	812.060	3595	223.378	1323	99.252	443		
1978	745.308	3903	223.522	1112	94.017	382		
1979	639.389	3885	241.416	837	93.939	512		
1980	734.394	4418	332.315	898	137.005	577		
1981	823.858	4145	321.379	868	109.678	298		
1982	953.134	4925	295.701	953	84.599	188		
1983	998.303	5184	262.410	954	82.986	176		
1984	962.745	4915	428.028	1327	195.025	463		
1985	921.939	5445	436.553	1455	230.356	983		
1986	992.087	5761	483.357	1910	162.412	942		
1987	877.866	5875	543.542	2620	178.763	1384		
1988	777.049	6659	609.177	2615	185.300	1683		
1989	963.005	6183	670.768	2406	173.237	1714		
1990	835.802	5238	543.310	2609	161.099	2143		
1991	908.738	7025	496.037	3121	140.333	903		
1992	1033.879	6677	438.799	2942	200.993	1168		
1993	1199.372	6643	428.101	2562	268.476	902		
1994	846.529	6215	457.405	2362	208.221	650		
1995	1007.847	7066	466.245	2699	118.041	1645		
1996	790.020	9308	553.914	2280	142.581	4915		
1997	689.712	8979	700.073	7697	104.189	1606		
1998	794.510	8221	531.081	10579	103.123	1923		
1999	1026.668	9773	598.994	9103	109.187	2368		
2000	1042.436	9000	525.847	7397	83.574	2193		
2001	1185.790	7625	437.488	7265	73.784	1586		
2002	941.709	6631	445.909	6312	111.375	1376		
2003	963.146	7167	517.162	7374	110.403	1448		
2004	925.161	6767	499.861	6973	129.520	1316	1.253	33
2005	842.555	5597	511.215	6835	98.833	1262	2.026	76
2006	778.575	6972	612.635	8168	137.053	1466	46.302	1816
2007	930.965	5942	497.020	6466	108.761	1427	38.168	1247
2008	1034.396	6754	588.393	6809	78.652	1263	25.354	1069
2009	890.071	7063	496.803	7279	83.002	1087	29.458	1116
2010	807.203	7909	464.079	7113	98.401	1092	33.989	1315
2011	870.488	9424	318.885	5436	131.001	1440	27.613	1249
2012	853.235	9382	228.910	3453	165.641	1810	11.864	694

Table 21.19. The catch and number of records for the 9665 records which had no gummy or school shark catches but had data in the combined field.

	Bass Strait		South Australia		Tasmania	
Year	Catch	Records	Catch	Records	Catch	Records
1976	192.790	449	74.494	177	0.250	1
1977	170.102	447	65.130	142	8.165	6
1978	110.671	277	14.868	36		
1979	92.882	257	1.926	9		
1980	123.888	381				
1981	123.052	461	9.756	24		
1982	132.193	567	34.104	57	0.054	1
1983	126.334	490	15.244	43		
1984	60.208	375	24.856	48		
1985	98.617	452	1.324	7	7.004	17
1986	105.184	317	0.606	3	2.170	2
1987	107.214	367	24.662	127		
1988	108.477	359	18.789	127	14.993	22
1989	155.063	400	2.873	19		
1990	57.606	260	97.907	132	7.355	5
1991	21.708	200	132.421	249		
1992	28.198	135	180.499	189	0.329	2
1993	112.922	304	158.216	213	0.637	2
1994	113.598	234	81.042	129		
1995	86.788	360	107.501	185	2.100	10
1996	57.135	306	59.086	103	0.116	4
1997	5.736	62	30.942	79	0.152	1
1998			24.614	22		
1999			6.162	8		
2000			0.256	4		

21.6 Acknowledgements

Thanks go to Robin Thomson and Miriana Sporcic for all the pre-analytical data preparation required maintaining the Shark data set.

21.7 Bibliography

Bradford, E. (2001) Standardized catch rate indices for New Zealand school shark Galeorhinus galeus, 1989-90 to 1998-99. New Zealand Fisheries Assessment Report 2001/33. 76p.

Burnham, K.P. \& D.R. Anderson (1998) Model Selection and Inference. A practical Information-Theoretic approach. Springer-Verlag, New York Ltd. 353p.

Kimura, D.K. (1981) Standardized measures of relative abundance based on modelling \log (c.p.u.e.), and their application to pacific ocean perch (Sebastes alutus). Journal du Conseil International pour l'Exploration de la Mer. 39: 211-218.

Haddon, M. (2010a) Saw Shark and Elephant fish TIER 4 Analyses. (Data 1980 2009). CSIRO Wealth from Oceans, Hobart. 16 pp.

Haddon, M. (2010b) Standardized Catch Rates for the SESSF Saw Shark and Elephant fish Fisheries. CSIRO Wealth from Oceans, Hobart. 47 pp.

Haddon, M. (2012) Standardized catch rates for the SESSF gummy shark fishery. Data from 1976-2010. Pp 236-275 in Tuck, G.N. (ed.) 2012. Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2011. Part 2. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 507 p.

Neter, J., Kutner, M.H., Nachtsheim, C.J, and W. Wasserman (1996) Applied Linear Statistical Models. Richard D. Irwin, Chicago.

Punt, A.E., Walker, T.I., Taylor, B.L., and F. Pribac (2000) Standardization of catch and effort data in a spatially structured shark fishery. Fisheries Research 45: 129-145.

Punt, A.E. and A. Gason (2006) Revised Standardized Catch-Rate Series for School and Gummy Shark based on Data up to 2005. CSIRO Martine and Atmospheric Research, Hobart.

R Development Core Team (2009). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

Little, L. R, Wayte, S.E. Tuck, G.N., Smith, A.D.M., Klaer, N., Haddon, M., Punt, A.E., Thomson, R., Day, J. and M. Fuller (2011). Development and evaluation of a cpuebased harvest control rule for the southern and eastern scalefish and shark fishery of Australia. ICES Journal of Marine Science (Advanced Access) doi:10.1093/icesjms/fsr019.

Thomson, R.B., and Punt, A.E. (2010). Revised standardized catch-rate series for gummy shark based on data up to 2008. Tech. Rept. Presented to SharkRAG, Adelaide, 15-16 April 2010.

Venables, W. and C. M. Dichmont (2004). GLMs, GAMs and GLMMs: an overview of theory for applications in fisheries research. Fisheries Research 70: 319-337.

Rodriguez, V.B., and K. McLoughlin (2009a) Saw Shark CPUE Standardization and TIER 4 Assessment, 2009. SharkRAG Document 2009/10. BRS 16 p.

Rodriguez, V.B., and K. McLoughlin (2009b) Elephant fish CPUE Standardization and TIER 4 Assessment, 2009. SharkRAG Document 2009/11. BRS 14 p.

22. Blue Eye Fishery Characterization

Malcolm Haddon
CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart, TAS 7001, Australia

22.1 Summary

The Blue Eye CPUE standardization for trawls and for the combination of auto-line and bottom-line were not considered to provide an adequate representation of trends within the Blue Eye fishery. The expansion of whale depredations in association with the changed behaviour of the fishing vessels in the presence of whales, along with the restriction of fishing location options due to an increase in the number of marine closures that were impacting on the availability of fishing grounds and the movement of fishing effort in recent years much further north off the north east coast of New South Wales and Queensland has altered the reliability of CPUE as an indicator of relative abundance. The key issue of the reliability of simple CPUE analyses for relating to stock abundance reflects the spatial heterogeneity of both the Blue Eye fishery and of the biological properties of the Blue Eye populations across its spatial distribution.

The fishery itself has included a number of large scale changes in fishing methods and the area of focus for the fishery from around 1997, when improved records from the GHT fishery became available. While trawl catches have continued at a low but steady level since 1986 there has been a switch from Drop-line (alternatively Demersal Line) to Auto-line. In the last three to four years, related to the move of a proportion of the total catch off the east coast, the use of alternative line methods (rod-reel, and hand-line) has increased.

The catch rate trends east and west differ, with the east exhibiting depletion in the last five years while the west appears to remain noisy but relatively flat. When this spatial heterogeneity is included in the Tier 4 analysis it suggests that catches in the east should be reduced while those in the west could be larger.

There are some important assumptions in this analysis. The first is that the CPUE is reflecting changes in the relative stock abundance rather than the influence of the structural adjustment, or reduced catch rates through whale depredations or from whale avoidance behaviour from shifting into less optimal CPUE areas. In addition, the various closures in the south-east are assumed to have little or only minor effects on catch rates.

In reality, the relatively large shift in effort to the north-astern sea-mounts and repeated Industry statements imply that whale depredations do indeed have significant effects on both observed CPUE but also on fisher behaviour, which would be more difficult to identify and isolate as a depressing effect. Closures have undoubtedly shut off some previously popular fishing grounds for Blue Eye, so these extraneous factors, which are
not included in the standardizations, can certainly be concluded to have had some negative effects upon CPUE; however, estimating the extent of any such effects remains an intractable problem currently. What it does suggest is that the recommended RBCs from these analyses are inherently conservative because any depressing effects of whales, closures, or even the structural adjustment, are currently being ignored.

22.2 Introduction

The Blue Eye CPUE standardization for trawls and for the combination of auto-line and bottom-line were not considered to provide an adequate representation of trends within the Blue Eye fishery. The expansion of whale depredations in association with the changed behaviour of the fishing vessels in the presence of whales, along with the restriction of fishing location options due to an increase in the number of marine closures that were impacting on the availability of fishing grounds and the movement of fishing effort in recent years much further north off the north east coast of New South Wales and Queensland has altered the reliability of CPUE as an indicator of relative abundance. The key issue of the reliability of simple CPUE analyses for relating to stock abundance reflects the spatial heterogeneity of both the Blue Eye fishery and of the biological properties of the Blue Eye populations across its spatial distribution.

The fishery itself has included a number of large scale changes in fishing methods and the area of focus for the fishery from around 1997, when improved records from the GHT fishery became available. While trawl catches have continued at a low but steady level since 1986 there has been a switch from Drop-line (alternatively Demersal Line) to Auto-line. In the last three to four years, related to the move of a proportion of the total catch off the east coast, the use of alternative line methods (rod-reel, and hand-line) has increased.

22.3 Methods

22.3.1 Catch Rate Standardization

22.3.1.1 Data Selection

Blue eye catches were selected by method and area for CPUE analyses. The SESSF zones proved too coarse and so finer regions were identified by the use of schematic maps and, where sufficient data were available, CPUE from these smaller areas were standardized using the usual methods.

Figure 22.1. A schematic diagram depicting the statistical reporting zones in the SESSF, as used in this document. The GAB fishery is to the west of Zone 50. The main SESSF trawl zones are zones $10-50$. Each zone extends out to the boundary of the EEZ, except for zones 50 and 60 , and for zones 92 and 91, which are bounded by zone 70 .

Figure 22.2. Schematic map of all reported catches of blue eye by all methods from $1986-2012$ in 0.5 x 0.5 degree squares.

22.3.1.2 General Linear Modelling

Where trawling was the method used, catch rates were kilograms per hour fished; all other methods were as catch per shot because the various line and net methods record effort in widely varying ways (the number of hooks, the number of lines of hooks, the length of net, the number of nets, etc; there is greater consistency in more recent years but still sufficient heterogeneity to make the use of catch per hook unreliable). All catch rates were natural log-transformed and a General Linear Model was used rather than using a Generalized Linear Model with a log-link on the untransformed data; this has advantages in terms of normalizing the data while stabilizing the variance, which the Generalized Linear Model approach does not always achieve appropriately (Venables \&

Dichmont, 2004). The statistical models were variants on the form: $\operatorname{LnCE}=$ Year + Vessel + Month + DepthCategory + Zone + Daynight. In addition, there were interaction terms which could sometimes be fitted, such as Month:Zone or Month: DepthCategory, although with the use of finer spatial areas other simpler models or more idiosyncratic terms were occasionally used. Thus, the CPUE, conditioned on positive catches of the species of interest, was statistically modelled with a normal GLM on log-transformed CPUE data:

$$
\begin{equation*}
\operatorname{Ln}\left(C P U E_{i}\right)=\alpha_{0}+\alpha_{1} x_{i, 1}+\alpha_{2} x_{i, 2}+\sum_{j=3}^{N} \alpha_{j} x_{i j}+\varepsilon_{i} \tag{10}
\end{equation*}
$$

where $\operatorname{Ln}\left(C P U E_{i}\right)$ is the natural logarithm of the catch rate (usually kg / h, but sometimes $\mathrm{kg} /$ shot) for the i-th shot, $x_{i j}$ are the values of the explanatory variables j for the i-th shot and the α_{j} are the coefficients for the N factors j to be estimated (α_{0} is the intercept, α_{l} is the coefficient for the first factor, etc.).

22.3.2 The Year Effect

For the lognormal model the expected back-transformed year effect involves a biascorrection to account for the log-normality; this then focuses on the mean of the distribution rather than the median:

$$
\begin{equation*}
C P U E_{t}=e^{\left(\gamma_{t}+\sigma_{t}^{2} / 2\right)} \tag{11}
\end{equation*}
$$

where γ_{t} is the Year coefficient for year t and σ_{t} is the standard deviation of the \log transformed data (obtained from the analysis). The year coefficients were all divided by the average of the year coefficients to simplify the visual comparison of catch rate changes:

$$
\begin{equation*}
C E_{t}=\frac{C P U E_{t}}{\left(\sum C P U E_{t}\right) / n} \tag{12}
\end{equation*}
$$

where CPUE_{t} is the yearly coefficients from the standardization, $\left(\Sigma \mathrm{CPUE}_{\mathrm{t}}\right) / \mathrm{n}$ is the arithmetic average of the yearly coefficients, n is the number of years of observations, and CE_{t} is the final time series of yearly index of relative abundance.

22.4 Results

22.4.1.1 Catch by Method

In the catch and effort \log book database there are 15 fishing methods listed that report catches of Blue Eye, although six of those, combined with the unknown category only account for about 0.21% of total catches from 1986 to 2012 (Table 22.1). Only six methods have each accounted for more than 1% of total reported catches through that period; data have only been collected for methods other than trawl since 1998, with incomplete data collection in 1997 (Figure 22.3).

The trawl fishery averaged about 75t from 1986 to 2002 and about 51t from 2003 to 2012 and averaged about 13% of the total fishery from 1998 to 2012 . The non-trawl fishery has always taken the largest proportion of the total catch but useful data have only become available since 1997, with more complete data only being available from 1998. In 1997 auto-lining was introduced as a formal method in the SESSF and its
catches grew to take over from drop-lining, which had been the dominant method used up until then.

Recently, on the northern sea mounts off the east coast the use of hydraulic reels and hand lines (RR and HL) have expanded (Figure 22.3).

Figure 22.3. Catches of six methods that together account for about 98.6% of all reported catches of Blue Eye (Table 22.1). The codes are AL - auto-line, DL - drop-line, TW - trawl, GN - gill net, TL - trot line, and RRHL relates to the catches of Rod and Reel and Hand Line combined.

Table 22.1. Annual catches of Blue Eye by different methods, Auto Line, Drop Line, Trawl, Gill Net, Rod and Reel, Trot Line, Bottom Line, and Hand Line. Other includes unknown, pole and line, fish trap, Danish seine, pelagic longline, and trolling. The landings relate to formal landings against quota.

Year	AL	DL	TW	GN	RR	TL	BL	HL	Other	Total	Landing
1986			37.774						0.188	37.962	
1987			15.495						0.000	15.495	
1988		0.160	103.969						1.048	105.177	
1989			87.740						0.000	87.740	
1990			78.596						0.612	79.208	
1991			69.233						6.448	75.681	
1992		0.415	45.771						3.094	49.280	
1993			59.588						0.056	59.644	
1994			109.959						0.016	109.975	
1995			58.533						0.039	58.572	
1996			71.175						0.468	71.643	
1997	0.267	265.137	104.567	58.382		6.148	28.262		0.265	463.027	
1998	15.189	330.802	82.074	14.282			4.526	0.100	1.001	447.973	472.287
1999	59.902	356.962	95.309	34.711			0.889		0.294	548.067	572.689
2000	85.201	380.208	93.453	92.406			1.739		0.678	653.685	656.847
2001	47.884	326.750	122.422	58.872		18.805	3.086		0.037	577.856	586.572
2002	145.717	227.654	71.479	1.951		23.415	6.493		0.001	476.709	512.111
2003	219.937	224.749	42.311	40.966		28.080	8.589		0.062	564.693	588.064
2004	331.788	155.341	84.547	0.171		20.116	2.318		0.009	594.289	633.794
2005	300.819	94.420	46.512	0.016			1.941		0.006	443.714	492.885
2006	356.716	115.059	71.863	0.002			1.187		0.008	544.834	563.850
2007	455.105	47.016	53.862	0.003			0.632		0.000	556.619	585.310
2008	281.384	16.055	36.046	0.016			0.724		0.072	334.297	373.047
2009	327.333	30.158	41.513		7.550		1.740		3.322	411.616	443.362
2010	236.620	42.663	44.302		56.788		0.022		0.000	380.394	399.896
2011	282.785	59.381	39.199	0.111	59.998		0.049	17.118	0.000	458.642	458.535
2012	220.732	34.107	48.616	0.003	14.776		1.377	21.021	0.000	340.633	287.816

22.4.1.2 Catch by Fishery

Most catches are taken in the gillnet, hook and trap fishery, then the south east trawl fishery, and finally the East coast deepwater and high seas fisheries (Table 22.2).

Table 22.2. Reported catches by fishery and the landings against quota. Total is all fisheries combined, SET is the south east trawl, GHT is the gillnet, hook and trap fishery (combined with the southeast nontrawl, the southern shark fishery, southern shark gillnet fishery, and the southern shark hook fishery). ECD \& HS is the combined catches of the east coast deep-water fishery and the high seas trawl and high seas non-trawl. Other combines 8 other fisheries, which only account for about 0.27% of total catches from 1994 to 2012.

Year	Landings	Total	SET	GHT	GAB	ECD \& HS	Other
1986		37.962	37.962				
1987		15.495	15.467		0.028		
1988		105.177	101.767	0.160	3.250		
1989		87.740	87.365		0.375		
1990		79.208	76.283		2.925		
1991		75.681	75.373		0.308		
1992		49.280	49.250		0.030		
1993		59.644	59.509		0.135		
1994		109.975	109.730		0.125		0.120
1995		58.572	57.967		0.605		
1996		71.684	71.245		0.347		0.092
1997		463.319	103.464	358.380	1.199		0.276
1998	472.287	448.146	79.878	362.782	2.261		3.225
1999	572.689	548.059	90.552	452.585	4.822		0.100
2000	656.847	653.775	83.454	560.125	4.050	5.408	0.738
2001	586.572	579.726	69.255	455.399	19.390	34.934	0.748
2002	512.111	476.739	66.819	386.930	1.150	10.541	11.300
2003	588.064	564.693	27.109	518.839	1.810	16.652	0.283
2004	633.794	594.289	46.943	503.624	1.831	41.646	0.246
2005	492.885	444.114	34.497	396.976	8.473	4.115	0.054
2006	563.850	544.834	54.136	469.860	11.968	8.862	0.008
2007	585.310	556.619	37.321	501.743	0.960	16.590	0.005
2008	373.047	334.297	35.969	297.673	0.147	0.200	0.308
2009	443.362	411.616	39.366	369.259		2.831	0.160
2010	399.896	380.394	44.302	335.452		0.550	0.090
2011	458.535	458.642	23.322	403.940		29.039	2.341
2012	287.816	340.633	10.781	288.946	0.011	39.573	1.322

22.4.1.3 Catch by Zone

The fishery has been focussed largely around the south-east for many years, especially off the east and west coasts of Tasmania. In the last four years zones 70, 91, and 92 have increased in their importance to the fishery. The limited number of years in the north-east with available data restricts the possibilities for analysis, and this is further restricted by a proliferation of different fishing methods associated with this shift off effort and catch.

Table 22.3. Catches in tonnes of Blue Eye by zone (Figure 22.1).

	10	20	30	40	50	91	92	70
1986	12.712	5.771	3.346	4.927	11.058	0.020		
1987	1.882	6.881	3.269	0.214	2.931			
1988	3.076	18.841	1.460	23.834	53.101	0.585		
1989	9.391	10.203	23.654	24.905	19.080	0.101		
1990	4.201	11.622	29.411	14.880	16.030			
1991	14.119	20.771	18.256	7.871	14.236			
1992	2.498	13.663	3.408	7.739	21.679			
1993	2.270	14.672	24.092	5.892	12.567	0.015		
1994	2.861	14.919	74.892	8.140	8.842	0.030		0.115
1995	2.721	8.776	19.763	12.605	13.791	0.080		
1996	4.832	9.937	25.660	9.134	21.450	0.075		
1997	5.964	149.201	92.819	83.333	100.036	10.835	0.140	
1998	1.774	93.416	171.130	97.903	66.989	1.590		
1999	1.881	106.178	225.832	91.602	86.854	21.590	0.050	
2000	0.985	129.422	271.747	129.247	95.971	1.100	0.750	5.408
2001	0.264	86.447	239.368	100.831	60.290	3.186	4.740	34.930
2002	0.489	41.624	180.660	75.524	77.538	33.664	7.850	7.469
2003	1.288	91.477	153.646	124.815	43.771	57.910	2.400	14.668
2004	0.222	73.957	148.512	112.297	63.714	10.045	0.180	36.796
2005	1.601	88.198	119.790	64.249	51.935	7.451	4.700	2.607
2006	0.192	69.824	157.401	83.899	41.217	10.375	2.508	2.540
2007	0.271	53.777	235.961	48.581	47.631			16.174
2008	0.170	46.583	130.524	55.478	26.535			8.100
2009	0.133	53.863	159.609	86.619	47.601	12.615	22.758	7.631
2010	0.109	26.136	98.669	54.969	98.067	34.124	34.027	1.797
2011	0.195	31.830	99.722	45.235	30.612	79.995	52.926	14.271
2012	0.188	21.728	67.578	77.448	22.012	74.673	13.189	15.079

Figure 22.4. Annual catch in Trawl Caught Blue Eye in the four zones 20, 30, 40, and 50.

Table 22.4. Catches in tonnes of Blue Eye in Bass Strait and the GAB (Figure 22.1).					
	60	82	83	84	85
1986	0.128				
1987	0.250	0.020		0.008	0.040
1988	1.020				3.250
1989	0.031		0.060		0.315
1990	0.139			0.300	2.625
1991	0.120				0.308
1992	0.063		0.005		0.030
1993	0.001			0.005	0.130
1994	0.046				0.120
1995	0.201				0.635
1996	0.192		0.030	0.450	16.363
1997	4.149			0.380	7.487
1998	4.211			0.766	6.278
1999	5.109		0.850	19.453	9.566
2000	8.559		3.973	22.991	10.198
2001	0.708			52.812	17.673
2002	0.012				
2003	1.567				
2004	0.745	0.983	19.787	75.739	58.608
2005	0.267	0.632	19.552	29.273	51.158
2006	0.932	0.169	31.511	44.495	89.189
2007	0.552		29.876	107.069	15.594
2008	0.110	0.015	28.943	32.267	13.350
2009	0.195		1.633	15.369	15.415
2010	0.100		6.549	9.532	15.929
2011	0.012		20.576	40.692	14.159
2012			8.428	10.016	3.752

Figure 22.5. Schematic map of the distribution of all Blue Eye catches around the southern zones since 1997 onwards. The gird scale is 0.5 degree and the catch scale is in tonnes.

Figure 22.6. Schematic map of all Blue Eye catches since 1997 off the east coast. The gird scale is 0.5 degree and the catch scale is in tonnes. The offshore catches are high seas fisheries.

Figure 22.7. Total catches for different regions around the south east of Australia. East coast and Bass Strait includes zones $10,20,30$, and 60 ; west coast is zones 40 and $50 ; \mathrm{GAB}$ is zones $82,83,84$, and 85 ; North East is zones 91 and 92, an East Offshore is zone 70 (Figure 22.1).

Figure 22.8. Relative catches by trawl vessels within each year across all fisheries for those vessels reporting the catch of more than 1 t summed across the years 1986-2012. The array of vessels is sorted by those remaining after 2006, then from 1997 onwards, and then from 1986.

Figure 22.9. Relative catches by line vessels within each year across all fisheries for those vessels reporting the catch of more than 1 t summed across the years $1986-2012$. The array of vessels is sorted by those remaining after 2006, then from 1997 onwards. The grey vertical line separates 2006 and 2007 to designate the structural adjustment.

22.4.1.4 Time Series Suitable for CPUE Analyses

Despite the recent shift of a significant proportion of the fishery to the north-east, no single area or method in that region has a time-series of sufficient duration or intensity to allow for a valid CPUE analysis. None of the seamounts have catches taken consistently through time (for example the Cascade fishery only last for two years). The seamounts just to the east of 155° have had catches taken in many of the years from 1997 - 2012. However, even if they are all combined, which would be a questionable assumption of homogeneity to impose, some years were unfished and others barely fished so that the number of records and amount of catch were too few to include in a valid analysis (Table 22.5).

Table 22.5. The combined data from the seamount chain just east of 155°.

Year	Catch	Records	Year	Catch	Records
1997	4.658	11	2005	7.581	17
1998	7.640	6	2006	12.679	28
1999			2007		
2000	1.100	4	2008		
2001	5.300	9	2009	3.288	5
2002	12.114	24	2010	8.990	22
2003	25.560	30	2011	34.715	54
2004	8.600	20	2012	18.591	28

The only data with sufficient data to permit a valid analysis derives from the trawl fishery or the auto-line and drop-line fisheries around the south-east and across the GAB.

22.4.1.5 CPUE from the GAB AL and DL Vessels

Figure 22.10. The standardized CPUE for AL and DL vessels from the GAB (zones 83, 84, and 85 (see Figure 22.1). Note the transition that occurs between 2007 and 2008, which may be related to the structural adjustment. Overall, the trend is noisy with a possible shift downwards in the last five years.
22.4.1.6 CPUE from AL and DL Vessels from Zones $40-50$

Figure 22.11. Standardized CPUE from the AL and DL fishery on the west coast (zones 40 and 50 combined) from 1997-2012.

The western fishery appears relatively flat although with relatively large variations in recent years (Figure 22.11). There appears to be a large change in the dynamics from

2006 to 2007, which suggests that the structural adjustment may have had some influences in the western fishery (Figure 22.12).

Figure 22.12. The relative influence of each factor used on the final trend in the optimal standardization for BlueEye by AL and DL in zones 40 and 50 . The top graph is the geometric mean (the black line) and the optimum model (the red line). The difference between them is reflected by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

Table 22.6. BlueEye by AL and DL from zones 40 and 50 in depths $200-700 \mathrm{~m}$. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum is model Month:Method. DepC is Depth Category, Mth is Month, DN is DayNight (omitted for space), Meth is Method.

	Year	Vessel	Month	DepCat	Zone	Method	Mth:Meth
AIC	4058.74	2663.032	2529.811	2481.596	2410.478	2401.275	2359.952
RSS	11141.68	8169.325	7914.133	7737.784	7622.359	7595.453	7497.23
MSS	1506.339	4478.688	4733.88	4910.23	5025.654	5052.56	5150.783
Nobs	4891	4891	4891	4865	4865	4865	4865
Npars	16	76	88	112	113	117	128
adj_r2	11.639	34.404	36.294	37.393	38.314	38.48	39.135
\%Change	0	22.766	1.89	1.099	0.921	0.057	0.655

22.4.1.7 CPUE from AL and DL Vessels from Zones 20 and 30

Figure 22.13. Standardized CPUE from the AL and DL fishery on the east coast (zones 20 and 30 combined) from 1997-2012.

The eastern fishery falls initially from a relative high and remains flat from about 2000 - 2007, with a reduction to lower noisy but flat level from 2008 onwards (Figure 22.13). The vessel fishing is clearly important but the effects of vessel are more confused on the east coast than in the west. Changes occurred around the structural adjustment in the east but they are more confused than those in the west (Figure 22.14).

Figure 22.14. The relative influence of each factor used on the final trend in the optimal standardization for BlueEye by AL and DL. The top graph depicts the geometric mean (the black line) and the optimum model (the red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (model 2). In the third graph, the grey line represents model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

Table 22.7. BlueEye by AL and DL from zones 20 and 30 in depths $200-700 \mathrm{~m}$. Model selection criteria, including the AIC, the adjusted r^{2} and the change in adjusted r^{2}. The optimum is model Month:Method. DepC is Depth Category, Mth is Month, DN is DayNight (omitted for space), Meth is Method.

	Year	Vessel	Month	DepCat	Zone	Method	Mth:Met h
AIC	4649.46	3709.81	3038.65	3019.63	2990.01	2988.94	2933.339
	9	3	8	4	5		
RSS	13431.0	11522.1	10410.7	10280.4	10223.7	10219.1	10103.26
	8	4	9	3	5	4	
MSS	965.315	2874.25	3985.60	4115.96	4172.64	4177.25	4293.135
Nobs	6834	6834	6834	6805	6	6805	6805
Npars	16	70	81	106	110	111	6805
adj_r2	6.5	19.149	26.828	27.471	27.828	27.85	28.55
\%Chang	0	12.649	7.679	0.643	0.142	0.022	0.701
e							

Table 22.8. Catches, geometric mean CPUE and optimal standardized CPUE for the east (zones 20 and 30) and west (zones 40 and 50) coasts.

Year	Catches	East Geomean	Optimum	Catches	West Geomean	Optimum
1997	242.020	1.5511	2.1605	183.369	1.1567	1.1365
1998	264.546	1.3260	1.3491	164.892	1.0569	1.0739
1999	332.010	1.3321	1.4187	178.456	0.6829	0.8534
2000	401.169	0.9737	1.0781	225.218	0.8684	1.0184
2001	325.815	1.3772	1.3206	161.121	0.7485	0.9319
2002	222.284	0.9452	0.8792	153.062	0.7690	0.9567
2003	245.123	0.6481	0.9527	168.586	0.8197	0.9192
2004	222.469	0.4627	0.8418	176.011	0.3750	1.1910
2005	207.988	0.9705	0.9974	116.184	0.2508	0.8534
2006	227.225	1.1139	1.0019	125.116	0.4692	1.0304
2007	289.738	1.5068	1.1413	96.212	1.2453	0.8435
2008	177.107	0.9282	0.7309	82.013	1.8840	1.3717
2009	213.472	1.0612	0.6580	134.220	2.3592	1.5650
2010	124.805	0.5348	0.4382	153.036	1.2535	0.7786
2011	131.552	0.6884	0.5904	75.847	0.8703	0.6344
2012	89.306	0.5800	0.4409	99.460	1.1904	0.8420

22.4.2 Tier 4 Analyses - Split East and West

22.4.2.1 East

Table 22.9 Blue eye Trevalla data from AL and DL in zones 20 and 30. Total is the sum of Discards, State, Non Trawl, SEF2, and ECDW catches apportioned by logbook split between east and west. All values in Tonnes. CE is the standardized catch rate. GeoMean is the geometric mean catch rates. Discards are estimates from 1998 to present. The ratio of discards to catch over the 1998-2006 period was used to estimate the discards between 1986 and 1997, the proportion of which is the PDiscard.

Year	Catch Discards	Total	State	Non-T PDiscard	CE GeoMean			
1997	417.592	-	417.592	620.142	-	-	2.1605	1.5511
1998	370.648	-	370.648	123.012	380.439	-	1.3491	1.3260
1999	462.741	-	462.741	132.608	464.658	-	1.4187	1.3321
2000	483.081	23.697	506.778	89.462	565.410	4.676	1.0781	0.9737
2001	458.876	22.081	480.957	77.613	478.397	4.591	1.3206	1.3772
2002	365.115	0.059	365.175	102.362	427.969	0.016	0.8792	0.9452
2003	386.762	0.095	386.857	51.623	556.565	0.025	0.9527	0.6481
2004	400.277	0.782	401.059	64.457	566.917	0.195	0.8418	0.4627
2005	357.763	-	357.763	55.557	450.678	-	0.9974	0.9705
2006	399.783	0.039	399.821	44.095	496.743	0.010	1.0019	1.1139
2007	479.985	2.112	482.097	53.102	536.267	0.438	1.1413	1.5068
2008	278.985	0.679	279.664	34.980	338.852	0.243	0.7309	0.9282
2009	293.755	-	293.755	35.090	404.049	-	0.6580	1.0612
2010	198.959	0.064	199.023	43.027	358.785	0.032	0.4382	0.5348
2011	316.407	4.717	321.123	40.297	430.038	1.469	0.5904	0.6884
2012	146.092	2.047	148.139	20.967	268.064	1.382	0.4409	0.5800

Discards make up approximately 1.2% of the catch over the 1998-2006 period.
The catch rate time series used came from the combined autolongline and drop line fishery.

Table 22.10 RBC calculations for Blue Eye. Ctarg and CPUEtarg relate to the period 1997-2006, CPUELim is 40% of the target, and $\overline{C P U E}$ is the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. Wt_Discard is the weighted average discards from the last four years.

Ref_Year	1997-2006
CE_Targ	
CE_Lim	1.200
CE_Recent	0.480
Wt_Discard	0.5319
Scaling	2.358
Last Year's TAC	0.0721
C	326
RBC	414.939
	$\mathbf{2 9 . 9 0 8}$

BlueEyeALDLeast

Figure 22.15 Blue Eye Trevalla taken by AL and DL in the Eastern zones 20 and 30. Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

22.4.2.2 West

Table 22.11 Blue eye Trevalla data from AL and DL in zones 20 and 30. Total is the sum of Discards, State, Non Trawl, SEF2, and ECDW catches apportioned by logbook split between east and west. All values in Tonnes. CE is the standardized catch rate. GeoMean is the geometric mean catch rates. Discards are estimates from 1998 to present. The ratio of discards to catch over the 1998-2006 period was used to estimate the discards between 1986 and 1997, the proportion of which is the PDiscard.

Year	Catch Discards	Total	State	Non-T PDiscard	CE GeoMean			
1997	316.393	-	316.393	620.142	-	-	1.1365	1.1567
1998	231.026	-	231.026	123.012	380.439	-	1.0739	1.0569
1999	248.724	-	248.724	132.608	464.658	-	0.8534	0.6829
2000	271.204	13.303	284.507	89.462	565.410	4.676	1.0184	0.8684
2001	226.922	10.919	237.841	77.613	478.397	4.591	0.9319	0.7485
2002	251.414	0.041	251.455	102.362	427.969	0.016	0.9567	0.7690
2003	266.000	0.065	266.065	51.623	556.565	0.025	0.9192	0.8197
2004	316.688	0.618	317.306	64.457	566.917	0.195	1.1910	0.3750
2005	199.850	-	199.850	55.557	450.678	-	0.8534	0.2508
2006	220.131	0.021	220.152	44.095	496.743	0.010	1.0304	0.4692
2007	159.387	0.701	160.088	53.102	536.267	0.438	0.8435	1.2453
2008	129.190	0.314	129.504	34.980	338.852	0.243	1.3717	1.8840
2009	184.698	-	184.698	35.090	404.049	-	1.5650	2.3592
2010	243.964	0.078	244.042	43.027	358.785	0.032	0.7786	1.2535
2011	182.426	2.719	185.145	40.297	430.038	1.469	0.6344	0.8703
2012	162.702	2.280	164.982	20.967	268.064	1.382	0.8420	1.1904

Discards make up approximately 1.2% of the catch over the 1998-2006 period.
The catch rate time series used came from the combined autolongline and drop line fishery.

Table 22.12 RBC calculations for Blue Eye. Ctarg and CPUEtarg relate to the period 1997-2006, CPUELim is 40% of the target, and $\overline{C P U E}$ is the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. Wt_Discard is the weighted average discards from the last four years.

Ref_Year	1997-2006
CE_Targ	0.9965
CE_Lim	0.3986
CE_Recent	0.955
Wt_Discard	1.951
Scaling	0.9307
Last Year's TAC	326
Ctarg	257.332
RBC	$\mathbf{2 3 9 . 4 8 6}$

BlueEyeALDLwest

Figure 22.16 Blue Eye Trevalla taken by AL and DL in the Eastern zones 20 and 30. Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

Table 22.13. Summary of Tier 4 calculations for Blue Eye using standardized catch rates for AL and DL separated east and west. The total catches were divided in proportion to the relative catches taken east and west from 1997-2012. Thus the total target catch remains the same as for the combined analysis but the different states of the stock east and west influence the outcome of the analysis.

