Australian Government
Australian Fisheries Management Authority
2015/0817 June 2018

Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery: 2016 and 2017

© Copyright Commonwealth Scientific and Industrial Research Organisation ('CSIRO') Australia 2018.
All rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of CSIRO.

The results and analyses contained in this Report are based on a number of technical, circumstantial or otherwise specified assumptions and parameters. The user must make their own assessment of the suitability for its use of the information or material contained in or generated from the Report. To the extent permitted by law, CSIRO excludes all liability to any party for expenses, losses, damages and costs arising directly or indirectly from using this Report.

Tuck, Geoffrey N. (Geoffrey Neil).
Stock assessment for the southern and eastern scalefish and shark fishery 2016 and 2017.

Preferred way to cite this report

Tuck, G.N. (ed.) 2018. Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2016 and 2017. Part 1, 2016. Australian Fisheries Management Authority and CSIRO Oceans and Atmosphere Flagship, Hobart. 629p.

Acknowledgements

All authors wish to thank the science, management and industry members of the south east, GAB and shark resource assessment groups for their contributions to the work presented in this report. Authors also acknowledge support from Fish Ageing Services (for fish ageing data) and AFMA (for the on-board and port length-frequencies, and in particular John Garvey, for the log book data). Toni Cracknell is greatly thanked for her assistance with the production of this report.

Cover photographs

Front cover, jackass morwong, orange roughy, blue grenadier, and flathead.

Report structure

Parts 1 and 2 of this report describe the assessments of 2016 and 2017 respectively.

Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2016 and 2017

Part 1: 2016
G.N. Tuck

June 2018
Report 2015/0817
Australian Fisheries Management Authority

Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery: 2016

Table Of Contents

1. NON-TECHNICAL SUMMARY 1
OUTCOMES ACHIEVED 1
1.1 General 1
1.2 SLOPE, SHELF AND DEEPWATER SpECIES 3
1.3 GAB Species 5
1.4 SHARK Species 5
2. BACKGROUND 7
3. NEED 8
4. OBJECTIVES 8
5. SESSF TIER 1 CPUE FORECASTS FOR MULTI-YEAR TAC REVIEW TRIGGERS, 20169
5.1 SUMMARY 9
5.2 InTRODUCTION 9
5.3 Methods 10
5.4 ReSUlTS 12
5.5 ReFERENCES 21
6. MULTI-YEAR BREAKOUT ANALYSES FOR BIGHT REDFISH IN THE GAB (2015/16)22
6.1 EXECUTIVE SUMMARY 22
6.2 InTRODUCTION 22
6.3 METHODS 22
6.4 RESULTS AND DISCUSSION 24
6.5 REFERENCES 27
6.6 APPENDIX: SS3 METHODS 28
7. ASSIGNING SESSF LOGBOOK SHOTS TO "DAY", "NIGHT", OR "MIXED" 29
7.1 Background 29
7.2 Methods 29
7.3 ReSULTS 34
7.4 DISCUSSION 37
7.5 REFERENCE 38
8. STATISTICAL CPUE STANDARDIZATIONS FOR SELECTED SESSF SPECIES (DATA TO 2015) 39
8.1 EXECUTIVE Summary 39
8.2 InTRODUCTION 40
8.3 Methods 41
8.4 RESULTS 44
8.5 DEEPWATER SPECIES 228
8.6 REFERENCES 245
9. BLUE-EYE AUTO-LINE AND DROP-LINE CPUE CHARACTERIZATION AND CATCH-PER- HOOK 1997-2015 247
9.1 EXecutive Summary 247
9.2 INTRODUCTION 248
9.3 ObJectives 252
9.4 Methods 253
9.5 ReSULTS 255
9.6 DISCUSSION 287
9.7 CONCLUSION 289
9.8 ReFERENCES 290
9.9 Appendix: Extra Tables and Figures 293
10. CPUE STANDARDIZATIONS FOR SELECTED SHARK SESSF SPECIES (DATA TO 2015) 298
10.1 EXECUTIVE SUMMARY 298
10.2 Introduction 299
10.3 Methods 299
10.4 ReSUlts 304
10.5 DISCUSSION AND CONCLUSIONS 366
10.6 REFERENCES 369
11. TIER 4 ANALYSES OF SELECTED SPECIES FROM THE SESSF. DATA FROM 1986-2015370
11.1 EXECUTIVE SUMMARY 370
11.2 InTRODUCTION 371
11.3 Methods 372
11.4 Results for Tier 4 SPECIES 379
11.5 REFERENCES 388
12. BLUE-EYE (HYPEROGLYPHE ANTARCTICA) TIER 4 ANALYSIS USING CATCH-PER-HOOK FOR AUTO-LINE AND DROP-LINE FROM 1997-2015 389
12.1 EXECUTIVE SUMMARY 389
12.2 Introduction 389
12.3 Methods 394
12.4 ReSUlts 400
12.5 DISCUSSION 408
12.6 REFERENCES 409
12.7 SUPPLEMENTARY MATERIAL 411
13. TIGER FLATHEAD (NEOPLATYCEPHALUS RICHARDSONI) STOCK ASSESSMENT BASED ON DATA UP TO 2015 - DEVELOPMENT OF A PRELIMINARY BASE CASE 414
13.1 EXECUTIVE SUMMARY 414
13.2 Introduction 414
13.3 ACKNOWLEDGEMENTS 421
13.4 REFERENCES 421
13.5 APPENDIX: PRELIMINARY BASE CASE DIAGNOSTICS 422
14. TIGER FLATHEAD (NEOPLATYCEPHALUS RICHARDSONI) STOCK ASSESSMENT BASED ON DATA UP TO 2015 443
14.1 EXECUTIVE SUMMARY 443
14.2 Introduction 443
14.3 Methods 446
14.4 Results and Discussion 466
14.5 ACKNOWLEDGEMENTS 486
14.6 References 486
14.7 APPENDIX 488
15. UPDATED RBC CALCULATIONS FOR TIGER FLATHEAD (NEOPLATYCEPHALUS RICHARDSONI) STOCK ASSESSMENT BASED ON DATA UP TO 2015 513
15.1 2017 UPDATES TO TIGER FLATHEAD RBCs 513
15.2 References 517
16. DEEPWATER FLATHEAD (NEOPLATYCEPHALUS CONATUS) STOCK ASSESSMENT USING DATA TO 2015/2016 518
16.1 SUMMARY 518
16.2 INTRODUCTION 518
16.3 Methods 522
16.4 RESULTS AND DISCUSSION 536
16.5 REFERENCES 558
16.6 APPENDIX 561
17. GUMMY SHARK ASSESSMENT UPDATE FOR 2016, USING DATA TO THE END OF 2015563
17.1 EXECUTIVE SUMMARY 563
17.2 Introduction 563
17.3 Overview of the Data Types and Pre-Processing 564
17.4 Modifications to the Assessment 566
17.5 Reference Case Model and Sensitivity Tests 570
17.6 Projections and Management Quantities 572
17.7 General Discussion 573
17.8 ACKNOWLEDGEMENTS 574
17.9 REFERENCES 574
17.10 APPENDIX A: CATCH DATA FOR 2001-2015 610
17.11 Appendix B: Age-reading Error for Gummy Shark 612
17.12 APPENDIX C: FITS OF THE REFERENCE CASE MODEL TO THE YEAR-SPECIFIC LENGTH- AND AGE-COMPOSITION DATA613
17.13 APPENDIX D: CORRELATION MATRIX FOR THE LEADING PARAMETERS OF REFERENCE CASE MODEL 623
17.14 APPENDIX E: EvALUATING SAMPLING STRATEGIES FOR COLLECTING FUTURE VERTEBRATE624625
18. CONCLUSION 626
19. APPENDIX: INTELLECTUAL PROPERTY 628
20. APPENDIX: PROJECT STAFF 629

1. Non-Technical Summary

Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2016 and 2017

PRINCIPAL INVESTIGATOR: Dr Geoffrey N. Tuck
ADDRESS:
CSIRO Oceans and Atmosphere Flagship
GPO Box 1538
Hobart, TAS 7001
Australia

Telephone: 0362325222 Fax: 0362325053

OBJECTIVES:

- Provide quantitative and qualitative species assessments in support of the four SESSFRAG assessment groups, including RBC calculations within the SESSF harvest strategy framework
- 2016: Provide Tier 1 assessments for Deepwater flathead, Gummy shark, Tiger flathead, Eastern gemfish (subject to SESSFRAG advice) and School whiting data analysis; and Tier 4 assessments for Blue eye trevalla and Mirror dory
- 2017: Provide Tier 1 assessments for Blue grenadier, Redfish, East Roughy and School whiting; Tier 3 for Alfonsino, John Dory; Tier 4 for E/W Deepwater shark, Ocean Perch, Oreo basket, Ribaldo, Royal Red Prawn, and Silver Trevally

Outcomes Achieved

The 2016 assessments of stock status of the key Southern and Eastern Scalefish and Shark fishery (SESSF) species are based on the methods presented in this report. Documented are the latest quantitative assessments for the SESSF quota species. Typical assessment results provide indications of current stock status, in addition to an application of the recently introduced Commonwealth fishery harvest control rules that determine a Recommended Biological Catch (RBC). These assessment outputs are a critical component of the management and Total Allowable Catch (TAC) setting process for these fisheries. The results from these studies are being used by SESSFRAG, industry and management to help manage the fishery in accordance with agreed sustainability objectives.

1.1 General

Examination of catch rate indices to determine whether to break out of a multi-year TAC
Due to the increasing number of stocks that are being placed under multi-year TACs (MYTAC), indicators that might suggest that the stock is not following the projected or predicted trajectory of the
last accepted Tier 1 stock assessment are impotant. Such indicators may include catch rates, biological surveys, recruitment indices (age or length composition data), or discarding. If a statistical comparison between the observed and predicted indicator suggests that the stock is not behaving in a manner consistent with the stock assessment, then this may be grounds to break-out from the MYTAC and, following RAG discussion and approval, conduct a Tier 1 assessment. Analyses for all Tier 1 assessed stocks of the time series of projected (expected) catch rates against those determined in the catch rate update were examined. The observations lay within the 95% confidence region for the forecasts for school whiting, blue grenadier, and silver warehou in the west (only just). The most recent CPUE observation (i.e. 2015) for redfish, jackass morwong and silver warehou in the east all lay below the forecast prediction intervals.

For the GAB, standard CPUE breakout analyses were conducted for Bight Redfish in the GAB. The species was not close to the edge of the 95% confidence intervals around the CPUE predicted from the projected Tier 1 assessment from 2015. In the 2014/2015 season the FIS breakout rule came close to being triggered but the model predicted standard errors were large and hence no breakout occurred.

Catch rate standardisations

Catch-per-unit-effort (CPUE) data is an important input to many of the stock assessments conducted within the South East and Southern Shark Fishery (SESSF), where it is used as an index of relative abundance through time. The catch and effort logbook data from the SESSF, which is the source of CPUE data, constitutes shot by shot data derived from a wide range of vessels, areas (zones), months, depths, and fishing gears. Catch rates used in the assessments are standardized to reduce the effects of factors such as which vessel fished, where and when fishing occurred, the gear used, at what depths fishing was conducted, and whether fishing occurred during the day or night. The intent is to focus on any changes in catch rates that occurred between years as a result of changes in stock size rather than changes that occur in any of these other factors. This intent is not always realized when there are unknown influential factors or factors for which we have no data, so interpretation of the catch rate trends should not necessarily be taken at face value. This is especially the case when there have been major management changes, such as the introduction of quotas or the more recent structural adjustment. Such large events can greatly influence fishing behaviour, which in turn influences catch rates. Because these changes affected the whole fleet at the same time it is not possible to standardize for their effects.

Catch rates, generally as kilograms per hour fished (though sometimes as catch per shot e.g. Danish Seine, or non-trawl methods), were natural log-transformed to normalize the data and stabilize the variance before standardization. A General Linear Model was used rather than using a Generalized Linear Model with a log-link. This simple analytical approach means that the exact same methods can be applied to all species/stock combinations in a relatively robust manner. The statistical models fitted were of the form: LnCE $=$ Year + Vessel + Month + Depth Category + Zone + DayNight. There were interaction terms which could sometimes be fitted, such as Month:Zone or Month:Depth_Category. Data from all vessels reporting catches of a species were included although a preliminary data selection was made on a given depth range for each species for the zones of interest to focus attention on those depths contributing significantly to the fishery for each assumed stock and to reduce the number of empty categories within the statistical models.

Documented are the statistical standardization of the commercial catch and effort data for 23 species, distributed across 43 different combinations of stocks and fisheries ready for inclusion in the annual round of stock assessments. These include School Whiting, Eastern Gemfish, Jackass Morwong, Flathead, Redfish, Silver Trevally, Royal Red Prawn, Blue Eye, Blue Grenadier, Spotted/Silver

Warehou, Blue Warehou, Pink Ling, Western Gemfish, Ocean Perch, John Dory, Mirror Dory, Ribaldo, Ocean Jackets, Deepwater Flathead and Bight Redfish.

Summary graphs are provided across all species as well as more detailed information for each stock. Out of 43 stocks, there were eight whose catch rates have increased; 8 stocks where catch rates were stable and 27 stocks whose catch rates have declined over the last 10 years. There were nine stocks whose catch rates have increased since the 2007 corresponding to the structural adjustment and introduction of the Harvest Strategy Policy; five stocks whose catch rates were stable and 29 stocks whose catch rates have declined. The results from the standardisations are a key input to Tier 4 and Tier 1 assessments.

Tier 4 analyses 1986-2015
The Tier 4 harvest control rule is applied to species for which there is no reliable information on either current biomass levels or current exploitation rates. Ideally, in line with the notion of being more precautionary in the absence of information, the outcome from these analyses should be more conservative than those available from higher Tier analyses; this is now explicitly implemented by imposing a 15% discount factor on the RBC as a precautionary measure, unless there are good reasons for not imposing such an discount on particular species. The default procedure will now be to apply the discount factor unless RAGs generate advice that alternative and equivalent precautionary measures are in place (such as spatial or temporal closures) or that there is evidence of historical stability of the stock at current catch levels. Tier 4 analyses require, as a minimum, knowledge of the time series of total catches and of catch rates, either standardized or simple geometric mean catch rates. This year, only standardized catch rates were used except where discards were explicitly included in the analyses.

Mirror Dory East, Mirror Dory East including discards into the CPUE, Mirror Dory West, Western Gemfish and Blue-eye Trevalla have been assessed using the Tier 4 methodology in 2016. The Mirror Dory analyses treat the west and east as separate stocks, and also include the high levels of discards that occur in the east. Mirror dory RBCs for the east were either 222t or 173 t (without or with discards) and for the west was 104t. For western gemfish, the RBCs were 423 t or $139 t$ (with or without discards). The Tier 4 analysis for Blue-Eye is based on the CPUE, as catch-per-hook, from SESSF zones 20 - 50 but the catches that go towards generating the target catch include all areas and methods except the GAB. This is a reflection of the hypothesis that the Blue-Eye in the GAB constitute a separate stock. The RBC from the analysis based on catch-per-hook catch rates is now 526t. This is a relatively large change in the RBC from last year, which is a reflection of the potential behaviour of the Tier 4 when CPUE is recovering from a relatively low period.

1.2 Slope, Shelf and Deepwater Species

Eastern Gemfish

The potential effects of updating the stock assessment in Stock Synthesis for eastern gemfish was considered in 2016. As in the last full assessment in 2009, Stock Synthesis provides a standardised platform for conducting stock assessments. Catch data were incorporated from 1968, state catches were included, and length-frequency data dating back to 1975 were used. This update included (a) the estimation of the growth parameters within the assessment, (b) the use of conditional age-at-length data, (c) the addition of updated length-frequencies, catches and catch-rates to 2015, (d) the inclusion of discards and (e) allowance for ageing error.

With the latest data to the end of 2015 , the spawning stock biomass is 8.3% of the average unfished level. Similar to the previous assessment, a large spawning event was estimated to have occurred in 2002, which has led to slight recovery of biomass. A relatively high recruitment event is apparent in 2013, although this event simply returns to the long-term average rather than the depressed level of recruitment that has been experienced in recent times.

Tiger flathead

The tiger flathead assessment was updated in 2016 with the inclusion of data up to the end of 2015, comprising an additional three years of catch, discard, CPUE, length and age data and ageing error updates since the last assessment. An additional survey point was included from the Fishery Independent Survey and length frequencies have been included from all four years of the Fishery Independent Survey. A range of sensitivities were explored, including splitting the Fishery Independent Survey into two fleets to match the fleet structure in the assessment, and lowering the final year of recruitment estimation from 2012 to 2009.

The base-case assessment estimates that current spawning stock biomass is 43% of unexploited stock biomass (SSB0). Under the agreed 20:35:40 harvest control rule, the 2017 recommended biological catch (RBC) is $2,971 \mathrm{t}$, and remains above the long term yield (assuming average recruitment in the future) of 2,765 t. The average RBC over the three year period 2017-2019 is $2,936 \mathrm{t}$ and over the five year period 2017-2021, the average RBC is 2,909 t.

Blue eye

Alternative catch rate units for the standardisation of blue eye (Hyperoglyphe antarctica) were considered in 2016. One of the foundations of the current Tier 4 Blue-Eye assessments is that the CPUE for drop-line and auto-line can be combined. This is the case because both have used catch-perrecord (or day) as their unit of CPUE and on that basis their CPUE was comparable. The combination was required because, in 2009, each method alone only had a rather short time-series of usable CPUE (sufficient catches, records and representative coverage of the fishery) that could be used for assessment purposes. Catch-per-day was used because early use of the log-books had often mixed up the reporting of lines and hooks-per-line making their direct use invalid.

An objective of this work was to set up a more easily repeatable analysis for the generation of total-hooks-set and hence be more open to future correction and critical examination. Separate data selection rules and database manipulations (separate algorithms) were developed for Drop-Line and Auto-Line data sets such that the outcome was a more reliable estimate of the total number of hooks set for each record. These data were used to generate catch-per-hook catch rate data which were in turn used in catch rate standardizations for the two methods.

The effect of using catch-per-hook rather than catch-per-record is marked with the catch-per-record exhibiting a recent CPUE recovery not seen in the catch-per-record. It does not seem to matter greatly whether the analysis of catch-per-hook is restricted to zones $20-50$ or extended to include the GAB zones 83,84 , and 85 .

The Tier 4 analysis for blue-eye is based on the CPUE, as catch-per-hook, from SESSF zones $20-50$ but the catches that go towards generating the target catch include all areas and methods except the GAB. This is a reflection of the hypothesis that the blue-eye in the GAB constitute a separate stock. However, currently in the GHT fishery, the blue-eye quota also applies in the GAB, so there is some confusion over the assessment and management details that may require attention.

The effect of the CPUE standardization is, as expected, to reduce the variation exhibited by the nominal catch rates seen in the fishery. However, in more recent years there still remains some relatively large rises and falls in catch rate over relatively short periods. This seems likely to reflect the fact that there are very few Auto-Line vessels that make large contributions to the fishery so if they alter their fishing patterns (perhaps in response to whale depredation or some other factor) then large changes in catch rates can occur. Such large changes over short periods are certainly not a direct reflection of equivalent changes in the stock size in such a long-lived species. For greater stability in the RBC predicted from the Tier 4 analysis it might be necessary to increase the number of years over which the more recent CPUE is averaged for comparison with the target.

The RBC from the analysis based on catch-per-hook catch rates is now 526 t .

1.3 GAB Species

Deepwater flathead
A Tier 1 analysis for GAB Deepwater flathead was conducted in 2016. For the first time the ISMP data was divided into the on-board and Port based samples, the length and age composition data from the FIS was used for the first time, and the Industry collected length composition data was also used for the first time.

The base-case assessment estimates that the female spawning stock biomass at the start of 2016/2017 was 45.0% of unexploited female spawning stock biomass (SSB_{0}). The 2017/2018 recommended biological catch (RBC) under the agreed 20:35:43 harvest control rule is 1155 t and the long-term yield (assuming average recruitment in the future) is 1093 t . Averaging the RBC over the three year period 2017/2018 - 2019/2020, generates a three year RBC of 1128 t and over the five year period 2016/2017 - 2020/2021, the average RBC would be 1115 t .

Bight redfish

Standard CPUE breakout analyses were conducted for Bight Redfish in the GAB. The species was not close to the edge of the 95% confidence intervals around the CPUE predicted from the projected Tier 1 assessment from 2015. In the 2014/2015 season the FIS breakout rule came close to being triggered but the model predicted standard errors were large and hence no breakout occurred.

Predicted catch-rates for Bight Redfish have been rising gently since 2009/2010 while the standardized CPUE first declined from 2009/2010 - 2013/2014 but since then have been rising and running parallel to the predicted CPUE. However, the 95% confidence intervals around the predicted CPUE easily encompass the standardized CPUE values so no breakout was observed. It should be noted, however, that the predicted CPUE has now been above the observed CPUE for the past four years, although currently the two trends appear to be running in parallel.

1.4 Shark Species

Gummy shark

An updated Tier 1 assessment for gummy shark (Mustelus antarcticus) was provided in 2016. The assessment of gummy shark was updated based on available information to 2015. The model on which the assessment is based was modified in three ways: (a) the dynamics are now based on a population dynamics equation that assumes that the catches by the various gear-types occur simultaneously rather than sequentially, (b) the "hook fleet" included in previous assessments is now separated into shark
longline, trawl, and scalefish longline gear-types, with size-specific selectivity estimated for each geartype, and (c) allowance is now made for age-reading error. The assessment includes revised catch and length-composition data based on the most recent extractions from the AFMA database, new age composition data, and updated catch-rate indices. The catch-rate indices for 1997 onwards are based on the method commonly applied for SESSF species, with the pre-1997 catch-rates appended to those for 1997 onwards by calibrating the catch-rates for the period of overlap. The assessment includes catch-rate indices for the trawl and shark longline for the first time.

A reference case model was presented that fits to all available data. The fits are all reasonable and the assessment outputs indicate that gummy shark in Bass Strait, and off South Australia and Tasmania are above the management target of 48% of unfished pup production. The Recommended Biological Catches for 2016, 2017 and 2018 from the reference case model are 2080t, 1878t, and 1807t.