	East	West	Total
Ref_Year	$1997-2006$	$1997-2006$	
CE_Targ	1.200	0.9965	
CE_Lim	0.480	0.3986	
CE_Recent	0.5319	0.955	4.409
Wt_Discard	2.358	1.951	
Scaling	0.0721	0.9307	
TAC	326	326	
C* (target)	414.939	257.332	672.271
RBC	$\mathbf{2 9 . 9 0 8}$	$\mathbf{2 3 9 . 4 8 6}$	$\mathbf{2 6 9 . 3 9 4}$

22.5 Discussion

The catch rate trends east and west differ, with the east exhibiting depletion in the last five years while the west appears to remain noisy but relatively flat. When this spatial heterogeneity is included in the Tier 4 analysis it suggests that catches in the east should be reduced while those in the west could be larger.

There are some important assumptions in this analysis. The first is that the CPUE is reflecting changes in the relative stock abundance rather than the influence of the structural adjustment, or reduced catch rates through whale depredations or from whale avoidance behaviour from shifting into less optimal CPUE areas. In addition, the various closures in the south-east are assumed to have little or only minor effects on catch rates.

In reality, the relatively large shift in effort to the north-astern sea-mounts and repeated Industry statements imply that whale depredations do indeed have significant effects on both observed CPUE but also on fisher behaviour, which would be more difficult to identify and isolate as a depressing effect. Closures have undoubtedly shut off some previously popular fishing grounds for Blue Eye, so these extraneous factors, which are not included in the standardizations, can certainly be concluded to have had some negative effects upon CPUE; however, estimating the extent of any such effects remains an intractable problem currently. What it does suggest is that the recommended RBCs from these analyses are inherently conservative because any depressing effects of whales, closures, or even the structural adjustment, are currently being ignored.

22.1 Acknowledgements

Thanks also go to Mike Fuller and Neil Klaer for all the pre-analytical data preparation required maintaining the SESSF data set.

22.2 References

Burnham, K.P. \& D.R. Anderson (1998) Model Selection and Inference. A practical Information-Theoretic approach. Springer-Verlag, New York Ltd. 353p.

Gomon, M., Bray, D., and R. Kuiter (eds) (2008) Fishes of Australia's Southern Coast. Museum Victoria. 928 p.

Kimura, D.K. (1981) Standardized measures of relative abundance based on modelling $\log ($ c.p.u.e.), and their application to pacific ocean perch (Sebastes alutus). Journal du Conseil International pour l'Exploration de la Mer. 39: 211-218.

Haddon, M. (2010a) Saw Shark and Elephant fish TIER 4 Analyses. (Data 1980 2009). CSIRO Wealth from Oceans, Hobart. 16 pp.

Haddon, M. (2010b) Standardized Catch Rates for the SESSF Saw Shark and Elephant fish Fisheries. CSIRO Wealth from Oceans, Hobart. 47 pp.

Little, L.R., Wayte, S.E., Tuck, G.N., Smith, A.D.M., Klaer, N., Haddon, M., Punt, A.E., Thomson, R., Day, J. and M. Fuller (2011) Development and evaluation of a cpue-based harvest control rule for the southern and eastern scalefish and shark fishery of Australia. ICES Journal of Marine Science. 68(8): 1699-1705.

Neter, J., Kutner, M.H., Nachtsheim, C.J, and W. Wasserman (1996) Applied Linear Statistical Models. Richard D. Irwin, Chicago.

Punt, A.E., Walker, T.I., Taylor, B.L., and F. Pribac (2000) Standardization of catch and effort data in a spatially structured shark fishery. Fisheries Research 45: 129-145.

Punt, A.E., Walker, T.I., and A. Gason (2004) Initial assessments of Sawshark (Pristiophorus cirratus and P. nudipinnis) and Elephant Fish (Callorhinchus milii) pp335-369 in Tuck, G.N. and A.D.M. Smith Stock Assessment for South East and Southern Shark Fishery Species. FRDC Project 2001/005 CSIRO Marine Research, Hobart. 412 p.

Punt, A.E. and A. Gason (2006) Revised Standardized Catch-Rate Series for School and Gummy Shark based on Data up to 2005. CSIRO Martine and Atmospheric Research, Hobart.

R Development Core Team (2009). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

Stefánsson, G. (1996) Analysis of groundfish survey abundance data:combining the GLM and delta approaches. ICES Journal of Marine Science 55: 577-588.

Venables, W. and C. M. Dichmont (2004). GLMs, GAMs and GLMMs: an overview of theory for applications in fisheries research. Fisheries Research 70: 319-337.

Rodriguez, V.B., and K. McLoughlin (2009a) Saw Shark CPUE Standardization and TIER 4 Assessment, 2009. SharkRAG Document 2009/10. BRS 16 p.

Rodriguez, V.B., and K. McLoughlin (2009b) Elephant fish CPUE Standardization and TIER 4 Assessment, 2009. SharkRAG Document 2009/11. BRS 14 p.

Thomson, R. and A.E. Punt (2010) Revised standardized catch-rate series for Gummy shark based on data up to 2008. CSIRO. 11pp.

23. Tier 4 Analyses in the SESSF, including Deep Water Species. Data from 1986-2012

Malcolm Haddon
CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart, TAS 7001, Australia

23.1 Summary

Thirty four Tier 4 analyses are documented here which included a number of species where spatial information was available (Blue Warehou and Mirror Dory) leading to analyses for the east and west presumed stock regions. There are also Tier 4 analyses for some species where discard estimates were included in the analysis of catch rates. In addition, some non-key commercial species were assessed at the RAG's request, at a target assuming a proxy of $40 \% B_{0}$ as well as a proxy target assuming $48 \% B_{0}$.

Seven fisheries are assessed using Tier 4 methodology: BlueEye Trevalla, Blue Warehou (split east and west), Inshore Ocean Perch and Offshore Ocean Perch, Redfish, Royal Red Prawns, and Silver Trevally. Three of these fisheries generated zero RBCs and these were Blue Warehou, Jackass Morwong and Redfish.

Alternative analyses were provided for Redfish and Inshore Ocean Perch in which discards were included in the estimation of the catch rate trends. The inclusion of discards in estimating catch rates adds a great deal of noise to the CPUE trends so the uncertainty in these analyses expands. At the same time it is not clear whether to remove the discards from the RBC to generate a TAC or not. The use of this approach for setting RBCs needs further discussion and examination.

The TIER 4 harvest control rule is applied to species for which there is no reliable information on either current biomass levels or current exploitation rates. Ideally, in line with the notion of being more precautionary in the absence of information, the outcome from these analyses should be more conservative than those available from higher TIER analyses; this is now explicitly implemented by imposing a 15% discount factor on the RBC as a precautionary measure, unless there are good reasons for not imposing such an discount on particular species. The default procedure will now be to apply the discount factor unless RAGs generate advice that alternative and equivalent precautionary measures are in place (such as spatial or temporal closures) or that there is evidence of historical stability of the stock at current catch levels.
TIER 4 analyses require, as a minimum, knowledge of the time series of total catches and of catch rates, either standardized or simple geometric mean catch rates. This year, only standardized catch rates were used except where discards were explicitly included in the analyses.

The TIER 4 analyses conducted this year used the analytical method developed and tested in 2008 and 2009. This has the capacity to provide advice that will manage a
fishery in such a manner that it should achieve the target catch rate derived from the chosen reference period. However, the TIER 4 control rule can only succeed if catch rates do in fact reflect stock size. Many factors could contribute to make this assumption fail so care needs to be taken when applying this control rule. It should be made clear that the control rule works to achieve the selected target but there is no guarantee that this truly corresponds to the HSP proxy target for MEY of $48 \% B_{0}$.

To ensure consistency and provide for efficient operation once data becomes available, standard analyses were set up in the statistical software, R , which provided the results as the tables and graphs required for the TIER4 analyses. Both the data and results for each analysis are presented for transparency. The TIER 4 harvest control rule formulation essentially uses a ratio of current catch rates with respect to selected limit and target reference points to calculate a scaling factor. This scaling factor is applied to the target catch to generate an RBC. In all cases where individual attention was required by a particular analysis it was more difficult to automate analyses and these therefore took a disproportionate amount of time.

23.1.1 Summary of RBCs and Discards

The Recommended Biological Catch from this year's analyses are compared (Table 23.1) with those from the previous three years (Haddon, 2010, 2011b). Blue Warehou and Mirror Dory are sub-divided spatially as east and west. Those species where the Tier 4 rule is not used to set a TAC have the RBC, given in the specific sections throughout the document, replaced with NA.

The upper group of species are those whose TAC is determined using the Tier 4 and the lower group the remainder.

Table 23.1. TIER 4 outcomes by species. The RBC in tonnes, while the weighted discards are a percentage. RBC09 are the 2009 estimates and RBC10 are this year's estimates. For those species where the total catches have been sub-divided (Blue Warehou, Silver Trevally, Ocean Perch, and Mirror Dory) the sub-division of catches and discards was done using the ratio of catches, by the respective areas, observed in the catch effort database. Discards t is the weighted estimate of the discards in 2013, see Equ (19)

Species	RBC09	RBC10	RBC11	RBC12	RBC13	Discard t
Blue Eye Trevalla AL	536	521	415	288	179.044	4.310
Blue Eye Whale Depredation					301.213	86.214
Blue Warehou	0	0	0	0	0	23.484
Blue Warehou East	0	0	0	0	0	3.741
Blue Warehou West	0	0	0	0	0	18.514
Ocean Perch Inshore D 48\%T	NA	NA	95	126	135.406	181.845
Ocean Perch Inshore D 40\%T	NA	NA	95	126	187.487	181.845
Ocean Perch Offshore 48\%T	219	193	215	196	191.562	30.262
Ocean Perch Offshore D 40\%T	219	193	215	196	276.105	30.262
Royal Red Prawn	336	351	276	352	392.622	3.797
Silver Trevally	649	754	863	980	857.524	4.395
Silver Trevally MPA					866.708	4.395
Ribaldo 48\% T	160	202	197	232	256.219	4.226
Ribaldo 40\% T	160	202	197	232	354.768	4.226
Deep Water Taxa						
Cascade Smooth Oreo			710	$<10 \mathrm{t}$	$<10 \mathrm{t}$	12.3%
Non-Cascade Smooth Oreo			20	$<10 \mathrm{t}$	$<10 \mathrm{t}$	12.3%
Mixed Oreos				80	132	128.246
Eastern Deepwater Sharks					NA	77.662

23.2 Introduction

23.2.1 Tier 4 Harvest Control Rule

The TIER 4 harvest control rules are the default procedure applied to species for which only limited information is available; specifically no reliable information on either current biomass levels or current exploitation rates.

Ideally, in line with the notion of being more precautionary in the absence of information, the outcome from these analyses should be more conservative than those available from higher TIER analyses; this is now explicitly implemented by imposing a 15% discount factor on the RBC as a precautionary measure unless there are good reasons for not imposing such a discount on particular species. The application of the
discount factor will occur unless RAGs generate explicit advice that alternative equivalent precautionary measures are in place (such as spatial or temporal closures) or that there is evidence of historical stability of the stock at current catch levels (AFMA, 2009).

In essence TIER 4 analyses require, as a minimum, a time series of total catches and of standardized catch rates.

The current TIER 4 analysis and control rule underwent Management Strategy Evaluation (Wayte, 2009, Little et al, 2011a), which demonstrated its advantages over an earlier implementation used in 2007 and 2008. Further work has since demonstrated that as long as there is a limit on increases and decreases to the RBC of no more than 50% then the notion of including a maximum RBC (at 1.25 times the target) is redundant (Little et al, 2011b).

23.3 Methods

23.3.1 TIER 4 Harvest Control Rule

The data required are time series of catches and catch rates. The analyses have been conducted on total catches across the entire SESSF (including State catches, SEF2 landing records, and any discards). For some species, where there is only a single stock and a single primary fishing method, analyses are presented using standardized CPUE data (Haddon, 2013). For other species, there may be multiple stocks or areas or multiple methods and selecting which time series of catch rates to use in the analyses is not always straightforward. In those cases, the standardized time series for the method now accounting for the majority of current catch was used.

All 2010 data relating to catches and discards, from both State waters and SEF2 data sets, were provided by AFMA, with initial processing by Dr Neil Klaer and Dr Judy Upston of CSIRO. All catch rate data were derived from the standard commercial catch and effort database processed from the AFMA data by Mike Fuller of CSIRO Hobart.

Standard analyses were set up in the statistical software, R (2009), which provided the tables and graphs required for the TIER4 analyses. The data and results for each analysis are presented for transparency. The TIER 4 harvest control rule formulation essentially uses a ratio of current catch rates with respect to the selected limit and target reference points to calculate a scaling factor for the current year $\left(S F_{t}\right)$. This scaling factor is applied to the target catch to generate an RBC. To generate a TAC, known discards and State catches are first removed and then, if applicable, the 15% discount is applied. The TAC calculations are conducted by AFMA. This report focusses on providing the estimates of the Recommended Biological Catches.

$$
\begin{gather*}
\text { Scaling Factor }=S F_{t}=\max \left(0, \frac{\overline{C P U E}-C P U E_{\lim }}{C P U E_{\operatorname{targ}}-C P U E_{\mathrm{lim}}}\right) \tag{13}\\
R B C=C_{\operatorname{targ}} \times S F_{t} \tag{14}
\end{gather*}
$$

If new data becomes available, for example, more State data has become available this year, or other large changes occur in the catch rates then the RBC could undergo large changes. Such changes are constrained by the following limits:

$$
\begin{array}{l|l}
R B C_{y}=1.5 R B C_{y-1} & R B C_{y}>1.5 R B C_{y-1} \tag{15}\\
R B C_{y}=0.5 R B C_{y-1} & R B C_{y}<0.5 R B C_{y-1}
\end{array}
$$

where
$R B C_{y}$ is the RBC in year y
CPUE $_{\text {targ }}$ is the target CPUE for the species; Eq. (17)
$C P U E_{\text {lim }}$ is the limit CPUE for the species $=0.4 * \mathrm{CPUE}_{\text {targ }}$
$\overline{C P U E}$ the average CPUE over the past m years; m tends to be the most recent four years.
$C_{\text {targ }} \quad$ is a catch target derived from a period of historical catch that has been identified as a desirable target in terms of CPUE, catches and status of the fishery, e.g. 1986 - 1995 (Table 23.2). This is an average of the total removals for the selected reference period, including any discards; Eq. (16).

$$
\begin{equation*}
C_{\mathrm{targ}}=\frac{\sum_{y=y r 1}^{y r 2} L_{y}}{(y r 2-y r 1+1)} \tag{16}
\end{equation*}
$$

where L_{y} represents the landings in year y.

$$
\begin{equation*}
C P U E_{\mathrm{targ}}=\frac{\sum_{y=y r 1}^{y r 2} C P U E_{y}}{(y r 2-y r 1+1)} \tag{17}
\end{equation*}
$$

where $C P U E_{y}$ is the catch rate in year $y, y r 2$ and $y r 1$ represent the last and the first years in the reference period respectively.

For each species a table of landings and of standardized catch rates was assembled. These included all catches (Commonwealth landings, Non-trawl catches, combined State catches, and discards). The State catches are available back to 1994 and non-trawl catches are from 1998. Catches prior to 1994 are either taken from an historical catch database or, if no data are available for the species, then they are taken from the AFMA GenLog Catch and Effort database. The catch rates are standardized, usually from 1986, using methods described in Haddon (2012).

Percent discards are estimated from ISMP observations from 1998 to the current year. Discards for earlier years, prior to ISMP sampling, are estimated by taking the overall average percent discard from 1998 to the 2006 and applying that discard rate to the reported landings for the earlier years. The year 2006 was selected as the final year as discarding practices altered at about that time following the structural adjustment and the introduction of the Harvest Strategy Policy. For Eastern Gemfish the average discard rate was determined for 1998-2002 to allow for the non-target nature of the fishery following 2002. The calculation of the earlier discards is done so that the total
catches can be estimated even though only the landed catches are available. To calculate the discards for a given year we used

$$
\begin{equation*}
D_{y}=\frac{C_{y} \bar{D}_{98-06}}{\left(1-\bar{D}_{98-06}\right)} \tag{18}
\end{equation*}
$$

Discard proportions for the projected year for which the RBC is being calculated are taken as a weighted mean of the previous four years:

$$
\begin{equation*}
\mathrm{D}_{\mathrm{CUR}}=\left(1.0 \mathrm{D}_{y-1}+0.5 \mathrm{D}_{y-2}+0.25 \mathrm{D}_{y-3}+0.125 \mathrm{D}_{y-4}\right) / 1.875 \tag{19}
\end{equation*}
$$

Where $D_{C U R}$ is the estimated discard rate for the coming year y, D_{y-1} is the discards rate in year $y-1$. The discard rate in year y is the ratio of discards to the sum of landed catches plus those discards (this can vary between $0-100 \%$):

$$
\begin{equation*}
D_{y}=\frac{\text { Discard }_{y}}{\left(\text { Catches }_{y}+\text { Discard }_{y}\right)} \tag{20}
\end{equation*}
$$

For each species, reference years were selected by the RAGs to generate estimates of target catches and target catch rates. In addition, a decision was required as to whether the fishery could be considered as fully developed or otherwise (Table 23.2). Where a fishery was not considered to be fully developed the target catch rate, $C P U E_{\text {targ }}$, was divided by two as a proxy for expected changes to catch rates as the fishery develops and the resource stock size declines towards the target of 48% unfished biomass.

Plots are given of the total removals illustrating the target catch level. In addition, the standardized catch rates are illustrated with the target catch rate and the limit catch rate. Finally, where the data are available, plots are given of the Total removals contrasted with State removals, and of discards and non-trawl catches.

23.3.2 Data Manipulations

The default reference years were 1986-1995, but various species required different reference years to account for the specific development of each fishery; these are noted in each analysis. In addition, Silver Warehou and Ribaldo were two fisheries where the state of development was such that the exhibited catch rates were unlikely to be representative of a developed fishery and so the target catch rates were halved; these details are provided in Table 23.2.

23.3.3 The Inclusion of Discards

Some species, especially redfish (Centroberyx affinis) and inshore Ocean Perch (Helicolenus percoides), have experienced high levels of discarding but the reported catch rates relate only to the estimated landed weights. In those species where discarding makes up a significant proportion of the catch (in some years more redfish were discarded than landed and more inshore ocean perch tend to be discarded than landed) it is reasonable to ask how the discards would have affected catch rates. This is an important question because standardized commercial catch rates are used in Australian stock assessments as an index of relative abundance (Haddon, 2010a, b); if
ignoring discards leads to a consistent bias this could affect the outcome of the assessments and thus, the assessments should become aware of the effects of discards.

Catch rates are used in assessments as an index of relative abundance through time and it is the trends exhibited by the catch rates that are important rather than their absolute values. If the discard levels are relatively constant through time and evenly distributed amongst the fleet, then their inclusion would not be expected to influence the trends in catch rates except to add noise. In all cases the discard rates are estimates based on subsampling the fleet of vessels. That the estimates are uncertain can be seen simply by considering the summary data tables in this document; where discards rates are not low they are very variable between years. Redfish provide an extreme where in 1998 the estimate was 2324 t , which was nearly 56% of the total catch, while in 1999 discards estimated at only 69 t , making up on about 5% of the total catch. So in those cases where discard levels are low, adding discards to the estimation of catch rates is not expected to alter outcomes.

For those species, such as redfish and ocean perch, where discard rates are much higher it was decided to include those estimated catches to determine their effect on the outcome of the Tier 4 analyses. In 2010 it was concluded that while the inclusion of discards contributed a great deal of noise to the analyses, for those species where discarding made up significant proportions of the overall catch the discard augmented catch rates should be examined each year as a sensitivity analysis to contrast with the outcome from the un-augmented catch rates (Haddon, 2010).

23.3.4 The Analyses Including Discards

Discard rates cannot simply be added to known catches on the way to calculating catch rates. The standardized catch rates are estimated from individual catch and effort records but the estimates of discards are summary estimates for each fishery. While a method for incrementing the standardized catch rates has been developed it should be noted that this ignores all complications relating to unknown aspects of discarding behaviour (is the discard rate constant across all catch sizes, across all vessels, across all areas? etc). This means that including discard catches into the annual catch rate estimates introduces an unknown amount of uncertainty into the analysis. It should also be noted that the discard estimates are highly variable from year to year and derive from relatively small samples of all trips contributing to catches.

The method developed was to find the multiplier needed to adjust ratio mean catch rates and apply that to the standardized catch rates (Haddon, 2010). The ratio mean catch rates require the annual sum of catches for the fishery along with the sum of effort and ratio means calculated for each year. The discard estimates from the fishery can be added to the catch totals and new ratio means calculated and compared. The multiplier needed to make the same changes to the ratio mean catch rates can then be developed and applied to the standardized catch rates.

The ratio mean is simply the sum of all catches divided by the sum of effort

$$
\begin{equation*}
\hat{I}_{R, t}=\frac{\sum C_{t}}{\sum E_{t}} \tag{21}
\end{equation*}
$$

where $\hat{I}_{R, t}$ is the ratio mean catch rate for year $t, \Sigma C_{t}$ is the sum of landed catches in year t, and ΣE_{t} is the sum of effort (as hours trawled) in year t. If ΣD_{t} is the sum of discards in year t then the discard incremented ratio mean catch rate would be

$$
\begin{equation*}
\hat{I}_{D, t}=\frac{\sum C_{t}+\sum D_{t}}{\sum E_{t}} \tag{22}
\end{equation*}
$$

The same values of $\hat{I}_{D, t}$ can also be obtained using the following multiplier

$$
\begin{equation*}
\hat{I}_{D, t}=\left[\left(\sum D_{t} / \sum C_{t}\right)+1\right] \times I_{t} \tag{23}
\end{equation*}
$$

where I_{t} is the catch rate estimate to be modified by the inclusion of discards. If this is the ratio mean from Equ (29) then the augmented catch rates would be identical to those produced by Equ (30). In practice, the catch rates used with the multiplier are the standardized catch rates from Haddon (2010a).

In the case of redfish and inshore ocean perch the discard augmented standardized mean catch rates were calculated, and compared visually with the geometric mean and original standardized catch rates. After the re-analysis of the catch rates these can be introduced into the TIER 4 analysis for Inshore Ocean Perch using the standard methods as described in Haddon (2010b).

Table 23.2. Characteristics used in the TIER 4 method. If a species is not considered to be fully fished during the reference period then the target catch rate is to be divided by two.

Species	Reference Years	Fully Fished by Reference Period	First year with catches > 100t.
Blue Eye Trevalla ALDL	$1997-2006$	1	1997
Blue Warehou	$1986-1995$	1	1986
Blue Warehou East	$1986-1996$	1	1986
Blue Warehou West	$1986-1997$	1	1986
Ocean Perch Inshore	$1986-1995$	1	1986
Ocean Perch Inshore Discards	$1986-1996$	1	1986
Ocean Perch Offshore	$1986-1997$	1	1986
Royal Red Prawn	$1986-1995$	1	1986
Silver Trevally	$1992-2001$	1	1986
Blue Grenadier	$1986-1995$	1	1986
Flathead	$1986-1995$	1	1986
Eastern Gemfish	$1993-2002$	1	1986
Western Gemfish	$1992-2001$	1	1992
Jackass Morwong	$1986-1995$	1	1986
John Dory	$1986-1995$	1	1986
Mirror Dory	$1986-1995$	1	1986
Mirror Dory East	$1986-1995$	1	1986
Mirror Dory West	$1996-2005$	1	1996
Pink Ling	$1986-1995$	1	1986
Redfish	$86-90 ; 99-03$	1	1986
Redfish Discards	$86-90 ; 99-04$	1	1986
Ribaldo	$1995-2004$	0.5	1995
School Whiting	$1986-1995$	1	1986
Spotted/Silver Warehou	$1986-1995$	0.5	1986

Table 23.3. Data characteristics for each deep water fishery analysis. Non-Cas indicates the Non-Cascade fishery. Catch and CPUE are the multipliers relating to whether the fishery was considered to be fully developed before the reference years. All catch rates, except Eastern Deepwater Sharks, were halved to form the target but only three of the catches were also halved. Lg is longitude and Lt is latitude.

| Species | Zone | Depths | Comment | Catch | CPUE |
| :--- | :--- | :---: | :--- | :---: | :---: | :---: |
| Smooth Oreo Cascade | 40 | $650-1250$ | OR Zones | 1.0 | 0.5 |
| Smooth Oreo non-Cas | $10-30,50$ | $600-1200$ | OR Zones $10,20,21,30,50$ | 0.5 | 0.5 |
| Mixed Oreo | $10-30,50$ | $500-1200$ | OR Zones 10,20,21,30,50 | 0.5 | 0.5 |
| West Deepwater Sharks | 30 | $600-1100$ | OR Zone 30 | 1.0 | 0.5 |
| East Deepwater Sharks | $10-21,50$ | $600-1250$ | OR Zones 10,20,21,50 | 1.0 | 1.0 |
| Alfonsino | EDW | | $>157 \&<165 \mathrm{Lg} ;>-36 \&<-30 \mathrm{Lt}$ | 0.5 | 0.5 |

23.3.5 Selection of Reference Periods

The Tier 4 requires a reference period to be selected in order to establish target and limit levels of catch rates and associated target levels of catch that are deemed by the RAG to act as a proxy for the desired state for the fishery. These act as a proxy for the Harvest

Strategy Policy reference points of 48% and 20% unfished spawning biomass. The original Tier 4 rule that used a linear regression of the last four year's catch rates to determine whether catches increase or decrease was not able to rebuild a resource towards a desired target level and the current approach was developed so as to be able to manage a fishery towards a target and away from a limit.

The essence of the Tier 4 control rule is that it sets a RAG agreed target catch rate, which has an associated target catch. An estimate of current catch rates (usually the average of the last four years) is compared with the target and a multiplier is estimated which is to be applied to the target catch to generate the recommended biological catch.

To select a reference period requires a time series of comparable catch rates. For this reason the use of standardized catch rates should be an improvement over using, for example, the observed arithmetic or geometric mean catch rates. Catch rate data is available in the SESSF for all targeted species from 1986-2011, although it needs to be noted that the character of the fishery has changed markedly during that period. Little et al. (2009) provide a discussion on how reference periods might be selected. They proposed a default ten year period of 1986 - 1995, stating: "We have assumed that the average CPUE from 1986 to 1995 corresponds to that which would be attained if the stock were at the level that provides the maximum economic yield, $B_{\text {MEY }}$. The limit CPUE is 40% of this CPUE." (Little et al., 2009, p 234).

For each species, reference years were selected by the RAGs to generate estimates of target catches and target catch rates. In addition, a decision was required as to whether the fishery could be considered as fully developed or otherwise during the reference period or not. Where a fishery was not considered to be fully developed the target catch rate, $C P U E_{\text {targ, }}$, was divided by two as a proxy for expected changes to catch rates as the fishery develops and the resource stock size declines towards the assumed proxy target for 48% unfished biomass.

Little et al. (2009) proposed three rules used to estimate the CPUE target:

1. The CPUE target for stocks fully exploited at or prior to 1986 is based on the average CPUE from 1986-1995.
2. Where fishing exploitation up to 1986 is thought to be minimal, the CPUE determined in step 1 is halved (to provide a catch rate proxy for $B_{M E Y}$).
3. Where fishing exploitation after 1986 is low, the first year in which catches are above $100 t$ signifies the start of the 10 year period for which CPUE targeted is calculated.

Once the average CPUE for the reference period has been selected as the target CPUE then the limit CPUE is defined as 40% of the target. All of these rules make the assumption that the target catch rates have achieved an equilibrium with the target catches. In other words, if the target catch was maintained long enough the target catch rate would be the result.

In addition, if a fishery begins with a stock in an unfished state the RAGs decided that the initial catch rates would be distorted high and so the target CPUE would be estimated by halving the initial catch rates in the fishery. In some cases the catches would also be halved if the species (Table 18.1).

23.3.6 Treatment of Non-Target Species

In 2012, the SESSF RAG determined that the assessments of those species which do not constitute the economic drivers for a fishery might use the proxy for $\mathrm{B}_{\mathrm{MSY}}$ as the target instead of $\mathrm{B}_{\text {MEY }}$. In practice this means that the target is assumed to be a proxy for B_{40} rather than B_{48}. For the Tier 4, this means modifying the control rule used to estimate the RBC by multiplying the target catch rate by $5 / 6$. If the original target was a proxy for $48 \% B_{0}$, then $5 / 6^{\text {th }}$ or 0.83333 of this target would be a proxy for $B_{40 \%}$. This option was not pursued this year.

23.3.7 The Assumption underlying the Tier 4

For the Tier 4 analyses to be valid a number of assumptions need to be met:

- There is a linear relationship between catch rates and exploitable biomass; if there is hyper-stability (catch rates remain stable while stock size changes) or hyperdepletion (catch rates decline much faster than stock size changes) then the standard Tier 4 analysis would provide biased results.
- The character of the estimated catch rates has not changed in significant ways through the period from the start of the reference period to the end of the most recent year; If there has been significant effort creep altering the catchability, or there have been changes to the fleet that have altered the relative efficiency of the vessels fishing, or the catchability of the species by the fleet has been altered by other changes then the comparability of recent catch rates with the target period may be compromised. Such changes would obviously reduce the responsiveness of the Tier 4 method to change and may generate completely inappropriate management advice. Included in this clause are the effects of targeting or not targeting of deep water or aggregated species. When catch rates are extremely variable through time, such that mean estimates become unreliable measures of stock status, then the Tier 4 approach cannot be validly applied.
- The reference period provides a good estimate of the stock when at a depletion level of 48% unfished spawning biomass; the Tier 4 method is based on catch rates and thus relates to exploitable biomass and not spawning biomass. As a minimum the reference period will refer to a period when the stock was in an acceptable, productive and sustainable state. But there can be no guarantees that the target aimed for is really $B_{48 \%}$.

23.4 Results for Tier 4 species

23.4.1 Blue Eye (TBE - 37445001 - Hyperoglyphe antarctica)

Table 23.4. Blue eye Trevalla data for the TIER 4 calculations. Total is the sum of Discards, State, Non Trawl, SEF2, and ECDW catches. All values in Tonnes. CE is the standardized catch rate for all Zones 10 to 50 in depths $0-1000 \mathrm{~m}$ (Haddon, 2013). GeoMean is the geometric mean catch rates. Discards are estimates from 1998 to present. The ratio of discards to catch over the $1998-2006$ period was used to estimate the discards between 1986 and 1997, the proportion of which is the PDiscard.

Year	Catch	Discards	Total	State	Non-T	PDiscard	CE GeoMean	
1997	733.985	0.000	733.985	620.142	0.000	0.000	1.9604	258.9752
1998	601.674	0.000	601.674	123.012	380.439	0.000	1.3375	226.1524
1999	711.465	0.000	711.465	132.608	464.658	0.000	1.1768	189.6587
2000	754.285	37.000	791.285	89.462	565.410	4.676	1.1240	177.6127
2001	685.798	33.000	718.798	77.613	478.397	4.591	1.1817	203.6327
2002	616.529	0.100	616.629	102.362	427.969	0.016	0.8899	164.0183
2003	652.762	0.160	652.922	51.623	556.565	0.025	0.9941	148.5823
2004	716.965	1.400	718.365	64.457	566.917	0.195	1.0449	91.3225
2005	557.613	0.000	557.613	55.557	450.678	0.000	0.8302	88.1440
2006	619.913	0.060	619.973	44.095	496.743	0.010	0.9562	121.2856
2007	639.371	2.813	642.184	53.102	536.267	0.438	1.1731	333.7817
2008	408.174	0.993	409.167	34.980	338.852	0.243	0.7572	214.3734
2009	478.452	0.000	478.452	35.090	404.049	0.000	0.8553	259.8521
2010	442.923	0.142	443.065	43.027	358.785	0.032	0.5414	142.9654
2011	498.833	7.436	506.269	40.297	430.038	1.469	0.6190	177.7306
2012	308.794	4.327	313.121	20.967	268.064	1.382	0.5584	156.1670

Discards make up approximately 1.2 \% of the catch over the 1998-2006 period.
The catch rate time series used came from the combined autolongline and drop line fishery.

Table 23.5. RBC calculations for Blue Eye. Ctarg and CPUEtarg relate to the period 1997-2006, CPUELim is 40% of the target, and $\overline{C P U E}$ is the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. Wt_Discard is the weighted average discards from the last four years, as with Equ (19).

Ref_Year	$1997-2006$
CE_Targ	1.1496
CE_Lim	0.4598
CE_Recent	0.6435
Wt_Discard	4.310
Scaling	0.2663
Last Year's TAC	326
C targ $^{\text {RBC }}$	672.271
RB9.044	

BlueEyeALDL

Figure 23.1. Blue Eye Trevalla. Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

The RBC calculation for BlueEye based on the Autoline CPUE series has been called in to question because od the advent of whale depredation of fish off the line while the gear is being hauled back to the vessel. An attempt was made to use observations made (Pease, 2012) of such depredations to make estimates of the rate of depredation and whether that rate has changed through time. This leads to a larger RBC as seen below, however, some depletion is still apparent.

23.4.2 Blue Eye Whale Discards (H. antarctica)

Table 23.6. Blue eye Trevalla data for the TIER 4 calculations. Total is the sum of Discards, State, Non Trawl, SEF2, and ECDW catches. All values in Tonnes. StandCE is the standardized catch rate for all Zones 10 to 50 in depths $0-1000 \mathrm{~m}$ (Haddon, 2013). GeoMean is the geometric mean catch rates. (D/C) +1 is the multiplier used with StandCE to generate DiscCE (see the Methods).

Year	Catch	Discards	Total	(D/C) +1	StandCE	DiscCE	GeoMean	TAC
1997	733.985	0.000	733.985	1.000	1.9604	1.8793	258.9752	125
1998	601.674	0.000	601.674	1.000	1.3375	1.2822	226.1524	100
1999	711.465	0.000	711.465	1.000	1.1768	1.1281	189.6587	100
2000	754.285	37.000	791.285	1.049	1.1240	1.1304	177.6127	100
2001	685.798	33.000	718.798	1.048	1.1817	1.1873	203.6327	100
2002	616.529	0.100	616.629	1.000	0.8899	0.8532	164.0183	109
2003	652.762	0.160	652.922	1.000	0.9941	0.9532	148.5823	690
2004	716.965	1.400	718.365	1.002	1.0449	1.0036	91.3225	621
2005	557.613	0.000	557.613	1.000	0.8302	0.7959	88.1440	621
2006	619.913	0.060	619.973	1.000	0.9562	0.9167	121.2856	560
2007	639.371	2.813	642.184	1.004	1.1731	1.1295	333.7817	785
2008	408.174	20.691	428.865	1.051	0.7572	0.7627	214.3734	560
2009	478.452	48.539	526.991	1.101	0.8553	0.9031	259.8521	560
2010	442.923	154.630	597.553	1.349	0.5414	0.7002	142.9654	428
2011	498.833	133.022	631.855	1.267	0.6190	0.7516	177.7306	326
2012	308.794	50.415	359.209	1.163	0.5584	0.6227	156.1670	326

Discards make up approximately 1.2% of the catch over the 1998-2006 period. The catch rate time series used came from the combined autolongline and drop line fishery.

> Table 23.7. RBC calculations for Blue Eye. Ctarg and CPUEtarg relate to the period 1997-2006, CPUELim is 40% of the target, and $\overline{C P U E}$ is the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. Wt Discard is the weighted average discards from the last four years, as with Equ (19).

Ref_Year	$1997-2006$
CE_Targ	1.113
CE_Lim	0.4452
CE_Recent	0.7444
Wt_Discard	86.214
Scaling	0.4481
Last Year’s TAC	326
C $_{\text {targ }}$	672.271
RBC	$\mathbf{3 0 1 . 2 1 3}$

Figure 23.2. Blue Eye Trevalla. Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate. The bottom right compares the geometric mean CPUE with the original optimal CPUE series (without discards) and the final estimate of the Discard CPUE.