Shark catch rate standardisations

Data from years 1997 - 2015 available in the Commonwealth logbook database were used to standardise catch rates for shark species. Reported catches of school shark are relatively low and those from trawling do not appear to be targeted, as evidenced by the large proportion of $<30 \mathrm{~kg}$ shots present in the logbook data. Nevertheless, the areas where they are caught have not changed greatly and yet the standardized catch-per-unit effort (CPUE) has begun to increase significantly, with the exception of 2014. This is a positive sign, which when combined with the observation of increased proportions of smaller school sharks in the ISMP sampling are a first clear evidence of school sharks showing some signs of recovery.

There has been an increase in reported gillnet catches of gummy shark and standardized CPUE in South Australia and Bass Strait during 2015. By contrast, standardized CPUE of gillnet caught gummy shark around Tasmania remained flat since 2014. Reported catches by bottom line remained at 229 t for both 2013 and 2014, and dropped to 192 t in 2015, while there was a drop of $\sim 8 \mathrm{t}$ reported (i.e. 92 t to 84 t) in 2015 relative to 2014 for trawl. Standardized CPUE for bottom line and trawl have increased steadily since 2013, remaining above the long-term average.

Like school shark, elephant fish are a non-targeted species, as indicated by the large proportion of small shots (i.e. $<30 \mathrm{~kg}$). Gillnet standardized CPUE is flat and noisy, and decreased in 2015 . However this analysis ignores discarding and uses number of shots instead of net length as a unit of effort. In recent years discard rates for elephant fish have been very high, which may imply that their CPUE is in fact increasing. It would be desirable, in the future to perform analyses that account for discards.

Sawshark are considered to be a bycatch group which is supported by the high proportion of $<30 \mathrm{~kg}$. Catches are reported by both gillnets and trawls. Standardized CPUE for gillnets exhibits a steady decline since about 2001. However, a detailed analysis should be considered that uses net length as an effort unit instead of shot. Trawl caught sawshark standardized indices exhibit a noisy but flat trend, with an increase in 2014 reaching the long term average. By contrast, sawshark standardized CPUE by Danish seine (which has the highest proportion of shots $<30 \mathrm{~kg}$ among methods) has been flat since 2006 and increased about the long-term mean in 2015. However, this species group is also discarded (13% to 28%; discarded for 2011-2014) no estimate available for 2015) may artficially inflate these estimates.

KEYWORDS: fishery management, southern and eastern scalefish and shark fishery, stock assessment, trawl fishery, non-trawl fishery

2. Background

The Southern and Eastern Scalefish and Shark Fishery (SESSF) is a Commonwealth-managed, multispecies and multi-gear fishery that catches over 80 species of commercial value and is the main provider of fresh fish to the Sydney and Melbourne markets. Precursors of this fishery have been operating for more than 85 years. Catches are taken from both inshore and offshore waters, as well as offshore seamounts, and the fishery extends from Fraser Island in Queensland to south west Western Australia.

Management of the SESSF is based on a mixture of input and output controls, with over 20 commercial species or species groups currently under quota management. For the previous South East Fishery (SEF), there were 17 species or species groups managed using TACs. Five of these species had their own species assessment groups (SAGs) - orange roughy (ORAG), eastern gemfish (EGAG), blue grenadier (BGAG), blue warehou (BWAG), and redfish (RAG). The assessment groups comprise scientists, fishers, managers and (sometimes) conservation members, meeting several times in a year, and producing an annual stock assessment report based on quantitative species assessments. The previous Southern Shark Fishery (SSF), with its own assessment group (SharkRAG), harvested two main species (gummy and school shark), but with significant catches of saw shark and elephantfish.

In 2003, these assessment groups were restructured and their terms of reference redefined. Part of the rationale for the amalgamation of the previous separately managed fisheries was to move towards a more ecosystem-based system of fishery management (EBFM) for this suite of fisheries, which overlap in area and exploit a common set of species. The restructure of the assessment groups was undertaken to better reflect the ecological system on which the fishery rests. To that end, the assessment group structure now comprises:

- SESSFRAG (an umbrella assessment group for the whole SESSF)
- \quad South East Resource Assessment Group (Slope, Shelf and Deep RAG)
- \quad Shark Resource Assessment Group (Shark RAG)
- \quad Great Australian Bight Resource Assessment Group (GAB RAG)

Each of the depth-related assessment groups is responsible for undertaking stock assessments for a suite of key species, and for reporting on the status of those species to SESSFRAG. The plan for the resource assessment groups (South East, GAB and Shark RAGs) is to focus on suites of species, rather than on each species in isolation. This approach has helped to identify common factors affecting these species (such as environmental conditions), as well as consideration of marketing and management factors on key indicators such as catch rates.

The quantitative assessments produced annually by the Resource Assessment Groups are a key component of the TAC setting process for the SESSF. For assessment purposes, stocks of the SESSF currently fall under a Tier system whereby those with better quality data and more robust assessments fall under Tier 1, while those with less reliable available information are in Tiers 3 and 4. To support the assessment work of the four Resource Assessment Groups, the aims of the work conducted in this report were to develop new assessments if necessary (under all Tier levels), and update and improve existing ones for priority species in the SESSF.

3. Need

A stock assessment that includes the most up-to-date information and considers a range of hypotheses about the resource dynamics and the associated fisheries is a key need for the management of a resource. In particular, the information contained in a stock assessment is critical for selecting harvest strategies and setting Total Allowable Catches.

4. Objectives

- Provide quantitative and qualitative species assessments in support of the four SESSFRAG assessment groups, including RBC calculations within the SESSF harvest strategy framework
- 2016: Provide Tier 1 assessments for Deepwater flathead, Gummy shark, Tiger flathead, Eastern gemfish (subject to SESSFRAG advice) and School whiting data analysis; and Tier 4 assessments for Blue eye trevalla and Mirror dory
- 2017: Provide Tier 1 assessments for Blue grenadier, Redfish, East Roughy and School whiting; Tier 3 for Alfonsino, John Dory; Tier 4 for E/W Deepwater shark, Ocean Perch, Oreo basket, Ribaldo, Royal Red Prawn, and Silver Trevally

5. SESSF Tier 1 CPUE forecasts for multi-year TAC review triggers, 2016

Robin Thomson, Miriana Sporcic, Geoff Tuck, Jemery Day
CSIRO Oceans and Atmosphere Flagship, GPO Box 1538, Hobart, TAS 7001, Australia

5.1 Summary

Annual standardized observed CPUE were compared with forecast abundance from the most recent Tier 1 stock assessment models for redfish, school whiting, blue grenadier, jackass morwong and silver warehou. The observations lay within the 95% confidence region for the forecasts for blue grenadier, school whiting, and silver warehou in the west (only just). The most recent CPUE observation (i.e. 2015) for redfish, jackass morwong and silver warehou in the east all lay below the forecast prediction intervals (PI).

5.2 Introduction

A number of Southern and Eastern Scalefish and Shark Fishery (SESSF) quota species on Tier 1 are managed on Multi-Year Total Allowable Catches (MYTACs) so that stock assessments are performed for those species at 3-5 year intervals. The most recently accepted base case stock assessment for each MYTAC stock is used to set future Recommended Biological Catches (RBCs) for the stock during the MYTAC period. Each year, to evaluate the continuing accuracy of the model predictions, actual catches are entered into the model and predicted catch rates are forecast. If recent observed catch rates fall outside of a 95% prediction interval around the forecast catch rates, this suggests that the model no longer accurately reflects observed reality and most likely needs to be updated. Note that this method aims to test the applicability of the TAC that was set, therefore it is important to project the assessment model under the same set of assumptions as those originally used to set the TAC e.g. the future recruitment scenario (high, average, low) should be the same.

When recent standardized CPUE falls outside of the 95% prediction interval for forecast abundance, this triggers management attention for the stock. One of the considerations for management must be whether the recent observed (and standardized) CPUE accurately reflects stock abundance. This may be particularly questionable for stocks that are no longer targeted, such as eastern gemfish.

During 2016 CPUE forecasts were calculated for the stocks shown in Table 5.1.

Table 5.1. Stocks for which CPUE forecasts were performed, the name of the CSIRO scientist responsible for projecting the assessment, and final year of data available to the original stock assessment model, after this year the model is forecasting.

Stock	Assessment scientist	Final assessment year	Reference
Redfish	Geoff Tuck	2013	Tuck \& Day (2014)
School whiting	Jemery Day	2008	Day (2009)
Blue Grenadier	Geoff Tuck	2012	Tuck (2014)
Jackass morwong	Geoff Tuck	2014	Tuck \& Day (2015)
Spotted warehou	Jemery Day	2014	Day \& Thomson (2015)

5.3 Methods

The process of calculating review triggers involves the following steps:

1. Standardize the CPUE for the stock of interest (including the most recent data).
2. Obtain the recent catch history for the stock (i.e. the catches taken from the stock during the years since the stock assessment model was last updated).
3. Use the base case stock assessment model to project the stock to the current year, given the catches from step 2.
4. Adjust the CPUE series from step 1 to match the CPUE series used to tune the assessment model, calculate 95% prediction bounds (PI) around the forecast CPUE, and determine whether the most recent observed CPUE points fall within the PI.

Each of these steps is described in more detail below.

5.3.1 Updated CPUE

Reported catch and effort data are standardized to take account of factors affecting catch rates (such as fishing depth, season, vessel and zone). Standardized catch rates for the 9 fleets (6 stocks) considered in this report were obtained from Miriana Sporcic (CSIRO, pers commn).

5.3.2 Recent catch history

Logbook catch records from the GENLOG database, held at CSIRO, were used to calculate catch ratios between the fleets used by each stock assessment. For example, the eastern flathead assessment model incorporates a trawl fleet in zones 10 and 20, and another in eastern Tasmania (zone 30). The ratio of the logbook catches for these fleets was used to split up the verified landed catch (taken from the Catch Disposal Record, CDR, database) and this was used in the stock assessment projection. The exception was eastern gemfish, for which the historical split between the non-spawning summer and the winter spawning fleets was applied to the CDR data.

5.3.3 Stock assessment forecast

All of the stocks considered here were assessed using the stock synthesis model, version 3.x (SS3). SS3 does not produce expected values for each CPUE index in standard forecasts, so assessment authors were provided with the following instructions:

Edit starter.ss

1 \# 0 =use init values in control file; $1=$ use ss3.par
0 \# Turn off estimation for parameters entering after this phase

Edit ss3.dat

Change end year on line 3 to the most recently available data e.g. 2015.
Obtain the most recent actual catch estimates available for years that have elapsed since the assessment model was last run. Add these to the catch series using the attached Catch_History.csv file and - assume fleet splits as per you're the attached R code that calculates logbook totals. You will need to increase the number of lines of catch data.

Add lines to the end of recent abundance indices so that they finish in 2015. Please use values of 1.0 and a CV of 999.0.

Edit ss3.par

Add another 0.0000000000 to the end of recruitment deviations for every extra year of data you have added.

Run ss3-nohess

Look in report.sso under the heading INDEX 2 and there should be estimates of CPUE for all years to 2015 for recent abundance indices.

5.3.4 Matching two standardized CPUE series

Two standardized CPUE time series are used here: (a) the standardized CPUE series that was used to tune the stock assessment model during the last model update, and (b) the updated standardized CPUE time series that used a slightly longer catch and effort time series than that used by (a). On the whole, the two series correspond very closely with one another, apart from the greater length of series (b). However, there are always slight differences so series (b) must be scaled to match series (a). There are a number of ways that these two series can be matched, e.g. by dividing both series by their means, or by shifting (b) up or down so that any given year from series (b) matches the corresponding value from series (a). The method chosen by Klaer et al (2014) is to scale to the final year of series (a). Thus, the updated time series (B) is rescaled (yielding series \tilde{B}) by multiplying each element of B by the ratio of the value of the historical time series A, in its final year A_{y}, by the value of updated series B in the same year (B_{y}):

$$
\tilde{B}=B \frac{A_{y}}{B_{y}}
$$

The final year of the historical time series (y) for each stock is shown in Table 5.1.

5.3.5 Prediction interval around forecast CPUE

A 95% prediction interval for the forecast CPUE points was generated by assuming a log normal distribution for the residuals of the observed and expected CPUE. Thus the standard error s_{y} for a given year y were given by the standard error of the residuals r_{y} over the whole (historical part) of the time series

$$
r_{y}=\ln \left(B_{y}\right)-\ln \left(E_{y}\right)
$$

where E_{y} is the expected catch rate from the stock assessment model.
The plots shown in this report use the same method to calculate the PIs shown for all years, even though the stock assessment models do provide annual standard errors for the historical period. The PI for the forecast period is used to assess whether or not the observed CPUE falls within acceptable bounds. Alternative methods for calculating PIs for the model forecasts include projecting the model a large number of times using parameter values drawn from the model posterior by the Markov Chain Monte Carlo (MCMC) method; or approximating the standard errors using the Laplace approximation.

5.4 Results

The recent observed CPUE for trawl catches of eastern redfish lie below the lower prediction bound in 2015 and is particularly close to the lower bound in 2014 (Figure 5.1). Interestingly, the two earlier CPUE values (for 2012 and 2013) both lie below the lower prediction bound, despite being part of the historical period to which the assessment model was tuned.

The seven observed CPUE points for school whiting caught by Danish seine all fall within the model PI (Figure 5.2), indicating no need to trigger a review for this species.

The recent observed CPUE values for blue grenadier all lie close to the expected values, and well within the 95% PI (Figure 5.3).

The recent observed CPUE value for eastern jackass morwong is below the PI in both the combined Victoria and NSW region, and in eastern Tasmania (Figure 5.4). The 2015 CPUE point for western jackass morwong lies within the PI bound but is very close to the lower bound (Figure 5.5).

The 2015 CPUE for silver warehou in the east is just below the lower bound, and only just above it in the west (Figure 5.6).

A summary of the results for all fleets and stocks is shown in Table 5.2.

Table 5.2. Summary of comparison between observed and forecast CPUE for all fleets and stocks considered. Green shading indicates an observation well within the PI; orange indicates within, but close to the lower bound; red indicates below the lower bound.

Stock	2009	2010	2011	2012	2013	2014	2015
Redfish							
School whiting							
Blue Grenadier							
Morwong 10\&20							
Morwong East 30							
Jackass morwong							
West							
Silver warehou East							
Silver warehou West							

5.4.1 Redfish

RedfishTrawl zones 10 \& 20

Figure 5.1. Redfish CPUE in zones 10 and 20 caught by trawl. The historical CPUE to which the stock assessment model was tuned is shown as grey dots and the recent observed CPUE (scaled to match the older series) as red dots. Model estimated catch rates, projected to 2015, are shown as a green line, with a corresponding 95% prediction interval (black line).

5.4.2 School whiting

School whiting Danish seine

Figure 5.2. School whiting CPUE for Danish seine. The historical CPUE to which the stock assessment model was tuned is shown as grey dots and the recent observed CPUE (scaled to match the older series) as red dots. Model estimated catch rates, projected to 2015, are shown as a green line, with a corresponding 95% prediction interval (black line).

5.4.3 Blue grenadier

Blue grenadier non-spawning Trawl

Figure 5.3. Blue grenadier CPUE caught by trawl in the non-spawning fishery (all times and zones except zone 40 during June-Aug). The historical CPUE to which the stock assessment model was tuned is shown as grey dots and the recent observed CPUE (scaled to match the older series) as red dots. Model estimated catch rates, projected to 2015 , are shown as a green line, with a corresponding 95% prediction interval (black line).

5.4.4 Jackass Morwong East

Jackast Morwong East - Tasmanian trawl

Figure 5.4. Jackass morwong CPUE for trawl catches in the east: Victoria and NSW (zones 10, 20) (upper plot), and Tasmania (zone 30) (lower plot). The historical CPUE to which the stock assessment model was tuned is shown as grey dots and the recent observed CPUE (scaled to match the older series) as red dots. Model estimated catch rates, projected to 2015, are shown as a green line, with a 95% prediction interval (black line).

5.4.5 Jackass Morwong West

Jackast Morwong West - Zones 40 \& 50

Figure 5.5. Jackass morwong CPUE for trawl catches in the west (zones $40 \& 50$). The historical CPUE to which the stock assessment model was tuned is shown as grey dots and the recent observed CPUE (scaled to match the older series) as red dots. Model estimated catch rates, projected to 2015, are shown as a green line, with a 95% prediction interval (black line).

5.4.6 Silver warehou

Silver warehou - East trawl

Silver warehou - West trawl

Figure 5.6. Silver warehou CPUE for trawl catches in the east (upper plot) and west (lower plot). The historical CPUE to which the stock assessment model was tuned is shown as grey dots and the recent observed CPUE (scaled to match the older series) as red dots. Model estimated catch rates, projected to 2015, are shown as a green line, with a 95% prediction interval (black line).

5.4.7 Silver warehou under poor recruitment

Silver warehou - East trawl (very poor recruitment)

Silver warehou - West trawl (very poor recruitment)

Figure 5.7. Silver warehou CPUE for trawl catches in the east (upper plot) and west (lower plot) under a poor recruitment assumption from 2013 onwards.

5.4.8 Silver warehou under very poor recruitment

Silver warehou - East trawl (very poor recruitment)

Silver warehou - West trawl (very poor recruitment)

Figure 5.8. Silver warehou CPUE for trawl catches in the east (upper plot) and west (lower plot) under a very poor recruitment assumption from 2013 onwards.

5.5 References

Day J (2010) School whiting (Sillago flindersi) stock assessment based on data up to 2008. In Tuck, G.N. (ed.) 2010. Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2009. Part 1. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. p 190-249.
Day J, Thomson RB \& Tuck GN (2015) Silver Warehou (Seriolella punctata) stock assessment based on data up to 2014. Version 2 - updated after presentation to SlopeRAG. 10 November 2015. 68pp.
Tuck GN (2014) Stock assessment of blue grenadier Macruronus novaezelandiae based on data up to 2012. In Tuck, G.N. (ed.) 2014. Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2013. Part 1. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. p 61-115.

Tuck GN, Day J \& Wayte, S (2015) Development of a base-case Tier 1 assessment of eastern Jackass Morwong (Nemadactylus macropterus) based on data up to 2014. Presented to ShelfRAG 22 September 2015. Hobart. 35pp.
Tuck GN \& Day J (2015) Stock assessment of redfish Centroberyx affinis based on data up to 2013. In Tuck, G.N. (ed.) 2015. Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2014. Part 1. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. p 103-147.

6. Multi-Year Breakout Analyses for Bight Redfish in the GAB (2015/16)

Malcolm Haddon
CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart, TAS 7001, Australia

6.1 Executive Summary

Standard CPUE breakout analyses were conducted for Bight Redfish in the GAB. The species was not close to the edge of the 95% confidence intervals around the CPUE predicted from the projected Tier 1 assessment from 2015. In the 2014/2015 season the FIS breakout rule came close to being triggered but the model predicted standard errors were large and hence no breakout occurred.

Predicted catch-rates for Bight Redfish has been rising gently since 2009/2010 while the standardized CPUE first declined from 2009/2010 - 2013/2014 but since then have been rising and running parallel to the predicted CPUE. However, the 95% confidence intervals around the predicted CPUE easily encompass the standardized CPUE values so no breakout was observed. It should be noted, however, that the predicted CPUE has now been above the observed CPUE for the past four years, although currently the two trends appear to be running in parallel.

No changes to current management arrangements for Bight Redfish are indicated.

6.2 Introduction

Multi-Year TACs were introduced in 2012 after discussions through 2011 (Tuck et al., 2012). In the absence of formal stock assessments within the period of a multi-year TAC, breakout tests are conducted to determine whether the species not assessed had begun to deviate from their expected trajectories through the period of their multi-year TACs. In the Great Australian Bight (GAB) trawl fishery the quota species not assessed this year is Bight Redfish (Centroberyx gerrardi). This year a new Tier 1 assessment for Deepwater Flathead is being developed and an updated base-case Tier 1 assessment is being attempted with Western Gemfish (Rexea solandri); so this report focusses only on Bight Redfish.

6.3 Methods

6.3.1 TIER 1 Breakout Rules

Standard breakout rules for Tier 1 species were adopted in the GAB for Deepwater Flathead and Bight Redfish. These rules, along with multi-year TACs remain untested in terms of the risks they entail, which relate to their potential to lead to a failure to act when the stock really is declining significantly and yet does not breakout below the selected 95% confidence intervals around the projected predicted CPUE (a false negative result). False positives might be where the breakout has the observed CPUE rising above the projected predicted CPUE. This may entail potential risks to fishing opportunities but at least such possible events indicate little risk to the stock. The agreed breakout rules used are identical to those used last year (Haddon, 2015). Both are repeated here for reference.

6.3.1.1 Bight Redfish

The breakout rule is triggered:

- if the most recent observed value for the standardised CPUE falls outside of the 95% confidence interval of the value for the CPUE predicted by the most recent Tier 1 stock assessment;
or
- if the most recent observed value for the CPUE from the fishery independent survey falls outside of the 95% confidence interval of the value for the CPUE predicted from the fishery independent survey (when survey values are available).

6.3.1.2 Deepwater Flathead

The breakout rule is triggered:

- if the most recent observed value for the standardised CPUE falls outside of the 95% confidence interval of the value for the CPUE predicted by the most recent Tier 1 stock assessment;
or
- if the most recent observed value for biomass from the fishery independent survey falls outside of the 95% confidence interval of the value for the biomass predicted from the fishery independent survey (when survey values are available).

6.3.1.3 Western Gemfish

A breakout rule for western gemfish was decided upon by the RAG in August 2014:
Western Gemfish will have broken out:

- if the observed standardised CPUE falls outside of the 95% CI of standardised CPUE over the last 10 years.

This rule, remains un-tested and, for the 2013/2014 assessment (Haddon, 2015), was found to be sensitive to the level of discarding of western gemfish, which remains high. Nevertheless, last year it was possible to apply a form of weight-of-evidence argument to claim that the stock showed no signs of stress. The argument had the form that the standardized CPUE was not deviating significantly from the long term average and that considering there had been relatively high levels of discarding then the CPUE should have been higher than represented by the log-book records. Hence the available data indicated that the stock was not having problems. The discarding levels were reportedly due to marketing issues.

6.4 Results and Discussion

6.4.1 Bight Redfish (Centroberyx gerrardi)

The latest Tier1 assessment for Bight Redfish was based on data up to and including the 2012/2013 (Haddon, 2015a). The standardized catch rates are now available for the 2015/2016 year (Sporcic and Haddon, 2016), although these have been re-run here to only include the years $89 / 90-15 / 16$, and these are used in the breakout rules agreed to by the GAB RAG in August 2014 listed in the methods. By including the latest landed catch into the Tier 1 assessment and projecting the dynamics forward the model predicted CPUE can be produced and compared with the standardized value. If the latest year is outside the 95% confidence intervals then the fishery will be said to have broken out of its expected trajectory.