Whale depredations were estimated to lead to approximately 60% loss of catch when killer whales were present during a haul (Pease, 2012, p55). However, killer whales are not always present during a haul so some means of allowing for their presence or absence was required. Pease (2012, p56) also documents variation in the rate of killer whale sightings between years, which may have been related to different seasonal patterns of fishing as well as location changes. Across the years the relative sighting frequency has also varied but the statement is also made that killer whales were observed across about 25% of days. When the average relative frequency of sighting is scaled to 0.25 and then multiplied by the 60% this enables an approximate estimate of killer whale depredations for $2008-2012$.

The final estimate of the RBC is sensitive to the method used to estimate the proportion of days in which killer whales would have influenced catches. If the relative frequency of sightings through the years 2008-2012 are used without rescaling to 25% then the RBC is estimated at about 371 t . The importance of this analysis is to demonstrate that whale depredations can have significant effects on catch rates over and above the impact on the choice of fishing locations. The approach used here only accounts for the direct effect of whales removing fish from the auto-lines, the other impacts such as times and location of fishing are more difficult to quantify. What this alternative
analysis demonstrates is that whale depredations could be leading to a great deal of bias if they are left unaccounted.

Table 23.8. Estimate of approximate whale depredation based on figures from Pease (2012). The mean of the Relative Frequency (RF) was 0.342 and the ScaledRF was the RF divided by $0.342 / 0.25$. The 0.6 relates to 60% reduction in catch. The depredation $=$ Landings $\times(R F \times 0.6)$.

Relative Frequency	ScaledRF	RF x 0.6	Landings	Depredation	Total
0.11	0.0804	0.0482	408.174	20.691	428.865
0.21	0.1535	0.0921	478.452	48.539	526.991
0.59	0.4313	0.2588	442.923	154.630	597.553
0.48	0.3509	0.2105	498.832	133.022	631.854
0.32	0.2339	0.1404	308.794	50.415	359.209

23.4.3 Blue Warehou (TRT - 37445005 - Seriolella brama) Zones 10-50

Table 23.9. Blue Warehou data for the TIER 4 calculations. Total is the sum of Discards, State, Non Trawl and SEF2 catches. All values in Tonnes. CE is the standardized catch rate for Zones 10 to 50 in depths $0-400 \mathrm{~m}$ (Haddon, 2013). GeoMean is the geometric mean catch rates. Discards are estimates from 1998 to present. The ratio of discards to catch over the 1998 - 2006 period was used to estimate the discards between 1986 and 1997, the proportion of which is the PDiscard.

Year	Catch	Discards	Total	State	Non-T	PDiscard	CE	GeoMean
1986	277.200	53.638	330.838			16.2128	2.0703	24.6419
1987	1010.400	195.512	1205.912			16.2128	2.3727	38.9818
1988	999.600	193.422	1193.022			16.2128	2.6488	42.2791
1989	1598.400	309.290	1907.690			16.2128	3.6574	53.5132
1990	2272.800	439.786	2712.586			16.2128	2.5841	49.3618
1991	2478.000	479.492	2957.492			16.2128	2.0552	38.9026
1992	1869.600	361.767	2231.367			16.2128	1.5133	34.9011
1993	1440.000	278.639	1718.639			16.2128	1.1760	27.0143
1994	1308.081	253.113	1561.194	453.110	0.000	16.2128	1.1348	24.5388
1995	1086.315	210.201	1296.516	326.364	0.000	16.2128	0.9631	19.7435
1996	1223.451	236.737	1460.189	373.121	0.000	16.2128	0.9765	16.0446
1997	981.513	189.922	1171.436	190.547	0.000	16.2128	0.9728	13.9027
1998	1271.881	86.000	1357.881	266.850	80.448	6.3334	0.9660	18.0335
1999	925.892	16.000	941.892	283.003	287.791	1.6987	0.5210	9.5323
2000	628.918	16.000	644.918	113.480	82.121	2.4809	0.4484	7.2891
2001	354.866	39.000	393.866	25.980	30.742	9.9019	0.3021	5.6327
2002	389.328	7.370	396.698	71.886	3.720	1.8578	0.2549	4.0433
2003	296.069	19.490	315.559	42.301	2.077	6.1763	0.2065	3.2843
2004	293.191	381.440	674.631	31.148	1.719	56.5405	0.2822	4.966
2005	329.935	273.920	603.855	17.249	1.318	45.3619	0.2635	6.0446
2006	412.776	109.480	522.256	26.282	0.732	20.9629	0.2645	7.8259
2007	224.990	24.929	249.919	29.271	0.780	9.9749	0.2444	5.6784
2008	194.125	265.391	459.516	36.859	0.976	57.7545	0.2754	5.0903
2009	171.807	16.561	188.368	33.663	1.704	8.7918	0.2752	6.9116
2010	157.283	15.161	172.444	25.554	4.584	8.7918	0.2207	6.3388
2011	119.504	40.116	159.620	9.047	11.805	25.1324	0.2025	5.5254
2012	53.962	18.115	72.077	3.895	5.776	25.1324	0.1477	3.2664

Discards make up approximately 16.2 \% of the catch over the 1998-2006 period.

Table 23.10. RBC calculations for Blue Warehou1050. Ctarg and CPUEtarg relate to the period 1986-1995, CPUELim is 40% of the target, and $C P U E$ is the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. Wt_Discard is the weighted average discards from the last four years, as with Equ (19).

Ref_Year	$1986-1995$
CE_Targ	2.0176
CE_Lim	0.807
CE_Recent	0.2115
Wt_Discard	23.484
Scaling	0
Last Year’s TAC	133
C $_{\text {targ }}$	1711.526
RBC	$\mathbf{0}$

BlueWarehou1050

Figure 23.3. Blue Warehou. Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

23.4.4 Blue Warehou (TRT - 37445005 - Seriolella brama) Zones 10, 20 \& 30

To provide an analysis more relevant to the two stocks of Blue Warehou (east and west) the landed catches, which are reported in total across zones $10-50$, were subdivided in the same ratio as the reported catches from the catch effort log books, the discards were treated in the same fashion. Thus the catches and discards in Table 23.11 and Table 23.13 should sum in each year to the catches and discards in Table 23.9. The separate columns for the State and Non-Trawl catches were not adjusted and so, for these analyses are not meaningful.

Table 23.11. Blue Warehou data for the TIER 4 calculations. Total is the sum of Discards, State, Non Trawl and SEF2 catches. All values in Tonnes. CE is the standardized catch rate for Zones 10 to 30 in depths $0-400 \mathrm{~m}$ (Haddon, 2013). GeoMean is the geometric mean catch rates. Discards are estimates from 1998 to present. The ratio of discards to catch over the 1998 - 2006 period was used to estimate the discards between 1986 and 1997. Prop is the proportion of the Commonwealth catch taken in zones 10 30 estimated from logbook data.

Year	Catch	Discards	Total	State	Non-T	PDiscard	CE	GeoMean	Prop
1986	182.965	35.404	218.369			16.2128	1.9418	22.9216	0.660
1987	441.810	85.490	527.300			16.2128	2.3584	23.2716	0.437
1988	627.235	121.370	748.604			16.2128	2.8779	34.8726	0.627
1989	1423.934	275.530	1699.464			16.2128	3.6492	52.6588	0.891
1990	1404.632	271.796	1676.428			16.2128	3.3387	46.551	0.618
1991	1029.357	199.180	1228.537			16.2128	1.7949	23.0208	0.415
1992	904.980	175.113	1080.093			16.2128	1.4771	24.3304	0.484
1993	779.747	150.881	930.627			16.2128	1.1518	20.7054	0.541
1994	668.550	129.364	797.914	231.581		16.2128	1.1110	17.5997	0.511
1995	639.496	123.742	763.238	192.125		16.2128	1.0166	15.3567	0.589
1996	908.029	175.703	1083.732	276.926		16.2128	1.0478	14.6415	0.742
1997	612.225	18.465	730.691	118.855		16.2128	1.0217	11.876	0.624
1998	714.692	48.325	763.016	149.948	45.205	6.3334	0.9546	13.8592	0.562
1999	393.565	6.801	400.366	120.295	122.330	1.6987	0.5292	5.7097	0.425
2000	298.780	7.601	306.381	53.911	39.013	2.4809	0.4393	5.0072	0.475
2001	80.201	8.814	89.015	5.872	6.948	9.9019	0.2615	2.7867	0.226
2002	87.092	1.649	88.740	16.081	0.832	1.8578	0.1982	2.2036	0.224
2003	57.050	3.756	60.806	8.151	0.400	6.1763	0.1538	1.8331	0.193
2004	72.152	93.870	166.022	7.665	0.423	56.5405	0.2087	2.7248	0.246
2005	25.133	20.866	46.000	1.314	0.100	45.3619	0.1395	1.8011	0.076
2006	29.227	7.752	36.979	1.861	0.052	20.9629	0.1656	2.2327	0.071
2007	22.793	2.526	25.319	2.965	0.079	9.9749	0.1745	1.8677	0.101
2008	36.657	50.115	86.772	6.960	0.184	57.7545	0.2439	2.6539	0.189
2009	50.201	4.839	55.040	9.836	0.498	8.7918	0.2875	3.5956	0.292
2010	16.385	1.579	17.965	2.662	0.478	8.7918	0.1840	2.1227	0.104
2011	12.818	4.303	17.121	0.970	1.266	25.1324	0.1490	1.7081	0.107
2012	11.509	3.864	15.373	0.831	1.232	25.1324	0.1238	1.6727	0.213

Discards make up approximately 16.2% for the period 1998 - 2006 .

Table 23.12. RBC calculations for Blue Warehou East. Ctarg and CPUEtarg relate to the period 1986-1995, CPUELim is 40% of the target, and $C P U E$ is the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. Wt_Discard is the weighted average discards from the last four years, as with Equ (19).

Ref_Year	$1986-1995$
CE_Targ	2.0717
CE_Lim	0.8287
CE_Recent	0.1861
Wt_Discard	3.741
Scaling	0
Last Year's TAC	133
C $_{\text {targ }}$	967.057
RBC	$\mathbf{0}$

BlueWarehouE

Figure 23.4. Blue Warehou zones $10-30$. Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

23.4.5 Blue Warehou (TRT - 37445005 - Seriolella brama) Zones 40 \& 50

To provide an analysis more relevant to the two stocks of Blue Warehou (east and west) the landed catches, which are reported in total across zones $10-50$, were subdivided in the same ratio as the reported catches from the catch effort log books, the discards were treated in the same fashion. Thus the catches and discards in Table 23.11 and Table 23.13 should sum in each year to the catches and discards in Table 23.9. The separate columns for the State and Non-Trawl catches were not adjusted and so, for these analyses are not meaningful.

Table 23.13. Blue Warehou data for the TIER 4 calculations. Total is the sum of Discards, State, Non Trawl and SEF2 catches. All values in Tonnes. CE is the standardized catch rate for Zones 40 to 50 in depths $0-400 \mathrm{~m}$ (Haddon, 2013). GeoMean is the geometric mean catch rates. Discards are estimates from 1998 to present. The ratio of discards to catch over the 1998 - 2006 period was used to estimate the discards between 1986 and 1997. Prop is the proportion of the Commonwealth catch taken in zones 40 50 estimated from logbook data.

Year	Catch	Discards	Total	State	Non-T	PDiscard	CE	GeoMean	Prop
1986	94.090	18.206	112.296			16.2128	3.3898	34.3927	0.339
1987	566.596	109.636	676.231			16.2128	3.2398	153.6342	0.561
1988	371.761	71.936	443.696			16.2128	1.3376	104.5294	0.372
1989	174.252	33.718	207.970			16.2128	3.3688	91.527	0.109
1990	824.357	159.513	983.870			16.2128	1.4738	55.8069	0.363
1991	1432.947	277.274	1710.221			16.2128	2.3199	159.6429	0.578
1992	957.007	185.180	1142.187			16.2128	1.3324	88.9759	0.512
1993	655.342	126.808	782.151			16.2128	0.9834	92.3447	0.455
1994	634.695	122.813	757.508	219.854		16.2128	1.0772	67.3117	0.485
1995	444.465	86.004	530.469	133.532		16.2128	0.7260	45.1964	0.409
1996	313.745	60.710	374.455	95.684		16.2128	0.4958	26.4215	0.256
1997	368.817	71.366	440.183	71.601		16.2128	0.5195	35.6095	0.376
1998	554.068	37.464	591.532	116.248	35.045	6.3334	0.7874	58.9967	0.436
1999	521.329	9.009	530.338	159.347	162.042	1.6987	0.4387	32.5226	0.563
2000	328.333	8.353	336.686	59.243	42.872	2.4809	0.3523	28.0473	0.522
2001	272.029	29.896	301.925	19.915	23.566	9.9019	0.3768	27.5825	0.767
2002	302.026	5.717	307.743	55.766	2.886	1.8578	0.4992	35.4216	0.776
2003	237.916	15.662	253.577	33.992	1.669	6.1763	0.4553	28.1023	0.804
2004	220.757	287.204	507.961	23.453	1.294	56.5405	0.5094	28.4995	0.753
2005	304.398	252.718	557.116	15.914	1.216	45.3619	0.8063	53.5991	0.923
2006	383.493	101.713	485.206	24.417	0.680	20.9629	0.5689	31.8482	0.929
2007	202.184	22.402	224.586	26.304	0.701	9.9749	0.4872	22.982	0.899
2008	157.330	215.088	372.418	29.873	0.791	57.7545	0.3823	20.3955	0.810
2009	121.137	11.677	132.813	23.735	1.202	8.7918	0.2859	18.4388	0.705
2010	140.652	13.558	154.209	22.852	4.100	8.7918	0.3290	17.5511	0.894
2011	101.774	34.165	135.938	7.705	10.053	25.1324	0.2809	14.395	0.852
2012	38.079	12.783	50.862	2.749	4.076	25.1324	0.1766	8.1485	0.706

Discards make up approximately 16.2 \% of the catch over the 1998-2006 period.

Table 23.14. RBC calculations for Blue Warehou West (Zones 40-50). Ctarg and CPUEtarg relate to the period 1986-1995, CPUELim is 40% of the target, and $\overline{C P U E}_{\text {is the average catch rate over the last four years. The RBC }}$ calculation does not account for predicted discards of predicted State catches. Wt_Discard is the weighted average discards from the last four years, as with Equ (19).

Ref_Year	$1986-1995$
CE_Targ	1.9249
CE_Lim	0.7699
CE_Recent	0.2681
Wt_Discard	18.514
Scaling	0
Last Year's TAC	133
Ctarg $^{\text {RBC }}$	734.66
$\mathbf{R B}$	$\mathbf{0}$

BlueWarehouW

Figure 23.5. Blue Warehou zones $40-50$. Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

23.4.6 Inshore Ocean Perch Including Discards (REG - 37287001 - Helicolenus barathri)

Inshore Ocean Perch are subject to relatively high levels of discarding, which was likely to have large effects on the perceived catch rates. By including the estimated discards in with the reported catches revised catch rates were possible. No standardization was possible using the simple ratio means but a method was devised that uses the standardized catch rates with a multiplier devised from the ratio discards to total catches; see equation (28). The reference period includes periods of catches less than $100 t$ because this is a well-developed fishery and 100 t constitutes a large proportion of the maximum catch.

Table 23.15. Inshore Ocean Perch data for the Alternative TIER 4 calculations using ratio mean catch rates that include discards in the catch rate calculations. Total is the sum of Discards, and other catches. All values in Tonnes. StandCE is the standardized catch rate for Inshore Ocean perch from Zones 10 and 20 in depths $0-200 \mathrm{~m}$ (Haddon, 2013). GeoMean is the geometric mean catch rates (without discards). Discards are estimates from 1998 to present. DiscCE is the standardized catch rates multiplied by [(Discard/Catch)+1], see Haddon (2011c) and Methods.

Year	Catch	Discards	Total	$(\mathrm{D} / \mathrm{C})+1$	StandCE	DiscCE	GeoMean
1986	15.239	49.930	65.169	4.2765	0.8440	0.7345	6.8543
1987	12.441	34.842	47.283	3.8006	0.9873	0.7636	5.9511
1988	16.643	49.027	65.670	3.9458	1.1256	0.9038	7.2891
1989	16.758	50.257	67.015	3.9990	1.0802	0.8790	8.0367
1990	17.076	88.665	105.741	6.1924	1.1551	1.4555	7.7738
1991	26.084	106.551	132.635	5.0849	1.2906	1.3354	8.1374
1992	16.106	106.112	122.218	7.5884	1.7155	2.6490	9.5229
1993	29.267	100.307	129.574	4.4273	1.9258	1.7350	10.1873
1994	38.765	99.192	137.957	3.5588	1.7529	1.2694	9.4326
1995	40.881	104.606	145.487	3.5588	1.2956	0.9383	8.7548
1996	51.250	131.139	182.389	3.5588	1.1461	0.8300	7.0539
1997	34.279	87.713	121.992	3.5588	1.0647	0.7710	5.9056
1998	39.085	124.000	163.085	4.1726	0.9289	0.7887	5.7524
1999	25.438	78.000	103.438	4.0663	0.8336	0.6898	4.9974
2000	47.846	100.000	147.846	3.0901	0.9928	0.6243	4.5708
2001	37.815	89.000	126.815	3.3536	0.9850	0.6722	4.2075
2002	48.363	145.110	193.473	4.0004	0.7049	0.5738	2.6164
2003	30.865	61.320	92.185	2.9867	0.5446	0.3310	2.3132
2004	25.887	194.450	220.337	8.5116	0.5539	0.9594	2.244
2005	23.829	41.680	65.509	2.7491	0.6252	0.3497	2.988
2006	50.439	9.760	60.199	1.1935	0.5197	0.1262	2.2501
2007	35.923	17.195	53.117	1.4787	0.7315	0.2201	3.5455
2008	29.746	23.433	53.180	1.7878	0.8917	0.3244	4.2486
2009	19.480	91.350	110.830	5.6894	0.7600	0.8799	4.1335
2010	21.952	132.847	154.798	7.0518	0.8047	1.1547	3.8363
2011	19.797	325.480	345.277	17.4409	0.9396	3.3347	3.6642
2012	14.098	133.590	147.688	10.4755	0.8006	1.7066	3.5117

Discards are calculated now according to the latest ISMP design and this has led to a reassessment of the levels of discards from 2008 onwards; hence the difference between this year's analysis and last year's.

23.4.6.1 40\% Target

Table 23.16. RBC calculations for Inshore Ocean Perch. Ctarg and CPUEtarg relate to the period 1986-1995, CPUELim is 40% of the target, and $\overline{C P U E}$ is the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. Wt Discard is the weighted average discards from the last four years, as with Equ (19).

Ref_Year	$1986-1995$
CE_Targ $^{\text {CE_Lim }}$	1.0553
CE_Recent $^{\text {Wt_Discard }}$	0.5065
Scaling	1.769
Last Year's TAC	181.845
C $_{\text {targ }}$	2.3006
RBC	300

InOceanPerchDiscard

Figure 23.6. Alternative InShore Ocean Perch (where catch rates include discards). Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

23.4.7 Offshore Ocean Perch (REG - 37287001 - H percoides)

Offshore Ocean Perch were defined as those records that were reported as being from 200-700 metres depth; Inshore Ocean Perch were defined as those records from depths of $0-200$ metres (A decision of the RAG in 2010, reversing a different decision made in 2009). In addition, the data series of reported catches differ from those previously used as they have been recently reviewed and revised, splitting the landings between Offshore and Inshore Ocean Perch relative to the Commonwealth log book catches for the two depth ranges. This increased the total catches reported, but these data are now the best available information on Ocean Perch catches.

Table 23.17. Offshore Ocean Perch data for the TIER 4 calculations. Total is the sum of Discards, State, Non Trawl and SEF2 catches. All values in Tonnes. CE is the standardized catch rate for Offshore Ocean perch from Zones 10 and 20 in depths $200-700 \mathrm{~m}$ (Haddon, 2013). GeoMean is the geometric mean catch rates. Discards are estimates from 1998 to present. The ratio of discards to catch over the 1998 2006 period was used to estimate the discards between 1986 and 1997. Landings before 1994 were subdivided according to the ratio of inshore to offshore in the Commonwealth logbook data.

Year	Catch	Discards	Total	State	Non-T	Pdiscard	CE	GeoMean
1986	218.366	31.876	250.242			12.7381	1.0273	12.1440
1987	179.087	26.142	205.230			12.7381	0.9524	8.9237
1988	178.089	25.997	204.086			12.7381	1.0646	10.5074
1989	207.462	30.284	237.746			12.7381	1.0226	10.6494
1990	176.918	25.826	202.744			12.7381	1.3618	12.0207
1991	234.031	34.163	268.193			12.7381	1.4388	13.4339
1992	349.336	50.994	400.330			12.7381	1.2143	11.9264
1993	314.476	45.906	360.382			12.7381	1.2142	12.9555
1994	294.313	42.962	337.276	35.478		12.7381	1.1338	11.8001
1995	320.654	46.807	367.461	35.712		12.7381	1.0258	10.4874
1996	363.621	53.080	416.701	35.992		12.7381	0.9196	9.8364
1997	440.479	64.299	504.777	37.041	5.312	12.7381	0.9729	9.7119
1998	372.254	174.000	546.254	35.974	6.250	31.8533	0.8631	9.4285
1999	395.062	64.000	459.062	39.250	7.018	13.9415	0.9696	9.7566
2000	344.156	34.000	378.156	36.369	9.086	8.9910	0.7723	7.5464
2001	356.183	46.000	402.183	29.725	8.597	11.4376	0.8676	8.3956
2002	322.376	22.470	344.846	36.660	18.885	6.5160	0.8247	7.3709
2003	373.003	27.800	400.803	28.965	30.940	6.9361	0.8799	7.6242
2004	362.370	42.440	404.810	19.579	66.129	10.4839	0.8767	8.0648
2005	322.617	17.100	339.717	15.404	34.518	5.0336	0.9852	9.3641
2006	226.413	20.980	247.393	15.835	46.229	8.4804	0.8429	7.8433
2007	186.607	100.727	287.334	13.362	28.638	35.0559	1.0503	9.9183
2008	208.930	22.187	231.117	13.489	37.801	9.6000	0.9672	9.1917
2009	218.732	28.233	246.965	18.551	32.967	11.4319	0.9630	9.0355
2010	238.512	81.596	320.108	27.782	28.977	25.4902	0.9863	9.8647
2011	223.762	18.550	242.312	10.619	24.104	7.6555	0.8673	9.0998
2012	211.337	23.539	234.876	13.403	27.049	10.0218	0.9357	9.9671

Discards make up approximately 12.68% \% of the catch over the 1998-2006 period. The catch rates used were for Offshore Ocean Perch from 200 to 700 metres depth. State catches from 1994 to 1997 were compromised through including some Commonwealth catches. As an agreed upon better estimates, the State catches in these years were replaced with the average State catch from the years 1998 to 2003.

23.4.7.1 48\% Target No Discards

Table 23.18. RBC calculations for Offshore Ocean Perch. Ctarg and CPUEtarg relate to the period 1986-1995, CPUELim is 40% of the target, and $\overline{C P U E}$ is the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. Wt_Discard is the weighted average discards from the last four years, as with Equ (19).

| Ref_Year | $1986-1995$ |
| ---: | ---: | ---: |
| CE_Targ | 1.1456 |
| CE_Lim | 0.4582 |
| CE_Recent | 0.9381 |
| Wt_Discard | 30.262 |
| Scaling | 0.6981 |
| Last Year's TAC | 300 |
| Ctarg $^{\text {RBC }}$ | 283.369 |

OffOceanPerch

Figure 23.7. OffShore Ocean Perch. Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

23.4.8 Offshore Ocean Perch (REG - 37287001 - H percoides) Including Discards

A request has been made to estimate the Tier 4 for Offshore Ocean Perch by including discards and setting a target at a proxy of 40% instead of 48%.

Table 23.19. Offshore Ocean Perch data for the TIER 4 calculations. Total is the sum of Discards, State, Non Trawl and SEF2 catches. All values in Tonnes. CE is the standardized catch rate for Offshore Ocean perch from Zones 10 and 20 in depths $200-700 \mathrm{~m}$ (Haddon, 2013). GeoMean is the geometric mean catch rates. Discards are estimates from 1998 to present. The ratio of discards to catch over the 1998 2006 period was used to estimate the discards between 1986 and 1997. Landings before 1994 were subdivided according to the ratio of inshore to offshore in the Commonwealth logbook data.

Year	Catch	Discards	Total	$(\mathrm{D} / \mathrm{C})+1$	StandCE	DiscCE	GeoMean	TAC
1986	218.366	31.876	250.242	1.1460	1.0273	1.0136	12.1440	
1987	179.087	26.142	205.230	1.1460	0.9524	0.9397	8.9237	
1988	178.089	25.997	204.086	1.1460	1.0646	1.0504	10.5074	
1989	207.462	30.284	237.746	1.1460	1.0226	1.0089	10.6494	
1990	176.918	25.826	202.744	1.1460	1.3618	1.3436	12.0207	
1991	234.031	34.163	268.193	1.1460	1.4388	1.4196	13.4339	
1992	349.336	50.994	400.330	1.1460	1.2143	1.1981	11.9264	
1993	314.476	45.906	360.382	1.1460	1.2142	1.1980	12.9555	300
1994	294.313	42.962	337.276	1.1460	1.1338	1.1186	11.8001	500
1995	320.654	46.807	367.461	1.1460	1.0258	1.0121	10.4874	500
1996	363.621	53.080	416.701	1.1460	0.9196	0.9073	9.8364	500
1997	440.479	64.299	504.777	1.1460	0.9729	0.9599	9.7119	500
1998	372.254	174.000	546.254	1.4674	0.8631	1.0904	9.4285	500
1999	395.062	64.000	459.062	1.1620	0.9696	0.9700	9.7566	500
2000	344.156	34.000	378.156	1.0988	0.7723	0.7306	7.5464	500
2001	356.183	46.000	402.183	1.1291	0.8676	0.8434	8.3956	490
2002	322.376	22.470	344.846	1.0697	0.8247	0.7595	7.3709	490
2003	373.003	27.800	400.803	1.0745	0.8799	0.8140	7.6242	500
2004	362.370	42.440	404.810	1.1171	0.8767	0.8432	8.0648	500
2005	322.617	17.100	339.717	1.0530	0.9852	0.8932	9.3641	500
2006	226.413	20.980	247.393	1.0927	0.8429	0.7929	7.8433	500
2007	186.607	100.727	287.334	1.5398	1.0503	1.3924	9.9183	585
2008	208.930	22.187	231.117	1.1062	0.9672	0.9211	9.1917	500
2009	218.732	28.233	246.965	1.1291	0.9630	0.9361	9.0355	400
2010	238.512	81.596	320.108	1.3421	0.9863	1.1397	9.8647	300
2011	223.762	18.550	242.312	1.0829	0.8673	0.8086	9.0998	300
2012	211.337	23.539	234.876	1.1114	0.9357	0.8953	9.9671	300

23.4.8.1 40\% Target Including Discards

Table 23.20. RBC calculations for Offshore Ocean Perch. Ctarg and CPUEtarg relate to the period 1986-1995, CPUELim is 40% of the target, and $\overline{C P U E}$ is the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. Wt_Discard is the weighted average discards from the last four years, as with Equ (19).

Ref_Year	$1986-1995$
CE_Targ	0.9419
CE_Lim	0.4521
CE_Recent	0.9449
Wt_Discard	30.262
Scaling	1.0062
Last Year's TAC	300
C $_{\text {targ }}$	283.369
RBC	$\mathbf{2 8 5 . 1 3 9}$

OffOceanPerchDiscard

Figure 23.8. OffShore Ocean Perch. Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

23.4.9 Royal Red Prawn (PRR - 28714005 - Haliporoides sibogae)

Table 23.21. Royal Red Prawn data for the TIER 4 calculations. Total is the sum of Discards, State, Non Trawl and SEF2 catches. All values in Tonnes. CE is the standardized catch rate for Zone 10 in depths 0 -400 m (Haddon, 2013). GeoMean is the geometric mean catch rates. Discards are estimates from 1998 to present. The ratio of discards to catch over the 1998 - 2006 period was used to estimate the discards between 1986 and 1997, the proportion of which is the PDiscard.

Year	Catch	Discards	Total	State	Non-T	PDiscard	CE	GeoMea
n								

Discards make up approximately 4.3 \% of the catch over the 1998-2006 period.

Table 23.22. RBC calculations for Royal Red Prawn. Ctarg and CPUEtarg relate to the period $1986-1995$, CPUELim is 40% of the target, and $\overline{C P U E}$ is the average catch rate, from all fishing gear, over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. Wt_Discard is the weighted average discards from the last four years, as with Equ (19).

Ref_Year	$1986-1995$
CE_Targ	1.0615
CE_Lim	0.4246
CE_Recent	1.0443
Wt_Discard	3.797
Scaling	0.973
Year's TAC	303
C $_{\text {targ }}$	403.512
RBC	$\mathbf{3 9 2 . 6 2 2}$

Figure 23.9. Royal Red Prawn. Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

Figure 23.10. a comparison of the standardization based on all data with the standardizations that relate to the data where mesh size information was available for both large and small meshes, and also for a separate analysis where only the small mesh data were standardized.

23.4.9.1 The Effect of the Endeavour Dogfish Closure

Catches in the final version of the Endeavour Dogfish closure reached between 15 21% between 1998 - 2001 but have always been less than that in other years (Table 23.23).

Table 23.23. Catches of Royal Red Prawn in the Endeavour dogfish closure and elsewhere.

Year	Open	Endeavour	Year	Open	Endeavour
1986	228.150	3.694	1999	283.239	65.565
1987	320.209	4.507	2000	340.739	57.735
1988	340.567	3.890	2001	180.289	48.410
1989	303.417	7.343	2002	406.385	10.985
1990	311.118		2003	156.969	6.215
1991	299.370		2004	167.451	3.230
1992	145.291	0.790	2005	159.605	0.200
1993	232.774		2006	177.629	0.950
1994	240.363		2007	116.430	
1995	237.595	15.310	2008	70.605	
1996	258.345	14.330	2009	67.587	0.020
1997	152.173	14.530	2010	82.221	0.600
1998	152.960	37.772	2011	108.960	

Catches within what has become the Endeavour dogfish closure have been less than 4 tonnes since 2004. Once all data from this area are removed from the Royal Red Prawn
data a standardization demonstrated no appreciable difference from the trend exhibited by using all data.

Figure 23.11. The standardization of all Royal Red Prawn

23.4.10 Silver Trevally (TRE - 37337062 - Pseudocaranx dentex)

Table 23.24. Silver Trevally data for the TIER 4 calculations. Total is the sum of Discards, State (not SA or WA), Non Trawl and SEF2 catches. All values in Tonnes. CE is the standardized catch rate for Zones 10 and 20 from depths 0 to 200 m (Haddon, 2013) with records from the Bateman's Bay MPA removed. GeoMean is the geometric mean catch rates. Discards are estimates from the ISMP from 1998 to present. The ratio of discards to catch over the 1998-2006 period was used to estimate the discards between 1986 and 1997, the proportion of which is the PDiscard.

Year	Catch	Discards	Total	State	Non-T	PDiscard	CE	GeoM
1986	1166.400	5.489	1171.889			0.4684	1.1540	17.0086
1987	1142.400	5.376	1147.776			0.4684	1.3641	17.5072
1988	1226.400	5.771	1232.171			0.4684	1.8041	23.7642
1989	1394.400	6.562	1400.962			0.4684	1.9185	23.0657
1990	1587.600	7.471	1595.071			0.4684	2.2806	23.2975
1991	990.000	4.659	994.659			0.4684	2.0451	18.1137
1992	949.200	4.467	953.667			0.4684	1.1704	12.0774
1993	1030.800	4.851	1035.651			0.4684	1.2771	13.4863
1994	835.815	3.933	839.748	704.273	0.000	0.4684	0.9802	9.4912
1995	995.628	4.685	1000.313	799.656	0.000	0.4684	1.1131	10.2789
1996	1018.880	4.795	1023.674	810.543	0.000	0.4684	0.9028	7.5806
1997	785.220	3.695	788.915	626.604	0.526	0.4684	0.8527	6.2012
1998	628.496	0.000	628.496	536.569	12.215	0.0000	0.6199	5.2414
1999	488.585	2.000	490.585	412.778	7.275	0.4077	0.6205	4.9696
2000	493.293	0.000	493.293	405.277	2.707	0.0000	0.4567	3.6777
2001	649.441	9.000	658.441	490.553	2.170	1.3669	0.5340	4.1345
2002	517.873	1.100	518.973	361.505	2.444	0.2120	0.4323	3.0864
2003	524.148	1.510	525.658	402.604	2.435	0.2873	0.4233	3.3755
2004	654.880	7.400	662.280	519.086	1.977	1.1174	0.5859	4.5401
2005	502.335	0.100	502.435	416.717	0.607	0.0199	0.5181	4.7971
2006	413.782	1.820	415.602	358.778	2.046	0.4379	0.7261	5.7178
2007	355.694	3.065	358.760	303.373	2.070	0.8544	0.8055	7.4274
2008	279.914	2.460	282.374	185.746	0.319	0.8711	0.8328	8.0833
2009	310.694	0.000	310.694	167.808	0.740	0.0000	0.8479	9.2632
2010	376.736	0.165	376.902	176.787	0.302	0.0438	1.0767	11.7000
2011	387.650	14.290	401.940	190.537	0.104	3.5553	0.9727	11.0895
2012	261.387	1.055	262.442	152.240	0.113	0.4020	0.6850	7.6670

Discards make up approximately 0.16% of the catch over the 1998-2006 period.
Silver Trevally exhibited a period of high catch rates during 1989-1991 which were the result of a set of highly efficient vessels entering the fishery. These catch rates were considered not to represent a sustainable fishery and are not expected to be repeated. Therefore 1992-2001 was selected by the RAG as being a more representative reference period. In addition, the coastal waters within the Bateman's Bay MPA were removed from consideration during the catch rate standardization; the catches were deemed possible as fish could move from the MPA, but catch rates are not expected to be so high outside the MPA.

Table 23.25. RBC calculations for Silver Trevally. Ctarg and CPUEtarg relate to the period 1992-2001, CPUELim is 40% of the target, and $\overline{C P U E}$ is the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. Wt_Discard is the weighted average discards from the last four years, as with Equ (19).

Ref_Year	$1992-2001$
CE_Targ	0.8527
CE_Lim	0.3411
CE_Recent	0.8956
Wt_Discard (t)	4.395
Scaling	1.0837
Last Year's TAC	540
C $_{\text {targ }}$	791.278
$\mathbf{R B C}$	$\mathbf{8 5 7 . 5 2 4}$

SilverTrevally

Figure 23.12. Silver Trevally. Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates (with records within the Bateman's Bay MPA removed; Haddon, 2013) with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

23.4.11 Silver TrevallyMPA (TRE - 37337062 - P. dentex)

An alternative analysis was requested that used all data to estimate the standardized CPUE series rather than just the data from outside the Bateman's Bay MPA. This differs from the analysis without the MPA in terms of the optimum standardized catch rates. Because the target and recent catch rate series are similar between the two analyses the outcomes are very similar.

Conducting the analysis such that only records from outside the MPA are used for the catches and the CPUE is not a simple exercise because a large proportion of catches were taken from State waters and their precise location is unknown.

Table 23.26. Silver Trevally data for the TIER 4 calculations. Total is the sum of Discards, State (not SA or WA), Non Trawl and SEF2 catches. All values in Tonnes. CE is the standardized catch rate for Zones 10 and 20 from depths 0 to 200 m (Haddon, 2013) with records from the Bateman's Bay MPA removed. GeoMean is the geometric mean catch rates. Discards are estimates from the ISMP from 1998 to present. The ratio of discards to catch over the 1998-2006 period was used to estimate the discards between 1986 and 1997, the proportion of which is the PDiscard.