There is no indication that the Bight Redfish fishery has broken out of its expected trajectory (Figure 6.1 and Table 6.1), although for the last four years the predicted CPUE has been below the standardized CPUE. The standardization has little effect upon the CPUE trend over the last ten years (Sporcic, 2015).

Figure 6.1. The predicted trajectory of Bight Redfish CPUE (red line) obtained from projecting the previous Tier 1 assessment forward through 2013/2014 and 2014/2015 for comparison with the recently observed CPUE data. The black dots represent the mean standardized CPUE while the red line and dots, with their associated 95% confidence intervals represent the expected CPUE from the Tier 1 model. The blue dots are the CPUE projected since the last stock assessment.

6.4.1.1 Catches and Catch Rates

Discard estimates since 2007/2008 are now included (Table 6.1; Upston and Thomson, 2016), although in some years with very low discard levels the estimates are highly uncertain. In all years they remain a very minor component of the catch.

Table 6.1. A comparison of the standardized observed CPUE for Bight Redfish and that predicted from projecting the previous Tier 1 assessment (Haddon, 2015a). The standard error estimate for the CPUE from the Tier 1 model was 0.209 Figure 6.1.

Year	Standardized	Predicted	Catch
$1989 / 1990$	1.7578	1.3483	170.833
$1990 / 1991$	1.5612	1.3239	281.808
$1991 / 1992$	1.4278	1.2705	265.612
$1992 / 1993$	1.0539	1.2352	120.698
$1993 / 1994$	1.0439	1.1837	107.472
$1994 / 1995$	0.7300	1.1119	157.803
$1995 / 1996$	0.8829	1.0632	173.922
$1996 / 1997$	1.0665	1.0319	327.177
$1997 / 1998$	1.0784	0.9081	372.617
$1998 / 1999$	1.2391	0.7890	437.788
$1999 / 2000$	1.0784	0.7077	323.641
$2000 / 2001$	0.9514	0.7093	387.879
$2001 / 2002$	0.7459	0.7443	262.613
$2002 / 2003$	0.7935	0.7893	424.672
$2003 / 2004$	1.0911	1.3483	946.477
$2004 / 2005$	1.0584	1.2935	937.456
$2005 / 2006$	1.0114	1.2543	789.704
$2006 / 2007$	1.0488	1.2130	1023.908
$2007 / 2008$	1.0039	1.1481	808.024
$2008 / 2009$	1.0775	1.0842	681.885
$2009 / 2010$	0.9869	1.0482	469.696
$2010 / 2011$	0.7941	0.9808	297.596
$2011 / 2012$	0.7970	0.8483	341.481
$2012 / 2013$	0.6993	0.7373	273.451
$2013 / 2014$	0.6477	0.6985	207.051
$2014 / 2015$	0.6794	0.7264	238.327
$2015 / 2016$	0.6937	0.7669	179.879

6.4.1.2 FIS Breakout Rule

The GAB breakout rules include a clause concerning the FIS results and implications (Figure 6.2 and Table 6.2). In this case there was no FIS in 2015/2016 as the most recent survey occurred in March and April 2015. Like the Deepwater Flathead estimates the Bight Redfish abundance estimate was the lowest ever recorded in the FIS. The inter-annual variation was already large leading to extremely wide confidence intervals which suggest that even with the low value in 2014/2015 there was no breakout.

Figure 6.2. The GAB FIS as exploited within the projected Bight Redfish assessment.

This is consistent with the Tier 1 assessment last year but highlights that the FIS estimate for the Bight Redfish is potentially flawed.

Table 6.2. The observed and predicted FIS abundance indices for the Bight Redfish in the GAB. The standard errors are those derived from the assessment not the survey. There was no survey in 2015/2016.

Year	Obs	Exp	StErr
$2004 / 2005$	20887.0	20102.3	0.772
$2005 / 2006$	25380.0	18465.3	0.802
$2006 / 2007$	25713.0	16826.1	0.802
$2007 / 2008$	14591.0	15333.8	0.752
$2008 / 2009$	27610.0	14355.5	0.822
$2009 / 2010$			
$2010 / 2011$	13189.0	13843.7	0.772
$2011 / 2012$			
$2012 / 2013$			
$2013 / 2014$	3633.0	15180.6	0.842
$2014 / 2015$			

6.5 References

Haddon, M. (2015) Multi-Year Breakout Analyses for Deepwater Flathead and Western Gemfish in the GAB (2013/14). pp $10-18$ in Tuck, G.N. (ed.) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2014. Part 2. Australian Fisheries Management Authority and CSIRO Oceans and Atmosphere Flagship, Hobart. 432 p.
Haddon, M. (2015a) Bight redfish (Centroberyx gerrardi) stock assessment based on data up to 2014/2015. Report to November 2013 GAB RAG meeting. CSIRO, Oceans and Atmosphere, Australia. 40p.
Klaer, N., Day, J., Tuck, G., Little, R., and S. Wayte (2014) Tier 1 CPUE forecasts for multi-year TAC breakout. Draft paper presented to SLOPE and SHELF RAGs July 2014. 11p.

Sporcic, M and M. Haddon (2016) Catch rate standardizations for selected SESSF species (data to 2015). CSIRO Oceans and Atmosphere Flagship, Hobart. 206p.

Tuck, G., Klaer, N., Haddon, M., Thomson, R., Day, J., Fay, G., Little, R., Upston, J. and S. Wayte (2012) Multi-Year TACs in the SESSF pp in Tuck, G.N. (ed.) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2011. Part 2. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 507 p.
Upston, J. and R. Thomson (2016) Integrated Scientific Monitoring Program for the Southern and Eastern Scalefish and Shark Fishery - Discard estimation 2015 DRAFT. CSIRO Oceans and Atmosphere, Australian Fisheries Management Authority. 56p.

6.6 Appendix: SS3 Methods

To generate forecast CPUE from stock synthesis version 3.x (SS) requires a run of the most recent stock assessment, updated with recent actual catches and catch rates. In the GAB results can be sought for Bight Redfish and Deepwater Flathead.

Running this kind of forecast is very fast because no estimation is required. However, there is a small amount of set-up time. SS3 does not produce expected values for each CPUE index in standard forecasts, so assessment authors were provided with the following instructions:

Edit starter.ss Modified from Klaer et al., (2014).
1 \# $0=$ use init values in control file; $1=$ use ss3.par
0 \# Turn off estimation for parameters entering after this phase

Edit ss3.dat

Change end year, usually on line 3 to the most recently available data.

Add the most recent actual catch estimates to the catch series using CDR results (including discards, especially if these are significant) assume fleet splits as per your last projections. Increase the expected number of lines of catch data accordingly.

Add lines to the end of recent abundance indices so that they finish in the same end year as the catches. Once can use values of 1.0 and a CV of 999.0 - here are examples used for fleet 9 for tiger flathead:

```
                                    2007 1 9 1.137 0.1539
                                    2008 1 9 1.0583 0.1538
                                    2009191.0346 0.1553
2010 1 9 1.0000 999.0
2011 1 9 1.0000 999.0
```

The actual observed standardized CPUE values for those years can also be used, but retain the enlarged CVs.

```
Edit ss3.par
```

Add another 0.00 to the end of recruitment deviates for every extra year of data you have added. Run ss3 -nohess

Look in report.sso under the heading INDEX_2 and there should be estimates of CPUE for all years to 2011 for recent abundance indices. Alternatively, the output list from the use of SS_output (from r4ss) contains \$cpue which is a data.frame containing the required columns of Observed and expected CPUE.

7. Assigning SESSF logbook shots to "Day", "Night", or "Mixed"

Robin Thomson and Roy Deng
CSIRO Oceans and Atmosphere, Castray Esplanade, Hobart TAS 7000, Australia

7.1 Background

Management protocols for Southern and Eastern and Scalefish and Shark Fishery (SESSF) quota species require standardized time series of catch-per-unit effort (CPUE) data from the commercial fishery. These standardizations seek to remove the effects of known covariates such as fishing depth, and individual vessel power, from CPUE times series so that any temporal change in the standardized CPUE series results from the abundance of the fish stock (and from unquantifiable or unknown covariates). It is widely held amongst the fishing community that the time of day or night can affect the catch rates for at least some SESSF species. Early CPUE standardizations in the SESSF did not account for daylight, but later a "day-night" field was added to the logbook database and has been included in CPUE standardization work ever since.

The "day-night" field for SESSF logbook data has, until recently, been generated using routines developed in the database system dBase by Neil Klaer. During 2015 Neil kindly generated the field for the last time, despite having already left CSIRO. New routines have now been developed using the more widely available R software (R Core Team, 2016). These improve on the older method in that (1) the code could be run by anyone; (2) R has built in time-date functions that account for daylight savings times in all states of Australia (and around the world); (3) libraries are available for R that accurately calculate sunrise and sunset times throughout the years. The DBASE routines are only accessible to Neil Klaer, they do not account for daylight savings time, and they use a routine for calculating sunrise / sunset time that is only guaranteed to be accurate until 2010.

7.2 Methods

Apart from the calculating of sunrise / sunset times and the accounting for daylight savings times, all efforts were made to use the same methodology as that used by Neil Klaer. The start time, and end time, for each fishing shot are assigned to day if they take place after sunrise and before sunset, to night if they take place between sunset and sunrise, and unknown if a time and date is not recorded in the database (or cannot be estimated). A second field is then generated, containing " D " if both start and end time took place during the day, " N "ight if both were nighttime, " M "ixed if one was daytime and the other nighttime; or "U"nknown if either or both are missing.

A mixed shot can therefore be one that started one minute before sunrise, or that ended one minute after sunrise. These will not be distinguished from a shot that occurred entirely during twilight. Shots that occur closer to the equator will experience shorter twilight periods than those close to the poles. Alternative schemes that seek to calculate "dayness" as the proportion of the shot that occurred during daylight hours or total or mean irradiance can be conceived. Such alternatives are not the scope of this paper, which seeks to match the work of Neil Klaer as closely as possible, and to quantify the effect on the result of improving the calculation of sunrise and sunset times relative to the time reported by the vessel (which might be influenced by local time zone and zone shifts due to daylight saving).

Given a fishing position (latitude-longitude) the assignment of a fishing shot to day, night, mixed or unknown requires the following steps:

1. Establish a local time zone for the shot.
2. If the start time is known but the end time is unknown, use the mean shot duration for that gear type and fishery to calculate a likely end time, if the mean value is available for that combination of the gear type and the fishery.
3. Establish sunrise/set time at the reported position.
4. Compare start and end position for the shot with sunrise/set time to assign each to day or night.
5. Assign " D " if both start and end are "day"; " N " if both are "night"; " M " if either is "day" and the other "night" and "U" if either is unknown.

The assignment of a local time zone to each fishing shot (step 1 above), by the old DBASE method involved the following definitions:

WA: $\operatorname{lon}<=129$
SA: $129<$ lon $<=141$
E Aus: lon > 141
QLD: lat $<29($ and lon $>141)$
The new method was based on the old definitions, but adds TAS \& VIC/NSW and changes QLD:

```
Lon<=129: "Australia/Perth"
Lon> 129 and lon<= 141: "Australia/Adelaide"
Lon> 141 and lat <= -40: "Australia/Hobart"
Lon> 141 and (lat <= -37.5 and lat > -40): "Australia/Melbourne"
Lon>}141\mathrm{ and (lat > -37.5 and lat <= -28.16): "Australia/Sydney"
Lon>141 and lat>-28.16: "Australia/Brisbane"
```

Both old and new methods assume each shot to a time zone corresponding to a nearby Australian State. It is conceivable that a vessel departing from and returning to a port in a particular state, but, fishing the waters of an adjacent state, might keep the time zone of the port of origin throughout the trip. Refinement of the method could be considered in the future.

Step (2) was introduced by Neil Klaer because end times are most often missing from the logbook database. End times are tricky to work with because the shot date is taken to correspond to the start time, but the date for the end time will differ if the shot spans midnight. Accurate calculation of shot duration must be preceded by accurate calculation of start and end dates. The built-in R class "POSIXct" was used to store dates and times. The POSIXct class tracks date and time in Coordinated Universal Time (UTC) and can report these in any required local time zone including daylight saving zones.

Calculation of average shot duration for a gear involved pooling shot duration data over all years. It was noted (not shown) the average duration versus year shows trends for some gears. Future version of the method could consider year specific shot duration, for those gears for which sufficient data, and
an apparent trend, exist. This would involve interpolation, and often extrapolation, to years for which end times are reported.

The assumptions were made that (a) the shot date corresponds with the start time, not necessarily the end time; (b) if the end time appears to occur earlier in the day than the start time, the end time corresponds to the following day. Mean shot durations were typically less than 11 hours so it seems a reasonable assumption that shots never spanned more than one day.

A variation was introduced to the method used by Klaer, who seems to have pooled data across fisheries. Instead, we calculated mean shot duration separately for each fishery - gear combination. This resulted in more shots with unknown end times, than Klaer had, because there are fishery-gear combinations that have no reported end times from which shot duration can be calculated. The number of reported end times for each fishery-gear combination is shown in Table 7.1.

Table 7.1. Number of shots that reported shot end time for every fishery and gear type reported in the logbook database.

Fishery	AL	BL	DL	DLH	DLM	DS	FP	GN	HL	J	LLP	PL	TL	TR	TW
CSF	883	722	1064	5262	110	0	3453	0	91	0	0	0	272	20	1532
CSIRO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1327
ECD	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3725
ECH	0	0	0	0	0	0	0	0	0	0	89	0	0	0	0
ECT	0	0	0	0	0	0	0	0	0	0	507074	0	0	0	0
FGN	307	0	0	0	0	0	0	110281	0	0	0	0	0	0	0
FSQ	0	0	0	0	0	0	0	0	0	61075	0	0	0	0	0
FTR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	331922
GAB	0	0	0	0	0	80	0	0	0	0	0	0	0	0	336812
HSN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15
HSS	0	0	0	0	0	0	0	0	0	0	167	0	0	0	0
HST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7212
JMF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	151
NFO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	38
NPF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9436
NWS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	46771
SE	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0
SEN	705	2599	7224	0	0	0	972	85122	268	0	0	8	71	0	0
SET	0	0	31	0	0	405300	0	0	0	0	0	0	0	0	2950732
SPF	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1770
SSG	0	46	34	0	0	0	0	25850	28	0	0	0	0	0	0
SSH	0	421	0	0	0	0	0	18	2	0	0	0	0	0	0
STR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	469
TUN	0	0	0	0	0	0	0	0	0	0	26317	0	0	0	41546
VIT	0	0	0	0	0	2539	0	0	0	0	0	0	0	0	7592
WDW	0	0	0	0	0	5	0	0	0	0	0	0	0	0	22312
WTB	0	0	0	0	0	0	0	0	0	0	11859	0	0	0	0
WTF	0	0	0	0	0	0	0	0	0	0	77404	0	0	0	0

7.3 Results

As expected, categorization using the new method did not always give the same result as the old DBASE methods. The majority of records were given the same assignment, however, a relatively large proportion were not (Table 7.2).

Table 7.2. Number of records (for logbook data to partial 2015) assigned to $\mathrm{D} / \mathrm{M} / \mathrm{N} / \mathrm{U}$ by the new method (rows) and the old method (columns). The percentage of corresponding records is shown in the RH Columns. Shaded cells are those that had the same assignment by both methods.

	D	M	N	U	D	M	N	U
NA	0	0	0	2671	0	0	0	100
D	3369678	857504	65481	379751	72	18	1	8
M	242752	1077933	513289	301670	11	50	24	14
N	9788	160727	969527	199837	1	12	72	15
U	6	17454	79031	1024433	0	2	7	91

Nine sets of example results are shown below along with the sunrise and sunset times calculated using the new method (Table 7.2). Position and local time zones are not shown, but were an important part of the calculation. Examples were deliberately chosen amongst those cases where the new (R) and old (DBASE) methods yield different results.

Table 7.3. Shot start Start and end End times, corresponding Sunrise and Sunset times and "D"ay or "N"ight assignments to the start S and end E times for ten example scenarios. The overall assignment of "D", "N" or "M" is given for the New R method and the Old DBASE method.

	Start	End	Sunrise	Sunset	S	E	New	Old
1	$\begin{gathered} 10 / 11 / 2000 \\ 15: 00 \end{gathered}$	$\begin{gathered} 10 / 11 / 2000 \\ 18: 00 \end{gathered}$	4:43	18:14	D	D	D	M
2	$\begin{gathered} 1 / 10 / 2000 \\ 16: 19 \end{gathered}$	$\begin{gathered} 1 / 10 / 2000 \\ 18: 29 \end{gathered}$	5:54	18:09	D	N	M	D
3	$\begin{gathered} 25 / 07 / 2000 \\ 17: 00 \end{gathered}$	$\begin{gathered} 26 / 07 / 2000 \\ 6: 30 \end{gathered}$	6:34	17:49	D	N	M	D
4	$\begin{gathered} 23 / 02 / 1998 \\ 8: 00 \end{gathered}$	$\begin{gathered} 24 / 02 / 1998 \\ 6: 00 \end{gathered}$	5:30	18:12	D	N	M	D
5	$\begin{gathered} 13 / 05 / 2000 \\ 18: 39 \end{gathered}$	$\begin{gathered} 13 / 05 / 2000 \\ 21: 59 \end{gathered}$	6:03	17:08	N	N	N	M
6	$\begin{gathered} 22 / 05 / 2000 \\ 18: 00 \end{gathered}$	$\begin{gathered} 23 / 05 / 2000 \\ 4: 00 \end{gathered}$	6:28	17:51	N	N	N	M
7	$\begin{gathered} 11 / 08 / 2005 \\ 19: 00 \end{gathered}$	$\begin{gathered} 12 / 08 / 2005 \\ 16: 00 \end{gathered}$	6:27	17:56	N	D	M	D
8	$\begin{gathered} 2 / 03 / 2001 \\ 2: 30 \end{gathered}$	$\begin{gathered} 2 / 03 / 2001 \\ 5: 30 \end{gathered}$	5:41	18:29	N	N	N	M
9	$\begin{gathered} 2 / 05 / 2000 \\ 5: 00 \end{gathered}$	$\begin{gathered} \text { 2/05/2000 } \\ 10: 00 \end{gathered}$	6:11	17:42	N	D	M	D
10	$\begin{gathered} 17 / 07 / 2005 \\ 5: 45 \\ \hline \end{gathered}$	$\begin{gathered} 17 / 07 / 2005 \\ 17: 54 \end{gathered}$	6:29	17:44	N	D	M	D

Most of the examples in Table 7.2 have either the start or the end time of the shot within roughly 1.5 hours of either sunrise or sunset. Examples 3 and 4 seem to result from incorrect accounting by the dBase method for a shot that spans midnight.

Although we know the overall assignment given to each shot ($\mathrm{D} / \mathrm{N} / \mathrm{M} / \mathrm{U}$) by the old method, the assignment of the start and end positions is only known for the new method. For all records whose overall assignment differed, we calculated the proportion belonging to each of X possible "types" based on a unique combination of overall assignment by the new or old method, and the assignment of the start and end times by the new method (Table 7.3).

Table 7.4. Every unique combination of old and new results, and the count and proportion of the shots that fell into each category (ordered from greatest to least 'proportion').

Rank	New DayNight	Old_DayNight	StartShotDateTime_DN	EndShotDateTime_DN	Count	Proportion
1	Unknown	Day	Day	NA	107909	0.159
2	Mix	Day	Night	Day	107763	0.159
3	Night	Mix	Night	Night	106957	0.158
4	Mix	Day	Day	Night	65547	0.097
5	Unknown	Night	Night	NA	50082	0.074
6	Day	Mix	Day	Day	49280	0.073
7	Unknown	Mix	Night	NA	42337	0.062
8	Unknown	Mix	Day	NA	37794	0.056
9	Night	Unknown	Day	NA	23094	0.034
10	Mix	Night	Night	Day	21257	0.031
11	Night	Day	Night	Night	20559	0.030
12	Unknown	Day	Night	NA	19238	0.028
13	Mix	Night	Day	Night	12419	0.018
14	Mix	Unknown	Night	Day	6221	0.009
15	Unknown	Night	Day	NA	4265	0.006
16	Day	Night	Day	Day	3712	0.005
17	Unknown	Mix	NA	NA	55	0.000
18	Unknown	Night	NA	NA	42	0.000
19	Unknown	Day	NA	NA	13	0.000
20	Day	Unknown	Day	Day	1	0.000
21	Mix	Unknown	Day	Night	1	0.000

7.3.1 End time has been lost

The scenarios ranked $1,5,7,8,12,15,17,18$ and 19 have unknown end time for the shot and therefore "U" overall assignment using the new method however the old method gave "D", "N" or "M". The end shot time was therefore not unknown. This occurred because the new method does not pool for a given gear type across fisheries in order to calculate average shot duration, instead it calculated shot duration for each fishery-gear combination. This results in more unknowns because some fishery-gear combinations had no reported end times.

7.3.2 $D / N / M$ has changed

Here we discuss shots that were not considered "U" under either the old or new methods, but that have changed their overall assignment. Only the overall $\mathrm{D} / \mathrm{N} / \mathrm{M}$ result is available for the old method, not the assignments given to the start and end times. Therefore these can only be known for the shots that had an overall assignment of "D" or "N" where both the start and end positions must have had the
corresponding assignment. Cases where the old method gave " M " were not investigated further because there is no way of knowing whether the start, the end or both assignments have changed.

Shots that were "D" or " N " but are classified as "M" under the new method typically have a start time that is close to the nearest sunrise or sunset (Figure 7.1, top RHS and bottom LHS). This suggests that the change in designation is most likely to be due to the use of a more accurate sunrise/set calculator or due to taking 1 hour daylight saving times into account. A batch of shots, predominantly from South Australia, show a 5 hour difference (Figure 7.1, top RHS) suggesting a more serious error in the assignment of a local time zone.

Those shots whose end time designation changed typically ended approximately 3 hours before or after the nearest sunrise or sunset (Figure 7.1, top LHS and bottom RHS). While shot start time will have been the same for both the old and new methods, the end time is most often calculated using average shot duration and average shot duration will change every time the dataset is updated (and more shots of known duration are added). Any trend or overall change in shot duration over the years (which we know has happened) will lead to a shift to the right of the mode in these plots (Figure 7.1, top RHS and bottom LHS).