Year	Catch	Discards	Total	State	Non-T PDiscard	CE	GeoM	
1986	1166.400	1.838	1168.238			0.157	1.0402	17.0086
1987	1142.400	1.800	1144.200			0.157	1.2330	17.5072
1988	1226.400	1.933	1228.333			0.157	1.4170	23.7642
1989	1394.400	2.198	1396.598			0.157	1.7729	23.0657
1990	1587.600	2.502	1590.102			0.157	2.0276	23.2975
1991	990.000	1.560	991.560			0.157	1.8146	18.1137
1992	949.200	1.496	950.696			0.157	1.0322	12.0774
1993	1030.800	1.625	1032.425			0.157	1.1101	13.4863
1994	835.815	1.317	839.748	704.273	0.000	0.157	0.9447	9.4912
1995	995.628	1.569	1000.313	799.656	0.000	0.157	1.0790	10.2789
1996	1018.880	1.606	1023.674	810.543	0.000	0.157	0.9774	7.5806
1997	785.220	1.237	788.915	626.604	0.526	0.157	0.9615	6.2012
1998	628.496	0.000	628.496	536.569	12.215	0.000	0.7327	5.2414
1999	488.585	2.000	490.585	412.778	7.275	0.408	0.7143	4.9696
2000	493.293	0.000	493.293	405.277	2.707	0.000	0.5512	3.6777
2001	649.441	9.000	658.441	490.553	2.170	1.367	0.6656	4.1345
2002	517.873	1.100	518.973	361.505	2.444	0.212	0.6240	3.0864
2003	524.148	1.510	525.658	402.604	2.435	0.287	0.6650	3.3755
2004	654.880	7.400	662.280	519.086	1.977	1.117	0.8146	4.5401
2005	502.335	0.100	502.435	416.717	0.607	0.020	0.7116	4.7971
2006	413.782	1.820	415.602	358.778	2.046	0.438	0.7714	5.7178
2007	355.694	3.065	358.760	303.373	2.070	0.854	0.7619	7.4274
2008	279.914	2.460	282.374	185.746	0.319	0.871	0.8675	8.0833
2009	310.694	0.000	310.694	167.808	0.740	0.000	0.8627	9.2632
2010	376.736	0.165	376.902	176.787	0.302	0.044	1.1179	11.7000
2011	387.650	14.290	401.940	190.537	0.104	3.555	0.9676	11.0895
2012	261.387	1.055	262.442	152.240	0.113	0.402	0.7617	7.6670

Discards make up approximately 0.16% of the catch over the 1998-2006 period.

Table 23.27. RBC calculations for Silver Trevally. Ctarg and CPUEtarg relate to the period 1992-2001, CPUELim is 40% of the target, and $\overline{C P U E}$ is the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. Wt_Discard is the weighted average discards from the last four years, as with Equ (19).

Ref_Year	1992-2001
CE_Targ	0.8769
CE_Lim	0.3507
CE_Recent	0.9275
Wt_Discard (t)	4.395
Scaling	1.0962
Last Year’s TAC	540
C $_{\text {targ }}$	790.659
RBC	$\mathbf{8 6 6 . 7 0 8}$

SilverTrevallyMPA

Figure 23.13. Silver TrevallyMPS. Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates (with records within the Bateman's Bay MPA included; Haddon, 2013) with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

The two catch rate time series are very similar from about 2006 onwards but prior to then, before there was discussion of an MPA the data from outside the closure is more
variable than that which used all data. This reflects the focus of the main fishery in the area that is now enclosed by the MPA (Figure 23.14).

Figure 23.14. A comparison of the different catch rate time series for Silver Trevally with one series including all available data and the other only using records from outside the Batemans Bay MPA.

23.4.12 Ribaldo (RBD - 37224002 - Mora moro)

Table 23.28. Ribaldo data for the TIER 4 calculations. Total is the sum of Discards, State, Non Trawl and SEF2 catches. All values in Tonnes. CE is the standardized catch rate for Zones 10 to 50 in depths $0-$ 1000m (Haddon, 2013). GeoMean is the geometric mean catch rates. Discards are estimates from 1998 to present. The ratio of discards to catch over the 1998 - 2006 period was used to estimate the discards between 1986 and 1997, the proportion of which is the PDiscard.

Year	Catch	Discards	Total	State	Non-T	PDiscard	CE	
1986	4.800	0.723	5.523			13.0907	2.2751	14.6630
1987	8.400	1.265	9.665			13.0885	1.2766	10.2593
1988	8.400	1.265	9.665			13.0885	1.9946	16.5570
1989	8.400	1.265	9.665			13.0885	1.8008	18.2556
1990	2.400	0.362	2.762			13.1064	1.4191	8.9113
1991	7.200	1.085	8.285			13.0960	1.3807	7.9930
1992	15.600	2.350	17.950			13.0919	1.3643	9.7616
1993	36.000	5.423	41.423			13.0918	1.1334	11.2449
1994	28.021	0.063	28.021	0.418	0.000	0.2248	1.2752	11.8156
1995	95.719	0.814	95.719	5.401	0.000	0.8504	1.3346	12.3128
1996	85.154	0.529	85.154	3.510	0.000	0.6212	1.0110	10.1757
1997	103.704	0.907	103.704	4.057	1.962	0.8746	0.8805	9.8023
1998	95.427	23.766	119.193	0.102	2.431	19.9391	0.8523	9.6696
1999	64.076	6.555	70.631	0.031	3.335	9.2806	0.7859	8.7093
2000	63.117	8.284	71.401	0.022	8.736	11.6021	0.7236	7.4217
2001	75.565	4.468	80.033	0.303	21.161	5.5827	0.6772	6.7639
2002	171.727	7.305	179.033	0.000	95.820	4.0803	0.6324	6.7944
2003	205.908	26.457	232.365	0.037	103.460	11.3860	0.6250	6.7153
2004	199.188	16.087	215.275	0.061	102.509	7.4728	0.6759	7.2233
2005	105.471	21.800	127.271	0.118	52.297	17.1288	0.5916	6.3488
2006	116.822	3.100	119.921	0.000	73.324	2.5848	0.6254	6.3304
2007	61.126	0.451	61.577	0.000	36.371	0.7330	0.4183	3.2493
2008	97.215	2.629	99.843	0.000	70.985	2.6328	0.5781	4.7326
2009	134.086	3.626	137.712	0.000	86.624	2.6328	0.6424	5.6978
2010	111.395	1.955	113.350	0.000	65.348	1.7244	0.6603	5.5851
2011	116.704	7.076	123.780	0.030	56.922	5.7165	0.6703	5.8331
2012	107.028	3.445	110.473	0.003	62.545	3.1182	0.6954	6.1631

Discards make up approximately 13.1 \% of the catch over the 1998-2006 period.
There was no significant effect on the catch rate standardization of whether a shot was within or outside of one of the current closures (Haddon, 2011). As the standardized catch rate trend was indistinguishable from the series without the spatial factor it was not included.

23.4.12.1 40\% Target

Table 23.29. RBC calculations for Ribaldo. Ctarg and CPUEtarg relate to the period 1995-2004, CPUELim is 40% of the target, and $\overline{C P U E}$ is the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. Wt_Discard is the weighted average discards from the last four years, as with Equ (19).

Ref_Year	$1995-2004$
CE_Targ	0.3416
CE_Lim	0.164
CE_Recent	0.6671
Wt_Discard	4.226
Scaling	2.8325
Last Year's TAC	
Ctarg RBC	125.251
	$\mathbf{3 5 4 . 7 6 8}$

Figure 23.15. Ribaldo. Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate. The purple line is below the original target because the target has been ,moved to a proxy of 40%.

23.5 Deep-Water Tier 4 Results

23.5.1 Oreos General

Table 23.30. The catch of all species of Oreos in tonnes reported in each fishery. GAB is the Great Australian Bight, SET is the South East Fishery, and HST is High Seas Trawl STR is South Tasman Rise fishery and the WDW is the Western Deep Water Trawl fishery.

Year	GAB GHT	HSN	HST	SEN	SET	SPF	SSF	STR	VIT	WD
1986					56.636					
1987	0.581				89.630					
1988	67.935				89.242					
1989	15.481				533.720					
1990	10.178				1090.260					
1991	6.982				1129.201					
1992	94.219				3201.806					58.000
1993	2.800				1036.616					58.030
1994	48.184				1043.359					20.795
1995	0.730				1025.771					1.186
1996	5.264				771.783					8.268
1997	39.757				2050.730					0.635
1998	20.916			0.009	2021.332					
1999	20.437		2.896	0.019	882.455					
2000	49.187			0.001	1010.255		0.100			0.111
2001	12.647			0.007	1097.623			25.450		4.314
2002	0.580	0.007	24.389	0.137	829.622			2.500		
2003	5.6780 .527		129.630		750.909				. 070	
2004	8.7820 .702		168.647		432.483			32.683		0.633
2005	24.2150 .807		92.576		233.887			151.600		
2006	16.6211 .168		0.246		173.732	0.034		22.520		
2007	3.4470 .823		1.224		129.664					
2008	0.2750 .685				77.386					0.020
2009	1.7961 .958		101.491		85.975					
2010	1.1801 .047				89.314					
2011	0.0800 .400				101.980					
2012	0.303				82.057					

Table 23.31. The catch of each recognized species of Oreos in tonnes reported in the GenLog (SEF1) database. Smooth and Spiky Oreos are the most commonly reported.

	Oreo	Spiky	Oxeye	Smooth	Warty	Black	Oreo Dory
Year	37266000	37266001	37266002	37266003	37266004	37266005	37266902

23.5.2 Smooth Oreo (Cascade) (DOO - 37266003 - Smooth Oreo Pseudocyttus maculatus and DOE 37266902 - Oreo Dory)

After examination of the depth distribution of records, only data from OR Zone 40 in depths $650-1250 \mathrm{~m}$ were used. All vessels recording smooth oreos in orange roughy zone 40 were included in the analysis. The discard rate estimated in 2007 was 12.3%. Catch rates as Kg /Tow.

Table 23.32. Number of records where Smooth Oreos or Oreos (CAAB codes 37266003, and 37266902 $=$ Smooth Oreo, and Oreo Dory) on the Cascade are reported by trawling in OR Zone 40, in depths 650 to 1250 m . Used are the number of records excluding those reported as being in the 700 m closure. Vessels represent the count of vessels reporting oreos. Effort H and CatchT are the reported effort and catch of Smooth Oreos from the used records. The geometric mean CE is the raw unstandardized catch rate in $\mathrm{Kg} /$ tow. Catches and numbers of records for Smooth Oreo (37266003) and for the recent new category Oreo Dory (37266902).

Year	Records	Vessels	EffortH	CatchT	GeoMean	37266003	Records	37266902	Records
1989	211	5	120.8	127.768	267.387	127.768	211		
1990	296	7	126.3	91.494	146.934	91.494	296		
1991	7	1	2.7	1.060	86.926	1.060	7		
1992	13	4	7.6	11.320	426.816	11.320	13		
1993	19	1	8.0	2.098	50.017	2.098	19		
1994	241	4	140.0	94.474	142.348	94.474	241		
1995	94	6	88.4	14.288	49.713	14.288	94		
1996	457	8	311.2	142.244	64.177	142.244	457		
1997	305	7	185.9	281.722	99.386	281.722	305		
1998	166	8	126.7	103.366	128.204	103.366	166		
1999	94	9	52.8	98.568	191.733	98.568	94		
2000	358	10	240.1	295.843	195.144	295.843	358		
2001	216	9	109.4	276.287	234.844	276.287	216		
2002	354	9	118.4	284.595	110.842	284.595	354		
2003	161	7	63.8	104.069	139.562	104.069	161		
2004	116	5	27.7	100.785	375.609	100.785	116		
2005	88	5	35.2	60.033	149.794	60.033	88		
2006	46	3	10.9	61.300	288.216	60.910	38	0.390	
2007	53	2	28.5	45.408	168.150	43.698	37	1.710	16
2008	85	3	50.7	16.245	44.721	12.365	14	3.880	71
2009	35	2	18.9	2.485	41.907	0.060	3	2.425	32
2010	29	2	27.1	7.315	144.194	3.200	5	4.115	24
2011	10	2	8.0	1.320	73.602			1.320	10
2012	23	1	21.2	4.120	119.124	0.030	1	4.090	22

23.5.2.1 Catch Rates and TIER 4 Smooth Oreo (Cascade)

Catches of smooth oreos are now so low on the Cascade Plateau that neither catch rate nor Tier 4 analyses are likely to have validity. There are only 35 or fewer data points in each year from 2009 onwards, and these are not necessarily in the same months across years.

Because the catches were so small it would not have been valid to update the TIER 4 analysis, which is in-line with a RAG decision to only update the Tier 4 assessment if there were more than $10 t$ of catch taken. The reasons for a lack of fishing are reported as being related solely to the economics of fishing for relatively small amounts of oreo quota in such deep water fisheries.

23.5.3 Smooth Oreo (non-Cascade) (DOO - 37266003 - Pseudocyttus maculates)

After examination of the depth distribution of records, only data from OR Zones 10, 20, 21,30 , and 50 , taken by trawl in the SET fishery in depths $400-1200 \mathrm{~m}$ were used. All vessels recording smooth oreos were included in the analysis. The Cascade, GAB and zone 70 Smooth Oreos were excluded. The discard rate estimated in 2007 was 12.3% and this was assumed for other years. The ratio of catches inside relative to outside the current closures is 84.9% versus 15.7% out of a total of 7236 t considered in the analysis.

Table 23.33. Number of records where Smooth Oreos not on the Cascade are reported from trawling in OR Zones $10,20,21,30,50$, in depths 400 to 1200 m . Vessels represents the count of vessels reporting smooth oreos. CatchT is the reported catch of Smooth Oreos. The geometric mean CE is the raw unstandardized catch rate in $\mathrm{Kg} /$ tow. The left hand five columns represent data, in both the closed and currently open areas the right hand five columns (post-fixed O) represent the areas left open following the 700 m closure.

Year	Records Vessels	Effort	Yield							Geom RecordsO VesselsO
1987	33	3	74	6.250	118.343	27	2	62	4.660	112.932
1988	41	9	72	39.363	232.252	15	6	21	5.218	144.408
1989	247	22	152	177.234	209.771	25	8	33	8.855	136.437
1990	648	38	479	715.045	302.562	54	12	36	62.269	382.833
1991	667	34	689	904.830	242.766	134	20	236	119.733	129.486
1992	1327	30	1063	2216.456	396.338	231	21	289	384.811	206.685
1993	999	31	691	605.649	136.366	95	19	140	68.926	97.532
1994	1068	26	744	574.904	93.488	109	18	172	43.981	91.736
1995	667	21	1175	493.353	114.545	76	11	261	34.425	105.413
1996	498	18	810	171.377	72.869	77	15	178	13.503	54.227
1997	407	20	775	153.412	108.713	77	16	224	21.482	107.409
1998	342	19	901	134.877	114.236	59	16	200	28.092	116.670
1999	278	21	1044	61.895	101.167	51	13	253	5.444	60.900
2000	314	23	1133	91.490	94.029	80	16	375	19.153	71.681
2001	520	23	2017	282.152	175.312	194	22	844	86.807	159.792
2002	516	22	2539	222.806	132.965	163	19	876	56.186	109.442
2003	444	17	2009	166.908	114.728	141	14	788	40.513	90.968
2004	404	18	1988	110.666	95.065	126	16	656	32.213	101.907
2005	191	10	763	53.557	89.466	60	9	296	12.648	69.210
2006	26	7	50	15.019	113.430	11	4	44	0.589	13.588
2007	8	2	3	0.886	73.216	3	2	3	0.156	49.716
2008	3	2	19	0.910	125.992	3	2	19	0.910	125.992
2009	15	8	49	1.295	47.042	14	7	43	1.265	48.579
2010	11	4	49	0.579	32.832	11	4	49	0.579	32.832
2011	17	7	105	4.727	92.224	17	7	105	4.727	92.224
2012	14	6	49	0.765	22.096	14	6	49	0.765	22.096

23.5.3.1 Catch Rates and TIER 4 Smooth Oreo (Non-Cascade)

Catches of smooth oreos are now so low even away from the Cascade Plateau that neither catch rate nor Tier 4 analyses are likely to have validity. There have been less than 20 data points since the year 2005, and these are not necessarily in the same months across years.

Because the catches were so small it would not have been valid to update the TIER 4 analysis, which is in-line with a RAG decision to only update the Tier 4 assessment if there were more than 10 t of catch taken. The reasons for a lack of fishing are reported as being related solely to the economics of fishing for relatively small amounts of oreo quota in such deep water fisheries.

The analysis described in Haddon (2013) remains the latest analysis of available data, although the catch rate analysis in that is also suspect due to the very low number of available data points.

23.5.4 Mixed Oreo Basket (warty, spikey, rough, black, \& Oreo Dory)

Allocyttus verrucosus (warty), Neocyttus rhomboidalis (spiky), Neocyttus psilorhynchus (rough), Allocyttus niger (black). CAAB codes : 37266004, 37266001, 37266006, 37266005 , 37266901 , 37266902 (group code). Estimated discard rate in 2007 was 16.2 $\%$ and recent estiamtes have been highly variable (Klaer et al, 2013). 97.01% of the reported catch is given as spikey oreo (Neocyttus rhomboidalis), 2.98% as warty oreo (Allocyttus verrucosus), and 0.01% as black oreo (Allocyttus niger) (Table 23.31).

Table 23.34. Number of records where Mixed Oreos are reported from trawling in OR Zones 10, 20, 21, 30 , and 50 , in depths 500 to 1200 m . Vessels represents the count of vessels reporting mixed oreos. Yield is the reported catch of mixed Oreos. The geometric mean CE is the raw unstandardized catch rate in $\mathrm{Kg} / \mathrm{tow}$. The left hand five columns represent all data, the right hand five columns represent the areas left open following the 700 m closure.

Year	Records	Vessels	Effort	Yield	Geom	RecordsO	VesselsO	EffortO	YieldO	GeomO
1986	166	9	367	50.966	114.224	138	9	329	47.586	128.028
1987	145	16	353	59.909	133.794	84	12	217	17.390	108.044
1988	161	12	372	33.809	82.647	68	7	192	12.228	77.821
1989	352	18	497	189.239	137.647	114	10	263	25.771	103.141
1990	257	22	172	257.178	292.016	23	11	61	7.335	107.273
1991	215	22	532	86.887	85.155	113	16	389	18.421	72.479
1992	577	31	848	607.582	227.389	174	22	499	76.258	111.068
1993	832	38	1621	281.255	94.969	337	29	1144	80.648	111.752
1994	1077	34	2494	284.569	75.354	419	32	1543	97.882	86.332
1995	1766	30	6060	482.242	92.167	953	23	3835	311.961	128.068
1996	2107	33	6898	420.967	69.658	1237	32	4824	284.955	91.185
1997	2274	34	9607	572.827	103.523	1502	31	6813	387.711	115.469
1998	2348	33	9873	666.856	121.631	1455	30	6170	448.279	132.626
1999	1912	33	7905	441.017	105.804	1191	31	4968	313.340	120.753
2000	1726	38	7739	376.494	97.319	1033	36	4541	253.999	114.544
2001	1926	37	8622	399.034	98.900	1262	36	5714	247.178	101.183
2002	1457	36	7174	212.546	70.372	931	33	4597	145.658	75.006
2003	1462	30	7411	229.224	75.450	915	28	4685	145.208	77.220
2004	1445	30	7502	181.402	66.947	912	28	4802	121.256	72.045
2005	813	22	4271	101.266	64.123	553	20	2882	72.176	67.852
2006	643	23	3230	80.260	50.683	422	22	2168	53.096	53.582
2007	388	17	2026	58.754	55.456	340	17	1831	52.028	54.586
2008	305	16	1751	48.564	72.522	280	16	1602	42.937	70.213
2009	500	17	2743	73.639	65.057	455	17	2482	73.639	62.511
2010	508	15	2900	76.137	65.407	508	15	2900	76.137	65.407
2011	571	17	3514	78.262	76.354	571	17	3514	78.262	76.354
2012	499	14	3021	59.514	61.119	499	14	3021	59.514	61.119

Table 23.35. The catch in tonnes of mixed oreos by Orange Roughy Zone, and, across ORzones in the current open and closed areas.

Year	Total	10	20	21	30	50	Open	Closed
1986	50.966	0.160	30.520		20.278	0.008	47.586	3.38
1987	59.909	0.130	6.470		53.309		17.39	42.519
1988	33.809	0.020	0.150		33.549	0.090	12.228	21.581
1989	189.239	0.030	98.650	37.090	53.409	0.060	25.771	163.468
1990	257.178	4.340	183.043	62.965	6.700	0.130	7.335	249.843
1991	86.887	3.191	47.720	17.251	18.340	0.385	18.421	68.466
1992	607.582	31.646	352.204	190.614	31.622	1.496	76.258	531.324
1993	281.255	1.392	106.148	36.651	107.769	29.295	80.648	200.607
1994	284.569	0.882	90.447	34.734	136.647	21.859	97.882	186.687
1995	482.242	1.388	64.172	8.076	402.359	6.247	311.961	170.281
1996	420.967	8.539	92.953	3.451	278.999	37.025	284.955	136.012
1997	572.827	43.955	129.864	1.390	377.317	20.301	387.711	185.116
1998	666.856	33.724	130.862	1.492	379.621	121.157	448.279	218.577
1999	441.017	13.860	126.159	1.295	241.554	58.149	313.34	127.677
2000	376.494	26.075	111.417	0.775	213.565	24.662	253.999	122.495
2001	399.034	17.880	134.639	7.785	218.687	20.043	247.178	151.856
2002	212.546	36.018	59.214	1.025	105.532	10.757	145.658	66.888
2003	229.224	33.272	57.005	7.550	118.164	13.233	145.208	84.016
2004	181.402	12.011	40.705	1.820	115.255	11.612	121.256	60.145
2005	101.266	5.967	22.182	1.500	62.499	9.118	72.176	29.09
2006	80.260	8.581	12.259	0.270	56.955	2.195	53.096	27.164
2007	58.754	2.340	18.565	1.194	35.345	1.310	52.028	6.726
2008	48.564	2.262	17.114		26.527	2.661	42.937	5.627
2009	73.639	4.105	17.271	0.058	48.027	4.178	73.639	
2010	76.137	5.344	25.346	5.860	37.301	2.286	76.137	
2011	78.262	3.643	20.661	1.990	48.064	3.904	78.262	
2012	59.514	2.286	19.455	0.022	34.064	3.687	59.514	
Total	6410.399	303.040	2015.195	424.858	3261.458	405.848	3550.853	2859.545

In the last five years $80-91 \%$ has been reported as Oreo Dory and the remainder as Spiky oreos. Only data from OR Zones $10,20,21,30,50$, in depths $500-1200 \mathrm{~m}$ were used, in particular only the data from outside the closures are used. All vessels recording mixed oreos were included in the analysis. Orange Roughy zones 40, 60, 70 and unknown were removed.

Figure 23.16. Mixed Oreo are reported from trawling in OR Zones 10, 20, 21, 30, and 50, in depths 500 to 1200 m . The top left is the depth distribution of all records reporting Mixed Oreo, the top right graph depicts the depth distribution of shots containing Mixed Oreo in OR Zones 10, 20, 21, 30, 50, in depths 500 to 1200 m . The middle left diagram depicts the distribution of catch across all years by depth within separate OR zones, the right hand middle graph depicts the number of vessels reporting mixed oreos through time. The bottom left reflects the number of records for mixed oreos, and bottom right are the Mixed Oreo catches used in the analysis.

Table 23.36. Statistical model structures used with Mixed Oreos. DepCat is a series of 50 metre depth categories. Closure relates to whether the area is open or closed.

Model 1	Year
Model 2	Year + Vessel
Model 3	Year + Vessel + DepCat
Model 4	Year + Vessel + DepCat + Month
Model 5	Year + Vessel + DepCat + Month + ORZone
Model 6	Year + Vessel + DepCat + Month + ORZone + DayNight
Model 7	Year + Vessel + DepCat + Month + ORZone + DayNight + Closure
Model 8	Year + Vessel + DepCat + Month + ORZone + DayNight + Closure + Vessel:Month
Model 9	Year + Vessel + DepCat + Month + ORZone + DayNight + Closure + DepCat:Month

Figure 23.17. The standardized catch rates showing the optimum model (solid black line) and the geometric mean catch rate (dashed line) each scaled to the mean of each time series. The error bars are two times the standard errors.

Table 23.37. Model selection criteria, including the AIC, the residual sum of squares, the Model sum of squares, the number of usable observations, the number of parameters, the adjusted r^{2} and the increment in adjusted r^{2}. The Vessel:Month model (model89) was optimal. The effect of being in the open or closed areas (Closed) was minor (Figure 23.18).

	Year	Vessel	DepCat	Month	ORZone	DayNight	Closed	Vess:Mth	Dep:Mth
AIC	16680	12017	10228	9301	8712	8522	8472	$\mathbf{7 9 5 9}$	8192.818
RSS	49580	41219	38289	36929	36096	35828	35757	$\mathbf{3 2 0 2 6}$	34964.88
MSS	2317	10677	13608	14968	15800	16069	16139	$\mathbf{1 9 8 7 0}$	16931.53
Nobs	26432	26427	26217	26217	26217	26217	26217	$\mathbf{2 6 2 1 7}$	26217
Npars	27	135	149	160	164	167	168	$\mathbf{1 3 5 6}$	322
adj_r	4.370	20.170	25.802	28.407	30.011	30.523	30.657	$\mathbf{3 4 . 9 2 5}$	31.79
$\Delta \mathrm{r}^{2}$	0.000	15.800	5.633	2.605	1.603	0.513	0.133	$\mathbf{4 . 2 6 8}$	1.133

Figure 23.18. Relative impact of each factor on the final trend. Blue bars indicate the standardization is above the previous model, red bars indicate it is below. Closures appear to have only a very small effect.

Table 23.38. Reported catches by CAAB code for the data analysed. Up until 2011 the group code Oreo Dory, 37266902 ,had been omitted from the analysis because of confusion with Black Oreo (37266901). The 37266902 reporting code (Oreo Dories) appears only to have been introduced in 2005 when quotas were first applied to Mixed Oreos.

	Spiky	Warty	OreoDory		Spiky	Warty	OreoDory
Year	37266001	37266004	37266902	Year	37266001	37266004	37266902
1986	19.269	31.697		1999	429.802	11.215	
1987	40.834	19.075		2000	345.507	30.987	
1988	13.860	19.949	2001	392.974	6.060		
1989	175.798	13.441	2002	210.951	1.595		
1990	254.921	2.257	2003	228.924	0.300		
1991	86.359	0.528	2004	179.862	1.540		
1992	606.532	1.050	2005	93.756		7.510	
1993	278.224	3.031	2006	38.109		42.151	
1994	265.949	18.620	2007	11.771		46.983	
1995	468.212	14.030	2008	6.983		41.581	
1996	405.361	15.606	2009	6.851		66.788	
1997	552.637	20.190	2010	8.061		68.076	
1998	642.050	24.806	2011	6.802		71.460	
				2012	8.235		51.278

Figure 23.19. A comparison of last year's standardization with this year's.

Table 23.39. The standardized catch rates for the alternative statistical models for Mixed Oreos in OR zones $10,20,21,30$, and 50 , in depths 500 to 1200 m . The optimal model was DepCat:Month. St Err is the estimate of standard error for the optimum model. Values are relative to the mean of the standardized catch rates. The Month and closure factors column was omitted for clarity; their relative effect can be seen in Figure 23.18.

Year	Year	Vessel	DepCat	ORZone	DayNight	deep	Vessel:Month	StErr
1986	1.1528	1.1469	1.3417	1.2630	1.3439	1.2556	$\mathbf{1 . 1 3 5 6}$	0.0000
1987	1.3668	1.4029	1.4726	1.5577	1.5566	1.5228	$\mathbf{1 . 4 5 1 6}$	0.1900
1988	0.8437	0.8780	1.0115	1.1005	1.0931	1.0811	$\mathbf{1 . 0 1 9 5}$	0.2039
1989	1.4008	1.6371	1.8475	1.9329	1.9478	1.9767	$\mathbf{1 . 9 5 3 0}$	0.1834
1990	2.9747	3.3745	4.0003	3.5930	3.5450	3.6652	$\mathbf{4 . 2 6 1 7}$	0.1857
1991	0.8681	1.1977	1.3860	1.3417	1.3413	1.3576	$\mathbf{1 . 2 5 1 4}$	0.1890
1992	2.3117	2.7661	2.7407	2.6684	2.6131	2.6677	$\mathbf{2 . 5 4 7 2}$	0.1712
1993	0.9650	1.1916	1.1867	1.2185	1.1935	1.2261	$\mathbf{1 . 2 2 5 5}$	0.1730
1994	0.7655	0.8869	0.8783	0.9586	0.9453	0.9583	$\mathbf{1 . 0 4 4 8}$	0.1707
1995	0.9360	1.0406	0.8997	0.9823	0.9905	0.9921	$\mathbf{1 . 0 0 4 5}$	0.1688
1996	0.7073	0.8258	0.7024	0.7476	0.7490	0.7470	$\mathbf{0 . 7 5 9 7}$	0.1692
1997	1.0512	1.0262	0.8913	0.9114	0.9114	0.9071	$\mathbf{0 . 8 8 8 8}$	0.1687
1998	1.2350	1.0777	0.9768	1.0118	1.0104	1.0074	$\mathbf{1 . 0 0 6 8}$	0.1687
1999	1.0744	0.9579	0.8797	0.8793	0.8792	0.8753	$\mathbf{0 . 8 6 7 5}$	0.1690
2000	0.9883	0.8415	0.7842	0.7768	0.7780	0.7722	$\mathbf{0 . 7 5 5 5}$	0.1691
2001	1.0043	0.9229	0.8647	0.8204	0.8212	0.8128	$\mathbf{0 . 7 9 9 3}$	0.1691
2002	0.7147	0.6179	0.5861	0.5932	0.5959	0.5913	$\mathbf{0 . 5 7 5 1}$	0.1699
2003	0.7663	0.6386	0.6131	0.6206	0.6230	0.6190	$\mathbf{0 . 5 9 5 3}$	0.1699
2004	0.6799	0.5543	0.5351	0.5446	0.5466	0.5408	$\mathbf{0 . 5 3 3 6}$	0.1700
2005	0.6516	0.5002	0.4635	0.4628	0.4661	0.4613	$\mathbf{0 . 4 5 1 8}$	0.1720
2006	0.5152	0.4385	0.3976	0.4299	0.4341	0.4287	$\mathbf{0 . 4 2 6 9}$	0.1734
2007	0.5642	0.4733	0.4083	0.4252	0.4279	0.4221	$\mathbf{0 . 4 1 7 3}$	0.1775
2008	0.7383	0.5136	0.4007	0.3999	0.4036	0.3981	$\mathbf{0 . 3 9 7 1}$	0.1808
2009	0.6615	0.4990	0.4051	0.4347	0.4412	0.4293	$\mathbf{0 . 4 0 6 1}$	0.1751
2010	0.6651	0.4859	0.4051	0.4212	0.4264	0.4088	$\mathbf{0 . 3 9 2 4}$	0.1749
2011	0.7762	0.5399	0.4327	0.4398	0.4494	0.4318	$\mathbf{0 . 4 1 9 9}$	0.1739
2012	0.6215	0.5643	0.4887	0.4643	0.4665	0.4438	$\mathbf{0 . 4 1 2 1}$	0.1774

23.5.4.1 TIER 4 Mixed Oreo Target Proxy 48\%

Using the standardized catch rates and the updated catches for 2010, which now include the Oreo Dory (CAAB code 37266902) previously omitted, the TIER 4 analysis shows the recent catch rates to be not far from the target ($\sim 82 \%$ of the target) so the RBC calculation is restrained.

The RAG, in Oct 2011, recommended the reference period be moved from 1992-2001 to become 1993-2001. The reasoning behind this move was that 1992 was the last year of the Orange Roughy fishery in which mixed oreos were a significant discard component, while from 1993 onwards Oreos were landed much more often.

Table 23.40. CE are the standardized catch rates. GeoCE is the geometric mean catch rate from the raw data. Total is the total catch in the open areas, including discards (estimated at 16.2%). The target catch rate and target catch are both halved to allow for an assumed lack of exploitation prior to the reference period.

Year	Catch	Discard	Total	CE	GeoCE		
1986	47.586	9.199	56.785	1.1356	128.0280	Ref_Year	1993
1987	17.390	3.362	20.752	1.4516	108.0437	Ref_Year	2001
1988	12.228	2.364	14.592	1.0195	77.8207	Except Yr	
1989	25.771	4.982	30.753	1.9530	103.1413	CE_Targ	0.464
1990	7.335	1.418	8.753	4.2617	107.2726	CE_Lim	0.1856
1991	18.421	3.561	21.982	1.2514	72.4795	CE_Recent	0.4076
1992	76.258	14.742	91.000	2.5472	111.0680	Wt_Discard	
1993	80.648	15.591	96.239	1.2255	111.7519	Scaling	0.7974
1994	97.882	18.922	116.804	1.0448	86.3323	TAC	
1995	311.961	60.308	372.269	1.0045	128.0685	C*(target)	160.830
1996	284.955	55.087	340.042	0.7597	91.1849	RBC	128.246
1997	387.711	74.952	462.663	0.8888	115.4691		
1998	448.279	86.661	534.940	1.0068	132.6256		
1999	313.340	60.575	373.915	0.8675	120.7534		
2000	253.999	49.103	303.102	0.7555	114.5441		
2001	247.178	47.784	294.962	0.7993	101.1833		
2002	145.658	28.159	173.817	0.5751	75.0058		
2003	145.208	28.072	173.280	0.5953	77.2203	Years	TAC
2004	121.256	23.441	144.697	0.5336	72.0455	2005	200
2005	72.176	13.953	86.129	0.4518	67.8523	2006	200
2006	53.096	10.264	63.360	0.4269	53.5816	2007/08	190
2007	52.028	10.058	62.086	0.4173	54.5861	2008/09	150
2008	42.937	8.301	51.238	0.3971	70.2134	2009/10	188
2009	73.639	14.236	87.875	0.4061	62.5112	2010/11	188
2010	76.137	14.719	90.856	0.3924	65.4074	2011/12	113
2011	78.262	15.130	93.392	0.4199	76.3535	2012/13	111
2012	59.514	11.505	71.019	0.4121	61.1189		

MixedOreo

Figure 23.20. Tier 4 analysis for mixed oreos. Top left is the total catch in the open areas with the target catch indicated by the horizontal line. The target period is indicated by the thickened section of the line. Top right, illustrates the standardized catch rates plus both the target and limit catch rates, as well as the recent average catch rate, again with the target period identified with a thickened line. The distance of the mean of the last four points from the target indicates the potential scaling used to produce the RBC. Bottom left is total removals. Bottom left is the geometric mean catch rate compared to the standardized catch rates, scaled to the mean of the unstandardized rates.

Figure 23.21. An expanded version of the Tier 4 analysis of catch rates to improve the illustration of the reference period and the recent mean catch rates. \backslash

23.5.5 Eastern Deepwater Sharks

Table 23.41. The names of the various species identified in the catch and effort database.

CAAB Code	Common Name	Scientific Name
37020000	Dogfish	Squalidae
37020002	Black	Dalatias licha
37020003	Brier	Deania calcea
37020004	Platypus	Deania quadrispinosa
37020013	Plunket's Dogfish	Centroscymnus plunketi
37020904	Roughskin	Centroscymnus \& Deania sps.
37020905	Pearl	Deania calcea \& D. quadrispinosa
37020906	Black (roughskin)	Centroscymnus sps.
37990003	Other Sharks	Other Sharks

Discards make up approximately 2.8% of the catch over the 1998-2006 period (Wayte and Fuller, 2008), but recent estimates are highly uncertain (Klaer et al, 2013).

This basket quota group is made up of many recognized species but only ten have any records, and only eight of these have any significant catches. Dogfish and Other Sharks dominate catches until about 2000. The Black Shark is possibly confounded with two group categories, the Roughskin and the Black Shark - Roughskin. Plunket‘s Dogfish is possibly confounded with the Roughskin Shark group. Similarly, the Pearl Shark group is a combination of the Brier and Platypus Sharks. The reported distributions of the Brier shark, the Roughskin Shark, and especially the Plunket's Dogfish categories are much less widespread than the others.

Figure 23.22. Eastern Deepwater Sharks catches broken down by species taken by trawling in OR Zones 10, 20, and 50 (catches in 21 and 40 were trivial), in depths 600 to 1250 m .

Table 23.42. Number of records where Eastern Deepwater Sharks are reported from trawling in OR Zones $10,20,21$, and 50 , in depths 600 to 1250 m . Recs is the number of records used. Vess represents the count of vessels reporting Deepwater Sharks. Yield is the total reported catch in tonnes. The geometric mean CE is the raw unstandardized catch rate in $\mathrm{Kg} /$ tow. The left hand five columns represent all data, the right hand five columns represent the areas left open following the 700 m closure.