Cases where a designation of " M " changed to " D " or " N " could not be investigated, but are likely to show similar patterns to those that were investigated. In summary, causes for a change in designation for shots that are not designated "U", are:
a. Due to small differences in the more accurate sunrise / set calculator, affecting shots that start or end very close to sunrise or sunset;
b. Due to better accounting for local time zone including daylight savings times (again, for shots that occur close to sunrise/set);
c. Due to ongoing shifts in the mean duration of shots - this would result in changes to the $\mathrm{D} / \mathrm{N} / \mathrm{M}$ assignment whenever new data become available, even without any change in the method used to assign $\mathrm{D} / \mathrm{N} / \mathrm{M}$.

Figure 7.1. Top: Top left: Histogram of the number of hours to the nearest sunrise or sunset for (top left, and bottom right) the start time, or (top right and bottom left) the end time of all shots whose classification was "D" (top plots) or " N " (bottom plots) for the old method but is " M " for the new method. In every case, only one of the start or end times has been reclassified.

7.4 Discussion

Future work includes:

1. Exploration of those fisheries for which mean shot duration cannot be accounted for - it might be reasonable to 'borrow' mean shot duration from a similar fishery;
2. Allowing mean shot duration to change with time (an estimated trend would probably be needed to overcome the problem of years for which few or no end times are recorded);
3. Calculating a "dayness" statistic that reflects how much of the shot occurred during the daytime, as opposed to assigning a time that occurs 1 second after sunset to "night" and one second before sunset to "day".

7.5 Reference

R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

8. Statistical CPUE standardizations for selected SESSF species (data to 2015)

Miriana Sporcic and Malcolm Haddon

CSIRO Oceans and Atmosphere, Castray Esplanade, Hobart 7000, Australia

8.1 Executive Summary

Catch-per-unit-effort (CPUE) data is an important input to many of the stock assessments conducted within the South East and Southern Shark Fishery (SESSF), where it is used as an index of relative abundance through time. The catch and effort logbook data from the SESSF, which is the source of CPUE data, constitutes shot by shot data derived from a wide range of vessels, areas (zones), months, depths, and fishing gears. Catch rates used in the assessments are standardized to reduce the effects of factors such as which vessel fished, where and when fishing occurred, the gear used, at what depths fishing was conducted, and whether fishing occurred during the day or night. The intent is to focus on any changes in catch rates that occurred between years as a result of changes in stock size rather than changes that occur in any of these other factors. This intent is not always realized when there are unknown influential factors or factors for which we have no data, so interpretation of the catch rate trends should not necessarily be taken at face value. This is especially the case when there have been major management changes, such as the introduction of quotas or the more recent structural adjustment. Such large events can greatly influence fishing behaviour, which in turn influences catch rates. Because these changes affected the whole fleet at the same time it is not possible to standardize for their effects.

Catch rates, generally as kilograms per hour fished (though sometimes as catch per shot e.g. Danish Seine, or non-trawl methods), were natural log-transformed to normalize the data and stabilize the variance before standardization. A General Linear Model was used rather than using a Generalized Linear Model with a log-link. This simple analytical approach means that the exact same methods can be applied to all species/stock combinations in a relatively robust manner. The statistical models fitted were of the form: LnCE $=$ Year + Vessel + Month + Depth Category + Zone + DayNight. There were interaction terms which could sometimes be fitted, such as Month:Zone or Month:Depth_Category. Data from all vessels reporting catches of a species were included although a preliminary data selection was made on a given depth range for each species for the zones of interest to focus attention on those depths contributing significantly to the fishery for each assumed stock and to reduce the number of empty categories within the statistical models. The statistical package R was used, based on the 'biglm' library, which was necessary because of the large amount of data available for some species. Despite the large numbers of observations available in most analyses, the use of the AIC was able to discriminate between the more complex models. In fact, the visual difference between the CPUE trends exhibited by the top few models tends to be only minor.

This document reports the statistical standardization of the commercial catch and effort data for 23 species (including species groups), distributed across 43 different combinations of stocks and fisheries ready for inclusion in the annual round of stock assessments. These include School Whiting, Eastern Gemfish, Jackass Morwong, Flathead, Redfish, Silver Trevally, Royal Red Prawn, Blue Eye, Blue Grenadier, Spotted/Silver Warehou, Blue Warehou, Pink Ling, Western Gemfish, Ocean Perch, John Dory, Mirror Dory, Ribaldo, Ocean Jackets, Deepwater Flathead and Bight Redfish.

Summary graphs are provided across all species (Figure 8.2 and Figure 8.3), as well as more detailed information for each stock. Out of 43 stocks, there were eight whose catch rates have increased; eight stocks where catch rates were stable and 27 stocks whose catch rates have declined over the last 10 years. Since 2007, there were nine stocks whose catch rates have increased; five stocks whose catch rates were stable and 29 stocks whose catch rates have declined. The first year, 2007 corresponds to the structural adjustment and introduction of the Harvest Strategy Policy. Many of the species were also examined for trends in catches and geometric catch rates between zones; this was to provide a check that there were only minor Year x Zone interactions (differences in catch rate trends between zones).

8.2 Introduction

Commercial catch and effort (CPUE) data are used in very many fishery stock assessments in Australia as an index of relative abundance. This is based on the assumption that there is a direct relationship between catch rates and exploitable biomass. However, many other factors can influence catch rates, including vessel, gear, depth, season, area, and time of fishing (e.g. day or night). The use of catch rates as an index of relative abundance requires the removal of the effects of variation due to changes in these factors on the assumption that what remains will provide a better estimate of the underlying biomass. This process of adjusting the time series for the effects of other factors is known as standardization and the accepted way of doing this is to use some statistical modelling procedure that focuses attention onto the annual average catch rates adjusted for the variation in the averages brought about by all the other factors identified. The diversity of species and methods in the SESSF fishery means that each fishery/stock for which standardized catch rates are required entails its own set of conditions and selection of data. This report updates standardized indices (based on data to 2014 inclusive) for over 40 different stocks.

8.2.1 Limits of Standardization

The use of commercial CPUE as an index of relative abundance of exploitable biomass can breakdown when there are factors that significantly influence CPUE which cannot be accounted for and employed in a GLM standardization analysis. Over the last two decades there have been a number of major management interventions in the South East Scalefish and Shark Fishery (SESSF) including the introduction of the quota management system in 1992 and that of the Harvest Strategy Policy (HSP) and associated structural adjustment in 2005 - 2007. The combination of limited quotas and the HSP is now controlling catches in such a way that many fishers have been altering their fishing behaviour to take into account the availability of quota and their own access to quota needed to land the species taken in the mixed species SESSF.

Some stocks, such as flathead, are currently near or around their target stock size and catch rates are at historically good levels. As a result of this success, some fishers report having to avoid catching species, such as flathead, so as to avoid having to discard and to stay within the bounds of their own quota holdings. Such influences on catch rates tend to bias the catch rates downwards, or at very least add noise to any CPUE signal, which could lead to misinformation passing to any assessment. Currently, there is no way to handle this issue but care needs to be taken not to provide incorrectly conservative advice or inappropriately high catch targets. Included in the management changes is the on-going introduction of numerous area closures imposed for a range of different reasons.

Another example of catch rates not necessarily reflecting the stock dynamics can be found with Blue Eye Trevalla Auto Line catch rates. Some of the closures (e.g. the gulper closures north east of Flinders Island) cover areas where auto-line catch rates were previously relatively high. Fishing continues mostly along the western edge of the St Helens Hill closure (even though this closure is open to Auto Line vessels) but the catch rates on the periphery are only about $2 / 3$ the catch rates previously exhibited on the St Helens Hill itself. The geographical scale of these changes is much finer than that already included in the analyses and so the impression gained is that catch rates in general have declined whereas this may be much more about exactly where the fishing is occurring than what the stock is doing. A FRDC funded research project began last year to examine the influence of closures on stock assessments and this exploration is on-going. A second FRDC funded project is also examining how best to use CPUE data in Australian fisheries and is attempting to investigate the impacts of major management interventions (such as the introduction of quotas) on CPUE trends. The preliminary findings of both these projects, indicate that again, great care needs to be taken when trying to interpret the outcomes of the catch rate standardization.

8.3 Methods

8.3.1 Catch Rate Standardization

8.3.1.1 Preliminary Data Selection

The methods used when standardizing commercial catch and effort data in the SESSF continue to be discussed in the Commonwealth stock assessment RAGs because the catch rate time series (and associated standardized indices are very influential in many of the assessments. Data were initially selected by fishery (e.g. SET, GHT, GAB, etc), within a specified depth range and method (e.g. trawl, Auto Line, Danish seine etc) in specified statistical zones (e.g. Figure 8.1) within the years specified for the analysis (Table 8.1). This was based on a standard set of database queries, both from ACCESS and ORACLE, designed to identify shots containing the species of interest in each case.

8.3.1.2 General Linear Modelling

In each case, catch rates, generally as kilograms per hour fished (though sometimes as catch per shot e.g. School Whiting caught by Danish Seine), were natural log-transformed. A General Linear Model was used rather than using a Generalized Linear Model with a log-link; this has advantages in terms of normalizing the data while stabilizing the variance, which the Generalized Linear Model approach does not always achieve appropriately (Venables \& Dichmont, 2004). This relatively simple analytical approach means that the exact same methods can be applied to all species in a relatively robust manner. The statistical models were variants on the form: $\operatorname{Ln}(C P U E)=$ Year + Vessel + Month + Depth Category + Zone + DayNight. Gear type was also included for some fisheries, as well as method of fishing (e.g. Blue eye Trevalla caught by Auto Line and Drop Line). In addition, there were interaction terms which could sometimes be fitted, such as Month:Zone and/or Month:DepthCategory. Thus, the CPUE, conditioned on positive catches of the species of interest, was statistically modelled with a normal GLM on log-transformed CPUE data:

$$
\begin{equation*}
\operatorname{Ln}\left(C P U E_{i}\right)=\alpha_{0}+\alpha_{1} x_{i, 1}+\alpha_{2} x_{i, 2}+\sum_{j=3}^{N} \alpha_{j} x_{i j}+\varepsilon_{i} \tag{1}
\end{equation*}
$$

where $\operatorname{Ln}\left(C P U E_{i}\right)$ is the natural logarithm of the catch rate (usually $\mathrm{kg} / \mathrm{hr}$, but sometimes $\mathrm{kg} / \mathrm{shot}$) for the i-th shot, $x_{i j}$ are the values of the explanatory variables j for the i-th shot and the α_{j} are the coefficients for the N factors j to be estimated (α_{0} is the intercept, α_{1} is the coefficient for the first factor, etc.).

8.3.1.3 The Overall Year Effect

For the lognormal model the expected back-transformed year effect involves a bias-correction to account for the log-normality; this then focuses on the mean of the distribution rather than the median:

$$
\begin{equation*}
C P U E_{t}=e^{\left(\gamma_{t}+\sigma_{t}^{2} / 2\right)} \tag{2}
\end{equation*}
$$

γ_{t} is the Year coefficient for year t and σ_{t} is the standard deviation of the log transformed data (obtained from the analysis). The year coefficients were all divided by the average of the year coefficients to simplify the visual comparison of catch rate changes:

$$
\begin{equation*}
C E_{t}=\frac{C P U E_{t}}{\left(\sum C P U E_{t}\right) / n} \tag{3}
\end{equation*}
$$

$C P U E_{\mathrm{t}}$ is the yearly coefficients from the standardization, $\left(\Sigma C P U E_{t}\right) / n$ is the arithmetic average of the yearly coefficients, n is the number of years of observations, and $C E_{t}$ is the final time series of yearly index of relative abundance.

Analyses were performed in the statistical software R (R Development Core Team, 2009), using the library 'biglm', due to the large size of the datasets for many species.

Figure 8.1. A schematic diagram depicting the statistical reporting zones in the SESSF, as used in this document. The GAB fishery is to the west of zone 50 . The main SESSF trawl zones are zones $10-50$. Each zone extends out to the boundary of the EEZ, except for zones 50 and 60 , and for zones 92 and 91 , which are bounded by zone 70 .

Plots of the unstandardized geometric mean catch rate along with the optimum statistical model representing the standardized time series are depicted for each species and/or species groups. This provides a visual indication of whether the standardization changes any trend away from the nominal catch rate. The time series have all been scaled relative to the average of each time series of yearly indices, which means that the overall average in each case equates to one; this centres the vertical location of each series but does not change the relative trends through time. In all cases the differences between this year's analysis and last years' were minimal; both are illustrated in the individual stock graphs. In addition, for most analyses there is a graph of the relative contribution made by the different factors considered to the changes in the trend between the geometric mean and the optimum model. The scale of the changes introduced by a factor is not always in the same order as the relative proportion of the variation accounted for by a particular factor. These influence plots illustrate the fact that for most species while the best statistical model can involve many factors and possibly interaction terms, the influence of many of the later factors tends to be either minor or possibly relates to noisy data rather than trend changes. In many species the difference between the final "fullish" model and one with the first three or four factors is trivial.

8.4 Results

Table 8.1. Data characteristics for each analysis. Records show the number of records, depths, zones and other details used in the data analyses.

Name		Zone(s)	Depth (m)	Comment	Records
1	School Whiting	60	0-100	Danish Seine, catch per shot.	84942
2	Eastern Gemfish	10-30,40/2	300-500	June-Sept 93 onwards, Spawning	15256
3	Eastern Gemfish	10-30,40/2	0-600	Oct-May 86-09 0-600m, Jun-Sep <300m	38290
4	Jackass Morwong	10-50	70-360		151892
5	Jackass Morwong	10,20	70-300		115026
6	Jackass Morwong	30	70-300		20301
7	Jackass Morwong	40,50	70-360		13650
8	Flathead	10,20	0-400	Trawl	270430
9	Flathead	30	0-400	Trawl	22757
10	Flathead	20,60	0-200	Danish Seine, catch per shot	205230
11	Redfish	10,20	0-400		100681
12	Silver Trevally	10,20	0-200	Remove State waters and MPAs^	39526
13	Silver Trevally	10,20	0-200	Including State waters and MPAs	58424
14	Royal Red Prawn	10	200-700		24930
15	Blue Eye Trevalla	20,30, 40, 50	0-1000		25604
16	Blue Eye Trevalla	20, 30	0-1000		12555
17	Blue Eye Trevalla	40, 50	0-1000		13043
18	Blue Grenadier	10-60	0-1000	Except Zone 40 Jun-Aug; non spawning	138468
19	Silver Warehou	10-50	0-600		134099
20	Silver Warehou	10-30	0-600		72455
21	Silver Warehou	40-50	0-600		61644
22	Blue Warehou	10-30	0-400		37111
23	Blue Warehou	40,50	0-600		13160
24	Blue Warehou	10-50	0-600		50784
25	Pink Ling East	10-30	250-600		99717
26	Pink Ling West	40,50	200-800		78213
27	Western Gemfish	40,50,GAB	100-600		43701
28	Western Gemfish	40,50	100-600		33311
29	Western Gemfish	GAB	100-600	Only 1995 onwards	9781
30	Offshore Ocean Perch	10,20	200-700		80724
31	Inshore Ocean Perch	10,20	0-200		16513
32	John Dory	10,20	0-200		140918
33	Mirror Dory	10-50	0-600		124719
34	Mirror Dory East	10-30	0-600		93160
35	Mirror Dory West	40,50	0-600		31524
36	Ribaldo (RBD)	10-50	0-1000		22063
37	Ribaldo	10-50,81-85	0-1000	Auto Line	5362
38	Ocean Jackets	10-50	0-300		87495
39	Ocean Jackets	82-83	80-220		51841
40	Deepwater Flathead	GAB	0-1000		75394
41	Bight Redfish	GAB	0-1000		50416
42	Eastern deepwater sharks	ORZones	600-1250		11275
43	Western deepwater sharks	ORZones	600-1100		21410
44	Mixed oreos	ORZones	500-1200		27624

[^0]

Figure 8.2. Summary graph of the optimum standardizations for 23 species (including grouped species) and 43 different stocks, methods, or fisheries, each with a linear regression across the last ten years (2005-2014). The gradient is at bottom left in each graph and the line colour reflects the gradient: green indicates a positive gradient >0.015, blue a flat line with a gradient between 0.0149 and -0.0149 , the red indicates a negative gradient <0.015. There were 8 selections with a positive gradient, 8 selections with a flat gradient, and 27 selections with a negative gradient.

Figure 8.3. Summary graph of the optimum standardizations for 23 species (including grouped species) and 43 different stocks, methods, or fisheries, each with a linear regression across the last nine years (2007-2015). The gradient is at bottom left in each graph and the line colour reflects the gradient: green indicates a positive gradient >0.015, blue a flat line with a gradient between 0.0149 and -0.0149 , the red indicates a negative gradient <0.015. There were 9 selections with a positive gradient, 5 selections with a flat gradient, and 29 selections with a negative gradient. The starting year, 2007 was the year after the structural adjustment and the year of introducing the Harvest Strategy Policy.

Table 8.2. Summary of linear regressions (LR) of the annual standardized catch rates corresponding to the last nine years (Nine Year LR) for 43 stocks. Colour reflects the gradient: a positive gradient >0.015 (green), a flat line with a gradient between 0.0149 and -0.0149 (blue), a negative gradient <-0.015 (red). See also Figures 2 and 3. N refers to a change in slope from either a green to blue or blue to red comparing last year's to this year's LRs. Y refers to a change in slope from a red to blue or blue to green comparing last year's to this year's LRs.

Name	Zone(s)	Depth (m)	Nine Year LR
School Whiting - DS	60	0-100	Y
Eastern Gemfish SP	10-30,40/2	300-500	
Eastern Gemfish - NSpawn	10-30,40/2	0-600	
Jackass Morwong	10,20	70-300	
Jackass Morwong	30	70-300	
Jackass Morwong	40,50	70-360	
Jackass Morwong	10-50	70-360	
Flathead	10,20	0-400	Y
Flathead	30	0-400	
Flathead - DS	20,60	0-200	
Redfish	10	0-400	
Silver Trevally	10,20	0-200	
Royal Red Prawn	10	200-700	
Blue Eye Trevalla	20,30	0-1000	
Blue Eye Trevalla	40,50	0-1000	
Blue Eye Trevalla	20-50	0-1000	
Blue Grenadier - NSpawn	10-60	0-1000	
Silver Warehou	10-30	0-600	
Silver Warehou	40,50	0-600	
Silver Warehou	10-50	0-600	
Blue Warehou	10-30	0-400	
Blue Warehou	40,50	0-600	
Blue Warehou	10-50	0-600	
Pink Ling	10-30	250-600	
Pink Ling	40,50	200-800	
Western Gemfish	40,50,GAB	100-600	
Western Gemfish	40,50	100-600	
Western Gemfish	GAB	100-600	
Offshore Ocean Perch	10,20	200-700	N
Inshore Ocean Perch	10,20	0-200	N
John Dory	10,20	0-200	
Mirror Dory East	10-30	0-600	Y
Mirror Dory West	40,50	0-600	N
Mirror Dory	10-50	0-600	
Ribaldo (RBD)	10-50	0-1000	
Ribaldo - AL	10-50,81-85	0-1000	
Ocean Jackets	10-50	0-300	
Ocean Jackets - GAB	82-83	80-220	
Deepwater Flathead	GAB	0-1000	
Bight Redfish	GAB	0-1000	
Eastern Deepwater Sharks	OR Zones	600-1250	
Western Deepwater Sharks	OR Zones	600-1100	
Mixed oreos	OR Zones	500-1200	

8.4.1 School Whiting Z60 Danish Seine (WHS - 37330014 - Sillago flindersi)

School Whiting are taken primarily by Danish Seine (and within State waters). In Commonwealth waters, catches are primarily in zone 60 , and in depths less than or equal to 100 m . All vessels and all records were included in the analysis. Catch rates were expressed as the natural \log of catch per shot (catch/shot). There were 86,537 records for analysis.

Table 8.3. School Whiting from zone 60 in depths 0 to 100 m by Danish Seine. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in zone 60 and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} /$ shot). The optimum model is DepC:Month and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	DepC:Month	StDeV
1986	1302.4100	5667	1181.5830	26	112.3054	1.1326	0.0000
1987	995.9650	4125	923.6450	23	131.3547	1.2497	0.0294
1988	1255.6880	3820	1177.8310	25	168.3341	1.5885	0.0300
1989	1061.5130	4449	995.4680	27	126.9691	1.0568	0.0289
1990	1930.3680	6268	1860.4630	24	165.2136	1.6240	0.0269
1991	1630.2550	4881	1520.4040	26	164.1953	1.4385	0.0289
1992	854.1060	2980	777.5240	23	124.7066	1.0390	0.0328
1993	1694.8960	4925	1548.5810	24	153.6107	1.4838	0.0287
1994	946.2010	4501	878.8520	24	93.9105	0.8682	0.0291
1995	1212.5610	4234	1059.6120	21	123.3912	1.1017	0.0295
1996	898.2130	4214	706.7910	22	81.2686	0.7222	0.0298
1997	697.3800	3218	461.7700	20	64.1314	0.5499	0.0322
1998	594.1530	2958	462.2970	20	66.5496	0.5306	0.0329
1999	681.2520	1914	418.9110	21	83.7522	0.6016	0.0385
2000	700.8800	1926	345.9230	18	66.7223	0.6284	0.0380
2001	890.9250	1997	429.4455	19	93.6854	0.8854	0.0391
2002	788.3307	2192	429.2183	20	90.8874	0.8764	0.0374
2003	866.2327	2355	463.5434	20	86.7848	0.9138	0.0369
2004	604.8859	1771	334.6310	20	79.7648	0.8424	0.0397
2005	662.6840	1750	311.4275	20	77.2502	0.9441	0.0413
2006	667.5046	1428	270.2720	18	76.2250	0.8429	0.0433
2007	535.3580	1488	347.0490	14	89.2381	1.1060	0.0422
2008	502.2450	1260	317.0575	15	92.3448	1.0949	0.0452
2009	462.5905	1569	350.7230	15	93.6200	1.1677	0.0420
2010	408.9007	1179	272.8700	15	88.6885	1.0387	0.0464
2011	373.9361	1579	260.2995	14	72.0269	0.8415	0.0416
2012	435.7716	1566	302.4675	14	80.0853	0.9118	0.0418
2013	510.6307	1791	339.7765	14	82.5661	0.9218	0.0404
2014	698.5380	2071	485.4330	14	99.4276	1.0204	0.0399
2015	734.6875	2461	564.6785	14	93.4423	0.9768	0.0376

Figure 8.4. School Whiting in zone 60 in depths 0 to 100 m taken by Danish Seine. The top left plot depicts the depth distribution of shots containing School Whiting from zone 60 in depths $0-100 \mathrm{~m}$. The top right plot depicts the distribution of catch by depth within zone 60 . The middle left plot depicts the number of vessels through time. The middle right plot contains the number of records used in analysis. The bottom left plot contains School Whiting catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains School Whiting catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.5. School Whiting in zone 60 in depths 0 to 100 m taken by Danish Seine. Upper plot: the dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates (relative to the mean of the standardized catch rates). The blue line corresponds to last year's standardized catch rates. Lower plot: Standardized catch rates (solid black line), 95% CI (vertical lines) and geometric mean (dashed black line).

Table 8.4. School Whiting from zone 60 in depths 0 to 100 m by Danish Seine. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE ~ Year
Model 2	LnCE ~ Year + Vessel
Model 3	LnCE ~Year + Vessel + DayNight
Model 4	LnCE ~Year + Vessel + DayNight + Month
Model 5	LnCE ~ Year + Vessel + DayNight + Month + DepCat
Model 6	LnCE ~Year + Vessel + DayNight + Month + DepCat + DayNight:DepCat
Model 7	LnCE ~Year + Vessel + DayNight + Month + DepCat + DepCat:Month
Model 8	LnCE ~ Year + Vessel + DayNight + Month + DepCat + DayNight:Month

Table 8.5. School Whiting from zone 60 in depths 0 to 100 m by Danish Seine. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted $R^{2}\left(\operatorname{adj} R^{2}\right)$ and the change in adjusted R^{2} (\%Change). The optimum model was Model 7 (DepC:Month). Depth category: DepC; DayNight:DN.

	Year	Vessel	DN	Month	DepC	DN:DepC	DepC:Month	DN:Month
AIC	62229	59969	56108	54962	53548	53277	53019	53295
RSS	177503	172736	165185	162972	159190	158626	157995	158593
MSS	7827	12595	20145	22358	26140	26704	27335	26737
Nobs	86537	86537	86537	86537	84942	84942	84942	84942
Npars	30	78	81	92	97	112	152	130
adj_ R^{2}	4.191	6.713	10.787	11.972	14.008	14.297	14.597	14.297
\%Change	0.000	2.521	4.075	1.184	2.036	0.289	0.300	-0.301

Figure 8.6. The relative influence of each factor used on the final trend in the optimal standardization for School Whiting in zone 60 . The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.2 Eastern Gemfish Spawning (GEM - 37439002 - Rexea solandri)

Eastern Gemfish are taken by Trawl in the spawning season from June to September in zones 10, 20 and 30 , in the bottom half of zone 40 (i.e. below $42^{\circ} \mathrm{S}$; west coast of Tasmania) and between depths of 300 to 500 m . There were 15,364 records for analysis. The spawning run of Eastern Gemfish is considered to be a by-catch fishery. Particular records in the database relating to the Eastern Gemfish surveys in 2007 and 2008 were removed from the data set prior to the analysis.

Table 8.6. Eastern Gemfish, spawning fishery in depths between $300-500 \mathrm{~m}$, taken by Trawl. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates (kg/hr). The optimum model is Zone:Month and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Month	StDev
1993	353.4100	824	133.2310	50	17.7598	2.1882	0.0000
1994	232.1790	819	49.0380	47	11.8880	1.4361	0.0622
1995	181.7460	657	21.8650	48	7.3973	0.9633	0.0656
1996	382.1960	769	135.1320	49	10.9438	1.2051	0.0633
1997	571.9758	1232	268.5900	48	18.9829	1.7876	0.0586
1998	404.8147	883	144.6760	46	11.5921	1.1903	0.0628
1999	448.6767	1065	87.9210	45	8.4120	0.9846	0.0611
2000	336.4642	1178	37.0190	44	4.8857	0.6722	0.0613
2001	331.4862	855	32.8390	47	4.7369	0.6888	0.0650
2002	195.8983	924	22.4530	42	3.5080	0.4945	0.0644
2003	267.9710	967	31.5869	48	4.5797	0.6971	0.0633
2004	568.8517	631	19.7705	44	4.2927	0.6629	0.0705
2005	511.7585	652	21.6200	40	4.5977	0.5874	0.0693
2006	544.8936	571	34.7529	35	7.7674	0.9126	0.0719
2007	580.6498	308	25.3560	19	8.9499	1.1418	0.0867
2008	257.6855	447	35.2582	23	10.4210	1.3744	0.0791
2009	194.8654	413	37.0383	22	9.3924	1.2649	0.0802
2010	220.6510	390	41.7925	24	10.5969	1.3639	0.0812
2011	147.7397	413	27.4315	21	7.3130	0.9633	0.0794
2012	168.5996	381	28.0095	21	6.0729	0.6253	0.0826
2013	103.8201	296	16.1220	20	7.2970	0.7971	0.0884
2014	130.2023	368	11.2463	19	4.1031	0.5647	0.0822
2015	86.3213	321	7.8913	20	3.5519	0.4340	0.0865

Figure 8.7. Eastern Gemfish, spawning fishery in depths between $300-500 \mathrm{~m}$, taken by Trawl. The top left plot depicts the depth distribution of shots containing Eastern Gemfish from zones 10 to 40 in depths $300-500$ m by Trawl. The top right plot depicts the distribution of catch by depth within zones 10 to 40 . The middle left plot depicts the number of vessels through time. The middle right plot contains the number of records used in analysis. The bottom left plot contains Eastern Gemfish catches (top black line: total catches for all gemfish (Eastern and Western), middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Eastern Gemfish catches (blue line: catches used in the analysis; red line: catches $<$ 30 kg).

Figure 8.8. Eastern Gemfish, spawning fishery in depths between $300-500 \mathrm{~m}$, taken by Trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates (relative to the mean of the standardized catch rates). The blue line is last year's optimum standardization.

Table 8.7. Eastern Gemfish, spawning fishery in depths between $300-500 \mathrm{~m}$, taken by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE Year+Vessel+Month
Model 4	LnCE \sim Year+Vessel+Month + DepCat
Model 5	LnCE \sim Year+Vessel+Month + DepCat + DayNight
Model 6	LnCE Year+Vessel+Month + DepCat + DayNight+Zone
Model 7	LnCE \sim Year+Vessel+Month +DepCat + DayNight+Zone+Zone:Month
Model 8	LnCE \sim Year+Vessel+Month +DepCat +DayNight+Zone+Zone:DepCat

Table 8.8. Eastern Gemfish, spawning fishery in depths between $300-500 \mathrm{~m}$, taken by Trawl. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted $R^{2}\left(\operatorname{adj} R^{2}\right)$ and the change in adjusted R^{2} (\%Change). The optimum model is Model 7 (Zone:Month). Depth category: DepC.

	Year	Vessel	Month	DepC	DayNight	Zone	Zone:Month	Zone:DepC
AIC	8927	7200	6358	5978	5879	5872	5602	5866
RSS	27386	24152	22856	22170	22017	21998	21588	21904
MSS	4113	7348	8644	9330	9483	9502	9912	9596
Nobs	15364	15364	15364	15256	15256	15256	15256	15256
Npars	23	125	128	138	141	144	153	174
adj_ R^{2}	12.934	22.702	26.837	28.982	29.456	29.503	30.776	29.665
\%Change	0.000	9.768	4.135	2.145	0.474	0.047	1.273	-1.111

Figure 8.9. The relative influence of each factor used on the final trend in the optimal standardization for the Eastern Gemfish spawning fishery. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.3 Eastern Gemfish Non-Spawning (GEM - 37439002 - Rexea solandri)

Data selected for analysis were based on records from zones 10-30 from October to May 1986-2014, all depths to 600 m ; and from June to September in depths less than 300 m . Also, records below $42^{\circ} \mathrm{S}$ on the west coast of Tasmania (zone 40) were used. Particular records in the database relating to the Eastern Gemfish surveys in 2007 and 2008 were removed from the data set prior to the analysis.

Table 8.9. Non-spawning Eastern Gemfish from the SET in depths between $0-600 \mathrm{~m}$, taken by Trawl. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Zone:DepCat and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:DepCat	StDev
1986	3639.9550	2030	390.3560	86	14.5833	2.5612	0.0000
1987	4660.4470	1894	770.1410	74	25.6322	3.4759	0.0430
1988	3515.8190	2203	509.5870	77	20.2775	2.9134	0.0430
1989	1778.3250	1434	148.4000	69	11.5170	1.9420	0.0476
1990	1206.8970	758	104.1350	69	12.7467	1.9483	0.0574
1991	580.3220	731	65.9950	71	8.7585	1.2878	0.0586
1992	494.4410	695	135.1640	50	11.2643	1.7772	0.0594
1993	353.4100	1536	94.3200	58	8.9703	1.3939	0.0480
1994	232.1790	1832	63.8120	55	6.3021	0.9653	0.0461
1995	181.7460	1685	49.9770	54	5.5810	0.8699	0.0469
1996	382.1960	1947	55.7080	61	4.1794	0.6671	0.0460
1997	571.9758	1786	66.0200	58	4.3644	0.6985	0.0484
1998	404.8147	1246	45.6350	50	4.3330	0.6569	0.0510
1999	448.6767	1344	30.3190	53	2.9242	0.4803	0.0504
2000	336.4642	1718	32.3180	57	2.7962	0.4385	0.0481
2001	331.4862	1642	32.2460	50	2.0644	0.3562	0.0490
2002	195.8983	1617	19.0340	50	1.5969	0.2743	0.0493
2003	267.9710	1583	20.0334	48	1.7225	0.3011	0.0496
2004	568.8517	1771	38.5647	54	2.6317	0.4227	0.0489
2005	511.7585	1745	40.9667	48	2.8254	0.4538	0.0485
2006	544.8936	1325	32.1506	43	2.9591	0.4807	0.0517
2007	580.6498	788	28.1400	22	4.2429	0.6499	0.0590
2008	257.6855	840	35.4670	26	5.7070	0.8661	0.0581
2009	194.8654	514	27.2266	27	6.6449	0.8984	0.0683
2010	220.6510	704	22.8883	23	4.1931	0.6459	0.0614
2011	147.7397	800	22.8895	22	3.8396	0.5807	0.0602
2012	168.5996	709	21.9958	23	3.5107	0.5557	0.0621
2013	103.8201	596	23.4630	23	4.5973	0.6370	0.0659
2014	130.2023	521	9.7232	23	2.4041	0.3743	0.0676
2015	86.3213	622	16.6003	24	2.8876	0.4272	0.0649

Figure 8.10. Non-spawning Eastern Gemfish from the SET in depths between $0-600 \mathrm{~m}$, taken by Trawl. The top left plot depicts the depth distribution of shots containing non-spawning Eastern Gemfish from zones 10 to 40 in depths $0-600 \mathrm{~m}$ by Trawl. The top right plot depicts the distribution of catch by depth within zones 10 to 40 . The middle left plot depicts the number of vessels through time. The middle right plot contains the number of records used in analysis. The bottom left plot contains non-spawning Eastern Gemfish catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains non-spawning Eastern Gemfish catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.11. Non-spawning Eastern Gemfish from the SET in depths between $0-600 \mathrm{~m}$, taken by Trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates (relative to the mean of the standardized catch rates). The blue line is last year's optimum standardization.

Table 8.10. Non-spawning Eastern Gemfish from the SET in depths between $0-600 \mathrm{~m}$, taken by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE~Year+Vessel
Model 3	LnCE~Year+Vessel+DepCat
Model 4	LnCE~Year+Vessel+DepCat+Month
Model 5	LnCE~Year+Vessel+DepCat+Month + DayNight
Model 6	LnCE~Year+Vessel+DepCat+Month+ DayNight + Zone
Model 7	LnCE~Year+Vessel+DepCat+Month+ DayNight + Zone+ Zone:Month
Model 8	LnCE~Year+Vessel+DepCat+Month+ DayNight + Zone+ Zone:DepCat

Table 8.11. Non-spawning Eastern Gemfish from the SET in depths between $0-600 \mathrm{~m}$, taken by Trawl. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted $R^{2}\left(\operatorname{adj} _R^{2}\right)$ and the change in adjusted R^{2} (\%Change). The optimum model is Model 8 (Zone:DepCat). Depth category: DepC.

	Year	Vessel	DepC	Month	DayNight	Zone	Zone:Month	Zone:DepC
AIC	24689	19211	17091	16625	16320	16037	15736	15577
RSS	73073	62798	59066	58317	57845	57411	56863	56459
MSS	23314	33589	37322	38071	38542	38977	39525	39928
Nobs	38616	38616	38290	38290	38290	38290	38290	38290
Npars	30	217	247	258	261	264	297	354
adj_ R^{2}	24.131	34.482	38.324	39.089	39.577	40.025	40.546	40.880
\%Change	0.000	10.351	3.843	0.764	0.488	0.449	0.521	0.333

Figure 8.12. The relative influence of each factor used on the final trend in the optimal standardization for Nonspawning Eastern Gemfish. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.4 Jackass Morwong Z10-50 (MOR - 37377003 Nemadactylus macropterus)

Trawl data selected for analysis corresponded to records from zones 10 to 50 in depths $70-360 \mathrm{~m}$.

Table 8.12. Jackass Morwong from zones 10 to 50 in depths $70-360 \mathrm{~m}$ by Trawl. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Zone:Month and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Month	StDev
1986	982.8110	5771	873.1790	106	22.5642	2.0002	0.0000
1987	1087.6900	4948	1000.0540	104	26.1917	2.2616	0.0267
1988	1483.5120	5983	1313.7970	102	29.1474	2.2349	0.0261
1989	1667.3730	5434	1500.6040	89	33.9001	2.1776	0.0268
1990	1001.4140	5022	837.3570	86	24.2137	1.8250	0.0278
1991	1138.0700	5233	899.6850	85	21.1174	1.5862	0.0277
1992	758.2540	3512	525.2990	64	19.0586	1.3307	0.0309
1993	1014.9853	4731	821.8510	73	21.3564	1.3659	0.0290
1994	818.4180	5657	684.5450	71	18.0741	1.1565	0.0277
1995	789.5280	5852	705.4090	63	16.3623	1.0827	0.0274
1996	827.1910	7535	749.5740	70	13.8607	0.9926	0.0263
1997	1063.3630	7560	933.9260	70	16.1580	1.0657	0.0268
1998	876.4054	5941	688.7050	65	13.4363	0.9154	0.0277
1999	961.2618	5800	779.6130	66	14.1564	0.9428	0.0279
2000	945.0978	6811	730.9400	77	10.3611	0.8001	0.0271
2001	790.1902	6686	643.7060	70	8.4334	0.5959	0.0274
2002	811.1362	7777	692.3930	65	8.3261	0.6300	0.0269
2003	774.5778	6537	600.9390	64	7.9043	0.5466	0.0276
2004	765.5049	6483	604.4761	70	8.6153	0.5446	0.0278
2005	784.1607	6376	597.4155	58	8.9785	0.5876	0.0279
2006	811.2979	5446	616.1015	49	11.5427	0.6766	0.0287
2007	607.8702	3812	443.3657	30	12.2504	0.6879	0.0312
2008	700.4393	4491	546.6400	33	13.7889	0.8002	0.0302
2009	454.3668	3384	344.4442	27	11.4694	0.7046	0.0321
2010	380.0247	3432	291.8870	30	8.5531	0.5161	0.0322
2011	427.9796	3524	303.3383	28	8.5407	0.4951	0.0320
2012	395.5938	3145	305.2530	29	8.9426	0.4965	0.0328
2013	323.9461	2518	238.6190	26	8.7131	0.4341	0.0348
2014	216.4660	2161	140.3600	26	5.5073	0.3049	0.0361
2015	152.3598	1721	80.2410	27	4.4077	0.2417	0.0389

Figure 8.13. Jackass Morwong from zones 10 to 50 in depths $70-360 \mathrm{~m}$ by Trawl. The top left plot depicts the depth distribution of shots containing Jackass Morwong from zones 10 to 50 in depths $70-360 \mathrm{~m}$ by Trawl. The top right plot depicts the distribution of catch by depth within zones 10 to 50 . The middle left plot depicts the number of vessels through time. The middle right plot contains the number of records used in analysis. The bottom left plot contains Jackass Morwong catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Jackass Morwong catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.14. Jackass Morwong from zones 10 to 50 in depths $70-360 \mathrm{~m}$ by Trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates. The blue line is last year's optimum standardization.

Table 8.13. Jackass Morwong from zones 10 to 50 in depths $70-360 \mathrm{~m}$ by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year + Vessel
Model 3	LnCE \sim Year + Vessel + Month
Model 4	LnCE \sim Year + Vessel + Month + DepCat
Model 5	LnCE \sim Year + Vessel + Month + DepCat + Zone
Model 6	LnCE \sim Year + Vessel + Month + DepCat + Zone + DayNight
Model 7	LnCE \sim Year + Vessel + Month + DepCat + Zone + DayNight + Zone:Month
Model 8	LnCE \sim Year + Vessel + Month + DepCat + Zone + DayNight + Zone $:$ DepCat

Table 8.14. . Jackass Morwong from zones 10 to 50 in depths $70-360 \mathrm{~m}$ by Trawl. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted R^{2} (adj_ R^{2}) and the change in adjusted R^{2} (\%Change). The optimum model was Model 7 (Zone:Month). Depth category: DepC.

	Year	Vessel	Month	DepC	Zone	DayNight	Zone:Month	Zone:DepC
AIC	118352	96403	89521	85051	80317	78823	76699	77334
RSS	331626	286563	273942	264937	256793	254270	250594	251590
MSS	31622	76685	89306	98310	106454	108977	112654	111657
Nobs	153283	153283	153283	151892	151892	151892	151892	151892
Npars	30	249	260	275	279	282	326	342
adj_ R^{2}	8.688	20.983	24.458	26.932	29.177	29.871	30.865	30.583
\%Change	0.000	12.295	3.475	2.475	2.244	0.694	0.994	-0.282

Figure 8.15. The relative influence of each factor used on the final trend in the optimal standardization for Jackass Morwong in zones $10-50$. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

Table 8.15. The split of reported catches in tonnes by zone as taken by Trawl in the identified depths. GAB includes zones $82,83,84$, and 85 .

Year	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$	GAB
1986	17.028	189.137	40.259	1.710	42.833	1.079	0.000
1987	153.320	597.844	32.287	0.400	152.246	27.109	16.565
1988	143.635	769.633	80.446	13.775	46.426	19.748	12.820
1989	181.161	918.844	213.955	16.700	51.072	57.580	41.430
1990	80.174	896.639	505.097	50.770	34.226	39.482	51.348
1991	82.778	606.580	158.494	14.701	68.417	22.015	45.693
1992	108.783	689.849	225.715	14.382	33.105	22.191	32.921
1993	56.655	443.724	132.726	27.490	34.501	7.577	45.160
1994	109.032	420.051	344.380	4.474	21.107	26.708	46.599
1995	109.510	431.722	185.204	4.641	18.665	18.074	46.811
1996	79.732	385.563	187.464	67.835	10.855	3.863	52.929
1997	100.470	472.702	162.715	10.917	27.350	6.867	45.263
1998	64.784	649.778	205.295	29.995	27.213	14.151	66.733
1999	59.853	440.336	193.305	45.258	12.961	13.462	72.571
2000	45.971	443.839	249.027	64.502	16.404	9.217	102.751
2001	49.815	475.111	126.249	107.740	13.703	20.428	73.115
2002	37.154	273.619	112.989	137.773	149.603	17.561	52.075
2003	76.130	291.396	110.840	98.844	156.460	15.729	48.200
2004	32.855	239.895	196.687	62.151	114.646	12.053	98.563
2005	31.203	223.494	205.915	48.383	141.840	7.189	104.330
2006	37.018	289.029	151.947	36.915	162.915	8.309	96.863
2007	30.714	289.117	166.045	24.665	167.622	6.735	121.021
2008	14.548	230.969	118.917	25.839	96.708	5.620	109.069
2009	38.791	327.492	122.652	29.875	74.678	6.366	91.719
2010	27.420	230.783	55.928	20.819	45.113	3.843	64.330
2011	21.832	190.898	59.890	13.603	27.351	3.445	39.384
2102	17.680	184.606	51.254	35.147	51.226	11.685	30.838
2013	22.588	170.102	94.482	20.303	16.295	4.139	26.905
2014	7.630	103.087	105.968	21.596	16.065	4.128	25.447
2015	10.590	74.923	54.188	1.966	9.250	1.941	33.464

8.4.5 Jackass Morwong Z1020 (MOR-37377003 - Nemadactylus macropterus)

Trawl data selected for analysis corresponded to records from zones 10 and 20 and depths between 70 and 300 m (i.e. Danish Seine vessels were excluded).