Year	Yield	Records	Effort	Vessels	Geom	YieldO	RecordsO	EffortO	VesselsO	GeomO
1986	28.926	254	1052	25	45.111	25.898	209	874	24	46.096
1987	6.061	105	327	28	26.456	4.821	89	272	24	26.085
1988	5.746	47	137	22	45.312	4.919	37	107	17	45.225
1989	5.561	85	220	21	37.910	5.080	76	191	19	37.505
1990	7.228	69	125	23	42.032	3.189	42	67	19	23.441
1991	20.213	129	316	24	62.171	10.119	87	208	21	54.265
1992	64.054	115	463	25	120.583	5.527	49	206	20	48.652
1993	95.237	295	968	26	132.886	17.922	118	322	22	48.635
1994	112.086	434	1605	30	130.137	38.050	215	780	27	96.916
1995	115.605	368	1453	22	179.615	61.899	220	804	22	163.944
1996	327.383	966	3712	30	191.197	260.404	777	2949	26	183.367
1997	194.243	907	4091	26	131.258	135.947	684	3062	24	122.844
1998	206.076	1105	4989	24	117.628	170.931	927	4093	23	114.465
1999	156.977	1013	4667	28	95.560	128.817	842	3829	26	91.905
2000	187.075	889	4252	28	124.127	150.371	707	3326	24	121.916
2001	140.954	893	4097	28	86.377	113.107	724	3224	26	90.318
2002	161.446	898	4230	29	102.917	130.026	752	3450	28	97.882
2003	130.839	974	4769	25	76.461	93.895	749	3534	22	73.496
2004	104.208	724	3459	29	79.814	78.429	587	2773	27	79.701
2005	61.426	480	2470	17	74.410	48.427	377	1949	15	75.336
2006	43.617	410	1960	21	51.361	33.066	279	1274	20	63.563
2007	8.418	106	494	17	43.938	8.378	104	484	17	44.636
2008	12.904	100	658	10	65.755	11.859	96	628	10	62.155
2009	39.137	232	1227	14	81.789	38.692	229	1208	14	81.183
2010	25.529	251	1264	13	48.906	25.529	251	1264	13	48.906
2011	25.471	246	1352	15	56.150	25.471	246	1352	15	56.150
2012	26.498	283	1545	16	46.199	26.498	283	1545	16	46.199

Table 23.43. Statistical model structures used with Deepwater Sharks. DepCat is a series of 20 metre depth categories. Deep relates to whether the area is open or closed. DayNight reduced the quality of fit..

```
Model 1 Year
Model 2 Year + Vessel
Model 3 Year + Vessel + DepCat
Model 4 Year + Vessel + DepCat + Month
Model 5 Year + Vessel + DepCat + Month + ORZone
Model 6 Year + Vessel + DepCat + Month + ORZone + Deep
Model 7 Year + Vessel + DepCat + Month + ORZone + Deep + ORZone:Month
Model 8 Year + Vessel + DepCat + Month + ORZone + Deep + Vessel:Month
```


Figure 23.23. Eastern Deepwater Sharks reported from trawling in OR Zones 10, 20, 21, 50, in depths 600 to 1250 m . The top left is the depth distribution of all records reporting Deepwater Sharks, the top right graph depicts the depth distribution of shots containing Deepwater Sharks in OR Zones 10, 20, 21, 50, in depths 600 to 1250 m . The middle left diagram depicts the distribution of catch across all years by depth within separate OR zones (most catch is in zones 10, 20, and 50), the right hand middle graph depicts the number of vessels reporting Eastern Deepwater Sharks through time. The bottom left reflects the number of records for Deepwater Sharks, and bottom right are the Deepwater Shark catches used in the analysis.

Figure 23.24. Eastern Deepwater Sharks catches taken by trawling in OR Zones 10, 20, 21, and 50, in depths 600 to 1250 m . Less than 7.0 t was reported in OR Zone 70 across all years.

Figure 23.25. Depth distribution of the six main species of Eastern Deepwater Sharks catches taken by trawl in OR Zones 10, 20, 21, and 50, in depths 600 to 1250 m. 37020002: Black Shark, 37020003: Brier Shark, 37020004: Platypus Shark, 37020904:Roughskin Shark, 37020905: Pearl Shark, and 37020906: Black Shark - Roughskin category, Data updated to 2012.

Table 23.44. Model selection criteria, including the AIC, the residual sum of squares, the Model sum of squares, the number of usable observations, the number of parameters, the adjusted r^{2} and the increment in adjusted r^{2}. The model including the ORZone:Month interaction term (model 7) was optimal. There was a trivial effect of being in the open or closed areas (Deep) on the statistical model fit. Year, Vessel, and DepCat dominated the analysis. The DayNight factor was omitted because it detracted from the fit.

	Year	Vessel	DepCat	Month	ORzone	deep	ORzone:Mth	Vessel:Month
AIC	3336	1836	950	939	934	934	$\mathbf{8 9 6}$	1969
RSS	14703	12618	11322	11287	11272	11271	$\mathbf{1 1 1 3 7}$	10545
MSS	1495	3579	4876	4910	4925	4927	5061	5652
Nobs	10845	10845	10564	10564	10564	10564	$\mathbf{1 0 5 6 4}$	10564
Npars	18	97	109	120	124	125	$\mathbf{1 6 9}$	994
adj_r 2	9.086	21.403	29.379	29.521	29.586	29.591	$\mathbf{3 0 . 1 3 4}$	28.142
$\Delta \mathrm{r}^{2}$	0.000	12.317	7.975	0.143	0.065	0.005	$\mathbf{0 . 5 4 3}$	-1.449

Table 23.45. The standardized catch rates for the alternative statistical models for Eastern Deepwater Sharks in OR zones10, 20, 21, and 50, in depths 600 to 1250 m . The optimal model was Model 7. St Err is the estimate of standard error for the optimum model. Values are relative to the mean of the standardized catch rates. The models for Deep and Vessel:Month were omitted for brevity.

Year	Year	Vessel	DepCat	Month	ORzone	Deep	ORzone:Mth	StErr
1995	1.9494	1.8788	1.7336	1.7537	1.7624	1.7494	$\mathbf{1 . 7 1 5 0}$	0.0000
1996	2.0804	2.1388	2.1230	2.1257	2.0457	2.0409	$\mathbf{2 . 0 3 8 4}$	0.0728
1997	1.4283	1.4188	1.2895	1.2889	1.2685	1.2646	$\mathbf{1 . 2 8 2 5}$	0.0706
1998	1.2798	1.1801	1.0645	1.0668	1.0671	1.0675	$\mathbf{1 . 0 7 7 2}$	0.0697
1999	1.0398	1.0441	0.9163	0.9164	0.9198	0.9200	$\mathbf{0 . 9 0 6 7}$	0.0699
2000	1.3507	1.3308	1.1533	1.1446	1.1446	1.1460	$\mathbf{1 . 1 2 9 0}$	0.0716
2001	0.9399	1.0590	0.9525	0.9489	0.9604	0.9622	$\mathbf{0 . 9 6 4 8}$	0.0722
2002	1.1199	1.1558	1.0694	1.0788	1.0879	1.0892	$\mathbf{1 . 0 8 3 9}$	0.0720
2003	0.8320	0.8593	0.7648	0.7633	0.7674	0.7664	$\mathbf{0 . 7 7 1 4}$	0.0718
2004	0.8687	0.8430	0.7732	0.7649	0.7738	0.7742	$\mathbf{0 . 7 7 9 2}$	0.0740
2005	0.8102	0.7972	0.7533	0.7512	0.7565	0.7559	$\mathbf{0 . 7 5 6 5}$	0.0799
2006	0.5594	0.5552	0.6603	0.6538	0.6536	0.6524	$\mathbf{0 . 6 5 9 3}$	0.0825
2007	0.4808	0.4925	0.7267	0.7225	0.7264	0.7293	$\mathbf{0 . 7 2 5 1}$	0.1288
2008	0.7199	0.6858	1.0599	1.0592	1.0677	1.0703	$\mathbf{1 . 0 6 4 9}$	0.1277
2009	0.8919	0.9710	1.1693	1.1687	1.1748	1.1776	$\mathbf{1 . 1 9 4 2}$	0.0966
2010	0.5332	0.5411	0.5977	0.5971	0.6055	0.6088	$\mathbf{0 . 6 0 9 9}$	0.0973
2011	0.6122	0.5674	0.6426	0.6431	0.6552	0.6591	$\mathbf{0 . 6 6 9 7}$	0.0964
2012	0.5035	0.4813	0.5502	0.5526	0.5627	0.5662	$\mathbf{0 . 5 7 2 4}$	0.0936

Figure 23.26. Eastern Deepwater Sharks reported from trawling in OR Zones 10, 20, 21, and 50, in depths 600 to 1250 m . The black dashed line from 86-12 represents the geometric mean catch rate and the solid black line the optimum standardized catch rates (Model 7). The graph scales the catch rates relative to the mean of the standardized catch rates (depicted by the horizontal grey line at 1.0).

Figure 23.27. The relative impact of the different factors on the changes in the standardized trend. The major effects of both the structural adjustment that occurred across Nov 2005 - Nov 2006, with its change of vessels, and the deepwater closures is clear.

The catch rates used in the analysis are based upon log-transformed catches rather than log-transformed catch/effort. This was a RAG decision relating to how the sharks are fished. However, by comparing the statistical distributions of both types of catch rate data it is clear that the use of $\mathrm{kg} / \mathrm{hr}$ for individual records as a catch rate leads to information with better statistical properties. The use of log catch per tow to represent catch rates appears to be influenced more by the use of rounding to the nearest half hour of effort and similar rounding issues with the catch recorded. Generally it would be recommended that the data giving rise to the cleaner statistical distribution should be
used but there appear to be other changes in how fishers are operating, possibly due to the advent of the structural adjustment (Nov 2005 - Nov 2006), followed by the deepwater closures in 2007, followed by their modification in 2009. Before any changes to the analyses are made this would require a more thorough analytical investigation of the available data. Nevertheless, this issue should be noted by the RAG for future reference.

Figure 23.28. The frequency distribution of log-transformed catch rates when based on catches compared with those based on catch/effort, and the frequency distribution of effort. Effort is truncated at 2 hours as the RAG recommended that shorter tows would not be targeting deep water sharks. There were 17 records with trawl durations > 12.5 hours.

Figure 23.29. Comparison of the standardized catch rate series when based on log-transformed catches, $\log (\mathrm{kg})$, as used previously on RAG instructions, and those based on log-transformed catch/effort, \log (kg.hr).

23.5.5.1 TIER 4 Eastern Deepwater Sharks

The reference period relates to a relatively stable series of catches omitting the peak of catches in 1995 and 1996. Catches and catchrates are not halved as the fishery is considered to be well developed.

Table 23.46. CE are the catch rates (log(catch per tow) standardized to the mean of the series of catch rates GeoCE is the geometric mean catch rates from the raw data. Total is the total catch in the open areas. The discard estimate of 2.8% was used.

Year	Catch	Total	CE	GeoCE		
1986	25.898	26.623		45.111		
1987	4.821	4.956		26.456		
1988	4.919	5.057		45.312		
1989	5.080	5.222		37.910		
1990	3.189	3.278		42.032		
1991	10.119	10.402		62.171		
1992	5.527	5.682		120.583		
1993	17.922	18.424		132.886	Ref_Year	1997
1994	38.050	39.115		130.137	Ref_Year	2004
1995	61.899	63.632	1.7150	179.615	Except Yr	
1996	260.404	267.695	2.0384	191.197	CE_Targ	0.9993
1997	135.947	139.754	1.2825	131.258	CE_Lim	0.3997
1998	170.931	175.717	1.0772	117.628	CE_Recent	0.7616
1999	128.817	132.424	0.9067	95.560	Wt_Discard	NA
2000	150.371	154.581	1.1290	124.127	Scaling	0.6035
2001	113.107	116.274	0.9648	86.377	TAC	70
2002	130.026	133.667	1.0839	102.917	C*(target)	128.696
2003	93.895	96.524	0.7714	76.461	RBC	77.662
2004	78.429	80.625	0.7792	79.814		
2005	48.427	49.783	0.7565	74.410		
2006	33.066	33.992	0.6593	51.361		
2007	8.378	8.613	0.7251	43.938		
2008	11.859	12.191	1.0649	65.755		
2009	38.692	39.775	1.1942	81.789		
2010	25.529	26.244	0.6099	48.906		
2011	25.471	26.184	0.6697	56.150		
2012	26.498	27.240	0.5724	46.199		

Discards make up approximately 2.8% of the catch over the 1998-2006 period (Wayte and Fuller, 2008), but recent estimates are highly uncertain (Klaer et al, 2013).

EastDeepShark

Figure 23.30. Eastern Deepwater Sharks. Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate. The geometric mean has been graphed on the same scale as the standardized catch rates to illustrate the effect of the standardization.

2.1.1 A Three Year RBC for Eastern Deepwater Sharks

The SLOPE RAG in its November 2013 meeting decided that a three-year RBC was needed as well as the one-year RBC, which is the usual output from the Tier4 analysis. Given the apparently unusual catch rates from the east in 2008 and 2009 on both the east and west coasts it was decided to leave those out of the estimation of a three-year RBC and use, instead, the last three years of standardized CPUE and put that average through the usual Tier4 control rule.

Table 23.47. Application of average of last 3 years to produce RBC

WestDeepShark	$1986-2012$
Ref_Year	$1997-2004$
CE_Targ	0.9993
CE_Lim	0.3997
CE_Recent	0.6173
Scaling	0.3629
TAC	70
C*(target)	128.696
3-year RBC	46.705

Figure 23.31. Eastern Deepwater Sharks. Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent three year average catch rate (compare with the previous figure). The geometric mean has been graphed on the same scale as the standardized catch rates to illustrate the effect of the standardization.

23.5.6 Western Deepwater Sharks

There are numerous species grouped together into the Deepwater Sharks (Table 23.48) but only some have data and even fewer have significant catches reported.

Table 23.48. The names of the various species identified in the catch and effort database.		
CAAB Code	Common Name	Scientific Name
37020000	Dogfish	Squalidae
37020002	Black	Dalatias licha
37020003	Brier	Deania calcea
37020004	Platypus	Deania quadrispinosa
37020904	Roughskin	Centroscymnus \& Deania sps.
37020905	Pearl	Deania calcea \& D. quadrispinosa
37020906	Black (roughskin)	Centroscymnus sps.
37990003	Other Sharks	Other Sharks

Discards make up approximately 2.8% of the catch over the 1998-2006 period (Wayte and Fuller, 2008), but recent estimates are highly uncertain (Klaer et al, 2013).

This basket quota group is made up of many recognized species but only seven have any records, and only four have any significant catches reported recently. The Black Shark is possibly confounded with two group categories, the Roughskin and the Black Shark - Roughskin. Similarly, the Pearl Shark is a combination of the Brier and Platypus Sharks.

Figure 23.32. The depth distribution of the six main species with catches reported in the western deepwater shark fishery. The vertical line at 600 m illustrates the cut-off used in data selection.

Figure 23.33. Western Deepwater Sharks catches broken down by species taken by trawling in OR Zone 30, in depths 600 to 1100 m for the years $1995-2012$.

Table 23.49. Statistical model structures used with Deepwater Sharks. DepCat is a series of 20 metre depth categories. Deep relates to whether the area is open or closed.

```
Model 1 Year
Model 2 Year + Vessel
Model 3 Year + Vessel + DepCat
Model 4 Year + Vessel + DepCat + Month
Model 5 Year + Vessel + DepCat + Month + DayNight
Model 6 Year + Vessel + DepCat + Month + DayNight + Deep
Model 7 Year + Vessel + DepCat + Month + DayNight + Deep + Vessel:Month
```

Table 23.50. Number of records where Western Deepwater Sharks are reported from trawling in OR Zone 30, in depths 600 to 1100 m . Vess represents the count of vessels reporting Deepwater Sharks. Yield is the total reported catch. The geometric mean CE is the raw unstandardized catch rate in $\mathrm{Kg} / \mathrm{tow}$. The left hand five columns represent all data, the right hand five columns represent the areas left open following the 700 m closure. There appear to be captures in the closed areas because many vessels track the edge of the closures and the software is making category errors.

Year	Yield Records	Effort	Vessels	Geom	YieldO	RecordsO	EffortO	VesselsO	GeomO	
1986	1.030	14	56	3	54.016	0.600	8	31	3	50.148
1987	0.603	21	62	5	22.509	0.498	17	48	4	22.239
1988	0.525	4	11	2	122.474	0.100	1	2	1	100.000
1989	1.238	15	40	3	65.597	0.528	8	20	3	49.240
1990	0.314	5	13	4	34.822	0.250	4	13	3	29.907
1991	0.315	5	18	3	42.929	0.195	2	5	2	51.962
1992	3.600	21	94	4	128.049	3.460	19	86	4	137.919
1993	2.025	18	61	3	79.840	1.815	14	47	2	91.027
1994	1.612	23	128	4	55.626	0.572	9	43	3	57.241
1995	95.106	593	2929	10	93.596	52.021	314	1524	9	94.563
1996	186.252	956	4491	23	105.541	107.189	590	2702	18	105.814
1997	325.955	1975	10102	19	95.986	172.838	1161	5758	19	91.063
1998	396.667	2905	16202	18	88.170	176.847	1389	7402	18	82.178
1999	312.960	2212	12544	19	89.926	132.354	1102	6030	18	77.864
2000	311.679	1872	10454	17	111.018	134.953	887	4629	17	102.849
2001	242.052	1832	10384	19	84.155	112.239	951	5284	19	77.448
2002	251.392	1625	10161	17	98.832	126.044	835	5076	17	93.777
2003	166.630	1431	9008	16	73.359	83.051	745	4575	16	72.296
2004	209.774	1733	10870	15	78.244	110.708	894	5454	14	79.743
2005	82.725	818	4816	13	61.230	43.012	441	2540	12	57.434
2006	72.064	617	3806	12	70.529	42.429	360	2165	12	72.058
2007	8.612	112	682	9	38.108	6.987	94	553	9	38.533
2008	15.625	121	784	8	76.979	12.590	102	636	8	72.536
2009	34.072	233	1487	10	79.505	29.940	206	1313	9	76.737
2010	35.955	269	1625	10	69.046	35.955	269	1625	10	69.046
2011	37.807	305	2080	11	68.774	37.807	305	2080	11	68.774
2012	36.988	395	2581	10	55.495	36.988	395	2581	10	55.495

Figure 23.34. Western Deepwater Sharks reported from trawling in OR Zone 30, in depths 600 to 1100 m . The top left is the depth distribution of all records reporting Deepwater Sharks, the top right graph depicts the depth distribution of shots containing Deepwater Sharks in OR Zone 30, in depths 600 to 1100 m . The middle left diagram depicts the distribution of catch across all years by depth within separate OR zones (only catch from zone 30), the right hand middle graph depicts the number of vessels reporting Western Deepwater Sharks through time. The bottom left reflects the number of records for Deepwater Sharks, and bottom right are the Deepwater Shark catches used in the analysis.

Table 23.51. Model selection criteria, including the AIC, the residual sum of squares, the Model sum of squares, the number of usable observations, the number of parameters, the adjusted r^{2} and the increment in adjusted r^{2}. Model 6 was optimal. The effect of being in the open or closed areas (Deep) was minor.

	Year	DepCat	Vessel	Month	DayNight	deep	Vessel:Month
AIC	1546	-1044	-2418	-2594	$\mathbf{- 2 6 0 9}$	-2607	-2350.51
RSS	21573	18812	17483	17310	$\mathbf{1 7 2 9 2}$	17291	16721.77
MSS	580	3341	4669	4842	$\mathbf{4 8 6 1}$	4861	5430.713
Nobs	20004	19910	19910	19910	$\mathbf{1 9 9 1 0}$	19910	19910
Npars	18	43	85	96	$\mathbf{9 9}$	100	562
adj_r 2	2.535	14.900	20.743	21.485	$\mathbf{2 1 . 5 5 7}$	21.553	22.326
$\Delta \mathrm{r}^{2}$	0.000	12.366	5.843	0.741	$\mathbf{0 . 0 7 2}$	-0.003	0.773

Table 23.52. The standardized catch rates for the alternative statistical models for Western Deepwater Sharks in OR zone 30, in depths 600 to 1100 m . The optimal model was Model 5. St Err is the estimate of standard error for the optimum model. Values are relative to the mean of the standardized catch rates.

Year	Year	DepCat	Vessel	Month	DayNight	deep	Vessel:Month	StErr
1995	1.1690	1.1358	1.1434	1.1793	$\mathbf{1 . 1 7 9 9}$	1.1792	1.1811	0.0000
1996	1.3202	1.2681	1.4530	1.4310	$\mathbf{1 . 4 3 0 9}$	1.4300	1.4832	0.0508
1997	1.2003	1.0973	1.1591	1.1564	$\mathbf{1 . 1 5 6 7}$	1.1560	1.1563	0.0461
1998	1.1025	0.9214	0.9377	0.9213	$\mathbf{0 . 9 2 3 5}$	0.9227	0.9002	0.0448
1999	1.1245	0.8978	0.9498	0.9472	$\mathbf{0 . 9 4 7 3}$	0.9466	0.9239	0.0460
2000	1.3883	1.0769	1.1657	1.1488	$\mathbf{1 . 1 4 8 7}$	1.1478	1.1315	0.0468
2001	1.0524	0.8552	0.9132	0.9150	$\mathbf{0 . 9 1 5 3}$	0.9148	0.9102	0.0470
2002	1.2360	1.0403	1.0516	1.0531	$\mathbf{1 . 0 5 3 9}$	1.0536	1.0419	0.0474
2003	0.9174	0.7839	0.7788	0.7823	$\mathbf{0 . 7 8 3 5}$	0.7830	0.7865	0.0480
2004	0.9785	0.7812	0.8024	0.8003	$\mathbf{0 . 7 9 8 8}$	0.7985	0.7960	0.0474
2005	0.7660	0.6825	0.6728	0.6554	$\mathbf{0 . 6 5 5 2}$	0.6550	0.6571	0.0528
2006	0.8825	0.8292	0.9011	0.8888	$\mathbf{0 . 8 9 0 0}$	0.8898	0.8756	0.0573
2007	0.4787	0.8505	0.8745	0.8731	$\mathbf{0 . 8 7 9 3}$	0.8793	0.9074	0.1008
2008	0.9667	1.6474	1.3892	1.4126	$\mathbf{1 . 4 1 5 3}$	1.4154	1.3869	0.0973
2009	0.9962	1.3917	1.2411	1.2384	$\mathbf{1 . 2 3 1 5}$	1.2327	1.2319	0.0753
2010	0.8649	1.0418	0.9354	0.9521	$\mathbf{0 . 9 5 1 5}$	0.9534	0.9525	0.0721
2011	0.8613	1.0333	0.9024	0.9060	$\mathbf{0 . 9 0 1 5}$	0.9034	0.9089	0.0684
2012	0.6947	0.6658	0.7288	0.7391	$\mathbf{0 . 7 3 7 3}$	0.7389	0.7691	0.0726

Figure 23.35. Western Deepwater Sharks reported from trawling in OR Zone 30, in depths 600 to 1100 m . The black dashed line from 95-12 represents the geometric mean catch rate and the solid black line the optimum standardized catch rates (Model 5). The graph standardizes catch rates relative to the mean of the standardized catch rates, represented by the horizontal fine grey line.

Figure 23.36. The relative impact of the different factors on the changes in the standardized trend. The major effects of both the structural adjustment, with its change of vessels, and the deepwater closures is clear.

23.5.6.1 TIER 4 Western Deepwater Sharks

The reference period relates to a relatively stable series of catches omitting the peak of catches in 1995 and 1996. Catch rates are halved as the fishery is considered only to have begun in 1995.

Table 23.53. CE are the catch rates (log(catch per tow) standardized to the mean of the series of catch rates GeoCE is the geometric mean catch rates from the raw data. Total is the total catch in the open areas. The discard estimate is 0.0%.

Year	Catch	Total		GeoCE		
1986	0.600	0.600		50.148		
1987	0.498	0.498		22.239		
1988	0.100	0.100		100.000		
1989	0.528	0.528		49.240		
1990	0.250	0.250		29.907		
1991	0.195	0.195		51.962		
1992	3.460	3.460		137.919		
1993	1.815	1.815		91.027	Ref_Year	1997
1994	0.572	0.572		57.241	Ref_Year	2004
1995	52.021	52.021	1.1799	94.563	Except Yr	
1996	107.189	107.189	1.4309	105.814	CE Targ	0.5169
1997	172.838	172.838	1.1567	91.063	CE_Lim	0.2068
1998	176.847	176.847	0.9235	82.178	CE_Recent	0.9554
1999	132.354	132.354	0.9473	77.864	Wt_Discard	
2000	134.953	134.953	1.1487	102.849	Scaling	2.4139
2001	112.239	112.239	0.9153	77.448	TAC	215
2002	126.044	126.044	1.0539	93.777	C*(target)	124.207
2003	83.051	83.051	0.7835	72.296	RBC	299.823
2004	110.708	110.708	0.7988	79.743		
2005	43.012	43.012	0.6552	57.434		
2006	42.429	42.429	0.8900	72.058		
2007	6.987	6.987	0.8793	38.533		
2008	12.590	12.590	1.4153	72.536		
2009	29.940	29.940	1.2315	76.737		
2010	35.955	35.955	0.9515	69.046		
2011	37.807	37.807	0.9015	68.774		
2012	36.988	36.988	0.7373	55.495		

Discards make up approximately 2.8% of the catch over the 1998-2006 period (Wayte and Fuller, 2008), but recent estimates are highly uncertain (Klaer et al, 2013).

Figure 23.37. Western Deepwater Sharks. Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate. The geometric mean has been graphed on the same scale as the standardized catch rates to illustrate the effect of the standardization.

23.5.6.2 A Three Year RBC for Western Deepwater Sharks

The SLOPE RAG in its November 2013 meeting decided that a three-year RBC was needed as well as the one-year RBC, which is the usual output from the Tier4 analysis. Given the apparently unusual catch rates from the east in 2008 and 2009 on both the east and west coasts it was decided to leave those out of the estimation of a three-year RBC and use, instead, the last three years of standardized CPUE and put that average through the usual Tier4 control rule.

Table 23.54. Application of average of last 3 years to produce RBC

WestDeepShark	$1986-2012$
Ref_Year	$1995-2004$
CE_Targ	0.5169
CE_Lim	0.2068
CE_Recent	0.8634
Scaling	2.1172
TAC	70
C*(target)	124.207
3-year RBC	262.973

Figure 23.38. Western Deepwater Sharks. Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent three year average catch rate (compare with the previous figure). The geometric mean has been graphed on the same scale as the standardized catch rates to illustrate the effect of the standardization.

23.5.7 Alfonsino (ALF - 37258002)

There were no reported catches of Alfonsino in the East Coast Deepwater fishery in 2006, 2008, and 2010, but there were catches reported in 2011 and 2012 so the analysis conducted in 2011 (Haddon, 2012b) was updated. However, there was only a single vessel active and the information remained sparse so the resulting catchrates are highly uncertain and still cannot be used to conduct a Tier 4 analysis (Figure 23.39). Once again summary information is provided instead to allow discussion.

The SESSF is made up of the Commonwealth trawl sector, the Great Australian Bight Sector, the East Coast Deepwater Trawl sector, and the Gillnet, Hook and Trap sector. Currently the Tier 4 analysis focuses on the East Coast Deepwater trawl fishery but it should include the South east Trawl fishery and the GAB. Currently there are only intermittent reported catches of Alfonsino in the ECD, so no Tier 4 analysis can proceed, but the TAC set (via a Tier 3 analysis) is applicable to the SET and the ECD. If a Tier 4 analysis were to be used, strictly it should include catches taken in each of these jurisdictions. However, with the gaps in catches and the variation in this fishery the application of a Tier 4 analysis would be difficult.

Table 23.55. Reported catches of Alfonsino by method. AL - autoline, BL - Bottom Line, DL - Drop
Line, DS - Danish Seine, FP - , GN - Gill net, LL - Long Line, RR - , TL - Trot Line, and TW - trawl.

Year	Unknown	AL	BL	DL	DS	FP	GN	HL	RR	TL	TW
1988											0.538
1989											2.578
1990											3.644
1991	0.050										5.652
1992	0.497				0.350						17.787
1993											5.071
1994											15.172
1995											8.589
1996											12.427
1997			0.034	0.728		0.030	2.431			0.200	7.546
1998				1.063			0.955				3.427
1999	0.060			1.665		0.010	1.549				13.300
2000	0.030			1.291		0.006	2.792				105.968
2001	6.300	0.190		0.741			2.324				313.277
2002		0.984		0.954			0.116				135.040
2003		1.603		0.522			0.096				205.845
2004		2.959	0.290	0.358							539.723
2005		3.300		0.266							224.738
2006		2.835		0.226							227.046
2007		3.026		0.042	0.004		0.001				341.359
2008		3.039		0.091			0.001				118.735
2009		4.990		0.104	0.002				0.001		110.193
2010		1.866		0.151					0.009		88.292
2011		2.183		0.386	0.008		0.010		0.044		297.758
2012		2.771	0.005	0.174			0.005	0.003	0.068		390.789

While the obvious hotspots are in the ECD, there are catches taken in the SET. There are very low catches spread widely although there do appear to be relative hot spots, the same order of magnitude as in the ECD) one off Eddystone point on the East Coast of Tasmania and one south of the Tasman Peninsula. There is another, somewhat smaller spot, off Macquarie Harbour on the west coast of Tasmania and another spot off Robe or Cape Jaffa in western Victoria.

Table 23.56. Catch of Alfonsino taken by trawl in the different fisheries. CSF - Coral Sea Fishery, ECD East Coast Deepwater, GAB - Great Australian Bight, GHT - Gillnet, Hook, and Trap (include the Southeast Non-Trawl, and Southern Shark Fishery), HST - High Seas Trawl, SET - South East Trawl, and WDW - Western Deepwater. Currently no attention is paid to the catches other than in the ECD.

	CSF	ECD	GAB	GHT	HST	SET	WDW
1988						0.538	
1989			0.276		2.302		
1990			0.010		3.634		
1991					5.702		
1992						18.634	
1993					5.071		
1994					7.792	7.380	
1995					8.423	0.166	
1996				3.423		12.427	
1997				2.008		3.530	0.016
1998	0.010			3.224		13.360	
1999							
2000		66.950		3.089		36.338	2.710
2001		313.171	0.827	3.255		5.579	
2002	63.820	42.036	0.270	1.794	3.993	25.181	
2003	58.666	140.771	0.025	2.195	0.236	6.173	
2004	14.803	509.466	0.032	2.968		16.062	
2005		136.050	0.039	3.566	80.124	8.525	
2006	14.091		0.320	3.039	201.397	11.239	
2007	55.582	85.397	1.609	3.069	86.264	112.512	
2008			0.170	3.131		118.545	0.020
2009		14.156	1.657	5.085		94.382	
2010			1.073	2.025		87.219	
2011	0.650	147.500	0.038	1.731	62.863	87.365	
2012	0.904	143.871		2.057	184.976	61.941	

Figure 23.39. The scaled, standardized catch rate time series for Alfonsino from the East Coast Deep Water Trawl fishery. There were no reported catches in 2006, 2008, or 2010, hence the missing confidence bounds.

Figure 23.40. The relative catch in four of the fisheries listed in Table 23.56. Note the different scales in the different fisheries. To indicate isolated years of reported catches points are added to the graphs.

23.6 Non-Tier 4 Species

23.6.1 Blue Grenadier (GRE - 37227001 - Macruronus novaezelandiae)

Table 23.57. Blue Grenadier data for the TIER 4 calculations. Total is the sum of Discards, State, Non Trawl and SEF2 catches. All values in Tonnes. CE is the standardized catch rate the non-spawning fishery (Haddon, 2013). GeoMean is the geometric mean catch rates. Discards are estimates from 1998 to present. The ratio of discards to catch over the 1998 - 2006 period was used to estimate the discards between 1986 and 1997, the proportion of which is the PDiscard.

Year	Catch	Discards	Total	State	Non-T	PDiscard	CE	GeoMean
1986	1408.800	86.672	1495.472			5.7956	1.5053	36.7375
1987	2197.200	135.176	2332.376			5.7956	1.9781	37.3307
1988	1760.400	108.303	1868.703			5.7956	2.1430	36.6778
1989	1798.800	110.665	1909.465			5.7956	2.2189	45.3866
1990	2433.600	149.719	2583.319			5.7956	2.1902	47.9497
1991	3812.400	234.546	4046.946			5.7956	1.5761	48.2874
1992	3338.400	205.384	3543.784			5.7956	1.2980	40.5408
1993	3412.800	209.961	3622.761			5.7956	0.9795	33.2638
1994	3282.698	0.000	3282.698	126.682	0.000	0.0000	0.8805	29.5414
1995	2814.169	0.000	2814.169	51.541	0.000	0.0000	0.6073	19.4025
1996	3104.762	0.000	3104.762	40.338	0.000	0.0000	0.5537	15.8910
1997	4571.003	0.000	4571.003	17.700	0.000	0.0000	0.5734	13.3293
1998	5772.808	2959.000	8731.808	11.941	0.000	33.8876	0.9410	18.8682
1999	9378.626	140.000	9518.626	8.359	0.000	1.4708	0.9948	22.7820
2000	8661.650	129.000	8790.650	0.599	0.000	1.4675	0.7095	16.8751
2001	9156.253	1.000	9157.253	0.469	3.684	0.0109	0.4060	11.4735
2002	9164.857	5.270	9170.127	0.011	3.808	0.0575	0.4074	13.3454
2003	8503.752	9.810	8513.562	0.057	8.925	0.1152	0.3407	10.1345
2004	6619.154	27.190	6646.344	0.042	9.878	0.4091	0.5734	16.9690
2005	4714.040	526.640	5240.680	0.075	10.222	10.0491	0.6857	19.8341
2006	3769.512	246.570	4016.082	0.076	11.436	6.1396	0.9109	26.9839
2007	3258.143	64.615	3322.758	0.149	8.015	1.9446	0.8113	25.1832
2008	3940.598	42.020	3982.618	0.033	6.285	1.0551	0.8895	28.8353
2009	3269.116	66.608	3335.723	0.075	9.655	1.9968	0.8260	25.9256
2010	4200.531	20.037	4220.568	0.147	9.545	0.4747	0.8097	25.9279
2011	2820.365	1022.369	3842.734	0.147	5.924	26.6053	0.6567	19.3008
2012	2821.365	298.550	3119.915	0.147	3.586	9.5692	0.5333	15.0049

Discards make up approximately 5.9 \% of the catch over the 1998-2006 period. NOTE: Actual landings in 2011 were in fact 4201.400 t rather than 2820 t , the source of this error is still being investigated. However, had this been used in a full Tier 4 it would not have influenced the result because the RBC depends on catch rates and the target catch not the current catch.

Table 23.58. RBC calculations for Blue Grenadier. Ctarg and CPUEtarg relate to the period 1986-1995, CPUELim is 40% of the target, and $\overline{C P U E}$ is the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. Wt_Discard is the weighted average discards from the last four years, as with Equ (19).