Table 8.16. Jackass Morwong from zones 10 and 20 in depths $70-300 \mathrm{~m}$ by Trawl. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Zone:Month and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Month	StDev
1986	982.8110	5044	686.1930	87	21.2727	1.9632	0.0000
1987	1087.6900	4266	858.4750	79	26.2295	2.3769	0.0293
1988	1483.5120	5146	1024.6560	79	27.6649	2.2351	0.0286
1989	1667.3730	4325	929.4090	65	27.9306	2.1179	0.0296
1990	1001.4140	4127	600.5530	59	21.9897	1.7850	0.0305
1991	1138.0700	4436	661.7960	55	19.4029	1.6456	0.0304
1992	758.2540	2871	380.1120	47	17.2369	1.3114	0.0341
1993	1014.9853	3362	464.9250	49	17.0150	1.3958	0.0329
1994	818.4180	4467	473.1680	49	16.1904	1.2159	0.0308
1995	789.5280	4600	435.2090	47	14.0323	1.1290	0.0305
1996	827.1910	6218	544.8280	51	12.3880	1.0229	0.0290
1997	1063.3630	6030	672.0670	53	14.8967	1.1311	0.0297
1998	876.4054	4790	435.7790	46	11.3605	0.9127	0.0307
1999	961.2618	4428	447.7570	50	11.3304	0.9174	0.0313
2000	945.0978	5627	478.2770	54	8.9093	0.7729	0.0299
2001	790.1902	4808	252.5370	47	5.8922	0.5272	0.0308
2002	811.1362	5718	329.1130	44	6.3693	0.5905	0.0302
2003	774.5778	4584	237.0400	47	5.3333	0.4709	0.0313
2004	765.5049	4196	220.2786	52	5.4124	0.4637	0.0321
2005	784.1607	4378	262.6155	39	6.8948	0.5659	0.0318
2006	811.2979	3417	275.5010	36	8.8173	0.6832	0.0335
2007	607.8702	2437	212.3727	20	9.2385	0.6520	0.0369
2008	700.4393	3167	321.5780	25	11.2739	0.8296	0.0348
2009	454.3668	2448	228.4745	19	10.4038	0.7600	0.0370
2010	380.0247	2589	193.6210	19	7.6365	0.5240	0.0367
2011	427.9796	2400	170.9440	18	7.4002	0.5114	0.0377
2012	395.5938	2166	175.1280	19	7.6279	0.5040	0.0383
2013	323.9461	1409	97.4370	15	6.8977	0.4174	0.0434
2014	216.4660	1516	75.9770	17	5.0266	0.3097	0.0422
2015	152.3598	1094	42.3390	20	3.9053	0.2578	0.0471

Figure 8.16. Jackass Morwong from zones 10 and 20 in depths $70-300 \mathrm{~m}$ by Trawl. The top left plot depicts the depth distribution of shots containing Jackass Morwong from zones 10 and 20 in depths $70-300 \mathrm{~m}$ by Trawl. The top right plot depicts the distribution of catch by depth within zones 10 and 20 (Zone 20 is the top red line). The middle left plot depicts the number of vessels through time. The middle right plot contains the number of records used in analysis. The bottom left plot contains Jackass Morwong catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Jackass Morwong catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.17. Jackass Morwong from zones 10 and 20 in depths $70-300 \mathrm{~m}$ by Trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates. The blue line is last year's optimum standardization.

Table 8.17. Jackass Morwong from zones 10 and 20 in depths $70-300 \mathrm{~m}$ by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year + Vessel
Model 3	LnCE \sim Year + Vessel + Month
Model 4	LnCE \sim Year + Vessel + Month + DepCat
Model 5	LnCE \sim Year + Vessel + Month + DepCat + Zone
Model 6	LnCE \sim Year + Vessel + Month + DepCat + Zone + DayNight
Model 7	LnCE \sim Year + Vessel + Month + DepCat + Zone + DayNight + Zone $:$ Month
Model 8	LnCE \sim Year + Vessel + Month + DepCat + Zone + DayNight + Zone $:$ DepCat

Table 8.18. Jackass Morwong from zones 10 and 20 in depths $70-300 \mathrm{~m}$ by Trawl. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted R^{2} (adj_ R^{2}) and the change in adjusted R^{2} (\%Change). The optimum model was Model 7 (Zone:Month). Depth category: DepC.

	Year	Vessel	Month	DepC	Zone	DayNight	Zone:Month	Zone:DepC
AIC	83954	69680	66650	64347	62497	61124	60209	60815
RSS	239121	210812	205341	200458	197258	194906	193325	194343
MSS	32307	60615	66086	70970	74170	76521	78102	77085
Nobs	116064	116064	116064	115026	115026	115026	115026	115026
Npars	30	205	216	228	229	232	243	244
adj_R	11.880	22.195	24.207	26.001	27.182	28.048	28.624	28.248
\%Change	0.000	10.315	2.012	1.794	1.181	0.866	0.577	-0.376

Figure 8.18. The relative influence of each factor used on the final trend in the optimal standardization for Jackass Morwong in Zones $10-20$. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.6 Jackass Morwong Z30 (MOR - 37377003 - Nemadactylus macropterus)

Trawl data selected for analysis corresponded to records from zone 30 and depths between 70 and 300 m.

Table 8.19. Jackass Morwong from zone 30 in depths $70-300 \mathrm{~m}$ by Trawl. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Month:DepC and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Month:DepC	StDev
1986	982.8110	69	29.8870	6	52.3193	1.8988	0.0000
1987	1087.6900	210	57.4760	13	45.8807	1.9294	0.1805
1988	1483.5120	283	207.9350	13	90.9064	2.7498	0.1752
1989	1667.3730	687	475.0390	19	125.0172	3.4424	0.1683
1990	1001.4140	386	148.8570	26	64.6762	2.4175	0.1691
1991	1138.0700	427	189.5340	29	68.3860	1.5604	0.1672
1992	758.2540	335	106.8190	18	50.3448	1.7238	0.1721
1993	1014.9853	1042	325.8730	27	49.6567	1.3671	0.1620
1994	818.4180	762	180.1850	22	40.3411	0.9234	0.1630
1995	789.5280	826	185.2820	19	36.4017	0.9086	0.1639
1996	827.1910	890	161.4020	19	29.4500	0.8890	0.1630
1997	1063.3630	940	202.3890	15	32.4284	1.0063	0.1624
1998	876.4054	772	191.7330	15	38.4649	0.9730	0.1631
1999	961.2618	855	246.9130	17	46.7614	1.1503	0.1635
2000	945.0978	552	123.7850	23	30.7755	0.7582	0.1654
2001	790.1902	812	110.7990	19	16.3003	0.5081	0.1623
2002	811.1362	1044	108.9440	15	13.9509	0.4329	0.1619
2003	774.5778	1126	187.0530	19	20.4814	0.5984	0.1609
2004	765.5049	1500	201.2780	15	18.1516	0.4516	0.1602
2005	784.1607	1159	137.7100	17	12.3142	0.3367	0.1614
2006	811.2979	1127	154.4820	14	17.6164	0.4225	0.1620
2007	607.8702	714	111.6250	8	22.5650	0.5866	0.1643
2008	700.4393	768	119.0200	9	24.1797	0.5998	0.1642
2009	454.3668	463	54.3427	10	16.5669	0.4325	0.1677
2010	380.0247	372	58.1890	9	19.1085	0.4532	0.1707
2011	427.9796	451	48.2553	8	12.0083	0.3034	0.1683
2012	395.5938	561	92.4940	7	16.4181	0.3981	0.1668
2013	323.9461	599	103.4190	10	17.1218	0.4417	0.1656
2014	216.4660	366	53.6290	9	8.6955	0.2064	0.1700
2015	152.3598	456	30.5960	11	5.6240	0.1302	0.1676

Figure 8.19. Jackass Morwong from zone 30 in depths $70-300 \mathrm{~m}$ by Trawl. The top left plot depicts the depth distribution of shots containing Jackass Morwong from zone 30 in depths $70-300 \mathrm{~m}$ by Trawl. The top right plot depicts the catch distribution by depth within zone 30 . The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Jackass Morwong catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Jackass Morwong catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.20. Jackass Morwong from zone 30 in depths $70-300 \mathrm{~m}$ by Trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates (relative to the mean of the standardized catch rates). The blue line is last year's optimum standardization.

Table 8.20. Jackass Morwong from zone 30 in depths $70-300 \mathrm{~m}$ by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year + Month
Model 3	LnCE \sim Year + Month + Vessel
Model 4	LnCE \sim Year + Month + Vessel+ DepCat
Model 5	LnCE \sim Year + Month + Vessel + DepCat + DayNight
Model 6	LnCE \sim Year + Month + Vessel + DepCat + DayNight + DayNight:Month
Model 7	LnCE \sim Year + Month + Vessel + DepCat + DayNight + Month:DepCat
Model 8	LnCE \sim Year + Month + Vessel + DepCat + DayNight + DayNight:DepCat

Table 8.21. Jackass Morwong from zone 30 in depths $70-300 \mathrm{~m}$ by Trawl. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted $R^{2}\left(\operatorname{adj} R^{2}\right)$ and the change in adjusted R^{2} (\%Change). The optimum was model was Model 7 (Month:DepC). Depth category: DepC; DayNight: DN.

	Year	Month	Vessel	DepC	DN	DN:Month	Month:DepC	DN:DepC
AIC	11098	9238	8024	7327	7108	7070	7008	7138
RSS	35166	32089	29977	28709	28392	28248	27888	28334
MSS	8064	11141	13253	14521	14838	14982	15342	14896
Nobs	20554	20554	20554	20301	20301	20301	20301	20301
Npars	30	41	134	146	149	182	281	185
adj_ R^{2}	18.540	25.626	30.206	33.111	33.840	34.069	34.587	33.857
\%Change	0.000	7.087	4.580	2.905	0.729	0.229	0.518	-0.730

Figure 8.21. The relative influence of each factor used on the final trend in the optimal standardization for Jackass Morwong in zone 30. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor 3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.7 Jackass Morwong Z4050 (MOR - 3737700 - N. macropterus 70-360 m)

Data selected for analysis corresponded to records from zones 40 and 50 and depths between 70 and 360 m .

Table 8.22. Jackass Morwong from zones 40 and 50 in depths $70-360 \mathrm{~m}$ by Trawl. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Zone:Month and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Month	StDev
1986	982.8110	551	149.2610	19	40.7569	1.9980	0.0000
1987	1087.6900	350	58.4640	21	24.4475	1.5678	0.0867
1988	1483.5120	402	65.4440	19	32.2567	2.3425	0.0871
1989	1667.3730	346	83.2030	21	32.2213	1.6876	0.0916
1990	1001.4140	412	80.6570	22	28.9610	1.7091	0.0931
1991	1138.0700	281	40.3800	26	18.6097	1.1598	0.0974
1992	758.2540	252	28.8780	14	15.3915	0.9410	0.1002
1993	1014.9853	248	24.9710	17	15.5454	0.9021	0.1014
1994	818.4180	312	22.6790	16	14.6606	0.8843	0.0945
1995	789.5280	295	77.6150	17	21.5262	0.9299	0.0955
1996	827.1910	346	37.0710	17	15.3414	1.0295	0.0928
1997	1063.3630	489	53.8510	20	12.8371	0.8212	0.0862
1998	876.4054	267	54.6300	19	14.8359	0.8636	0.0982
1999	961.2618	383	77.2350	17	15.5951	0.7780	0.0909
2000	945.0978	430	118.9080	26	22.5459	1.1328	0.0909
2001	790.1902	920	276.7930	25	34.4490	1.2353	0.0800
2002	811.1362	860	251.7490	22	33.1596	1.2427	0.0802
2003	774.5778	655	171.7260	24	30.9832	1.0439	0.0836
2004	765.5049	681	176.6765	25	30.6678	1.0926	0.0827
2005	784.1607	722	190.7030	21	28.0502	1.1867	0.0821
2006	811.2979	818	183.2035	19	21.6176	0.9490	0.0811
2007	607.8702	594	115.4050	15	19.7196	0.7851	0.0840
2008	700.4393	473	101.9450	16	24.9533	0.7890	0.0873
2009	454.3668	413	59.1540	13	14.8023	0.6242	0.0901
2010	380.0247	410	38.3110	13	10.0420	0.4625	0.0898
2011	427.9796	622	82.8770	14	12.6506	0.4884	0.0845
2012	395.5938	345	34.7220	14	10.2040	0.3640	0.0933
2013	323.9461	466	36.1660	13	8.0350	0.3492	0.0889
2014	216.4660	252	10.1490	13	5.2197	0.2802	0.1008
2015	152.3598	155	7.0190	9	5.4323	0.3599	0.1157

Figure 8.22. Jackass Morwong from zones 40 and 50 in depths $70-360 \mathrm{~m}$ by Trawl. The top left plot depicts the depth distribution of shots containing Jackass Morwong from zones 40 and 50 in depths $70-360 \mathrm{~m}$ by Trawl. The top right plot depicts the catch distribution by depth within zones 40 and 50 . The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Jackass Morwong catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Jackass Morwong catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.23. Jackass Morwong from zones 40 and 50 in depths $70-360 \mathrm{~m}$ by Trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates. The graph standardizes catch rates relative to the mean of the standardized catch rates. The blue line is last year's optimum standardization.

Table 8.23. Jackass Morwong from zones 40 and 50 in depths $70-360 \mathrm{~m}$ by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE~Year+DepCat
Model 3	LnCE \sim Year + DepCat + Month
Model 4	LnCE~Year+DepCat+Month + Vessel
Model 5	LnCE \sim Year + DepCat + Month + Vessel + DayNight
Model 6	LnCE~Year+DepCat+Month+Vessel+DayNight+Zone
Model 7	LnCE \sim Year + DepCat + Month + Vessel+DayNight + Zone + Zone:Month
Model 8	LnCE \sim Year + DepCat + Month+Vessel+DayNight+Zone+Zone:DepCat

Table 8.24. Jackass Morwong from zones 40 and 50 in depths $70-360 \mathrm{~m}$ by Trawl. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted R^{2} (adj_ R^{2}) and the change in adjusted R^{2} (\%Change). The optimum was Model 7 (Zone:Month). Depth category: DepC.

	Year	DepC	Month	Vessel	DayNight	Zone	Zone:Month	Zone:DepC
AIC	8029	5693	4512	3882	3754	3617	3471	3525
RSS	24547	20577	18842	17767	17594	17415	17201	17260
MSS	3229	7199	8934	10010	10183	10361	10575	10516
Nobs	13750	13650	13650	13650	13650	13650	13650	13650
Npars	30	45	56	142	145	146	157	161
adj_ R^{2}	11.438	25.678	31.891	35.368	35.984	36.628	37.356	37.124
\%Change	0.000	14.239	6.213	3.477	0.615	0.644	0.728	-0.232

Figure 8.24. The relative influence of each factor used on the final trend in the optimal standardization for Jackass Morwong in zones 40 and 50. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.8 Flathead Trawl (FLT - 37296001 and 37296000 - Neoplatycephalus richardsoni and Platycephalidae)

Figure 8.25. The trends in catches and geometric mean catch rates for flathead taken by Trawl in zones 10 to 30. The catch rate trends in 10 and 20 are similar to each other but are different from that expressed in zone 30 . For this reason, zones 10 and 20 are standardized separately from Zone 30.

8.4.9 Flathead Trawl Z1020 (FLT - 37296001 and 37296000 - Neoplatycephalus richardsoni and Platycephalidae)

Trawl data selected for analysis corresponded to records from zones 10 and 20 and depths less than 400 m . The family group code 37296000 was included in this analysis as tiger flathead has been recorded as both 37296001 and 37296000 from electronic logbooks.

Table 8.25. Flathead from zones 10 and 20 in depths $0-400 \mathrm{~m}$ by Trawl. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Zone:DepC and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:DepC	StDev
1986	1911.4140	10507	968.7960	95	30.9411	0.7877	0.0000
1987	2471.7310	8360	1011.4140	88	40.7456	1.0463	0.0157
1988	2482.7610	9471	1176.9760	86	41.1818	1.1251	0.0155
1989	2609.0370	9154	1214.6890	74	43.5936	1.1337	0.0156
1990	2041.6530	7883	1224.4950	64	51.7660	1.3771	0.0164
1991	2236.1810	7926	1147.2150	57	51.4599	1.2851	0.0166
1992	2377.3580	6961	905.0140	54	43.8529	1.0215	0.0173
1993	1881.0370	8816	994.1750	57	38.6305	1.0317	0.0164
1994	1710.8930	10254	900.2990	55	29.9070	0.7564	0.0158
1995	1805.8140	10286	990.8940	54	31.6202	0.7945	0.0158
1996	1880.1650	11070	957.3650	59	29.2083	0.7093	0.0156
1997	2356.2450	10396	996.6780	61	31.0897	0.7080	0.0160
1998	2306.6670	9995	999.6910	52	32.5302	0.7531	0.0160
1999	3118.6710	10398	1129.6700	57	36.2399	0.9077	0.0158
2000	2947.7940	12945	1646.2780	59	51.7059	0.9992	0.0153
2001	2600.5370	11733	1316.4230	52	39.6288	0.9655	0.0155
2002	2876.8260	12421	1451.9000	49	39.2389	1.0556	0.0155
2003	3232.3520	12952	1595.7950	52	41.3288	1.0394	0.0153
2004	3227.3880	12296	1344.3095	52	36.2381	0.9038	0.0155
2005	2846.7890	10729	1155.9940	49	34.1559	0.7814	0.0159
2006	2586.0240	9140	1148.9090	46	40.2812	0.9421	0.0164
2007	2648.3710	6336	1076.4633	25	55.0735	1.1485	0.0181
2008	2913.1230	7300	1330.8200	27	56.4532	1.2151	0.0175
2009	2460.8730	6311	1060.7127	26	51.5876	1.1181	0.0182
2010	2502.3350	6876	1124.3520	25	49.0289	1.0767	0.0178
2011	2466.5740	6777	1096.4995	24	52.0010	1.0592	0.0179
2012	2780.8310	6887	1162.4942	24	54.3703	1.1652	0.0178
2013	1941.1480	5643	689.4606	24	37.4147	0.8862	0.0186
2014	2370.0560	6361	945.9275	25	45.9575	1.0355	0.0180
2015	2667.8090	6387	987.6740	31	48.3417	1.1716	0.0181

Figure 8.26. Flathead from zones 10 and 20 in depths $0-400 \mathrm{~m}$ by Trawl. The top left plot depicts the depth distribution of shots containing Flathead from zones 10 and 20 in depths $0-400 \mathrm{~m}$ by Trawl. The top right plot depicts the catch distribution by depth from zones 10 and 20 (top red line: zone 20). The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Flathead catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Flathead catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.27. Flathead from zones 10 and 20 in depths $0-400 \mathrm{~m}$ by Trawl. Standardized catch rates (solid black line), $95 \% \mathrm{CI}$ (vertical lines) and geometric mean (dashed black line).

Table 8.26. Flathead from zones 10 and 20 in depths $0-400 \mathrm{~m}$ by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE \sim Year+Vessel+DepCat
Model 4	LnCE \sim Year+Vessel+DepCat+Month
Model 5	LnCE \sim Year+Vessel+DepCat+Month+DayNight
Model 6	LnCE Year+Vessel+DepCat+Month+DayNight+Zone
Model 7	LnCE \sim Year+Vessel+DepCat+Month+DayNight+Zone+Zone:Month
Model 8	LnCE \sim Year+Vessel+DepCat+Month+DayNight+Zone+Zone:DepCat

Table 8.27. Flathead from zones 10 and 20 in depths $0-400 \mathrm{~m}$ by Trawl. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted $R^{2}\left(\operatorname{adj} R^{2}\right)$ and the change in adjusted R^{2} (\%Change). The optimum model was Model 8 (Zone:DepC) Depth category: DepC.

	Year	Vessel	DepC	Month	DayNight	Zone	Zone:Month	Zone:DepC
AIC	46185	15833	7325	6421	6078	6008	3829	3079
RSS	322828	288415	277379	276431	276074	276000	273763	272995
MSS	11475	45888	56925	57873	58229	58303	60540	61308
Nobs	272571	272571	270430	270430	270430	270430	270430	270430
Npars	30	216	232	243	246	247	258	263
adj_ R^{2}	3.422	13.658	16.957	17.237	17.343	17.365	18.031	18.260
\%Change	0.000	10.236	3.298	0.280	0.106	0.022	0.667	0.228

Figure 8.28. The relative influence of each factor used on the final trend in the optimal standardization for Flathead in zones 10 and 20. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.10 Flathead Trawl Z30 (FLT - 37296001 and 37296000 - Neoplatycephalus richardsoni and Platycephalidae)

Data selected for analysis corresponded to records from zone 30 and depths less than 400 m .
Table 8.28. Flathead from zone 30 in depths $0-400 \mathrm{~m}$ by Trawl. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Month:DepC and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Month:DepC	StDev
1986	1911.4140	71	16.7540	6	65.6462	0.9491	0.0000
1987	2471.7310	90	5.1550	9	18.2409	0.6198	0.1888
1988	2482.7610	200	40.2560	9	50.5790	0.9453	0.1693
1989	2609.0370	517	48.4730	19	29.3197	0.6935	0.1627
1990	2041.6530	253	24.6190	27	34.8979	0.7211	0.1648
1991	2236.1810	316	33.4130	29	28.3326	0.7154	0.1602
1992	2377.3580	272	33.8970	15	37.5785	0.6389	0.1648
1993	1881.0370	902	92.0790	24	30.3152	0.6095	0.1562
1994	1710.8930	612	64.4870	17	31.6721	0.6493	0.1573
1995	1805.8140	694	71.3490	17	31.3923	0.6922	0.1575
1996	1880.1650	714	61.4250	17	26.6946	0.6303	0.1573
1997	2356.2450	885	104.8750	14	42.7214	0.8179	0.1562
1998	2306.6670	707	118.5520	14	55.5228	0.9458	0.1567
1999	3118.6710	770	175.0520	17	68.3373	1.0199	0.1569
2000	2947.7940	520	83.6640	21	50.0166	0.8539	0.1581
2001	2600.5370	934	102.7490	17	31.5441	0.7411	0.1551
2002	2876.8260	1367	212.1580	15	46.7614	1.3840	0.1542
2003	3232.3520	1454	240.1100	21	47.4346	1.4364	0.1536
2004	3227.3880	1923	477.4160	15	80.1510	1.8854	0.1532
2005	2846.7890	1540	388.3250	18	77.1294	1.6647	0.1537
2006	2586.0240	1315	287.9680	13	60.1538	1.3593	0.1546
2007	2648.3710	823	173.1554	8	64.5088	1.1231	0.1561
2008	2913.1230	874	173.7390	11	60.9613	1.0002	0.1559
2009	2460.8730	600	100.2251	10	49.6587	1.0080	0.1575
2010	2502.3350	537	104.1860	10	55.6875	1.0175	0.1584
2011	2466.5740	623	131.2742	9	64.4316	0.9416	0.1575
2012	2780.8310	756	160.7460	8	58.6972	1.1783	0.1567
2013	1941.1480	833	191.3445	11	65.4567	1.1522	0.1561
2014	2370.0560	769	183.6865	11	67.0661	1.3544	0.1566
2015	2667.8090	1171	292.8885	13	68.8997	1.2521	0.1551

Figure 8.29 . Flathead from zone 30 in depths $0-400 \mathrm{~m}$ by Trawl. The top left plot depicts the depth distribution of shots containing Flathead from zones 10 and 20 in depths $0-400 \mathrm{~m}$ by Trawl. The top right plot depicts the catch distribution by depth from zone 30. The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Flathead catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Flathead catches (blue line: catches used in the analysis; red line: catches <30 kg).

Figure 8.30. Flathead from zone 30 in depths $0-400 \mathrm{~m}$ by Trawl. Standardized catch rates (solid black line), 95% CI (vertical lines) and geometric mean (dashed black line).

Table 8.29. Flathead from zone 30 in depths $0-400 \mathrm{~m}$ by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE Year+Vessel+DepCat
Model 4	LnCE \sim Year+Vessel+DepCat+DayNight
Model 5	LnCE \sim Year+Vessel+DepCat+DayNight + Month
Model 6	LnCE \sim Year+Vessel+DepCat+DayNight + Month+DayNight:Month
Model 7	LnCE \sim Year+Vessel+DepCat+DayNight + Month+Month:DepCat
Model 8	LnCE \sim Year+Vessel+DepCat+DayNight+Month+DayNight:DepCat

Table 8.30. Flathead from zone 30 in depths $0-400 \mathrm{~m}$ by Trawl. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted R^{2} (adj_ R^{2}) and the change in adjusted R^{2} (\%Change). The optimum was Model 7 (Mth:DepC). Depth category: DepC; DayNight: DN; Month: Mth.

	Year	Vessel	DepC	DN	Mth	DN:Mth	Mth:DepC	DN:Dep C
AIC	3272	1599	75	-270	-519	-540	-906	-577
RSS	26489	24439	22559	22214	21951	21867	21249	21803
MSS	2422	4472	6353	6698	6961	7044	7662	7109
Nobs	23042	23042	22757	22757	22757	22757	22757	22757
Npars	30	121	137	140	151	184	327	199
adj_ R^{2}	8.263	15.026	21.504	22.694	23.572	23.751	25.434	23.926
\%Change	0.000	6.763	6.479	1.190	0.878	0.179	1.683	-1.509

Figure 8.31. The relative influence of each factor used on the final trend in the optimal standardization for Flathead from zone 30 . The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.11 Flathead Danish Seine (FLT - 37296001 and 37296000 - Neoplatycephalus richardsoni and Platycephalidae)

Data selected for analysis corresponded to records from zones 20 and 60, for Danish Seine vessels only (i.e. excluded Otter Trawl vessels), and depths less than 200 m . The additional generic flathead group code was added as a result of a change in recording Tiger flathead as 37296000 in electronic logbooks since 2013.

Table 8.31. Flathead from zones 20 and 60 in depths $0-200 \mathrm{~m}$ by Danish Seine. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} /$ shot). The optimum model is Zone:Month and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Month	StDev
1986	1911.4140	5988	774.2420	26	183.8017	1.0947	0.0000
1987	2471.7310	5922	1373.1520	23	336.7735	1.6044	0.0224
1988	2482.7610	6171	1104.2320	25	262.7225	1.7212	0.0222
1989	2609.0370	5602	1147.1690	27	289.3552	1.6220	0.0226
1990	2041.6530	4778	588.8310	25	150.6150	1.0619	0.0240
1991	2236.1810	4741	777.3800	28	215.7827	1.3400	0.0242
1992	2377.3580	6674	1218.3790	23	233.9066	1.3756	0.0222
1993	1881.0370	6162	557.3410	25	114.6268	0.8305	0.0227
1994	1710.8930	7330	649.4750	25	125.4864	0.7199	0.0218
1995	1805.8140	5660	658.1740	21	192.4334	0.7671	0.0231
1996	1880.1650	7615	748.3220	22	137.2817	0.7235	0.0217
1997	2356.2450	8408	1149.9340	20	193.6332	0.9375	0.0214
1998	2306.6670	9876	1134.3800	21	147.9208	0.7929	0.0209
1999	3118.6710	8750	1702.1270	23	269.0891	1.1942	0.0213
2000	2947.7940	7354	1092.4630	19	199.9414	0.8323	0.0222
2001	2600.5370	7858	1084.5430	19	196.9445	0.7881	0.0221
2002	2876.8260	8218	1144.0750	22	181.7925	0.8893	0.0219
2003	3232.3520	9006	1210.2330	23	168.5926	0.9534	0.0217
2004	3227.3880	7784	1253.0260	22	193.6549	0.9239	0.0222
2005	2846.7890	7212	1125.7530	22	183.9055	0.9777	0.0226
2006	2586.0240	5563	968.0510	21	232.4380	0.9379	0.0239
2007	2648.3710	5551	1182.0670	15	294.1158	1.1678	0.0238
2008	2913.1230	6214	1283.4890	15	280.3483	1.0327	0.0234
2009	2460.8730	5499	1168.9280	15	318.3953	1.0518	0.0239
2010	2502.3350	6050	1167.4060	15	273.8728	0.9450	0.0235
2011	2466.5740	6889	1122.3150	14	207.9269	0.8876	0.0229
2012	2780.8310	7214	1382.3340	14	298.7905	0.8473	0.0228
2013	1941.1480	7265	937.0370	14	168.7580	0.6376	0.0228
2014	2370.0560	8374	1165.2170	14	186.1502	0.6716	0.0225
2015	2667.8090	8668	1323.3520	15	196.6040	0.6704	0.0225

Figure 8.32. Flathead from zones 20 and 60 in depths $0-200 \mathrm{~m}$ by Danish Seine. The top left plot depicts the depth distribution of shots containing Flathead from zones 20 and 60 in depths $0-200 \mathrm{~m}$ by Danish Seine. The top right plot depicts the catch distribution by depth from zones 20 and 60 . The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Flathead catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Flathead catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.33. Annual flathead catches among the reporting zones 20,60 and combined ($20 \& 60$).

Figure 8.34. Flathead from zones 20 and 60 in depths $0-200 \mathrm{~m}$ by Danish Seine. Standardized catch rates (solid black line), $95 \% \mathrm{CI}$ (vertical lines) and geometric mean (dashed black line).

Table 8.32. Flathead from zones 20 and 60 in depths $0-200 \mathrm{~m}$ by Danish Seine. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Zone
Model 3	LnCE Year+Zone+DepCat
Model 4	LnCE \sim Year+Zone+DepCat+Month
Model 5	LnCE \sim Year+Zone+DepCat+Month+Vessel
Model 6	LnCE \sim Year+Zone+DepCat+Month+Vessel+DayNight
Model 7	LnCE \sim Year+Zone+DepCat+Month+Vessel+DayNight+Zone:Month
Model 8	LnCE \sim Year+Zone+DepCat+Month+Vessel+DayNight+Zone:DepCat

Table 8.33. Flathead from zones 20 and 60 in depths $0-200 \mathrm{~m}$ by Danish Seine. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted R^{2} (adj_ R^{2}) and the change in adjusted R^{2} (\%Change). The optimum was Model 7 (Zone:Month). Depth category: DepC.

	Year	Zone	DepC	Month	Vessel	DayNight	Zone:Month	Zone:DepC
AIC	161635	123854	92796	84562	72068	65845	61919	65349
RSS	452491	377459	322437	309596	291280	282572	277189	281868
MSS	21390	96423	151445	164286	182602	191310	196693	192014
Nobs	208396	208396	205230	205230	205230	205230	205230	205230
Npars	30	31	39	92	103	106	117	114
adj_ R^{2}	4.501	20.336	31.946	34.639	38.503	40.340	41.474	40.487
\%Change	0.000	15.835	11.610	2.693	3.864	1.838	1.133	-0.987

Figure 8.35. The relative influence of each factor used on the final trend in the optimal standardization for Flathead by Danish Seine in zones 20 and 60. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.12 Redfish Z1020 (RED - 37258003 - Centroberyx affinis)

Trawl data selected for analysis corresponded to records from zones 10 and 20 from depths less than 400 m .

Table 8.34. Redfish from zones 10 and 20 in depths $0-400 \mathrm{~m}$ by Trawl. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr} \mathrm{)} .\mathrm{The} \mathrm{optimum} \mathrm{model} \mathrm{is} \mathrm{Month:DepC} \mathrm{and} \mathrm{standard} \mathrm{deviation} \mathrm{(StDev)} \mathrm{relates} \mathrm{to} \mathrm{the}$ data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Month:DepC	StDev
1986	1687.4710	5338	1598.2390	87	32.2541	1.7593	0.0000
1987	1252.6580	3931	1185.3720	79	32.2363	1.5002	0.0338
1988	1125.4920	3972	1078.8020	75	32.8369	1.6835	0.0343
1989	714.3160	2723	644.4320	72	25.1327	1.2682	0.0382
1990	931.3700	2593	794.8440	58	29.8742	1.6026	0.0392
1991	1570.6070	3352	1238.0430	52	33.6518	1.7660	0.0369
1992	1636.6870	3207	1523.6760	48	40.0168	2.1732	0.0380
1993	1921.3470	3785	1767.5710	53	46.1788	2.6451	0.0364
1994	1487.7170	5477	1340.8060	53	31.9323	1.9648	0.0337
1995	1240.6170	5697	1195.6930	52	24.0992	1.2657	0.0329
1996	1344.0490	5805	1305.1470	56	20.6510	1.1044	0.0329
1997	1397.3280	4406	1354.0270	58	23.1410	1.1564	0.0351
1998	1553.7182	4309	1528.0160	49	29.8256	1.3813	0.0350
1999	1116.4030	3943	1091.8070	53	24.3438	1.1392	0.0356
2000	758.2751	4668	737.1360	52	14.6627	0.7553	0.0348
2001	742.2683	4576	725.4900	47	13.0540	0.7473	0.0348
2002	807.1325	5215	774.5375	49	12.2185	0.7055	0.0344
2003	615.5584	4119	555.8542	51	10.7368	0.6029	0.0358
2004	475.2044	3965	449.3740	50	10.2028	0.5392	0.0363
2005	483.5160	3796	453.1700	46	11.0542	0.5921	0.0367
2006	325.4821	2589	302.6810	42	10.7454	0.5461	0.0403
2007	216.2794	1880	208.9890	23	10.7721	0.5292	0.0451
2008	183.7567	1932	179.7953	25	10.0057	0.4625	0.0449
2009	160.5248	1619	154.3370	23	9.0193	0.4065	0.0474
2010	152.8285	1871	147.4586	24	7.8240	0.3953	0.0453
2011	87.3052	1408	84.1147	22	5.4792	0.2881	0.0496
2012	66.4453	1354	62.3310	21	4.6073	0.2031	0.0500
2013	62.6740	1137	60.4391	20	5.5583	0.2623	0.0531
2014	86.7989	1415	82.8054	22	7.4969	0.3447	0.0493
2015	49.7984	1153	47.7200	22	4.8070	0.2100	0.0534

Figure 8.36. Redfish from zones 10 and 20 in depths $0-400 \mathrm{~m}$ by Trawl. The top left plot depicts the depth distribution of shots containing Redfish from zones 10 and 20 in depths $0-400 \mathrm{~m}$ by Trawl. The top right plot depicts the catch distribution by depth from zones 10 and 20. The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Redfish catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Redfish catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.37. Redfish from zones 10 and 20 in depths $0-400 \mathrm{~m}$ by Trawl. Top plot: The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates (relative to the mean of the standardized catch rates). The blue line corresponds to last year's standardized catch rates. Lower plot: Standardized catch rates (solid black line), $95 \% \mathrm{CI}$ (vertical lines) and geometric mean (dashed black line).

Table 8.35. Redfish from zone 10 in depths $0-400 \mathrm{~m}$ by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE \sim Year+Vessel+DepCat
Model 4	LnCE \sim Year+Vessel+DepCat+Zone
Model 5	LnCE \sim Year+Vessel+DepCat+Zone + Month
Model 6	LnCE \sim Year+Vessel+DepCat + Zone + Month + DayNight
Model 7	LnCE \sim Year+Vessel+DepCat+Zone + Month + DayNight + DayNight:Month
Model 8	LnCE \sim Year+Vessel+DepCat+Zone + Month+DayNight + Month:DepCat
Model 9	LnCE \sim Year+Vessel+DepCat + Zone + Month + DayNight + DayNight:DepCat

Table 8.36. Redfish from zone 10 in depths $0-400 \mathrm{~m}$ by Trawl. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted $R^{2}\left(\operatorname{adj} R^{2}\right)$ and the change in adjusted R^{2} (\%Change). The optimum model was Model 8 (Month:DepC). Depth category: DepC; DayNight: DN.

	Year	Vessel	DepC	Zone	DN	Month	DN:Month Month:DepC	DN:DepC	
AIC	110085	92872	86796	85539	84884	84556	84307	83065	83593
RSS	300146	252437	237448	234500	232965	232155	231429	227746	229671
MSS	34080	81789	96778	99727	101261	102071	102797	106480	104556
Nobs	101235	101235	100681	100681	100681	100681	100681	100681	100681
Npars	30	186	206	207	210	221	254	441	281
adj_ R^{2}	10.171	24.333	28.811	29.694	30.152	30.388	30.582	31.560	31.091
\%Change	0.000	14.162	4.478	0.883	0.458	0.235	0.195	0.977	-0.468

Figure 8.38. The relative influence of each factor used on the final trend in the optimal standardization for Redfish in zones 10 and 20. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.13 Silver Trevally Z1020 (TRE - 37337062 - Pseudocaranx dentex)

Trawl data from zones 10 and 20 corresponding to depths less than 200 m were used. In order to discount the influence of catches taken within the Batemans Bay MPA, all data in Commonwealth waters within the MPA have been excluded from the analysis. The selection of which records to exclude is improved over earlier year's analysis through the use of improved GIS.

Table 8.37. Silver Trevally from zones 10 and 20 in depths 0 to 200 m , excluding data taken in State waters (Bateman's Bay MPA). Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr})$. The optimum model is Zone:Month and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Month	StDev
1986	469.5080	1763	282.9590	74	17.0570	1.1634	0.0000
1987	198.4900	1083	122.0060	62	17.8442	1.3987	0.0607
1988	278.5410	1257	226.6600	53	23.8537	1.8021	0.0563
1989	376.1960	1847	282.4840	62	22.9733	1.9208	0.0511
1990	450.3910	1851	296.5230	52	22.7736	2.2587	0.0522
1991	340.6830	1960	218.1340	49	17.6957	1.9870	0.0529
1992	296.4930	1371	175.9210	45	13.2643	1.2114	0.0574
1993	377.6730	1415	152.2810	48	13.7212	1.2436	0.0570
1994	392.8280	2082	176.6310	47	10.2235	0.9870	0.0525
1995	413.4390	1938	177.7140	44	10.9856	1.1061	0.0533
1996	340.6160	2168	174.4590	49	8.6881	0.9655	0.0528
1997	328.8385	1657	115.7470	50	6.9074	0.9005	0.0562
1998	210.1360	1217	62.0900	42	5.7847	0.6412	0.0592
1999	166.0182	1028	49.3970	40	5.2214	0.6511	0.0623
2000	154.7527	1241	54.0240	45	3.9720	0.5018	0.0590
2001	270.1751	2010	120.6810	43	5.1258	0.6133	0.0529
2002	232.7870	1819	99.0780	40	3.6655	0.4973	0.0549
2003	337.8967	1554	91.2558	49	4.1196	0.5030	0.0559
2004	458.0749	1891	152.3540	43	6.4738	0.7251	0.0541
2005	290.9402	1028	98.7435	41	6.8153	0.6224	0.0618
2006	247.2843	704	80.4700	37	8.1280	0.7991	0.0687
2007	172.7180	571	80.8040	20	10.4198	0.9151	0.0743
2008	128.3861	912	81.7890	23	8.7006	0.8833	0.0646
2009	164.0519	962	110.6100	23	9.9383	0.8841	0.0633
2010	240.2269	1078	156.1683	24	12.6408	1.1247	0.0621
2011	193.4736	953	155.3153	20	11.5056	0.9834	0.0641
2012	139.6903	741	99.5880	21	8.1453	0.7163	0.0686
2013	122.7757	575	78.3730	20	13.7412	0.8238	0.0734
2014	106.3265	697	67.6660	20	10.2789	0.5858	0.0695
2015	67.9840	429	45.5280	20	10.6513	0.5845	0.0816

Figure 8.39. Silver Trevally from Zones 10 and 20 in depths 0 to 200 m , excluding data from State waters (Bateman's Bay MPA). The top left plot depicts the depth distribution of shots containing Silver Trevally from zones 10 and 20 in depths 0 to 200 m by Trawl, excluding data from State waters (Bateman's Bay MPA). The top right plot depicts the catch distribution by depth within zones 10 and 20 (20 is bottom red line). The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Silver Trevally catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Silver Trevally catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.40. Silver Trevally from zones 10 and 20 in depths 0 to 200 m , excluding data taken in State waters (Bateman's Bay MPA). The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates (relative to the mean of the standardized catch rates). The blue line corresponds to last year's standardized indices.

Table 8.38. Silver Trevally from Zones 10 and 20 in depths 0 to 200 m , excluding data taken in State waters (Bateman's Bay MPA). Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE Year+Vessel+DepCat
Model 4	LnCE \sim Year+Vessel+DepCat+Month
Model 5	LnCE \sim Year+Vessel+DepCat+Month+DayNight
Model 6	LnCE Year+Vessel+DepCat+Month+DayNight+Zone
Model 7	LnCE \sim Year+Vessel+DepCat+Month+DayNight+Zone+Zone:Month
Model 8	LnCE \sim Year+Vessel+DepCat+Month+DayNight+Zone+Zone:DepCat

Table 8.39. Silver Trevally from Zones 10 and 20 in depths 0 to 200 m , excluding data taken in State waters (Bateman's Bay MPA). Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted R^{2} (adj_ R^{2}) and the change in adjusted R^{2} (\%Change). The optimum model is Model 7 (Zone:Month). Depth category: DepC.

	Year	Vessel	DepC	Month	DayNight	Zone	Zone:Month	Zone:DepC
AIC	39106	30425	29034	28313	27714	27658	27564	27629
RSS	106158	84713	81609	80090	78874	78757	78527	78664
MSS	12033	33478	36581	38101	39316	39434	39664	39526
Nobs	39802	39802	39526	39526	39526	39526	39526	39526
Npars	30	180	189	200	203	204	215	213
adj_ R^{2}	10.115	28.001	30.621	31.894	32.922	33.020	33.198	33.084
\%Change	0.000	17.886	2.620	1.273	1.028	0.098	0.177	-0.114

Figure 8.41. The relative influence of each factor used on the final trend in the optimal standardization for Silver Trevally in zones 10 and 20. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor 3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.14 Silver Trevally - 37337062 (TREAIternative Treatments of the MPA)

The current Tier 4 analysis uses all the Silver Trevally catches but the catch rates relate only to records taken outside the MPA. It has been proposed to run the Tier 4 in three ways, 1) All catches and CPUE from outside the MPA, 2) all catches and CPUE from all records inside and outside the MPA, and 3) catches and CPUE from records outside the MPA. This means a further CPUE analysis using all available records for the CPUE is required.

Table 8.40. Silver Trevally from Zones 10 and 20 in depths 0 to 200 m , including all data taken in State waters (Bateman's Bay MPA). Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Zone:Month and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Month	StDev
1986	469.5080	1976	306.2840	74	17.5398	1.0756	0.0000
1987	198.4900	1259	134.9090	64	17.4100	1.2693	0.0573
1988	278.5410	1582	243.9510	56	20.1927	1.4518	0.0522
1989	376.1960	2196	332.8420	62	24.3012	1.8486	0.0483
1990	450.3910	2101	349.0320	53	24.1445	2.1736	0.0496
1991	340.6830	2225	251.6620	50	18.0432	1.8847	0.0501
1992	296.4930	1711	255.6020	45	14.4696	1.1501	0.0529
1993	377.6730	2279	282.0230	49	15.1303	1.1564	0.0499
1994	392.8280	3299	360.8900	48	12.9941	0.9823	0.0467
1995	413.4390	3342	379.2420	48	14.3443	1.1131	0.0464
1996	340.6160	3233	315.3390	54	10.9106	1.0087	0.0469
1997	328.8385	2868	297.5130	56	11.5187	0.9862	0.0480
1998	210.1360	2281	177.4570	46	9.4406	0.7516	0.0495
1999	166.0182	1856	115.1350	45	8.3688	0.7344	0.0519
2000	154.7527	2009	122.6470	48	6.0450	0.5687	0.0509
2001	270.1751	3236	227.9205	45	7.6394	0.6847	0.0465
2002	232.7870	2777	209.1290	44	5.9953	0.6442	0.0482
2003	337.8967	2761	281.9697	49	8.0171	0.6870	0.0479
2004	458.0749	3338	367.6270	45	10.6787	0.8404	0.0467
2005	290.9402	2324	242.1420	43	11.1271	0.7310	0.0500
2006	247.2843	1687	209.1645	39	13.2846	0.7949	0.0531
2007	172.7180	835	115.5430	21	11.8089	0.7691	0.0644
2008	128.3861	1065	95.8960	23	9.1077	0.8848	0.0602
2009	164.0519	1152	136.0260	23	10.5189	0.8822	0.0588
2010	240.2269	1264	191.9942	24	13.7770	1.1387	0.0577
2011	193.4736	1125	179.4593	20	12.5672	0.9752	0.0594
2012	139.6903	966	131.5530	21	11.0919	0.7677	0.0617
2013	122.7757	723	112.8740	20	16.1023	0.8225	0.0669
2014	106.3265	890	98.1320	20	12.0879	0.6244	0.0630
2015	67.9840	515	62.3410	21	11.6200	0.5980	0.0754

Figure 8.42. Silver Trevally from Zones 10 and 20 in depths 0 to 200 m , including all from State waters (Bateman's Bay MPA). The top left plot depicts the depth distribution of shots containing Silver Trevally from zones 10 and 20 in depths 0 to 200 m by Trawl, including data from State waters (Bateman's Bay MPA). The top right plot depicts the catch distribution by depth within zones 10 and 20 (20 is bottom red line). The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Silver Trevally catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Silver Trevally catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.43. Silver Trevally from zones 10 and 20 in depths 0 to 200 m , including data from State waters (Bateman's Bay MPA). The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates (relative to the mean of the standardized catch rates). The blue line corresponds to last year's standardized indices.