Ref_Year	$1986-1995$
CE_Targ	1.5377
CE_Lim	0.6151
CE_Recent	0.7064
Wt_Discard	438.971
Scaling	0.099
Last Year's TAC	4700
C $_{\text {targ }}$	2749.969

BlueGrenadier

Figure 23.41. Blue Grenadier. Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

23.6.2 Flathead (FLT - 37296001 - Neoplatycephalus richardsoni)

Table 23.59. Tiger Flathead data for the TIER 4 calculations. Total is the sum of Discards, State, Non Trawl and SEF2 catches. All values in Tonnes. CE is the standardized catch rate for otter trawl for Zones 10 and 20 in depths $0-400 \mathrm{~m}$ (Haddon, 2013).GeoMean is the geometric mean catch rates. Discards are estimates from 1998 to present. The ratio of discards to catch over the $1998-2006$ period was used to estimate the discards between 1986 and 1997, the proportion of which is the PDiscard.

| Year | Catch | Discards | Total | State | Non-T | PDiscard | CE | GeoMean |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1986 | 2133.600 | 158.670 | 2292.270 | | | 6.9219 | 0.7988 | 16.7357 |
| 1987 | 2496.000 | 185.620 | 2681.620 | | | 6.9219 | 1.0669 | 20.4621 |
| 1988 | 2444.400 | 181.783 | 2626.183 | | | 6.9219 | 1.1668 | 23.7988 |
| 1989 | 2623.200 | 195.080 | 2818.280 | | | 6.9219 | 1.1636 | 23.9908 |
| 1990 | 2188.800 | 162.775 | 2351.575 | | | 6.9219 | 1.3835 | 30.1854 |
| 1991 | 2620.800 | 194.901 | 2815.701 | | | 6.9219 | 1.3128 | 28.7154 |
| 1992 | 3564.000 | 265.045 | 3829.044 | | | 6.9219 | 1.0246 | 23.8898 |
| 1993 | 3132.000 | 232.918 | 3364.918 | | | 6.9219 | 1.0470 | 23.8001 |
| 1994 | 2786.959 | 0.000 | 2786.959 | 836.206 | 0.000 | 0.0000 | 0.7592 | 17.9798 |
| 1995 | 2735.929 | 0.000 | 2735.929 | 697.065 | 0.000 | 0.0000 | 0.8038 | 18.0790 |
| 1996 | 2725.609 | 0.000 | 2725.609 | 610.327 | 0.000 | 0.0000 | 0.7163 | 16.4549 |
| 1997 | 3093.299 | 0.000 | 3093.299 | 419.555 | 0.000 | 0.0000 | 0.7162 | 16.8264 |
| 1998 | 2933.991 | 291.000 | 3224.991 | 229.097 | 0.000 | 9.0233 | 0.7588 | 17.7430 |
| 1999 | 3729.333 | 267.000 | 3996.333 | 218.125 | 0.000 | 6.6811 | 0.9137 | 20.4344 |
| 2000 | 3427.408 | 511.000 | 3938.408 | 191.666 | 0.000 | 12.9748 | 1.0085 | 24.4338 |
| 2001 | 2992.436 | 160.000 | 3152.436 | 130.592 | 0.281 | 5.0754 | 0.9704 | 22.3118 |
| 2002 | 3272.572 | 193.970 | 3466.542 | 116.084 | 0.337 | 5.5955 | 1.0586 | 22.8273 |
| 2003 | 3670.170 | 178.030 | 3848.200 | 174.049 | 0.809 | 4.6263 | 1.0439 | 22.5536 |
| 2004 | 3596.871 | 228.380 | 3825.251 | 207.723 | 0.858 | 5.9703 | 0.9029 | 19.7879 |
| 2005 | 3295.823 | 195.140 | 3490.963 | 291.601 | 1.145 | 5.5899 | 0.7712 | 17.7159 |
| 2006 | 3017.332 | 201.730 | 3219.062 | 318.879 | 0.607 | 6.2667 | 0.9342 | 22.2550 |
| 2007 | 3052.284 | 278.562 | 3330.847 | 179.821 | 0.486 | 8.3631 | 1.1350 | 31.3544 |
| 2008 | 3446.847 | 43.736 | 3490.582 | 248.606 | 0.362 | 1.2530 | 1.1909 | 31.6602 |
| 2009 | 2925.235 | 155.881 | 3081.116 | 242.782 | 0.403 | 5.0592 | 1.0952 | 30.0219 |
| 2010 | 2989.871 | 250.874 | 3240.744 | 262.513 | 0.297 | 7.7412 | 1.0558 | 29.4565 |
| 2011 | 2946.378 | 504.081 | 3450.459 | 274.324 | 0.686 | 14.6091 | 1.0487 | 28.4013 |
| 2012 | 3064.948 | 205.877 | 3270.825 | 204.087 | 0.996 | 6.2943 | 1.1529 | 30.4796 |
| | | | | | | | | |

Discards make up approximately 6.9 \% of the catch over the 1998-2006 period.
The catch rate trend used was from trawl caught flathead in zones 10 and 20. The fishery was well developed before 1986, the start of our data series.

Table 23.60. RBC for Flathead. Ctarg and CPUEtarg relate to the period 1986-1995, CPUELim is 40% of the target, and $C P U E$ is the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. Wt Discard is the weighted average discards from the last four years, as with Equ (19).

Ref_Year	$1986-1995$
CE_Targ	1.0527
CE_Lim	0.4211
CE_Recent	1.0881
Wt_Discard	288.064
Scaling	1.0561
Last Year’s TAC	2750
C targ	2830.248

Flathead

Figure 23.42. Tiger Flathead. Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

23.6.3 Eastern Gemfish (GEM - 37439002 - Rexea solandri)

Table 23.61. Eastern Gemfish data for the TIER 4 calculations. Total is the sum of Discards, State, Non Trawl and SEF2 catches. All values in Tonnes. CE is the standardized catch rate for Zones 10, 20, and 30 in depths $300-500 \mathrm{~m}$ from June to September (Haddon, 2013). GeoMean is the geometric mean catch rate. Discards are estimates from 1998 to present. The ratio of discards to catch over the 1998 2006 period was used to estimate the discards between 1986 and 1997, the proportion of which is the PDiscard.

Year	Catch	Discards	Total	State	Non-T	PDiscard	CE	GeoMean
1986	1945.200	218.268	2163.468			10.0888	2.3736	14.5833
1987	2208.000	247.757	2455.757			10.0888	3.1365	25.6322
1988	1148.400	128.860	1277.261			10.0888	2.7031	20.2775
1989	980.400	110.009	1090.409			10.0888	1.8111	11.5170
1990	979.200	109.875	1089.075			10.0888	1.8021	12.7467
1991	301.200	33.797	334.997			10.0888	1.2263	8.7585
1992	1028.400	115.395	1143.795			10.0888	1.7144	11.2867
1993	457.200	51.302	508.502			10.0888	1.3372	8.9703
1994	266.110	0.000	266.110	131.931	0.000	0.0000	0.9164	6.3021
1995	251.022	0.000	251.022	157.756	0.000	0.0000	0.8339	5.5810
1996	315.471	0.000	315.471	204.700	0.000	0.0000	0.6333	4.1794
1997	529.152	0.000	529.152	136.395	0.000	0.0000	0.6651	4.3644
1998	373.133	23.000	396.133	127.144	0.000	5.8061	0.6289	4.3330
1999	247.201	31.000	278.201	88.664	0.000	11.1430	0.4601	2.9242
2000	123.746	29.000	152.746	30.747	0.000	18.9858	0.4177	2.7970
2001	110.245	8.000	118.245	23.859	2.702	6.7656	0.3438	2.0726
2002	77.867	13.600	91.467	16.174	3.564	14.8688	0.2644	1.5969
2003	82.841	115.170	198.011	7.781	2.697	58.1633	0.2907	1.7227
2004	97.542	83.210	180.752	17.731	2.683	46.0355	0.4134	2.6319
2005	112.493	77.650	190.143	15.751	8.598	40.8376	0.4417	2.8266
2006	101.951	46.350	148.301	15.153	6.564	31.2540	0.4689	2.9593
2007	93.213	128.758	221.971	14.091	10.096	58.0066	0.6383	4.2429
2008	118.957	164.319	283.276	11.607	20.277	58.0066	0.8546	5.7070
2009	101.999	171.228	273.228	16.294	11.688	62.6687	0.8814	6.6449
2010	112.668	191.005	303.673	20.152	16.264	62.8983	0.6351	4.1887
2011	85.915	107.690	193.605	15.460	10.492	55.6234	0.5807	3.8210
2012	78.284	28.018	106.302	9.249	7.822	26.3571	0.5270	3.5107

Discards make up approximately 10.08 \% of the catch over the 1998-2002 period. The reduced period, relative to other species, reflects the bycatch nature of the fishery in recent years.

Table 23.62. RBC calculations for Eastern Gemfish. Ctarg and CPUEtarg relate to the period 1993-2002, CPUELim is 40% of the target, and $\overline{C P U E}$ is the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. Wt Discard is the weighted average discards from the last four years, as with Equ (19).

Ref_Year	$1993-2002$
CE_Targ	0.6501
CE_Lim	0.26
CE_Recent	0.656
Wt_Discard	80.543
Scaling	1.0153
Last Year's TAC	100
$C_{\text {targ }}$	290.705

Figure 23.43. Eastern Gemfish. Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

23.6.4 Western Gemfish (GEM - 37439002 - Rexea solandri)

This relates solely to the SESSF zones 40 and 50; specifically it does not include the GAB, either in the catch rate standardization or the catches.

Table 23.63. Western Gemfish data for the TIER 4 calculations. Total is the sum of Discards, State, Non Trawl and SEF2 catches. All values in Tonnes. CE is the standardized catch rate for Zones $40 \& 50$ in depths $0-600 \mathrm{~m}$, GAB not included (Haddon, 2013). GeoMean is the geometric mean catch rates. Discards are estimates from 1998 to present. The ratio of discards to catch over the 1998 - 2006 period was used to estimate the discards between 1986 and 1997, the proportion of which is the PDiscard.

| Year | Catch | Discards | Total | State | Non-T | PDiscard | CE | GeoMea |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| n | | | | | | | | |

Discards make up approximately 4.6 \% of the catch over the 1998-2006 period.

Table 23.64. RBC calculations for Western Gemfish. Ctarg and CPUEtarg relate to the period 1992-2001, CPUELim is 40% of the target, and $\overline{C P U E}$ is the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. Only catches from zones 40 and 50 included. Wt_Discard is the weighted average discards from the last four years, as with Equ (19).

Ref_Year	$1992-2001$
CE_Targ	0.8775
CE_Lim	0.351
CE_Recent	0.696
Wt_Discard	64.493
Scaling	0.6552
Last Year's TAC	94
C $_{\text {targ }}$	246.848

Figure 23.44. Western Gemfish. Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

23.6.5 Western Gemfish Discard (GEM - 37439002 - R solandri)

This relates solely to the SESSF zones 40 and 50 ; specifically it does not include the GAB, either in the catch rate standardization, the catches, or the discards. As the discards in recent years have increased markedly this analysis includes their effects in the CPUE analysis.

[^2]| Year | Catch | Discards | Total | (D/C) +1 | StandCE | DiscCE | GeoMean |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1986 | 256.262 | 7.072 | 263.334 | 1.0276 | 2.2547 | 2.1372 | 29.5835 |
| 1987 | 228.792 | 6.314 | 235.106 | 1.0276 | 2.2580 | 2.1404 | 31.5896 |
| 1988 | 226.320 | 6.245 | 232.565 | 1.0276 | 2.2045 | 2.0897 | 26.9924 |
| 1989 | 156.496 | 4.319 | 160.815 | 1.0276 | 1.8127 | 1.7183 | 23.3363 |
| 1990 | 132.675 | 3.661 | 136.336 | 1.0276 | 1.3844 | 1.3123 | 15.9031 |
| 1991 | 251.158 | 6.931 | 258.089 | 1.0276 | 1.3339 | 1.2644 | 22.0062 |
| 1992 | 84.384 | 2.329 | 86.713 | 1.0276 | 0.9334 | 0.8848 | 16.7792 |
| 1993 | 90.489 | 2.497 | 92.986 | 1.0276 | 0.9003 | 0.8534 | 16.5820 |
| 1994 | 153.086 | 0.000 | 153.086 | 1.0000 | 0.9698 | 0.8946 | 16.2263 |
| 1995 | 146.940 | 0.000 | 146.940 | 1.0000 | 0.8493 | 0.7834 | 12.0017 |
| 1996 | 228.378 | 0.000 | 228.378 | 1.0000 | 0.9350 | 0.8625 | 13.4563 |
| 1997 | 288.838 | 0.000 | 288.838 | 1.0000 | 0.8366 | 0.7717 | 13.2702 |
| 1998 | 270.847 | 12.000 | 282.847 | 1.0443 | 0.9026 | 0.8695 | 13.2167 |
| 1999 | 418.806 | 5.000 | 423.806 | 1.0119 | 0.8569 | 0.7999 | 12.8407 |
| 2000 | 381.404 | 30.000 | 411.404 | 1.0787 | 0.8804 | 0.8760 | 12.4996 |
| 2001 | 344.481 | 9.000 | 353.481 | 1.0261 | 0.7110 | 0.6730 | 12.1589 |
| 2002 | 182.193 | 9.140 | 191.333 | 1.0502 | 0.5418 | 0.5249 | 7.1243 |
| 2003 | 257.112 | 12.580 | 269.692 | 1.0489 | 0.6601 | 0.6387 | 11.3050 |
| 2004 | 484.364 | 8.920 | 493.284 | 1.0184 | 0.6457 | 0.6066 | 7.9049 |
| 2005 | 417.335 | 1.640 | 418.975 | 1.0039 | 0.6721 | 0.6224 | 10.6004 |
| 2006 | 462.497 | 0.550 | 463.047 | 1.0012 | 0.5481 | 0.5062 | 8.9869 |
| 2007 | 423.946 | 5.122 | 429.068 | 1.0121 | 0.5320 | 0.4967 | 7.4717 |
| 2008 | 185.757 | 9.008 | 194.765 | 1.0485 | 0.5927 | 0.5733 | 7.5220 |
| 2009 | 136.450 | 51.008 | 187.458 | 1.3738 | 0.6726 | 0.8524 | 6.4871 |
| 2010 | 163.958 | 31.771 | 195.729 | 1.1938 | 0.6984 | 0.7691 | 6.3681 |
| 2011 | 100.933 | 120.438 | 221.372 | 2.1932 | 0.7323 | 1.4816 | 5.6449 |
| 2012 | 78.860 | 46.386 | 125.245 | 1.5882 | 0.6807 | 0.9973 | 5.3756 |

Discards make up approximately 4.6 \% of the catch over the 1998-2006 period.

Table 23.66. RBC calculations for Western Gemfish. Ctarg and CPUEtarg relate to the period 1992-2001, CPUELim is 40% of the target, and $\overline{C P U E}$ is the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. Only catches from zones 40 and 50 included. Wt_Discard is the weighted average discards from the last four years, as with Equ (19).

Ref_Year	$1992-2001$
CE_Targ	0.8269
CE_Lim	0.3308
CE_Recent	1.0251
Wt_Discard	64.493
Scaling	1.3995
Last Year’s TAC	94
C targ	246.848

Figure 23.45. Western Gemfish. Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

23.6.6 Jackass Morwong (MOR - 37377003 -Nemadactylus macropterus)

Table 23.67. Jackass Morwong data for the TIER 4 calculations. Total is the sum of Discards, State, Non Trawl and SEF2 catches. All values in Tonnes. CE is the standardized catch rate for Zones 10 to 50 in depths $70-360 \mathrm{~m}$ (Haddon, 2013). GeoMean is the geometric mean catch rates. Discards are estimates from 1998 to present. The ratio of discards to catch over the 1998 - 2006 period was used to estimate the discards between 1986 and 1997, the proportion of which is the PDiscard.

Year	Catch	Discards	Total	State	Non-T	PDiscard	CE	GeoMean
1986	1390.800	67.274	1458.074			4.6139	1.8636	22.5592
1987	1459.200	70.582	1529.782			4.6139	2.1150	26.1917
1988	1742.400	84.281	1826.681			4.6139	2.0887	29.1554
1989	1971.600	95.367	2066.967			4.6139	2.0266	33.9001
1990	1129.200	54.620	1183.820			4.6139	1.6782	24.2137
1991	1406.400	68.028	1474.428			4.6139	1.4883	21.1181
1992	888.000	42.953	930.953			4.6139	1.2362	19.1937
1993	1132.800	54.794	1187.594			4.6139	1.2543	21.3530
1994	1034.932	0.000	1034.932	225.635	0.000	0.0000	1.0712	18.0744
1995	981.801	0.000	981.801	160.930	0.000	0.0000	1.0034	16.3623
1996	972.505	0.000	972.505	89.062	0.211	0.0000	0.9215	13.8607
1997	1213.726	0.000	1213.726	82.173	3.192	0.0000	0.9853	16.1581
1998	939.914	34.000	973.914	56.807	4.519	3.4911	0.8471	13.4363
1999	994.363	45.000	1039.363	41.159	17.667	4.3296	0.8733	14.1587
2000	950.201	27.000	977.201	41.029	29.294	2.7630	0.7379	10.1983
2001	865.808	12.000	877.808	50.298	2.177	1.3670	0.5590	8.3295
2002	879.009	25.440	904.449	29.376	1.819	2.8128	0.5880	8.3275
2003	772.015	71.850	843.865	28.583	3.299	8.5144	0.5102	7.9077
2004	793.832	47.380	841.212	37.380	4.258	5.6323	0.5097	8.6153
2005	844.641	38.610	883.251	42.118	5.435	4.3713	0.5486	8.9785
2006	812.736	78.550	891.286	34.415	5.306	8.8131	0.6298	11.5427
2007	586.950	70.811	657.760	18.299	4.507	10.7654	0.6369	12.2504
2008	715.142	86.276	801.418	12.108	5.740	10.7654	0.7480	13.7889
2009	465.638	56.176	521.814	11.506	2.812	10.7654	0.6605	11.4713
2010	376.410	21.122	397.533	8.452	3.007	5.3134	0.4886	8.5497
2011	411.811	46.601	458.412	5.820	2.384	10.1658	0.4623	8.5284
2012	342.927	38.806	381.733	10.478	1.457	10.1658	0.4679	8.9426

Discards make up approximately 4.6 \% of the catch over the 1998-2006 period.

```
Table 23.68. RBC calculations for Jackass Morwong. Ctarg and CPUEtarg relate to the period 1986-1995, CPUELim is \(40 \%\) of the target, and \(\overline{C P U E}\) is the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. The Wt_Discard is the weighted discards from 2008-2011, as in Equ (19) .
\begin{tabular}{rr} 
Ref_Year & \(1986-1995\) \\
CE_Targ & 1.5825 \\
CE_Lim & 0.633 \\
CE_Recent & 0.5198 \\
Wt_Discard & 39.685 \\
Scaling & 0 \\
Year’s TAC & 450 \\
C \(_{\text {targ }}\) & 1367.503
\end{tabular}
```


JackassMorwong

Figure 23.46. Jackass Morwong. Top left is the total removals with the line illustrating the target catch. Top right represents the standardized catch rates with the upper line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

23.6.7 John Dory (DOJ - 37264004 - Zeus faber)

It was decided that this year the option of treating John Dory as a non-target species would be examined. This entailed changing the implied target reference point from 48% of the unfished state to 40% of the unfished state. Because the target catch rate is taken as a proxy for 48% unfished biomass, to make it equivalent to 40% means the average catch rate over the reference period should be multiplied by 0.8333 (thus 0.83334×48 $=40$).

Table 23.69. John Dory data for the TIER 4 calculations. Total is the sum of Discards, State, Non Trawl and SEF2 catches. All values in Tonnes. CE is the standardized catch rate for Zones 10 and 20 in depths $0-200 \mathrm{~m}$ (Haddon, 2013). GeoMean is the geometric mean catch rates. Discards are estimates from 1998 to present. The ratio of discards to catch over the $1998-2006$ period was used to estimate the discards between 1986 and 1997, the proportion of which is the PDiscard.

Year	Catch Discards		Total	State	Non-T PDiscard	CE	GeoMea n	
1986	301.200	7.987	309.187			2.5833	1.5766	7.6948
1987	240.000	6.364	246.364			2.5833	1.8050	8.5155
1988	226.800	6.014	232.814			2.5833	1.6952	8.3856
1989	252.000	6.683	258.683			2.5833	1.8594	9.5319
1990	212.400	5.633	218.033			2.5833	1.6799	8.7451
1991	236.400	6.269	242.669			2.5833	1.3793	7.1954
1992	240.000	6.364	246.364			2.5833	1.1422	5.6282
1993	400.800	10.629	411.429			2.5833	1.4786	7.0963
1994	289.728	0.000	289.728	172.902	0.000	0.0000	1.3946	6.7516
1995	243.673	0.000	243.673	129.005	0.000	0.0000	1.1844	5.9610
1996	137.004	0.000	137.004	1.568	0.000	0.0000	0.9272	4.5279
1997	178.118	0.000	178.118	87.931	0.000	0.0000	0.7205	3.3776
1998	138.811	3.000	141.811	23.440	0.000	2.1155	0.7458	3.6350
1999	178.334	3.000	181.334	40.742	0.000	1.6544	0.8748	3.9411
2000	209.229	17.000	226.229	39.499	0.000	7.5145	0.8088	3.5716
2001	164.643	6.000	170.643	29.768	0.000	3.5161	0.6769	2.9450
2002	182.316	1.660	183.976	19.629	0.000	0.9023	0.6678	3.1506
2003	193.130	3.190	196.320	28.253	0.000	1.6249	0.6480	3.1538
2004	193.824	1.740	195.564	27.514	0.000	0.8897	0.6859	3.4191
2005	132.030	3.530	135.560	29.296	0.000	2.6040	0.5702	2.6772
2006	107.020	0.640	107.660	23.481	0.000	0.5945	0.6420	2.8463
2007	82.383	1.355	83.738	13.819	0.000	1.6181	0.5811	2.8023
2008	177.122	0.596	177.718	41.012	0.000	0.3356	0.8665	4.3014
2009	127.476	4.332	131.808	19.660	0.000	3.2867	0.8057	4.1921
2010	86.586	2.934	89.520	14.280	0.000	3.2777	0.5191	2.6414
2011	125.032	8.423	133.455	32.986	0.000	6.3112	0.5402	2.7461
2012	88.106	1.141	89.248	15.719	0.000	1.2788	0.5241	2.8174

Discards make up approximately 2.6% of the catch over the 1998-2006 period.

Table 23.70. RBC calculations for John Dory. Ctarg and CPUEtarg relate to the period 1986-1995, CPUELim is 40% of the target, and $\overline{C P U E}$ is the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. Wt_Discard is the weighted average discards from the last four years, as with Equ (19).

Ref_Year	$1986-1995$
CE_Targ	1.5195
CE_Lim	0.6078
CE_Recent	0.5973
Wt_Discard	3.535
Scaling	0
Last Year’s TAC	221
C $_{\text {targ }}$	269.894

JohnDory

Figure 23.47. Jackass MOrwong. Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

2.2 Mirror Dory (DOM - 37264003 - Zenopsis nebulosus)

Table 23.71. Mirror Dory data for the TIER 4 calculations. Total is the sum of Discards, State, Non Trawl and SEF2 catches. All values in Tonnes. CE is the standardized catch rate for Zones 10 to 50 in depths $0-600 \mathrm{~m}$ (Haddon, 2013). GeoMean is the geometric mean catch rates. Discards are estimates from 1998 to present. The ratio of discards to catch over the 1998 - 2006 period was used to estimate the discards between 1986 and 1997, the proportion of which is the PDiscard.

Year	Catch	Discard s	Total	State	Non-T	PDiscar d	CE	GeoMea n
1986	336.000	80.919	416.919			19.4087	1.2143	18.6423
1987	340.800	82.075	422.875			19.4087	1.2174	19.7476
1988	373.200	89.877	463.078			19.4087	1.1918	16.9455
1989	542.400	130.626	673.026			19.4087	1.4711	23.1957
1990	267.600	64.446	332.046			19.4087	1.3573	20.6077
1991	277.200	66.758	343.958			19.4087	1.1606	13.9567
1992	357.600	86.121	443.721			19.4087	1.0060	11.3487
1993	537.600	129.470	667.070			19.4087	1.1016	13.7999
1994	324.664	0.000	324.664	21.816	0.000	0.0000	0.9869	11.4667
1995	289.953	0.000	289.953	22.320	0.000	0.0000	0.9147	10.0782
1996	404.725	0.000	404.725	21.715	0.000	0.0000	0.8809	8.9039
1997	547.416	0.000	547.416	21.673	0.000	0.0000	0.9361	9.6820
1998	439.374	115.000	554.374	26.988	0.000	20.7441	0.8501	9.0983
1999	382.139	52.000	434.139	36.911	0.000	11.9777	0.6989	8.0995
2000	217.405	93.000	310.405	11.121	0.000	29.9608	0.4882	4.6519
2001	306.752	292.000	598.752	10.343	0.096	48.7681	0.5725	5.1157
2002	545.156	96.920	642.076	21.650	0.029	15.0948	0.7646	7.1647
2003	738.494	163.710	902.204	68.468	0.000	18.1456	0.9308	8.6661
2004	627.895	170.310	798.205	106.386	0.505	21.3366	0.8942	8.2044
2005	663.937	52.720	716.657	73.442	0.008	7.3564	0.9902	9.3924
2006	490.854	26.880	517.734	85.434	0.058	5.1919	0.9763	9.7517
2007	335.705	64.522	400.226	28.721	0.060	16.1213	0.9435	9.5152
2008	463.422	89.595	553.017	22.103	0.002	16.2011	1.1278	12.2034
2009	561.287	369.419	930.706	35.112	0.000	39.6923	1.2442	13.1797
2010	632.778	275.697	908.475	12.028	0.037	30.3472	1.1866	12.8612
2011	568.241	247.578	815.819	6.093	3.492	30.3472	1.0983	10.8184
2012	409.013	178.204	587.217	6.090	0.013	30.3472	0.7952	8.9809

Discards make up approximately 19.41 \% of the catch over the 1998-2006 years.

Table 23.72. RBC calculations for Mirror Dory. Ctarg and CPUEtarg relate to the period $1986-1995$, CPUELim is 40% of the target, and $\overline{C P U E}$ is the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. Wt Discard is the weighted average discards from the last four years, as with Equ (19).

Ref_Year	1992-1997\&2003-2006
CE_Targ	0.9618
CE_Lim	0.3847
CE_Recent	1.0811
Wt_Discard	222.45
Scaling	1.2067
Last Year’s TAC	718
C $_{\text {targ }}$	561.235

MirrorDory

Figure 23.48. Mirror Dory. Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

23.6.8 Mirror Dory East (DOM - 37264003 - Z. nebulosus)

Table 23.73. Mirror Dory data for the TIER 4 calculations. Total is the sum of Discards, State, Non
Trawl and SEF2 catches. All values in Tonnes. CE is the standardized catch rate for Zones 10 to 30 in
depths $0-600 \mathrm{~m}$ (Haddon, 2013). GeoMean is the geometric mean catch rates. Discards are estimates
from 1998 to present. The ratio of discards to catch over the $1998-2006$ period was used to estimate the
discards between 1986 and 1997, the proportion of which is the PDiscard.

Year	Catch	Discard						
S	Total	State	Non-T	PDiscar d	CE	GeoMea n		
1986	329.399	79.329	408.728			19.4087	1.1544	18.7487
1987	328.474	79.106	407.580			19.4087	1.1514	19.9429
1988	356.164	85.775	441.938			19.4087	1.1314	16.8882
1989	530.901	127.857	658.758			19.4087	1.3706	23.1617
1990	257.511	62.016	319.528			19.4087	1.2855	20.5538
1991	257.915	62.113	320.028			19.4087	1.1310	14.2052
1992	337.458	81.270	418.727			19.4087	0.9827	11.7312
1993	503.640	121.291	624.931			19.4087	1.0769	14.1976
1994	303.620	0.000	303.620	20.402	0.000	0.0000	0.9440	11.6924
1995	242.777	0.000	242.777	18.688	0.000	0.0000	0.8593	10.2913
1996	262.435	0.000	262.435	14.081	0.000	0.0000	0.7517	7.7998
1997	361.397	0.000	361.397	14.308	0.000	0.0000	0.7960	8.6425
1998	292.102	76.454	368.556	17.942	0.000	20.7441	0.7223	8.0944
1999	301.020	40.962	341.981	29.076	0.000	11.9777	0.6464	7.8713
2000	187.852	80.358	268.209	9.610	0.000	29.9608	0.4998	4.7885
2001	168.695	160.582	329.277	5.688	0.053	48.7681	0.5029	4.0443
2002	243.846	43.352	287.198	9.684	0.013	15.0948	0.6270	5.2594
2003	534.433	118.474	652.907	49.549	0.000	18.1456	0.9220	7.7688
2004	406.135	110.160	516.294	68.813	0.327	21.3366	0.8749	7.2635
2005	537.136	42.651	579.787	59.416	0.006	7.3564	1.1179	9.9946
2006	402.464	22.040	424.504	70.049	0.048	5.1919	1.1214	10.3893
2007	254.389	48.893	303.282	21.764	0.046	16.1213	1.2150	11.4463
2008	391.325	75.656	466.981	18.664	0.002	16.2011	1.3541	14.4563
2009	411.469	270.813	682.282	25.740	0.000	39.6923	1.4297	15.8458
2010	432.522	188.446	620.968	8.221	0.025	30.3472	1.1956	14.3976
2011	390.628	170.194	560.822	4.188	2.401	30.3472	1.1932	12.7502
2012	328.789	143.251	472.040	4.896	0.010	30.3472	0.9430	11.2957

Discards make up approximately 19.41 \% of the catch over the 1998-2006 period.

Table 23.74. RBC calculations for Mirror Dory East. Ctarg and CPUEtarg relate to the period 1986-1995, CPUELim is 40% of the target, and $\overline{C P U E}^{\text {is }}$ the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. Wt_Discard is the weighted average discards from the last four years, as with Equ (19).

Ref_Year	$1986-1995$
CE_Targ	1.1087
CE_Lim	0.4435
CE_Recent	1.1904
Wt_Discard	164.966
Scaling	1.1227
Last Year's TAC	1616
C $_{\text {targ }}$	414.661
RBC	$\mathbf{4 6 5 . 5 6 0}$

MirrorDoryE

Figure 23.49. Mirror Dory. Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

23.6.9 Mirror Dory East - Discards

Following instructions from the RAG an alternative Tier 4 analysis for the eastern Mirror Dory was performed to determine the impact of the recent increase in the discard rate on the catch rates. In this case there was a marked effect, especially in three of the last four years, which are used in the estimate of current CPUE. The effect of this is to alter the estimate of the RBC from about 465 t to 497 t . This enables the reduction to the RBC due to the increased discard levels to be accounted for in the calculation of the TAC.

Table 23.75. Mirror Dory data for the TIER 4 calculations. Total is the sum of Discards, State, Non Trawl, SEF2, and ECDW catches. All values in Tonnes. StandCE is the standardized catch rate for all Zones 10 to 50 in depths $0-1000 \mathrm{~m}$ (Haddon, 2013). GeoMean is the geometric mean catch rates. (D/C) +1 is the multiplier used with StandCE to generate DiscCE (see the Methods).

Year	Catch	Discards	Total	(D/C)+1	StandCE	DiscCE	GeoMean	TAC
1986	336.000	80.919	416.919	1.2408	1.2143	1.1892	18.6423	NA
1987	340.800	82.075	422.875	1.2408	1.2174	1.1922	19.7476	NA
1988	373.200	89.877	463.078	1.2408	1.1918	1.1672	16.9455	NA
1989	542.400	130.626	673.026	1.2408	1.4711	1.4407	23.1957	NA
1990	267.600	64.446	332.046	1.2408	1.3573	1.3293	20.6077	NA
1991	277.200	66.758	343.958	1.2408	1.1606	1.1366	13.9567	NA
1992	357.600	86.121	443.721	1.2408	1.0060	0.9852	11.3487	NA
1993	537.600	129.470	667.070	1.2408	1.1016	1.0788	13.7999	800
1994	324.664	78.189	402.853	1.2408	0.9869	0.9665	11.4667	800
1995	289.953	69.829	359.782	1.2408	0.9147	0.8958	10.0782	800
1996	404.725	97.470	502.195	1.2408	0.8809	0.8627	8.9039	800
1997	547.416	131.834	679.250	1.2408	0.9361	0.9168	9.6820	800
1998	439.374	115.000	554.374	1.2617	0.8501	0.8466	9.0983	800
1999	382.139	52.000	434.139	1.1361	0.6989	0.6267	8.0995	800
2000	217.405	93.000	310.405	1.4278	0.4882	0.5501	4.6519	800
2001	306.752	292.000	598.752	1.9519	0.5725	0.8820	5.1157	800
2002	545.156	96.920	642.076	1.1778	0.7646	0.7108	7.1647	640
2003	738.494	163.710	902.204	1.2217	0.9308	0.8975	8.6661	576
2004	627.895	170.310	798.205	1.2712	0.8942	0.8972	8.2044	576
2005	663.937	52.720	716.657	1.0794	0.9902	0.8436	9.3924	700
2006	490.854	26.880	517.734	1.0548	0.9763	0.8128	9.7517	634
2007	335.705	64.522	400.226	1.1922	0.9435	0.8878	9.5152	788
2008	463.422	89.595	553.017	1.1933	1.1278	1.0622	12.2034	634
2009	561.287	369.419	930.706	1.6582	1.2442	1.6283	13.1797	718
2010	632.778	275.697	908.475	1.4357	1.1866	1.3446	12.8612	718
2011	568.241	134.789	703.030	1.2372	1.0983	1.0725	10.8184	718
2012	409.013	97.019	506.033	1.2372	0.7952	0.7765	8.9809	718

Discards make up approximately 19.41 \% of the catch over the 1998-2006 period, and according to an earlier RAG decision this value was used to estimate the discards for the years 1986 - 1997. The average discard rate from 1998 - 2008, 19.17\%, was used to estimate the more recent discard rates in 2011 and 2012.

Table 23.76. RBC calculations for Mirror Dory East. Ctarg and CPUEtarg relate to the period 1986-1995, CPUELim is 40% of the target, and $\overline{C P U E}$ is the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. Wt_Discard is the weighted average discards from the last four years, as with Equ (19).

Ref_Year	$1986-1995$
CE_Targ	1.1382
CE_Lim	0.4553
CE_Recent	1.2055
Wt_Discard	149.075
Scaling	1.0986
Last Year's TAC	1616
C $_{\text {targ }}$	452.533
RBC	$\mathbf{4 9 7 . 1 3 4}$

MirrorDoryEDiscard

Figure 23.50 Mirror Dory. Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

23.6.10 Mirror Dory West (DOM - 37264003 - Z. nebulosus)

Table 23.77. Mirror Dory data for the TIER 4 calculations. Total is the sum of Discards, State, Non
Trawl and SEF2 catches. All values in Tonnes. CE is the standardized catch rate for Zones 40 to 50 in
depths $0-600 \mathrm{~m}$ (Haddon, 2013). GeoMean is the geometric mean catch rates. Discards are estimates
from 1998 to present. The ratio of discards to catch over the $1998-2006$ period was used to estimate the
discards between 1986 and 1997, the proportion of which is the PDiscard.

Year	Catch	Discard s	Total	State	Non-T	PDiscar d	CE	GeoMea n
1986	6.601	1.590	8.190			19.4087	2.4486	13.7130
1987	12.326	2.968	15.294			19.4087	1.6108	16.0832
1988	17.036	4.103	21.139			19.4087	1.3227	18.4525
1989	11.499	2.769	14.268			19.4087	1.6770	24.6757
1990	10.089	2.430	12.518			19.4087	1.1269	21.6631
1991	19.285	4.644	23.930			19.4087	0.8009	11.7670
1992	20.142	4.851	24.993			19.4087	0.6650	8.1608
1993	33.961	8.179	42.139			19.4087	0.7842	10.1017
1994	21.044	5.068	26.113	1.414		0	19.4090	0.6901
1995	47.176	11.362	58.538	3.632		0	19.4090	0.8794
1996	142.290	34.268	176.559	7.634		0	19.4090	1.2517
1997	186.019	44.800	230.819	7.365		0	19.4090	1.2660
1998	147.272	38.546	185.818	9.046		0	20.7441	1.2261
1999	81.119	11.038	92.158	7.835	0	11.9777	0.8060	12.6121
2000	29.554	12.642	42.196	1.512	0	29.9608	0.4399	8.8763
2001	138.057	131.418	269.475	4.655	0.043	48.7681	0.7588	7.9361
2002	301.310	53.568	354.878	11.966	0.016	15.0948	1.1130	11.7181
2003	204.061	45.236	249.297	18.919	0.000	18.1456	0.9545	11.0165
2004	221.760	60.150	281.911	37.573	0.178	21.3366	0.9571	10.3786
2005	126.801	10.069	136.870	14.026	0.002	7.3564	0.7563	8.0456
2006	88.391	4.840	93.231	15.385	0.010	5.1919	0.6419	8.0395
2007	81.316	15.629	96.944	6.957	0.015	16.1213	0.5779	6.7120
2008	72.097	13.939	86.035	3.439	0.000	16.2011	0.6475	7.5767
2009	149.819	98.605	248.424	9.372	0.000	39.6923	0.9881	9.7010
2010	200.256	87.250	287.506	3.807	0.012	30.3472	1.1728	11.0745
2011	177.613	42.130	219.743	1.904	1.092	19.1726	0.8995	8.6510
2012	80.224	19.029	99.253	1.195	0.003	19.1726	0.5376	6.0700

Discards make up approximately 19.41 \% of the catch over the 1998-2006 period, used for estimating discard rates for 1986 - 1997 and 19.17% over the $1998-2008$ period used for estimating discard rates for 2011-2012.

Table 23.78. RBC calculations for Mirror Dory. Ctarg and CPUEtarg relate to the period $1996-2005$, CPUELim is 40% of the target, and $\overline{C P U E}$ is the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. Wt Discard is the weighted average discards from the last four years, as with Equ (19).

Ref_Year	$1996-2005$
CE_Targ	0.9529
CE_Lim	0.3812
CE_Recent	0.8995
Wt_Discard	39.591
Scaling	0.9065
Last Year's TAC	1616
C $_{\text {targ }}$	201.998
RBC	$\mathbf{1 8 3 . 1 1 8}$

Figure 23.51. Mirror Dory. Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

23.6.11 Pink Ling (LIG - 37228002 - Genypterus blacodes)

Table 23.79. Pink Ling data for the TIER 4 calculations. Total is the sum of Discards, State, Non Trawl and SEF2 catches. All values in Tonnes. CE is the standardized catch rate for Zones 10, 20 and 30 in depths $0-1000 \mathrm{~m}$ (Haddon, 2013). GeoMean is the geometric mean catch rates. Discards are estimates from 1998 to present. The ratio of discards to catch over the 1998 - 2006 period was used to estimate the discards between 1986 and 1997, the proportion of which is the PDiscard.

Year	Catch	Discards	Total	State	Non-T	PDiscard	CE	LnCE
1986	650.400	3.598	653.998			0.5501	1.1112	20.6651
1987	802.800	4.440	807.241			0.5501	1.1786	19.4237
1988	621.600	3.438	625.038			0.5501	1.1234	20.2595
1989	744.000	4.115	748.115			0.5501	0.9652	19.1575
1990	776.400	4.294	780.695			0.5501	1.4198	26.8201
1991	910.800	5.038	915.838			0.5501	1.4201	26.3050
1992	1081.200	5.980	1087.180			0.5501	1.0966	24.8497
1993	1657.200	9.166	1666.366			0.5501	1.0313	25.3075
1994	1463.814	0.000	1463.814	522.744	0.000	0.0000	1.0448	23.5158
1995	1944.832	0.000	1944.832	672.139	0.000	0.0000	1.3164	25.8106
1996	2246.616	0.000	2246.616	810.611	0.000	0.0000	1.3170	27.6570
1997	2136.689	0.000	2136.689	391.286	0.000	0.0000	1.3472	27.9375
1998	1941.212	41.000	1982.212	50.861	202.203	2.0684	1.3413	26.0156
1999	2027.018	12.000	2039.018	50.738	270.473	0.5885	1.2284	25.2286
2000	1854.579	11.000	1865.579	18.943	246.839	0.5896	1.0837	22.4049
2001	1741.307	5.000	1746.307	9.879	376.527	0.2863	0.8413	19.0624
2002	1609.255	6.640	1615.895	15.616	522.075	0.4109	0.7343	15.8660
2003	1625.789	1.390	1627.179	8.277	477.396	0.0854	0.7492	18.2929
2004	1797.662	1.390	1799.052	12.195	850.358	0.0773	0.6719	16.7984
2005	1466.180	3.330	1469.510	20.890	643.671	0.2266	0.6280	16.3335
2006	1230.147	2.840	1232.987	15.646	455.183	0.2303	0.7491	21.3189
2007	1026.187	21.882	1048.069	23.317	339.055	2.0879	0.7292	20.5015
2008	1183.839	16.566	1200.405	32.212	443.663	1.3800	0.8466	25.1511
2009	901.081	50.095	951.175	16.474	298.114	5.2666	0.6172	18.2953
2010	1103.679	57.895	1161.574	54.977	388.518	4.9842	0.7541	20.7211
2011	1258.643	14.613	1273.256	36.108	429.517	1.1477	0.7997	23.4304
2012	1058.538	16.400	1074.938	37.944	339.483	1.5257	0.8544	24.3541

Discards make up approximately 0.54% of the catch over the 1998-2006 period. The standardized catch rate series used was from Zones 10,20 and 30 as taken by trawl.

Table 23.80. RBC calculations for Pink Ling. Ctarg and CPUEtarg relate to the period 1986-1995, CPUELim is 40% of the target, and $\overline{C P U E}$ is the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. Wt_Discard is the weighted average discards from the last four years, as with Equ (19).

Ref_Year	$1986-1995$
CE_Targ	1.1707
CE_Lim	0.4683
CE_Recent	0.7564
Wt_Discard	23.703
Scaling	0.4101
Last Year's TAC	1200
C $_{\text {targ }}$	1069.312

PinkLingE

Figure 23.52 . Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

23.6.12 RedFish (RED - 37258003 - Centroberyx affinis)

The period of the redfish fishery between 1991 to 1998 appears to have been during an era of heightened availability for redfish. This period is no longer considered to be representative of the fishery as it normally runs and has been running for the last few years.

Table 23.81. Redfish data for the TIER 4 calculations. Total is the sum of Discards, State, Non Trawl and SEF2 catches. All values in Tonnes. CE is the standardized catch rate for Zone 10 in depths $0-$ 400 m (Haddon, 2013) relative to the catch rate in 1986. GeoMean is the geometric mean catch rates. Discards are estimates from 1998 to present. The ratio of discards to catch over the 1998 - 2006 period was used to estimate the discards between 1986 and 1997, the proportion of which is the PDiscard.

Year	Catch	Discards	Total	State	Non-T	PDiscard	CE	GeoMean
1986	1426.800	904.992	2331.792			38.8110	1.6365	38.3044
1987	986.400	625.655	1612.055			38.8110	1.3134	35.9993
1988	961.200	609.671	1570.871			38.8110	1.3632	37.3114
1989	649.200	411.775	1060.975			38.8110	1.1309	29.4122
1990	792.000	502.350	1294.350			38.8110	1.5351	37.2522
1991	1737.600	1102.126	2839.726			38.8110	1.5924	39.9367
1992	2443.200	1549.675	3992.875			38.8110	2.0517	50.0990
1993	2114.400	1341.123	3455.523			38.8110	2.5963	56.0385
1994	1957.210	0.000	1957.210	1343.683	0.000	0.0000	1.8208	35.8972
1995	1999.572	0.000	1999.572	789.203	0.000	0.0000	1.1812	27.8589
1996	2219.833	0.000	2219.833	784.081	0.000	0.0000	0.9638	26.2588
1997	1840.798	0.000	1840.798	303.982	0.000	0.0000	1.1307	33.5183
1998	1835.469	2324.000	4159.469	83.346	0.000	55.8725	1.4172	43.1196
1999	1346.976	69.000	1415.976	94.939	0.000	4.8730	1.1127	32.7876
2000	859.909	233.000	1092.909	27.446	0.000	21.3193	0.7499	22.7760
2001	846.662	738.000	1584.662	52.093	0.545	46.5714	0.7333	17.8301
2002	926.928	894.850	1821.778	46.951	0.155	49.1196	0.6250	16.4201
2003	726.661	347.500	1074.161	48.604	0.828	32.3508	0.5978	17.0122
2004	557.603	377.440	935.043	58.124	1.005	40.3661	0.5076	15.2541
2005	579.526	126.180	705.706	46.690	0.568	17.8800	0.5194	16.1484
2006	397.194	13.070	410.264	75.690	0.541	3.1858	0.4873	15.6812
2007	283.332	2.681	286.013	53.689	0.089	0.9374	0.4341	15.4678
2008	230.566	2.182	232.748	29.369	0.163	0.9374	0.4057	13.9780
2009	207.440	231.285	438.726	25.489	0.076	52.7175	0.3285	11.3207
2010	187.992	27.086	215.079	22.340	0.019	12.5936	0.3115	10.4815
2011	114.991	26.770	141.761	16.473	0.247	18.8840	0.2479	8.5118
2012	84.888	4.064	88.951	13.611	0.009	4.5684	0.2061	7.0022

Discards make up approximately 38.8% of the catch over the 1998-2006 period. The standardized catch rate series is from Zone 10.

Table 23.82. RBC calculations for Redfish. Ctarg and CPUEtarg relate to the period 1986-1990 and 1999-2003 (omitting a period of enhanced availability during the 1990 s). CPUELim is 40% of the target, and $\overline{C P U E}$ is the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. Wt_Discard is the weighted average discards from the last four years, as with Equ (19).

Ref_Year	1986-1990\&1999-2003
CE_Targ	1.0798
CE_Lim	0.4319
CE_Recent	0.2735
Wt_Discard	28.337
Scaling	0
Last Year's TAC	276
C $_{\text {targ }}$	1485.953

Redfish

Figure 23.53. Redfish. Left is the total removals with the fine line illustrating the target catch. Right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

23.6.13 RedFish plus Discards (RED - 37258003 - C. affinis)

The period of the redfish fishery between 1991 to 1998 appears to have been during an era of heightened availability for redfish. This period is no longer considered to be representative of the fishery as it normally runs and has been running for the last few years.

Table 23.83. Redfish data for the Alternative TIER 4 calculations using ratio mean catch rates that include discards in the catch rate calculations. Total is the sum of Discards, and other catches. All values in Tonnes. StandCE is the standardized catch rate for redfish from Zone 10 in depths $0-400 \mathrm{~m}$ (Haddon, 2013). GeoMean is the geometric mean catch rates (without discards). Discards are estimates from 1998 to present. DiscCE is the standardized catch rates multiplied by [(Discard/Catch)+1], see Haddon (2011c) for methods.

Year	Catch	Discards	Total	Effort	$(\mathrm{D} / \mathrm{C})+1$	StandCE	DiscCE	GeoMean
1986	1426.800	904.992	2331.792			38.8110	1.6365	38.3044
1987	986.400	625.655	1612.055			38.8110	1.3134	35.9993
1988	961.200	609.671	1570.871			38.8110	1.3632	37.3114
1989	649.200	411.775	1060.975			38.8110	1.1309	29.4122
1990	792.000	502.350	1294.350			38.8110	1.5351	37.2522
1991	1737.600	1102.126	2839.726			38.8110	1.5924	39.9367
1992	2443.200	1549.675	3992.875			38.8110	2.0517	50.0990
1993	2114.400	1341.123	3455.523			38.8110	2.5963	56.0385
1994	1957.210	0.000	1957.210	1343.683	0.000	0.0000	1.8208	35.8972
1995	1999.572	0.000	1999.572	789.203		0.000	0.0000	1.1812
1996	2219.833	0.000	2219.833	784.081	0.000	0.0000	0.9638	26.25889
1997	1840.798	0.000	1840.798	303.982	0.000	0.0000	1.1307	33.5183
1998	1835.469	2324.000	4159.469	83.346	0.000	55.8725	1.4172	43.1196
1999	1346.976	69.000	1415.976	94.939	0.000	4.8730	1.1127	32.7876
2000	859.909	233.000	1092.909	27.446	0.000	21.3193	0.7499	22.7760
2001	846.662	738.000	1584.662	52.093	0.545	46.5714	0.7333	17.8301
2002	926.928	894.850	1821.778	46.951	0.155	49.1196	0.6250	16.4201
2003	726.661	347.500	1074.161	48.604	0.828	32.3508	0.5978	17.0122
2004	557.603	377.440	935.043	58.124	1.005	40.3661	0.5076	15.2541
2005	579.526	126.180	705.706	46.690	0.568	17.8800	0.5194	16.1484
2006	397.194	13.070	410.264	75.690	0.541	3.1858	0.4873	15.6812
2007	283.332	2.681	286.013	53.689	0.089	0.9374	0.4341	15.4678
2008	230.566	2.182	232.748	29.369	0.163	0.9374	0.4057	13.9780
2009	207.440	231.285	438.726	25.489	0.076	52.7175	0.3285	11.3207
2010	187.992	27.086	215.079	22.340	0.019	12.5936	0.3115	10.4815
2011	114.991	26.770	141.761	16.473	0.247	18.8840	0.2479	8.5118
2012	84.888	4.064	88.951	13.611	0.009	4.5684	0.2061	7.0022

Discards make up approximately 38.8% of the catch over the 1998-2006 period. The standardized catch rate series is from Zone 10.

Table 23.84. RBC calculations for Redfish. Ctarg and CPUEtarg relate to the period 1986-1990 and 1999-2003 (omitting a period of enhanced availability during the 1990 s). CPUELim is 40% of the target, and $\overline{C P U E}$ is the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. Wt_Discard is the weighted average discards from the last four years, as with Equ (19).

Ref_Year	1986-1990\&1999-2003
CE_Targ	1.0798
CE_Lim	0.4319
CE_Recent	0.2735
Wt_Discard	28.337
Scaling	0
Last Year's TAC	276
C $_{\text {targ }}$	$\mathbf{1 4 8 5 . 9 5 3}$

Redfishdis

Figure 23.54. Redfish. Left is the total removals with the fine line illustrating the target catch. Right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

23.6.14 School Whiting (WHS - 37330014 - Sillago flindersi)

Table 23.85. School Whiting data for the TIER 4 calculations. Total is the sum of Discards, State, Non Trawl and SEF2 catches. All values in Tonnes. CE is the standardized catch rate for Zone 60 from depths 0 to 100 m (Haddon, 2013). GeoMean is the geometric mean catch rates. Discards are estimates from 1998 to present. The ratio of discards to catch over the $1998-2006$ period was used to estimate the discards between 1986 and 1997, the proportion of which is the PDiscard.

| Year | Catch | Discards | Total | State | Non-T | PDiscard | CE | GeoMean |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1986 | 1903.200 | 29.416 | 1932.616 | | | 1.5221 | 1.1634 | 112.3054 |
| 1987 | 1320.000 | 20.402 | 1340.402 | | | 1.5221 | 1.2824 | 131.1624 |
| 1988 | 1549.200 | 23.945 | 1573.145 | | | 1.5221 | 1.6623 | 168.5490 |
| 1989 | 1220.400 | 18.863 | 1239.263 | | | 1.5221 | 1.0976 | 127.0438 |
| 1990 | 2007.600 | 31.030 | 2038.630 | | | 1.5221 | 1.7010 | 165.2959 |
| 1991 | 1866.000 | 28.841 | 1894.841 | | | 1.5221 | 1.4401 | 164.1905 |
| 1992 | 1219.200 | 18.844 | 1238.044 | | | 1.5221 | 1.0249 | 124.7066 |
| 1993 | 2007.600 | 31.030 | 2038.630 | | | 1.5221 | 1.4595 | 152.4819 |
| 1994 | 1647.018 | 0.000 | 1647.018 | 656.797 | 0.000 | 0.0000 | 0.8526 | 93.9314 |
| 1995 | 1990.790 | 0.000 | 1990.790 | 742.580 | 0.000 | 0.0000 | 1.0721 | 122.4731 |
| 1996 | 1695.105 | 0.000 | 1695.105 | 829.202 | 0.000 | 0.0000 | 0.7020 | 81.4339 |
| 1997 | 1556.380 | 0.000 | 1556.380 | 917.387 | 0.000 | 0.0000 | 0.5436 | 64.5619 |
| 1998 | 1813.848 | 48.000 | 1861.848 | 1169.056 | 48.000 | 2.5781 | 0.5241 | 66.0158 |
| 1999 | 1448.810 | 5.000 | 1453.810 | 824.832 | 5.000 | 0.3439 | 0.5996 | 84.3634 |
| 2000 | 1289.460 | 9.000 | 1298.460 | 687.243 | 9.000 | 0.6931 | 0.6039 | 65.1233 |
| 2001 | 1719.372 | 28.000 | 1747.372 | 1044.883 | 28.000 | 1.6024 | 0.8466 | 93.2089 |
| 2002 | 1577.598 | 9.760 | 1587.358 | 898.782 | 9.760 | 0.6149 | 0.8685 | 90.8874 |
| 2003 | 1509.107 | 46.340 | 1555.447 | 898.545 | 46.340 | 2.9792 | 0.8882 | 87.1013 |
| 2004 | 1412.951 | 26.360 | 1439.311 | 1001.215 | 26.360 | 1.8314 | 0.8380 | 79.7648 |
| 2005 | 1461.710 | 37.500 | 1499.210 | 1008.226 | 37.500 | 2.5013 | 0.9476 | 77.2502 |
| 2006 | 1551.224 | 3.090 | 1554.314 | 1080.014 | 3.090 | 0.1988 | 0.8179 | 76.2250 |
| 2007 | 1636.456 | 3.260 | 1639.716 | 1125.459 | 3.260 | 0.1988 | 1.0781 | 89.2381 |
| 2008 | 1369.947 | 2.729 | 1372.676 | 916.794 | 2.729 | 0.1988 | 1.0854 | 92.3448 |
| 2009 | 1227.521 | 2.445 | 1229.966 | 755.575 | 2.445 | 0.1988 | 1.1373 | 93.6200 |
| 2010 | 1226.626 | 18.316 | 1244.942 | 802.888 | 18.316 | 1.4713 | 1.0153 | 88.7190 |
| 2011 | 1240.111 | 58.467 | 1298.578 | 863.421 | 58.467 | 4.5024 | 0.8322 | 72.0269 |
| 2012 | 1269.130 | 19.429 | 1288.559 | 859.546 | 19.429 | 1.5078 | 0.9157 | 80.0853 |
| | | | | | | | | |

Discards make up approximately 1.5% of the catch over the 1998-2006 period.

$$
\begin{aligned}
& \text { Table 23.86. RBC calculations for School Whiting. Ctarg and CPUEtarg } \\
& \text { relate to the period 1986-1995, CPUELim is } 40 \% \text { of the target, and } \overline{C P U E} \\
& \text { is the average catch rate over the last four years. The RBC calculation does } \\
& \text { not account for predicted discards of predicted State catches. Wt_Discard is } \\
& \text { the weighted average discards from the last four years, as with Equ (19). } \\
& \hline \text { Ref_Year } \\
& \text { CE_Targ } \\
& \text { CE_Lim } \\
& \text { CE_Recent } \\
& \text { Wt_Discard } \\
& \text { Scaling } \\
& \text { Last Year's TAC } \\
& \text { Ctarg }
\end{aligned}
$$

Figure 23.55. School Whiting. Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

2.3 Silver Warehou (TRS - 37445006 - Seriolella punctata)

Table 23.87. Spotted/Silver Warehou data for the TIER 4 calculations. Total is the sum of Discards, State, Non Trawl and SEF2 catches. All values in Tonnes. CE is the standardized catch rate for Zones 10 to 50 in depths $0-1000 \mathrm{~m}$ (Haddon, 2013). GeoMean is the geometric mean catch rates. Discards are estimates from 1998 to present. The ratio of discards to catch over the $1998-2006$ period was used to estimate the discards between 1986 and 1997, the proportion of which is the PDiscard.

Year	Catch	Discards	Total	State	Non-T PDiscard	CE		GeoMean
1986	1142.927	242.793	1385.720			17.5211	1.4578	32.2897
1987	779.270	165.541	944.811			17.5211	1.5375	35.5040
1988	1637.312	347.815	1985.127			17.5211	1.9596	42.9346
1989	916.714	194.738	1111.452			17.5211	1.5983	30.7291
1990	1319.413	280.284	1599.697			17.5211	1.6895	40.6488
1991	1421.943	302.064	1724.007			17.5211	1.1874	25.6848
1992	709.181	150.652	859.833			17.5211	1.0405	27.9469
1993	1775.414	377.152	2152.566			17.5211	1.1751	33.2988
1994	2054.296	0	2054.296	78.956		0	1.2561	34.7142
1995	2213.896	0	2213.896	117.062		0	1.1350	29.7825
1996	2735.681	0	2735.681	174.562		0	1.0664	22.7319
1997	2807.462	0	2807.462	23.013		0	1.0937	25.3481
1998	2433.954	2150.000	4583.954	23.220		46.9027	1.0527	26.6416
1999	3255.217	45.000	3300.217	1.732		1.3635	0.9059	31.2330
2000	3726.592	123.000	3849.592	0.464		3.1951	0.8281	26.0708
2001	3295.454	695.000	3990.454	0.324	0.923	17.4166	0.6968	21.7853
2002	4101.870	552.470	4654.340	0.487	0.701	11.8700	0.7532	22.9919
2003	3060.003	769.760	3829.763	1.007	12.642	20.0994	0.7615	20.4815
2004	3315.032	1183.280	4498.312	3.767	0.251	26.3050	0.8452	23.3323
2005	2912.725	434.830	3347.555	4.996	0.139	12.9895	0.8309	20.0277
2006	2374.182	95.630	2469.812	2.494	0.086	3.8720	0.7316	18.2160
2007	1987.060	82.453	2069.513	4.373	0.056	3.9842	0.6931	20.1239
2008	1522.999	49.718	1572.717	0.541	0.063	3.1613	0.6233	16.1202
2009	1379.268	33.280	1412.548	1.240	0.002	2.3560	0.6437	15.8837
2010	1288.673	17.155	1305.827	0.561	1.285	1.3137	0.5328	13.2653
2011	1229.279	428.738	1658.017	0.548	0.112	25.8585	0.4973	12.6164
2012	821.618	137.265	958.883	0.527	0.044	14.3151	0.4068	10.4075

Discards make up approximately 17.52 \% of the catch over the 1998-2006 period. The standardization is an annual analysis conducted for the TIER 4 analysis.

Table 23.88. RBC calculations for Silver Warehou. Ctarg and CPUEtarg relate to the period 1986-1995, CPUELim is 40% of the target, and $\overline{C P U E}$ is the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. Wt_Discard is the weighted average discards from the last four years, as with Equ (19).

Ref_Year	$1986-1995$
CE_Targ	0.7018
CE_Lim	0.2807
CE_Recent	0.5202
Wt_Discard	192.044
Scaling	0.5685
Last Year’s TAC	2566
C $_{\text {targ }}$	1603.141

SilverWarehou

Figure 23.56 Spotted/Silver Warehou. Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

23.1 Acknowledgements

Thanks also go to Mike Fuller and Neil Klaer for all the pre-analytical data preparation required maintaining the SESSF data set.

23.2 Bibliography

AFMA (2009) SESSF Stock Assessment Methods and TAC Setting Process Version 1.5. 8p.

Haddon, M. (2010) Tier 4 Analyses (data from 1986 - 2008. Pp 319 - 369 in Tuck, G.N. (ed) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2009 Part 2. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 428 pp.

Haddon, M. (2013) Catch Rate Standardizations for Selected Species from the SESSF (data 1986-2012). CSIRO Marine and Atmospheric Research, Hobart. 221 pp. RAG Paper.

Haddon, M. (2012b) Deep water catch rate standardizations and Tier 4 Analyses 2010 (data from 1986 - 2010) Pp 361-413 Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery:2011. Part 2. (ed) G.N. Tuck. CSIRO Marine and Atmospheric Research, Hobart. 419 pp.

Haddon, M. (2011b) Tier 4 Analyses (data from 1986-2009. Pp 308 - 360 in Tuck, G.N. (ed) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2010 Part 2. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 419 pp.

Haddon, M. (2011c) Assorted Catch and Catch Rate Analyses for the SESSF 2010 pp 10-43 in Tuck, G.N. (ed.) 2011. Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2010. Part 2. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 419 p.

Klaer, N., Day, J., Fuller, M., Krusic-Golub, K. and J. Upston (2013) Data summary for the Southern and Eastern Scalefish and Shark Fishery: Logbook, Landings, and Observer Data to 2012. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 235 pp.

Little, R., Tuck, G.N., Haddon, M., Day, J., Klaer, N., Smith, A.D.M., Thomson, R., and S. Wayte (2009) Developing CPUE targets for the Tier 4 harvest strategy of the SESSF. Pp 233-254 in Tuck, G.N. (ed) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery: 2008 Part 2. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 331 pp.

Little, L.R., Wayte, S.E., Tuck, G.N., Smith, A.D.M., Klaer, N., Haddon, M., Punt, A.E., Thomson, R., Day, J. and M. Fuller (2011a) Development and evaluation of a cpue-based harvest control rule for the southern and eastern scalefish and shark fishery of Australia. ICES Journal of Marine Science. 68(8): 1699-1705.

Little, L.R., Wayte, S.E. and Tuck, G.N. The effects of Cmax on the Tier 4 Harvest Control Rule. Pp 3-9 in Tuck, G.N. (ed) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery: 2010 Part 2. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 419 pp.

R Development Core Team (2009). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

Upston, J. and N. Klaer (2012) Integrated Scientific Monitoring Program for the Southern and Eastern Scalefish and Shark Fishery - Discard estimation: 2011. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. Draft provided to RAGs 1-4 October 2012.

Venables, W. and C. M. Dichmont (2004). GLMs, GAMs and GLMMs: an overview of theory for applications in fisheries research. Fisheries Research 70: 319-337.

Wayte, S.E. and Fuller, M. (2008) Tier 4 Harvest Control Rule applied to deepwater species 2008. Report to DeepRAG, December 2008. 23p.

Wayte, S.E. (ed.) 2009. Evaluation of new harvest strategies for SESSF species. CSIRO Marine and Atmospheric Research, Hobart and Australian Fisheries Management Authority, Canberra. 137 p.

24. Saw Shark and Elephant Fish TIER 4 Analyses (Data from 1980 2012)

Malcolm Haddon
CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart, TAS 7001, Australia

24.1 Summary

The stock assessments that feed into the management control rules that reflect the harvest strategy adopted in the SESSF are arranged in a tiered system ranging from fully quantified modelled stock assessments (Tier 1) down to empirical rules based only on catch and catch rates (Tier 4). For those species where biological and fisheries data are limited an examination of trends in catch rates is used to modify allowable catches with the objective of managing the particular fishery towards a target that represents a desirable state for the fishery that also acts as a proxy for the general Harvest Strategy Policy target of $48 \% B_{0}$.

The Tier 4 control rule is used to calculate Recommended Biological Catches (RBCs) for saw sharks and elephant fish from the southern shark fishery. Standardized catch rates for both species were estimated using the SESSF logbook data only rather than the earlier data, along with total catches of the respective species in a standard analysis. For saw sharks the reported catches by trawl are now approaching the level of gill net catches so an additional analysis was conducted where the standardized catch rate for trawl saw shark catches was used instead of the gillnet catch rates.

The gillnet catch rates for saw sharks in 2012 were slightly lower than those in 2011 but owing to the initial drop in catch rates in 2010 the tier 4 analysis, which considers the average catch rate over the last four years, generates a RBC for saw sharks at the 48% target that has now declined to about 59% of the target catch (down from 64% last year). Whether the decline in the gillnet catch rates constitute a reasonable reflection of the stock status remains questionable due to the level of avoidance that occurs in the fishery (due to low and reducing value of saw sharks in the market). Importantly, when the trawl catch rates for saw sharks are standardized a different trend is apparent. In 2000 the catches by trawl were only 20% of all catches by gillnet plus trawl but now make up 40%.

The catch rate data used for Elephant fish now relates to the SESSF database, which means the probability of obtaining a positive shot cannot be well identified. The decline in catch rates in elephant fish seen in 2010 continued in 2011 but then recovered its 2011 losses in 2012 (Figure 24.6). However, these values do not include discards in their calculations and since 2007 and especially since 2011 the importance of discards has become particularly influential in Elephant fish. When discards are included in the calculation of CPUE as well as total catches then the CPUE increased in both 2011 and 2012, implying a rise in RBC (Figure 24.7). When discards are not stable, as is the case with Elephant fish then this latter analysis more closely reflects the fishery dynamics.

In both the saw shark and elephant fish these analyses relate to the target catch rate being a proxy for 48% of unfished biomass. However, neither species are reported as being targeted in the fishery (when using any method) so these calculated RBC are inherently conservative.

Table 24.1. TIER 4 outcomes by species. The RBC in tonnes; this has not had discards, State catches, or recreational catches removed. The 2010, 2011, and 2012 values came from Haddon $(2010 ; 2011 ; 2012)$ and the 2009 values came from Rodriguez and McLoughlin (2009a, b).

Species	RBC09	RBC10	RBC11	RBC12	RBC13
SawSharks @ 48\%	370	340	268	234	$\mathbf{2 1 6 . 2 1 8}$
Saw Sharks Trawl @ 48\%	Zones 20,60,50		514	$\mathbf{4 6 7 . 9 3 3}$	
Saw Sharks Trawl @ 48\%	Zones 20,60,50,83,82		477	$\mathbf{4 5 9 . 0 8 6}$	
Elephant Fish @ 48\% 4	123	135	208	186	$\mathbf{1 1 5 . 8 1 2}$
Elephant Fish @ 48\% + Discards				$\mathbf{2 3 2 . 3 0 0}$	

24.2 Introduction

The TIER 4 harvest control rule is the default procedure applied to species for which only limited information is available; specifically, if no reliable information is available relating to either current biomass levels or current exploitation rates. Ideally, in line with the notion of being more precautionary in the absence of information, the outcome from these analyses should be more conservative than those available from higher TIER analyses. In essence TIER 4 analyses require as a minimum, knowledge of the time series of total catches and of standardized catch rates.

Initially a control rule was implemented that was based around using any trend in recent catch rates to scale average recent catches. However, in 2008, an alternative was proposed that would not be prone to a declining ratchet effect on catches, and, in line with the Harvest Strategy Policy, could manage each fishery towards a target catch rate and away from a limit catch rate (Little, et al., 2008) The current TIER 4 analysis and control rule underwent Management Strategy Evaluation (Wayte, 2009; Little et al, 2011), which demonstrated its advantages over the original implementation.

The Tier 4 assessment requires the definition of a reference period for catches and catch rates which are to constitute the effective target for the fishery. This reference period is intended to act as a proxy for the fishery in a desirable state; ideally close to the stock size that leads to the maximum economic yield, and so in practice this target is also taken as a proxy for $B_{M E Y}$. In practice, in TIER 4 analyses, all that is really known about the reference period is that the RAG considers this period to be when the fishery was in a desirable state both biologically and economically. The Harvest Strategy Policy does not require that all species in a multispecies fishery aim to achieve the maximum economic yield, and this is especially the case with bycatch species. Nevertheless, the objective of avoiding the limit reference point remains. Within the current Tier 4 methodology the limit reference point is defined as 40% of the target catch rate. In addition, the Harvest Strategy Policy also states that:

Consideration should also be given to:

- Demonstrating that economic modelling and other advice clearly supports such action;
- No cost effective, alternative management options (e.g. gear modifications or spatial management) are available; and
- The associated ecosystem risks have been considered in full. (DAFF, 2007, p 25)

If the average catch rate over the last four years drops below this limit the RBC is automatically zero.

24.3 Methods

24.3.1 TIER 4 Methods

The data required are time series of catches and catch rates. The analyses have been conducted on total catches across the entire SESSF (including State catches, SEF2 landing records, any discards, and any recreational catches (for elephant fish). Despite the fishery now operating from May through to April each year, the fishery data was collated in calendar years for consistency with the earlier fishery.

The fishery for both saw sharks and elephant fish was established before the catch rate standardization period selected by the RAG (i.e. significant catches were taken in the 1970s). Thus, although the Shark RAG did not consider the stocks of saw sharks and elephant fish to be seriously depleted by 1980, the stock was not pristine. In previous TIER 4 analyses (Rodriguez \& McLoughlin, 2009a, b) two reference periods were examined for saw sharks, 1986-2001 and 2002-2008, and two for elephant fish, 1980 - 1992 and 1998 - 2004. The earlier period had an extra source of uncertainty because the estimates of trawl bycatch and discards were likely under-estimated. To avoid these uncertainties and focus on a period when the total catches are known with most certainty the Shark RAG has selected 2002-2008 as the reference period for saw sharks and 1996-2007 for elephant fish.

All data to the end of 2010 relating to catches and discards, from both State waters and SEF2 data sets were provided by John Garvey of AFMA, with initial processing by Dr Neil Klaer and Mike Fuller of CSIRO. For saw sharks the species codes used in the landings database were SAW (Pristiophorus cirratus or Common Saw Shark), SHN (Pristiophorus nudipinnis or Southern Saw Shark), and SHW (Pristiophoridae or saw sharks). For elephant fish the species code in the landings database was SHE (Callorhinchus milii or Elephantfish). All catch rate data from the GHT fishery for both species were derived from the CANDE11.csv data files and analysed in Haddon (2012). All analyses of trawl caught fish used data straight from the AFMA Log Book database following pre-processing by Mike Fuller and Neil Klaer of CSIRO.

Standard analyses were set up in the statistical software, R, which provided the tables and graphs required for the TIER 4 analyses. The data and results for each analysis are presented for clarity. The TIER 4 harvest control rule formulation essentially uses a ratio of current catch rates with respect to the selected limit and target reference points to calculate a scaling factor. This scaling factor is applied to the target catch to generate an RBC:

$$
\begin{gather*}
\text { Scaling Factor }=S F=\max \left(0, \frac{\overline{C P U E}-C P U E_{\lim }}{C P U E_{\mathrm{targ}}-C P U E_{\mathrm{lim}}}\right) \tag{24}\\
R B C=C^{*} \times S F \tag{25}
\end{gather*}
$$

where
CPUE $_{\text {targ }}$ is the target CPUE for the species (half the average CPUE for the reference period). $C P U E_{\text {lim }}$ is the limit CPUE for the species; which is 40% CPUE $_{\text {targ }}$
$\overline{C P U E}$ the average CPUE over the past m years
$C^{*} \quad$ is a catch target derived from a period of historical catch that has been identified as a desirable target in terms of CPUE, catches and status of the fishery (e.g. 1996 2007, as for Elephant fish). This is an average of the total removals for the selected reference period, including any discards.

$$
\begin{equation*}
C P U E_{\mathrm{targ}}=\frac{\sum_{y=y r 1}^{y r 2} C P U E_{y}}{(y r 2-y r 1+1)} \tag{26}
\end{equation*}
$$

where $C P U E_{y}$ is the catch rate in year $y, y r 2$ and $y r 1$ represent the last and the first years in the reference period respectively. The catch target is the mean of the total catch across the reference years.

$$
\begin{equation*}
C^{*}=\frac{\sum_{y=y r 1}^{y r 2} L_{y}}{(y r 2-y r 1+1)} \tag{27}
\end{equation*}
$$

where L_{y} represents the total catch (landings plus discards) in year y.
Usually there are three rules used to select/estimate the CPUE/catch target:

1. The CPUE target for stocks fully exploited at or prior to 1986 is based on the average CPUE from 1986-1995.
2. Where fishing exploitation up to 1986 is thought to be minimal, the CPUE determined in step 1 is halved (to provide a catch rate proxy for $B_{M E Y}$).
3. Where fishing exploitation after 1986 is low, the first year in which catches are above 100t signifies the start of the 10 year period from which the target CPUE and catch targeted are calculated.

With bycatch shark species these rules are not always applicable (for example, with elephant fish the total catch rarely reaches 100 tonnes. Instead periods were chosen during which the fishery was considered to be well developed but in a good and relatively stable condition. For elephant fish the reference period chosen was 1996-2007 and for saw sharks the reference period chosen was 2002 - 2008.

Once the average CPUE for the reference period has been selected as the target CPUE (assumed a proxy for $B_{48 \%}$ which is assumed to be a proxy for $B_{M E Y}$) then the limit CPUE is defined as 40% of the that target. The maximum of the terms in the brackets, that is either zero or the ratio of CPUE values, is a scaling factor which is multiplied by the catch target (C*) to determine the expected total catch. If the $\overline{C P U E}$ is less than the $\mathrm{CPUE}_{\text {lim }}$ this will automatically set the scaling factor to be negative, which means that the scaling factor will be set to zero and the consequent RBC will be zero.

For each species a table of landings and of standardized catch rates was assembled. These included all catches (Commonwealth landings, Non-trawl catches, combined State catches,
and discards). The State catches are available back to 1994 and non-trawl catches are from 1998. Catches prior to 1994 are either taken from an historical catch database or, if no data are available for the species, then they are taken from the AFMA GenLog Catch and Effort database. The catch rates are standardized, usually from 1986, using methods described in Haddon (2012).

Percent discards are estimated from ISMP observations from 1998 to the current year. Discards for earlier years, prior to ISMP sampling, are estimated by taking the overall average percent discard from 1998 to the 2006 and applying that discard rate to the reported landings for the earlier years. The year 2006 was selected as the final year as discarding practices altered at about that time following the structural adjustment and the introduction of the Harvest Strategy Policy. For Eastern Gemfish the average discard rate was determined for 1998-2002 to allow for the non-target nature of the fishery following 2002. The calculation of the earlier discards is done so that the total catches can be estimated even though only the landed catches are available. To calculate the discards for a given year we used

$$
\begin{equation*}
D_{y}=\frac{C_{y} \bar{D}_{98-06}}{\left(1-\bar{D}_{98-06}\right)} \tag{28}
\end{equation*}
$$

To estimate the expected discards in the coming year a weighted average is used:

$$
\mathrm{D}_{\mathrm{CUR}}=\left(1.0 \mathrm{D}_{i-1}+0.5 \mathrm{D}_{i-2}+0.25 \mathrm{D}_{i-3}+0.125 \mathrm{D}_{i-4}\right) / 1.875
$$

where D_{i} is the discards rate in year i, the discard rate in year i is the ratio of discards to the sum of landed catches plus discards:

$$
D_{i}=\frac{\text { Discard }_{i}}{\left(\text { Catches }_{i}+\text { Discard }_{i}\right)}
$$

Plots are given of the total removals illustrating the target catch level. In addition, the standardized catch rates are illustrated with the target catch rate and the limit catch rate.

There are a number of meta-rules that are used when translating the RBCs into TACs. Two that relate to all species are:

- No TAC will change by more than 50% (either increase or decrease)
- Only changes greater than 10% (up or down) will be implemented.

24.3.2 Catches

The discard data for both saw sharks and elephant fish have been included in the most recent SESSF data summaries (Klaer and Upston, 2012) and this has led to some changes in the histories. Fortunately, the changes to the tier4 targets have barely changed as a result so this aspect of the change should have little effect. On the other hand the discard rate for elephant fish appears to have increased dramatically in 2011 from a base level of about 30 t up to about 132 t . This change calls into question the previous discard estimates. There have been no updates of information concerning State or recreational catches and these have been assumed to be equal to the last available estimates. This is unfortunate because there are anecdotal reports that recreational catches of elephant fish has been larger recently. Commonwealth landings were derived from the Quota landings database.

24.3.3 The Analyses Including Discards

Discard rates cannot simply be added to known catches on the way to calculating catch rates. The standardized catch rates are estimated from individual catch and effort records but the estimates of discards are summary estimates for each fishery. While a method for incrementing the standardized catch rates has been developed it should be noted that this ignores all complications relating to unknown aspects of discarding behaviour (is the discard rate constant across all catch sizes, across all vessels, across all areas? etc). This means that including discard catches into the annual catch rate estimates introduces an unknown amount of uncertainty into the analysis. It should also be noted that the discard estimates are highly variable from year to year and derive from relatively small samples of all trips contributing to catches.

The method developed was to find the multiplier needed to adjust ratio mean catch rates and apply that to the standardized catch rates (Haddon, 2010). The ratio mean catch rates require the annual sum of catches for the fishery along with the sum of effort and ratio means calculated for each year. The discard estimates from the fishery can be added to the catch totals and new ratio means calculated and compared. The multiplier needed to make the same changes to the ratio mean catch rates can then be developed and applied to the standardized catch rates.

The ratio mean is simply the sum of all catches divided by the sum of effort

$$
\begin{equation*}
\hat{I}_{R, t}=\frac{\sum C_{t}}{\sum E_{t}} \tag{29}
\end{equation*}
$$

where $\hat{I}_{R, t}$ is the ratio mean catch rate for year $t, \Sigma C_{t}$ is the sum of landed catches in year t, and ΣE_{t} is the sum of effort (as hours trawled) in year t. If ΣD_{t} is the sum of discards in year t then the discard incremented ratio mean catch rate would be

$$
\begin{equation*}
\hat{I}_{D, t}=\frac{\sum C_{t}+\sum D_{t}}{\sum E_{t}} \tag{30}
\end{equation*}
$$

The same values of $\hat{I}_{D, t}$ can also be obtained using the following multiplier

$$
\begin{equation*}
\hat{I}_{D, t}=\left[\left(\sum D_{t} / \sum C_{t}\right)+1\right] \times I_{t} \tag{31}
\end{equation*}
$$

where I_{t} is the catch rate estimate to be modified by the inclusion of discards. If this is the ratio mean from Equ (29) then the augmented catch rates would be identical to those produced by Equ (30). In practice, the catch rates used with the multiplier are the standardized catch rates from Haddon (2010a).

24.4 Results

24.4.1 Saw Sharks

Table 24.2. Saw Sharks. Data used in the Tier 4 analysis of saw sharks (full details of the available data are given in the Tables appendix (see Table 24.10)). See the methods for a description of how the discards are calculated. The standardized catch rates for gillnet and trawl are in columns pre-fixed with CE. The greyed cells reflect the reference period.

Year	Catch	Discards	Total	CE-GN	CE - TW
1986	300.007	31.407	331.414		
1987	343.811	31.937	375.748		
1988	279.727	37.755	317.482		
1989	234.846	26.428	261.274		
1990	207.187	23.874	231.061		
1991	246.785	28.213	274.998		
1992	259.68	31.399	291.079		
1993	340.195	40.162	380.357		
1994	387.141	51.517	438.658		
1995	447.775	47.723	495.498		
1996	378.107	49.728	427.835		
1997	296.93	38.773	335.703	1.1280	1.2230
1998	278.413	39.659	318.072	1.2260	1.1440
1999	223.661	34.922	258.583	1.2208	1.2714
2000	195.973	32.211	228.184	1.5120	1.1419
2001	264.441	30.699	295.140	1.5328	1.0795
2002	315.372	30.592	345.964	0.9603	0.9857
2003	367.676	32.486	400.162	1.0181	0.8469
2004	376.150	32.981	409.131	1.0709	0.8032
2005	353.910	31.671	385.581	0.9551	0.8177
2006	373.515	30.656	404.171	0.9139	0.9154
2007	269.940	41.977	311.917	0.7715	0.8214
2008	273.382	42.512	315.894	0.8687	0.9299
2009	259.743	40.392	300.135	0.7606	1.1705
2010	245.482	38.173	283.655	0.7159	1.0757
2011	253.639	39.442	293.081	0.7174	0.9151
2012	188.148	50.586	238.734	0.6280	0.8586

24.4.1.1 Comparison of GN amd TW cPUE Series

The CPUE series by trawl across the years 1997 - 2012 varies above and below the long term average, with the most recent two years falling below. This contrasts with the CPUE series for saw sharks from gillnets, which began the period at a relatively high level but has declined over the last 9 years since 2004 (Figure 24.1). This fall has been despite the catches being relatively stable by gill net during that time (Figure 24.2).

The difference in catch rates reflects the different distribution of effort for the two methods. The trawl fishers are not known to ever target the saw sharks but the gillnet fishers are known to be making efforts to avoid saw sharks. Which CPUE series provides the better stock indicator would depend on whether the saw sharks are sufficiently mobile that the populations in Bass Strait mix freely with those just outside it.

Figure 24.1. A comparison of the standardized CPUE derived from the SESSF logbooks for gillnets and for trawl. The fine black line is along 1.0, the average of each time series.

Figure 24.2. The annual catch of saw sharks, as reported in the logbooks by different methods, from 1997 2012. The fine black line is indicating the transition before and after the structural adjustment that finished in November 2006.

24.4.1.2 Proxy Target 48\% Gillnet

Table 24.3. Saw Sharks RBC calculations. C* and CPUEtarg relate to the period 2002-2008, CPUELim is 40% of the target, and $\overline{C P U E}_{\text {is the }}$ average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. The Wt discards is the expected weight of discards. Implied proxy target $=48 \%$ B 0 .

1 st $^{\text {st }}$ eference Year	2002
$2^{\text {nd }}$ Reference Year	2008
C* *	367.546
CPUE $_{\text {targ }}$	0.9370
CPUE $_{\text {Lim }}$	0.3748
$\overline{C P U E}$	0.7055
Scaling Factor	0.5883
Wt_Discard	45.28
TAC 2012	226
RBC	$\mathbf{2 1 6 . 2 1 8}$

Figure 24.3. Saw Sharks. Top panel is the total removals with the fine line illustrating the target catch. Bottom panel represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.
24.4.1.3 Proxy Target 48\% Trawl SESSF Zones 20, 60, 50

Table 24.4. TRAWL: Saw Sharks RBC calculations. C* and CPUEtarg relate to the period 2002-2008, CPUELim is 48% of the target, and $\overline{C P U E}_{\text {is the }}$ average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. The Wt_discards is the expected weight of discards. Implied proxy target $=48 \%$ B0.

$1^{\text {st }}$ Reference Year	2002
$2^{\text {nd }}$ Reference Year	2008
C^{*}	367.546
CPUE $_{\text {targ }}$	0.8140
CPUE $_{\text {Lim }}$	0.3256
$\overline{C P U E}$	0.9474
Scaling Factor	1.2731
Wt_Discard	45.280

RBC
467.933

Figure 24.4. Saw Sharks taken by Trawl in Zones 20, 60, and 50. Top panel is the total removals with the fine line illustrating the target catch. Bottom panel represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate. The fine purple line below the target CPUE target is the revised target based on a 48% B0 proxy target for non-target species in a mixed fishery. The limit reference point is represented by the red line.
24.4.1.4 Proxy Target 48\% Trawl SESSF Zones 20, $60,50,83 \& 82$

Table 24.5. TRAWL (20,60,50,83,82): Saw Sharks RBC calculations. C* and CPUEtarg relate to the period 2002-2008, CPUELim is 48% of the target, and $\overline{C P U E}_{\text {is average catch rate over the last four years. The RBC }}$ calculation does not account for predicted discards of predicted State catches. The Wt_ discards is the expected weight of discards. Implied proxy target $=$ 48% B0.

$1^{\text {st }}$ Reference Year	2002
$2^{\text {nd }}$ Reference Year	2008
C^{*}	367.546
CPUE $_{\text {targ }}$	0.8740
CPUE $_{\text {Lim }}$	0.3497
$\overline{C P U E}$	1.0050
Scaling Factor	1.2491
Wt_Discard	45.280

RBC
459.086

Figure 24.5. Saw Sharks taken by Trawl in Zones 20, 60, 50, 83 and 82 . Top panel is the total removals with the fine line illustrating the target catch. Bottom panel represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

24.4.2 Elephant Fish

Table 24.6. Elephant Fish. Data used in the Tier 4 analysis of Elephant Fish (full details of the available data are given in the Tables appendix (see Table 24.11)). See the methods for a description of how the discards are calculated. The standardized catch rates (CE) are derived from Haddon (2012). The greyed cells relate to the reference period. Catch from 2002 onwards is the reported catches from the CDRs plus 29 t of recreational fishing.

Year	Catch	Discards	Total	CE
1986	70.522	6.537	77.059	
1987	65.209	6.336	71.545	
1988	79.400	6.710	86.110	
1989	65.460	6.211	71.671	
1990	57.729	5.579	63.308	
1991	74.617	6.920	81.537	
1992	76.829	7.107	83.936	
1993	57.060	5.434	62.494	
1994	64.199	5.950	70.149	
1995	54.694	5.184	59.878	
1996	111.796	12.524	124.320	
1997	94.550	9.573	104.123	0.9629
1998	89.802	8.539	98.341	0.8847
1999	111.624	9.448	121.072	1.0096
2000	95.801	8.189	103.99	1.1759
2001	87.880	7.533	95.413	1.2117
2002	102.259	5.266	91.05318	0.8843
2003	116.403	7.679	111.9661	0.8618
2004	103.401	6.323	113.4055	0.8708
2005	104.907	6.852	118.6227	0.8718
2006	91.176	6.814	106.102	0.9442
2007	89.154	21.84463	108.8933	1.0512
2008	99.194	23.02335	123.5357	1.1681
2009	103.519	27.62985	141.1379	1.3264
2010	94.438	22.94613	122.2235	0.9861
2011	88.5601	135.7247	222.272	0.8104
2012	70.842	97.57982	195.7599	0.9800

24.4.2.1 Proxy Target 48\% Gillnet

Table 24.7. Elephant Fish. RBC calculations. C* and CPUEtarg relate to the period 1996 - 2007, CPUELim is 48% of the original target, and $\overline{C P U E}_{\text {is }}$ the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. The Wt_discards is the expected weight of discards. Implied proxy target $=48 \%$ B0.

1 st $^{\text {st }}$ Reference Year	1996
$2^{\text {nd }}$ Reference Year	2007
C* *	106.635
CPUE $_{\text {targ }}$	0.975
CPUE $_{\text {Lim }}$	0.3901
$\overline{C P U E}$	1.0257
Scaling Factor	1.0861
Wt_Discard	93.137
TAC 2012	89
RBC	$\mathbf{1 1 5 . 8 1 2}$

Figure 24.6. Elephant Fish. Top panel is the total removals with the fine line illustrating the target catch. Bottom panel represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates (1996 2007), and the recent average catch rate (last four years).

24.4.2.2 Plus Discards in the CPUE: Target 48\% Gillnet

Table 24.8. Elephant Fish. Data used in the Tier 4 analysis of Elephant Fish (full details of the available data are given in the Tables appendix (see Table 24.11)). See the methods for a description of how the discards are calculated. The greyed cells relate to the reference period. Total is the catch from 2002 onwards made up of the reported catches from the CDRs plus $29 t$ of recreational fishing, plus State catches, plus discards.

Year	Catch	Discards	Total	$(\mathrm{D} / \mathrm{C})+1$	StandCE	DiscCE	GeoMean	TAC
1986	70.522	6.537	77.059	1.0927				
1987	65.209	6.336	71.545	1.0972				
1988	79.400	6.710	86.110	1.0845				
1989	65.460	6.211	71.671	1.0949				
1990	57.729	5.579	63.308	1.0966				
1991	74.617	6.920	81.537	1.0927				
1992	76.829	7.107	83.936	1.0925				
1993	57.060	5.434	62.494	1.0952				
1994	64.199	5.950	70.149	1.0927				
1995	54.694	5.184	59.878	1.0948				
1996	111.796	12.524	124.320	1.1120				
1997	94.550	9.573	104.123	1.1012	0.9629	0.8289	6.6363	
1998	89.802	8.539	98.341	1.0951	0.8847	0.7573	6.6255	
1999	111.624	9.448	121.072	1.0846	1.0096	0.8560	7.1170	
2000	95.801	8.189	103.990	1.0855	1.1759	0.9978	8.3421	
2001	87.880	7.533	95.413	1.0857	1.2117	1.0284	9.3968	
2002	102.259	5.266	91.053	1.0515	0.8843	0.7268	6.1690	80
2003	116.403	7.679	111.966	1.0660	0.8618	0.7181	5.9089	83
2004	103.401	6.323	113.405	1.0612	0.8708	0.7223	5.8752	100
2005	104.907	6.852	118.623	1.0653	0.8718	0.7260	6.1762	130
2006	91.176	6.814	106.102	1.0747	0.9442	0.7932	5.9030	130
2007	89.154	21.845	108.893	1.2450	1.0512	1.0231	6.4174	130
2008	99.194	23.023	123.536	1.2321	1.1681	1.1250	6.7380	92
2009	103.519	27.630	141.138	1.2669	1.3264	1.3136	8.1596	94
2010	94.438	22.946	122.223	1.2430	0.9861	0.9581	6.0921	94
2011	88.560	135.725	222.272	2.5326	0.8104	1.6043	5.3679	65
2012	70.842	97.580	195.760	2.3774	0.9800	1.8212	6.5355	89

Table 24.9. Elephant Fish. RBC calculations. C* and CPUEtarg relate to the period 1996 - 2007, CPUELim is 48% of the original target, and $\overline{C P U E}_{\text {is }}$ the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. . The Wt_discards is the expected weight of discards. Implied proxy target $=48 \%$ B0.

1 st $^{\text {st }}$ Reference Year	1997
$2^{\text {nd }}$ Reference Year	2007
C* *	106.635
CPUE $_{\text {targ }}$	0.8343
CPUE $_{\text {Lim }}$	0.3337
$\overline{C P U E}$	1.4243
Scaling Factor	2.1785
Wt_Discard	93.137
TAC 2012	89
RBC	$\mathbf{2 3 2 . 3 0 0}$

Figure 24.7. Elephant Fish. Top panel is the total removals with the fine line illustrating the target catch. Bottom panel represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates (1996 2007), and the recent average catch rate (last four years). In this case the discard catches have been included in the CPUE estimates, thereby increasing them markedly.

24.5 Discussion

In the case of Saw sharks this is the first year when the reference years do not overlap the last four years used to generate an estimate of the recent catch rates, which means the reference estimates and the current rate estimates are now free to diverge. This ceased to be a problem for elephant fish last year.

The capture of Elephant fish by recreational fishers is not insignificant but the estimates of catch are uncertain. In the analysis these have been held constant at 29 t since 1996. Braccini et al (2009) derive an estimated catch of Elephant fish of 13.931 t in 2008 inside Western Port (of which they estimated 70% were females). If this were included rather than the default 29 t it would not influence the Tier 4 calculation of the RBC but it might influence the removals taken from the RBC to form the TAC, although that would depend on whether such an adjustment to the total catches were made across the reference period as well as more recently. However, this may not represent all recreational catches of Elephant fish around Victoria and so the analysis retained the default value for recreational catches. Clearly a new estimate of total recreational catch would have value. It does suggest that the catch rate dynamics are likely being influenced by larger catches than believed, which in terms of the commercial fishery implies that the resulting RBC will be relatively conservative, as long as recreational catches are now stable, which is unknown.

The inclusion of discards into the CPUE analysis for elephant fish had a marked effect on CPUE and the analytical outcome, especially in the last two years. This led to a relatively large increase in the RBC over that where the discards are not included.

Not as expected, the standardized catch rates for trawl caught saw sharks behave differently to those from the gill net fishery, so much so that the analysis of trawl caught catch rates recommends a relatively large increase in the RBC (Table 23.1). Catches of saw sharks by trawl are now almost as high as those taken by gill net so this finding illustrates the uncertainty in this analysis, which provides some evidence that there may be an element of avoidance by gill net fishers. This avoidance would, in turn, lead to a reduction in gill net catch rates.

24.6 Acknowledgements

Thanks also go to Mike Fuller and Neil Klaer for all the pre-analytical data preparation required maintaining the SESSF data set.

24.7 Tables

Table 24.10. Saw Sharks. Total catches and discards by fishery and Standardized catch rates, ready for the TIER 4 analysis (only the total catches and Standardized catch rates are used). Columns starting with Disc relate to discards. Only the Catch T and Std CE columns are used in the Tier 4 analysis, the first four columns derive from log-book data and under-estimate the landings and leave out the discards.

Year	GHT	SET	GAB	State	Discard	Catch T	Std CE
1976	248.65					263.569	
1977	230.377					244.200	
1978	269.2					285.352	
1979	236.76					250.966	
1980	227.969					241.647	
1981	193.592					205.208	
1982	244.047					258.690	
1983	234.673					248.753	
1984	230.465					244.293	
1985	262.913	4.11			3.075	285.873	
1986	280.529	19.478			14.575	331.414	
1987	327.365	16.431	0.015		12.295	375.748	
1988	248.708	30.514	0.505		22.833	317.482	
1989	212.59	18.608	3.983		13.673	261.274	
1990	180.123	17.598	9.601		13.067	231.061	
1991	211.606	23.931	14.442		15.517	274.998	
1992	209.242	25.541	25.265		18.844	291.079	
1993	289.205	31.782	20.506		22.810	380.357	
1994	327.406	43.078	17.149		31.873	438.658	
1995	390.983	32.762	24.375		24.264	495.498	
1996	310.827	37.963	29.537		31.078	427.835	
1997	158.440	36.176	27.611	17.528	24.773	335.703	
1998	249.497	29.418	25.726	10.444	25.010	318.072	
1999	242.185	35.155	23.123	14.33	22.156	258.583	
2000	274.919	53.421	23.645	15.24	20.150	228.184	
2001	262.689	41.698	33.684	8.387	20.150	295.140	
2002	158.250	75.473	20.355	17.106	20.150	345.964	
2003	190.996	78.034	47.541	26.31	20.150	400.162	
2004	193.424	87.501	33.488	28.953	20.150	409.131	
2005	172.616	85.607	38.071	33.949	20.150	385.581	
2006	158.713	112.938	45.982	36.352	20.150	404.171	
2007	107.878	77.417	28.719	34.602	41.977	311.917	
2008	115.421	75.926	19.648	24.718	42.512	315.894	
2009	89.441	79.631	22.344	33.357	40.392	300.135	
2010	92.732	67.327	32.255	32.378	38.173	283.655	
2011	102.973	72.874	20.502	24.756	39.442	293.081	
2012	74.7939	67.556	4.731	23.000	50.586	238.734	

Table 24.11. Elephant Fish. Total catches and discards by fishery and Standardized catch rates, ready for the TIER 4 analysis (only the total catches and Standardized catch rates are used). Columns starting with Disc relate to discards. Recr is the recreational catch.

Year	GHT	SET	GAB	State	Recr	DiscGHT	DiscS_G	CatchT	Std CE
1976	42.188					4.219		46.407	
1977	68.334					6.833		75.167	
1978	65.575					6.558		72.133	
1979	100.581					10.058		110.639	
1980	82.283					8.228		90.511	
1981	82.065					8.207		90.272	
1982	58.663					5.866		64.529	
1983	80.478					8.048		88.526	
1984	78.195					7.82		86.015	
1985	108.987	0.911				10.899		120.797	
1986	65.368	5.154				6.537		77.059	
1987	63.363	1.846				6.336		71.545	
1988	67.1	12.2	0.1			6.71		86.11	
1989	62.109	3.207	0.144			6.211		71.671	
1990	55.792	1.892	0.045			5.579		63.308	
1991	69.2	5.385	0.032			6.92		81.537	
1992	71.071	5.698	0.06			7.107		83.936	
1993	54.335	2.725	0			5.434		62.494	
1994	59.502	3.987	0.71			5.95		70.149	
1995	51.836	2.819	0.039			5.184		59.878	
1996	77.111	5.41	0.275		29	7.711	4.813	124.32	
1997	59.857	5.598	0.095		29	5.986	3.587	104.123	
1998	52.832	7.9	0.07		29	5.283	3.256	98.341	
1999	59.199	7.46	0.965	0.384	29	5.92	3.528	121.072	
2000	53.888	8.913	0	0.699	29	5.389	2.8	103.99	
2001	47.330	8.444	0.106	0.420	29	4.733	2.8	95.413	
2002	24.659	17.888	0.191	0.472	29	2.466	2.8	107.526	
2003	42.763	20.4088	2.032	0.439	29	4.879	2.8	124.082	
2004	29.088	27.2915	1.619	0.731	29	3.523	2.8	109.724	
2005	34.853	27.2535	1.878	0.663	29	4.052	2.8	118.611	
2006	36.061	17.865	1.426	3.933	29	4.014	2.8	104.804	
2007	36.206	14.093	1.701	11.954	29	21.845	2.8	115.270	
2008	40.471	19.297	0.834	2.092	29	23.023	2.8	127.814	
2009	44.136	20.2703	0.520	3.848	29	27.630	2.8	136.745	
2010	34.754	20.7817	0.310	3.570	29	22.946	2.8	122.975	
2011	33.906	15.7776	0.285	8.791	29	135.725	2.8	226.552	
2012	44.748	20.845	0	4.463	29	97.580	2.8	171.222	

24.8 Bibliography

Braccini, J.M., Walker, T.I., and S. Conron (2009) Evaluation of effects of targeting breeding elephant fish by recreational fishers in Western Port. Fisheries Revenue Allocation Committee Report. Victoria. 58pp.

Clark, W.G. (1993) The effect of recruitment variability on the choice of a target level of spawning biomass per recruit. In Proceedings of the International Symposium on Management Strategies for Exploited Fish Populations. Edited by G. Kruse, D.M. University of Alaska Sea Grant College Program Report 93-02 825p.

DAFF (2007) Commonwealth Fisheries Harvest Strategy. Policy and Guidelines. Department of Agriculture, Fisheries and Forestry. 55p.

Haddon, M. (2010a) Saw Shark and Elephant fish TIER 4 Analyses. (Data 1980 - 2009). CSIRO Wealth from Oceans, Hobart. 16 pp.

Haddon, M. (2011) Standardized Catch Rates for the SESSF Saw Shark and Elephant Fish Fisheries. CSIRO Marine and Atmospheric Research, Hobart. 44 p.

Haddon, M. (2012) Standardized Catch Rates for the SESSF Saw Shark and Elephant Fish Fisheries. Data from 1980 - 2011. CSIRO Marine and Atmospheric Research, Hobart. 46p.

Little, R., Wayte, S., Tuck, G., Thomson, R., Smith, T., Klaer, N., Punt, A., Haddon, M., and J. Day (2008) Testing an alternative Tier 4 control rule and CPUE reference points for the SESSF. CSIRO Marine and Atmospheric Research, Hobart. 15 pp.

Little, L.R., Wayte, S.E., Tuck, G.N., Smith, A.D.M., Klaer, N., Haddon, M., Punt, A.E., Thomson, R., Day, J. and M. Fuller (2011) Development and evaluation of a cpue-based harvest control rule for the southern and eastern scalefish and shark fishery of Australia. ICES Journal of Marine Science. 68(8): 1699-1705.

Rodriguez, V.B., and K. McLoughlin (2009a) Saw Shark CPUE Standardization and TIER 4 Assessment, 2009. SharkRAG Document 2009/10. BRS 16 p.

Rodriguez, V.B., and K. McLoughlin (2009b) Elephant fish CPUE Standardization and TIER 4 Assessment, 2009. SharkRAG Document 2009/11. BRS 14 p.

Wayte, S.E. (ed.) 2009. Evaluation of new harvest strategies for SESSF species. CSIRO Marine and Atmospheric Research, Hobart and Australian Fisheries Management Authority, Canberra. 137 p.

25. Benefits

The results of this project have had a direct bearing on the management of the Southern and Eastern Scalefish and Shark Fishery. Direct benefits to the commercial fishing industry in the SESSF have arisen from improvements to, or the development of, assessments under the various Tier Rules of the Commonwealth Harvest Strategy Policy for selected quota and non-quota species. Information from the stock assessments has fed directly into the TAC setting process for SESSF quota species. As specific and agreed harvest strategies are being developed for SESSF species (a process required by and agreed to under EPBC approval for the fishery), improvements in the assessments developed under this project have had direct and immediate impacts on quota levels or other fishery management measures (in the case of non-quota species).

Participation by the project's staff on the SESSF Resource Assessment Groups has enabled the production of critical assessment reports and clear communication of the reports' results to a wide audience (including managers, industry). Project staff's scientific advice on quantitative and qualitative matters is also clearly valued.

The stock assessments presented in this report have provided managers and industry greater confidence when making key commercial and sustainability decisions for species in the SESSF. These assessments have provided the most up-to-date information, in terms of data and methods, to facilitate the management of the Southern and Eastern Scalefish and Shark Fishery.

26. Conclusion

- Provide quantitative and qualitative species assessments in support of the five SESSFRAG assessment groups, including RBC calculations within the SESSF harvest strategy framework.

The 2013 assessment of the stock status of key Southern and Eastern Scalefish and Shark fishery species is based on the methods presented in this report. Documented are the latest quantitative assessments (Tier 1) for several of the key quota species (blue grenadier, pink ling (east and west), tiger flathead, gummy shark and deepwater flathead), as well as catch curve analyses and cpue standardisations for shelf, slope, deepwater and shark species. Typical assessment outputs provided indications of current stock status and an application of the Commonwealth Harvest Strategy framework. This framework is based on a set of assessment methods and harvest control rules, with the decision to apply a particular combination dependent on the type and quality of information available to determine stock status (Tiers 1 to 4).

The assessment outputs from this project are a critical component of the management and TAC setting process for these fisheries. The results from these studies are being used by SESSFRAG, industry and management to help manage the fishery in accordance with agreed sustainability objectives.

Stock status and Recommended Biological Catch (RBC) conclusions:

The 2013 assessment of blue grenadier (Macruronus novaezelandiae) concluded that for the base case model the female spawning biomass in 2012 is around 77% of the unexploited spawning stock biomass (SBo) and in 2014 will be approximately 94% SBo. The marked increase in biomass is due to the estimation of a large cohort in 2010. While a promising sign for the fishery, the existence and magnitude of this recruitment should be treated with some caution until it can be verified by the addition of further data from future years. For the base case model, the 2014 recommended biological catch (RBC) under the 20:35:48 harvest control rule is 8138 t , with the predicted retained portion of the RBC being 8065t. Note that this is greater than 150% of the current TAC (5208t). The long-term RBC is 4155 t.

The 2013 Tier 1 assessment of pink ling (Genypterus blacodes) used a model similar to that developed for the 2012 assessment was used as the base-case model (aggregated zones model). The current base-case model differs from the 2012 base-case model in terms of how selectivity is time-blocked for the eastern trawl CPUE series and the exclusion of the non-trawl CPUE indices (for both the eastern and western stocks). The current base-case model also differs from the 2012 model by excluding data from the Kapala surveys, assuming that growth is time-invariant (rather than time-varying) and in how length frequency data is both initially weighted and re- weighted. In the basecase model, the eastern stock is assessed to be $0.19 \mathrm{~B}_{0}$ at the start of 2014 and the western stock is assessed to be $0.43 \mathrm{~B}_{0}$ at this time (under the assumption that the TAC for 2013 of 834 t is taken). The RBCs arising from the base-case models are 0 tonnes for the eastern stock and 573 tonnes for the western stock. The long term RBC (for the year 2033) is 647 tonnes for the eastern stock and 645 tonnes for the western stock. Note that
the base case model presented in this document was not used for management purposes in 2013.

A full quantitative assessment of jackass morwong (Nemadactylus macropterus) was not conducted in 2013. To calculate the 2014 RBC, the 2011 Tier 1 Stock Synthesis assessments for both eastern and western morwong have been projected for two more years, using actual catches from 2011 and 2012, and estimated catches for 2013. No other data were added and no new parameter estimation was performed. The 'recruitment shift' assessment model accepted as the base-case for the eastern stock in 2011, and the base-case model for the western stock from 2011 were used for the projections. Current spawning biomass in the eastern stock is projected to be 40% of 1988 equilibrium spawning stock biomass, and the 2014 RBC under the 20:35:48 harvest control rule is 400 t . For the western stock, current spawning biomass is projected to be 68% of unexploited stock biomass, and the 2014 RBC is 292 t . The 2014 combined RBC is 692 t .

An update of the 2010 assessment of tiger flathead (Neoplatycephalus richardsoni) was conducted providing estimates of stock status in the SESSF at the start of 2014. A range of sensitivities were explored, including incorporation of the summer fishery independent survey results for 2008, 2010 and 2012, and estimating recruitment to 2007 instead of 2009. The base-case assessment estimates that current spawning stock biomass is 50% of unexploited stock biomass $\left(S S B_{0}\right)$. Under the 20:35:40 harvest control rule, the 2014 RBC is $3,428 \mathrm{t}$ and the long term yield (assuming average recruitment in the future) is $2,753 \mathrm{t}$.

The most recent gummy shark (Mustelus antarcticus) assessment model formulation was updated using data from 2010-2012. The model recognises three separate populations (Bass Strait, South Australia and Tasmania), that share some parameter values. Closures of traditional fishing grounds in South Australia (SA), in order to protect Australian sea lions, began to take effect during 2010 and have caused declines in catches and catch per unit effort (CPUE) in that state. RBCs have been calculated for the base case model assuming a range of splits between hook and gillnet fishing in the future. Future hook fishing in SA alone, or in all states, is considered. RBCs (for the base case) for 2014 range from 2044t (whole catch taken by line gear) to 2232t (whole catch taken by gillnets) with more line fishing resulting in lower RBCs. Present catches of gummy shark have been held at approximately 1800 t in order to limit catches of school shark. If line fishing does not occur outside of South Australia, catches of roughly 1800 t would not exceed the RBCs for gummy shark even if the South Australian line sector is dominant. However, if line fishing dominates in all regions of the fishery and takes 50% of the catch, the RBC for gummy shark will be lower than 1800t.

An update of the assessment of deepwater flathead (Neoplatycephalus conatus) was conducted in 2013 providing estimates of stock status in the Great Australian Bight at the start of 2014/15. The base-case assessment estimates an unexploited spawning stock biomass (SSB_{0}) of 9,320t and a current depletion at the start of 2014/15 of 45% of SSB_{0}. The 2014/15 RBC under the 20:35:43 harvest control rule is 1,146t and the longterm yield (assuming average recruitment in the future) is $1,105 \mathrm{t}$. Exploration of model sensitivity showed a variation in depletion levels of between 32% and 54% of SSB_{0}.

Tier 3 calculations use the estimates of total mortality, natural mortality and average recent catches to determine the RBC for the following year. RBC values for alfonsino, John dory and redfish were greater than reference average catches. The RBC for mirror dory is lower than the reference catch which is a result very different to that presented in 2012. The reason is a considerable shift in the average Z fit for catch curves in the east caused by a change in emphasis in the overall fit from younger to older fish. This highlights the possible catch variability inherent in a data-poor procedure such as the Tier 3. Western gemfish, blue grenadier, pink ling, blue-eye trevalla and silver trevally were unable to be assessed using catch curves due to probable dome-shaped selectivity or high recruitment variability.

The Tier 4 harvest control rules are the default procedure applied to species for which only limited information is available; specifically no reliable information on either current biomass levels or current exploitation rates. In 2013 seven fisheries were assessed using the Tier 4 methodology: Blue-eye Trevalla, Blue Warehou (split east and west), Inshore Ocean Perch and Offshore Ocean Perch, Redfish, Royal Red Prawns, and Silver Trevally. Three of these fisheries generated zero RBCs and these were Blue Warehou, Jackass Morwong and Redfish. Alternative analyses were provided for Redfish and Inshore Ocean Perch in which discards were included in the estimation of the catch rate trends. The inclusion of discards in estimating catch rates adds a great deal of noise to the CPUE trends so the uncertainty in these analyses expands.

27. Appendix: Intellectual Property

No intellectual property has arisen from the project that is likely to lead to significant commercial benefits, patents or licenses.

28. Appendix: Project Staff

Jemery Day	CSIRO Marine and Atmospheric Research, Hobart, Tasmania
Mike Fuller	CSIRO Marine and Atmospheric Research, Hobart, Tasmania
Malcolm Haddon	CSIRO Marine and Atmospheric Research, Hobart, Tasmania
Neil Klaer	CSIRO Marine and Atmospheric Research, Hobart, Tasmania
André Punt	CSIRO Marine and Atmospheric Research, Hobart, Tasmania
Briana Sporcic Taylor and Atmospheric Research,	
Hobart, Tasmania	

[^0]: Table 18.112. Offshore Ocean Perch from zones 10 and 20 in depths $200-700 \mathrm{~m}$ by trawl. Total Catch is the total reported in the database, Records is the number of records used in the analysis, CatchT is the reported catch in the area and depth used in the analysis, and Vessels relates to all vessels used in the analysis. Geomean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). Zone:Month is the optimum model and

[^1]: Table 20.3. The relative frequency of depths records for Deepwater Flathead from the GAB see (Figure 20.1). Data from 2000/2001 to Feb 2012/2013.

[^2]: Table 23.65. Western Gemfish data for the TIER 4 calculations. Total is the sum of Discards, State, Non Trawl and SEF2 catches. All values in Tonnes. CE is the standardized catch rate for Zones 40 \& 50 in depths $0-600 \mathrm{~m}$, GAB not included (Haddon, 2013). GeoMean is the geometric mean catch rates. Discards are estimates from 1998 to present. The ratio of discards to catch over the 1998 - 2006 period was used to estimate the discards between 1986 and 1997, the proportion of which is the PDiscard