Table 8.41. Silver Trevally from zones 10 and 20 in depths 0 to 200 m , including data from State waters (Bateman's Bay MPA). Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE \sim Year+Vessel+DepCat
Model 4	LnCE \sim Year+Vessel+DepCat+Month
Model 5	LnCE \sim Year+Vessel+DepCat+Month+DayNight
Model 6	LnCE \sim Year+Vessel+DepCat+Month+DayNight + Zone
Model 7	LnCE \sim Year+Vessel+DepCat+Month+DayNight+Zone+Zone:Month
Model 8	LnCE \sim Year+Vessel+DepCat+Month+DayNight + Zone + Zone:DepCat

Table 8.42. Silver Trevally from Zones 10 and 20 in depths 0 to 200 m, excluding data taken in State waters (Bateman's Bay MPA). Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted $R^{2}\left(\operatorname{adj} R^{2}\right)$ and the change in adjusted R^{2} (\%Change). The optimum model is Model 7 (Zone:Month). Depth category: DepC.

	Year	Vessel	DepC	Month	DayNight	Zone	Zone:Mth	Zone:DepC
AIC	61888	48070	44517	43809	42992	42961	42814	42931
RSS	168270	132380	124351	122808	121091	121023	120673	120923
MSS	7756	43646	51674	53218	54935	55003	55353	55103
Nobs	58875	58875	58424	58424	58424	58424	58424	58424
Npars	30	183	192	203	206	207	218	216
adj_ R^{2}	4.359	24.562	29.124	29.991	30.966	31.004	31.190	31.050
\%Change	0.000	20.203	4.562	0.866	0.975	0.038	0.186	-0.140

Figure 8.44. Average reported depth of trawling for Silver Trevally from Zones 10 and 20 in depths 0 to 200 m , including data from State waters (Bateman's Bay MPA). The effect of the introduction of the Bateman's Bay MPA in increasing the average depth fished is apparent from 2008 onwards.

Figure 8.45. Comparison of the CPUE series with and without the data from inside the MPA. The All data series is less variable than the series that excludes data from the MPA.

Figure 8.46. The relative influence of each factor used on the final trend in the optimal standardization for Silver Trevally in zones 10 and 20 (including MPA records). The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.15 Royal Red Prawn (PRR - 28714005 - Haliporoides sibogae)

Trawl data selected for analysis corresponded to records from zone 10 in depths between 200 - 700 m.

Table 8.43. Royal Red Prawn from zone 10 in depths $200-700 \mathrm{~m}$ by Trawl. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Month:DepC and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Month:DepC	StDev
1986	277.7170	1592	231.8440	47	71.7065	0.7001	0.0000
1987	351.2940	1764	324.7160	47	93.0098	0.8947	0.0382
1988	362.5050	1395	344.4570	41	124.6161	0.9791	0.0412
1989	329.2540	1143	310.7600	39	139.2891	0.8409	0.0431
1990	337.1340	727	311.1180	25	174.4921	1.5841	0.0496
1991	334.1340	734	299.3700	29	182.9425	1.3996	0.0504
1992	166.8600	434	146.0810	19	166.4494	1.0234	0.0586
1993	298.7970	673	232.7740	21	172.5386	1.2238	0.0500
1994	359.8303	661	240.3630	26	170.4137	1.1783	0.0502
1995	335.5920	1070	252.9050	25	105.0529	0.9175	0.0440
1996	360.7760	1216	272.6750	25	95.4163	0.8147	0.0425
1997	252.6930	855	166.7030	21	86.8573	0.7715	0.0467
1998	233.2980	1234	190.7320	23	67.9917	0.7929	0.0430
1999	367.0420	1607	348.8040	25	84.2022	0.8152	0.0409
2000	434.9308	1540	398.6840	27	127.1453	1.0164	0.0412
2001	276.7855	1314	229.5490	22	76.3486	0.8416	0.0433
2002	484.2085	1740	417.3700	23	131.5076	1.0520	0.0404
2003	230.8050	801	163.1840	26	115.5988	1.0379	0.0493
2004	193.8510	579	170.6810	22	207.4067	1.0812	0.0540
2005	173.8960	601	159.8050	21	153.2133	0.9879	0.0539
2006	192.2620	455	178.5790	17	297.7054	1.2025	0.0585
2007	121.5453	324	116.4300	9	252.8144	0.7996	0.0665
2008	75.7990	252	70.6050	8	221.0994	0.6954	0.0748
2009	68.7850	250	67.6070	9	158.9600	0.8903	0.0790
2010	96.7650	343	82.8210	9	138.3098	0.8581	0.0664
2011	110.9230	291	108.9600	8	206.3570	1.3081	0.0708
2012	126.5190	363	122.7770	9	169.2764	0.9949	0.0654
2013	212.1670	428	208.2470	9	286.9174	1.2637	0.0690
2014	121.7380	351	118.5350	11	176.3687	1.0048	0.0664
2015	125.8350	345	119.7550	8	219.9117	1.0298	0.0694

Figure 8.47. Royal Red Prawn from zone 10 in depths 200 - 700m by Trawl. The top left plot depicts the depth distribution of shots containing Royal red Prawn from zone 10 in depths 200 to 700 m by Trawl. The top right plot depicts the catch distribution by depth within zone 10 . The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Royal Red Prawn catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Royal Red Prawn catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.48. Royal Red Prawn from zone 10 in depths 200 - 700 m by Trawl. Standardized catch rates (solid black line), 95% CI (vertical lines) and geometric mean (dashed black line).

Table 8.44. Royal Red Prawn from zone 10 in depths 200 - 700 m by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE~Year+DepCat
Model 3	LnCE~Year+DepCat+Vessel
Model 4	LnCE~Year + DepCat + Vessel+Month
Model 5	LnCE \sim Year + DepCat + Vessel+Month + DayNight
Model 6	LnCE~Year+DepCat+Vessel+Month+DayNight+DayNight:DepCat
Model 7	LnCE~Year+DepCat+Vessel+Month+DayNight+Month:DepCat
Model 8	LnCE~Year+DepCat+Vessel+Month+DayNight+DayNight:DepCat

Table 8.45. Royal Red Prawn from zone 10 in depths $200-700 \mathrm{~m}$ by Trawl. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted $R^{2}\left(\operatorname{adj} R^{2}\right)$ and the change in adjusted R^{2} (\%Change). The optimum was Model 7: Month:DepC. Depth category: DepC; DayNight: DN.

	Year	DepC	Vessel	Month	DN	DN:Month	Month:DepC	DN:DepC
AIC	14037	9671	3865	2074	1881	1876	1450	1782
RSS	43790	36630	28820	26799	26585	26510	25923	26423
MSS	2124	9283	17093	19114	19328	19403	19990	19490
Nobs	25082	24930	24930	24930	24930	24930	24930	24930
Npars	30	39	125	136	139	172	238	166
adj_R	4.515	20.097	36.916	41.313	41.775	41.861	42.997	42.067
\%Change	0.000	15.582	16.818	4.397	0.462	0.086	1.136	-0.930

Figure 8.49. The relative influence of each factor used on the final trend in the optimal standardization for Royal Red Prawn in zone 10. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.16 Blue Eye Trevalla Z20-50 (TBE - 37445001 - Hyperoglyphe antarctica)

Trawl data from zones 20, 30, 40 and 50 and depths less than 1000 m were analysed.

Table 8.46. Blue Eye Trevalla from zones 20, 30, 40 and 50 in depths $0-1000 \mathrm{~m}$ by Trawl. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Zone:DepC and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:DepC	StDev
1986	37.9620	360	25.0720	34	24.6441	1.6980	0.0000
1987	15.4950	246	13.1710	27	18.1060	1.6435	0.1054
1988	105.1770	449	95.8430	33	66.8545	2.6081	0.0977
1989	88.0660	551	77.2410	51	58.3218	2.6560	0.0955
1990	79.2980	421	70.7550	50	82.3640	3.3408	0.1016
1991	76.0240	602	47.8930	49	23.9199	1.9238	0.0961
1992	49.3050	442	42.8750	36	54.1822	1.6874	0.1010
1993	59.6540	1020	55.8080	44	18.6846	1.1495	0.0915
1994	109.9750	1202	105.2900	45	30.7446	1.2590	0.0908
1995	58.5720	986	54.6590	39	14.6967	0.8538	0.0922
1996	71.6840	1167	65.6070	46	17.3499	0.7691	0.0914
1997	471.4664	1390	102.2800	44	16.4663	0.7504	0.0909
1998	475.9652	1251	77.6040	39	13.3570	0.9009	0.0920
1999	574.4838	1508	88.0240	40	13.0810	0.8997	0.0906
2000	667.0558	1766	82.3900	50	11.4731	0.6836	0.0895
2001	647.5307	1669	68.7090	44	10.2481	0.6221	0.0901
2002	843.8591	1503	66.0295	45	13.2793	0.5466	0.0907
2003	605.3019	1113	25.0763	42	7.1185	0.5031	0.0927
2004	606.2500	1475	46.4366	42	10.9467	0.4689	0.0912
2005	755.1858	1010	30.6695	36	11.4233	0.4639	0.0937
2006	573.7189	860	53.0610	29	16.9679	0.5139	0.0945
2007	937.1424	785	36.7948	22	11.9171	0.4901	0.0956
2008	398.9433	758	30.0251	21	20.9032	0.5531	0.0959
2009	520.8777	589	38.6428	20	25.5479	0.5277	0.0986
2010	437.3987	624	42.5536	21	20.6240	0.4788	0.0981
2011	554.2188	608	22.5124	21	8.4139	0.4197	0.0983
2012	463.8349	411	10.3400	19	3.6741	0.3644	0.1050
2013	398.3768	351	22.7978	22	15.5137	0.4008	0.1068
2014	460.5264	336	29.2876	19	29.6746	0.4431	0.1079
2015	295.0238	295	25.0471	19	141.6765	0.3802	0.1125

Figure 8.50. Blue Eye Trevalla from zones 20 through to 50 in depths $0-1000 \mathrm{~m}$ by Trawl. The top left plot depicts the depth distribution of shots containing Blue Eye Trevalla from each zone in depths 0 to 1000 m by Trawl. The top right plot depicts the catch distribution by depth within each zone. The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Blue Eye Trevalla catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Blue Eye Trevalla catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.51. Blue Eye Trevalla from zones 20 through to 50 in depths $0-1000 \mathrm{~m}$ by Trawl. Standardized catch rates (solid black line), $95 \% \mathrm{CI}$ (vertical lines) and geometric mean (dashed black line). Mean standardized catch rate (grey line).

Table 8.47. Blue Eye Trevalla from zones 20, 30, 40 and 50 in depths $0-1000 \mathrm{~m}$ by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE~Year+Vessel
Model 3	LnCE \sim Year+Vessel+Zone
Model 4	LnCE \sim Year+Vessel+Zone+DepCat
Model 5	LnCE~Year+Vessel+Zone+DepCat+DayNight
Model 6	LnCE \sim Year+Vessel+Zone+DepCat+DayNight+Month
Model 7	LnCE \sim Year+Vessel+Zone+DepCat+DayNight + Month+Zone:Month
Model 8	LnCE \sim Year+Vessel+Zone+DepCat+DayNight + Month+Zone:DepCat

Table 8.48. Blue Eye Trevalla from zones 20, 30, 40 and 50 in depths $0-1000 \mathrm{~m}$ by Trawl. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted R^{2} (adj_ R^{2}) and the change in adjusted R^{2} (\%Change). The optimum was Model 8: Zone:DepC. Depth category: DepC.

	Year	Vessel	Zone	DepC	DayNight	Month Zone:Month	Zone:DepC
AIC	21184	10323	8720	8385	8253	8109	8062
RSS	58485	37919	35622	34972	34783	34559	34406
MSS	6699	27264	29562	30212	30401	30625	30778
Nobs	25748	25748	25748	25604	25604	25604	25604
Npars	30	178	181	201	204	215	248
adj_ R^{2}	10.176	41.424	44.968	45.927	46.212	46.536	46.703
\%Change	0.000	31.248	3.543	0.959	0.285	0.324	0.167

Figure 8.52. The relative influence of each factor used on the final trend in the optimal standardization for Blue Eye Trevalla in zones $20-50$. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.17 Blue Eye Trevalla Z2030 (TBE - 37445001 - Hyperoglyphe antarctica)

Trawl data from zones 20, 30 and depths less than 1000 m were analysed.
Table 8.49. Blue Eye Trevalla from zones 20, 30 in depths $0-1000 \mathrm{~m}$ by Trawl. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Zone:DepC and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:DepC	StDev
1986	37.9620	166	9.1170	17	10.0553	2.2460	0.0000
1987	15.4950	190	10.0260	14	9.8390	2.0967	0.1373
1988	105.1770	307	19.4330	21	14.4132	2.6542	0.1299
1989	88.0660	313	33.2560	32	14.6076	2.9716	0.1324
1990	79.2980	264	39.8450	36	24.1892	3.7996	0.1348
1991	76.0240	474	29.1890	37	9.3594	2.0068	0.1270
1992	49.3050	313	14.2320	23	8.3976	1.4946	0.1341
1993	59.6540	731	37.6990	31	8.0165	1.2192	0.1241
1994	109.9750	854	89.0080	33	10.7333	1.3858	0.1234
1995	58.5720	486	28.2780	29	5.8486	0.9303	0.1282
1996	71.6840	644	35.4230	29	5.7724	0.7454	0.1258
1997	471.4664	602	19.9090	31	4.6913	0.6814	0.1278
1998	475.9652	471	18.6580	24	4.1372	0.7916	0.1301
1999	574.4838	631	41.7210	27	3.6101	0.8100	0.1269
2000	667.0558	657	37.6610	34	2.7104	0.5178	0.1247
2001	647.5307	700	25.1710	24	2.2528	0.4547	0.1250
2002	843.8591	700	33.7320	28	3.0245	0.4505	0.1269
2003	605.3020	722	14.0635	25	2.2528	0.4513	0.1263
2004	606.2500	623	15.1709	28	2.7224	0.4447	0.1279
2005	755.1858	502	17.9194	26	2.6091	0.4438	0.1311
2006	573.7189	327	36.7820	17	3.9453	0.5463	0.1353
2007	937.1424	247	10.6065	11	3.1151	0.4335	0.1411
2008	398.9433	434	13.6537	15	5.6341	0.418	0.1346
2009	520.8777	246	22.8489	14	5.4891	0.3950	0.1423
2010	437.3987	197	11.5432	13	3.3742	0.2659	0.1476
2011	554.2188	227	7.8041	12	2.1952	0.2792	0.1445
2012	463.8349	150	1.3334	11	1.6617	0.2466	0.1540
2013	398.3268	147	4.1109	11	3.6018	0.2242	0.1557
2014	460.1404	120	20.5533	11	7.7831	0.2984	0.1629
2015	294.6678	189	22.3964	14	17.4973	0.3032	0.1533

Figure 8.53. Blue Eye Trevalla from zones 20, 30 in depths $0-1000 \mathrm{~m}$ by Trawl. The top left plot depicts the depth distribution of shots containing Blue Eye Trevalla from each zone in depths 0 to 1000 m by Trawl. The top right plot depicts the catch distribution by depth within each zone. The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Blue Eye Trevalla catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Blue Eye Trevalla catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.54. Blue Eye Trevalla from zones 20 and 30 in depths $0-1000 \mathrm{~m}$ by Trawl. Standardized catch rates (solid black line). The dashed black line represents the geometric mean catch rate (relative to the mean standardized catch rates). The blue line corresponds to last year's standardized catch rates. Mean standardized catch rate (grey line).

Table 8.50. Blue Eye Trevalla from zones 20, 30 in depths $0-1000 \mathrm{~m}$ by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE \sim Year+Vessel+Zone
Model 4	LnCE \sim Year+Vessel+Zone+DepCat
Model 5	LnCE \sim Year+Vessel+Zone+DepCat + DayNight
Model 6	LnCE Year+Vessel+Zone+DepCat+DayNight+Month
Model 7	LnCE \sim Year+Vessel+Zone+DepCat+DayNight+Month+Zone:Month
Model 8	LnCE \sim Year+Vessel+Zone+DepCat+DayNight+Month+Zone:DepCat

Table 8.51. Blue Eye Trevalla from zones 20, 30 in depths $0-1000 \mathrm{~m}$ by Trawl. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted R^{2} (adj_ R^{2}) and the change in adjusted $R^{2}(\%$ Change $)$. The optimum was Model 8: Zone:DepC. Depth category: DepC.

	Year	Vessel	Zone	DepC	DayNight	Month Zone:Month	Zone:DepC
AIC	11640	4763	4357	4244	4225	4183	4151
RSS	31593	17984	17413	17053	17018	16932	16860
MSS	5119	18728	19299	19659	19694	19781	19852
Nobs	12634	12634	12634	12555	12555	12555	12555
Npars	30	151	152	200	203	214	225
adj_ R^{2}	13.745	50.424	51.994	52.801	52.887	53.084	53.242
\%Change	0.000	36.680	1.570	0.807	0.086	0.197	0.157

Figure 8.55. The relative influence of each factor used on the final trend in the optimal standardization for Blue Eye Trevalla in zones 20 and 30. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor 3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.18 Blue Eye Trevalla Z4050 (TBE - 37445001 - Hyperoglyphe antarctica)

Trawl data from zones 40 and 50 and depths less than 1000 m were analysed.
Table 8.52. Blue Eye Trevalla from zones 40 and 50 in depths $0-1000 \mathrm{~m}$ by Trawl. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Zone:DepC and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:DepC	StDev
1986	37.9620	194	15.9550	18	13.1296	1.0210	0.0000
1987	15.4950	56	3.1450	14	11.6895	0.8171	0.1771
1988	105.1770	142	76.4100	15	41.5696	2.4948	0.1566
1989	88.0660	238	43.9850	24	25.5841	2.0845	0.1380
1990	79.2980	157	30.9100	16	13.0702	2.1783	0.1588
1991	76.0240	128	18.7040	18	17.2513	1.7207	0.1584
1992	49.3050	129	28.6430	15	21.8842	2.1452	0.1567
1993	59.6540	289	18.1090	19	8.5334	0.9348	0.1400
1994	109.9750	348	16.2820	19	8.8991	0.9629	0.1364
1995	58.5720	500	26.3810	21	6.4723	0.8627	0.1326
1996	71.6840	523	30.1840	24	8.0361	0.9020	0.1333
1997	471.4664	788	82.3710	18	6.5139	0.9223	0.1299
1998	475.9652	780	58.9460	19	5.3540	1.1001	0.1313
1999	574.4838	877	46.3030	19	6.4046	1.1276	0.1302
2000	667.0558	1109	44.7290	23	5.2927	0.9810	0.1293
2001	647.5307	969	43.5380	26	5.8514	0.9418	0.1309
2002	843.8591	803	32.2975	26	5.0569	0.7866	0.1310
2003	605.3020	391	11.0128	25	3.1904	0.6955	0.1377
2004	606.2500	852	31.2657	24	4.2140	0.6152	0.1312
2005	755.1858	508	12.7502	22	3.6280	0.5767	0.1345
2006	573.7189	533	16.2790	17	3.6218	0.5837	0.1341
2007	937.1424	538	26.1883	16	4.4303	0.6199	0.1341
2008	398.9433	324	16.3714	14	4.9605	0.8210	0.1394
2009	520.8777	343	15.7939	13	4.0546	0.7737	0.1391
2010	437.3987	427	31.0104	14	5.4788	0.7831	0.1362
2011	554.2188	381	14.7083	14	2.8223	0.6106	0.1373
2012	463.8349	261	9.0066	11	1.8380	0.4542	0.1457
2013	398.3268	203	18.6619	15	3.2600	0.5932	0.1478
2014	460.1404	211	8.6683	13	3.0568	0.5611	0.1477
2015	294.6678	106	2.6507	9	1.8727	0.3288	0.1686

Figure 8.56. Blue Eye Trevalla from zones 40 and 50 in depths $0-1000 \mathrm{~m}$ by Trawl. The top left plot depicts the depth distribution of shots containing Blue Eye Trevalla from each zone in depths 0 to 1000 m by Trawl. The top right plot depicts the catch distribution by depth within each zone. The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Blue Eye Trevalla catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Blue Eye Trevalla catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.57. Blue Eye Trevalla from zones 40 and 50 in depths $0-1000 \mathrm{~m}$ by Trawl. Standardized catch rates (solid black line). The dashed black line represents the geometric mean catch rate (relative to the mean standardized catch rates). The blue line corresponds to last year's standardized catch rates. Mean standardized catch rate (grey line).

Table 8.53. Blue Eye Trevalla from zones 40 and 50 in depths $0-1000 \mathrm{~m}$ by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE \sim Year+Vessel+Zone
Model 4	LnCE \sim Year+Vessel+Zone+DepCat
Model 5	LnCE \sim Year+Vessel+Zone+DepCat + DayNight
Model 6	LnCE Year+Vessel+Zone+DepCat+DayNight+Month
Model 7	LnCE \sim Year+Vessel+Zone+DepCat+DayNight+Month+Zone:Month
Model 8	LnCE \sim Year+Vessel+Zone+DepCat+DayNight+Month+Zone:DepCat

Table 8.54. Blue Eye Trevalla from zones 40 and 50 in depths $0-1000 \mathrm{~m}$ by Trawl. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted R^{2} (adj_ R^{2}) and the change in adjusted $R^{2}(\%$ Change $)$. The optimum was Model 8: Zone:DepC. Depth category: DepC.

	Year	Vessel	Zone	DepC	DayNight	Month Zone:Month	Zone:DepC
AIC	8562	3225	2776	2670	2564	2514	2512
RSS	25075	16478	15741	15606	15454	15392	15364
MSS	3284	11881	12618	12753	12905	12967	12995
Nobs	13108	13108	13043	13043	13043	13043	13043
Npars	30	113	162	165	176	177	188
adj_ R^{2}	11.385	41.394	43.800	44.269	44.766	44.981	45.036
\%Change	0.000	30.009	2.406	0.469	0.497	0.215	0.055

Figure 8.58. The relative influence of each factor used on the final trend in the optimal standardization for Blue Eye Trevalla in zones 40 and 50. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.19 Blue Grenadier Non-Spawning (GRE - 37227001 Macruronus novaezelandiae)

Trawl data selected for analysis corresponded to records from zones 10 to 60 except in zone 40 from June to August. Depths greater than 0 m and less than 1000 m were also included in the analysis.

Table 8.55. Blue Grenadier from the SET in depths between $0-1000 \mathrm{~m}$, taken by Trawl, omitting the Spawning fishery (zone 40 between June and August). Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates $(\mathrm{kg} / \mathrm{hr})$. The optimum model is Zone:Month and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Month	StDev
1986	1451.7780	3189	1183.3070	92	141.8895	1.5710	0.0000
1987	2244.8280	3569	1437.4340	91	135.1891	2.0092	0.0338
1988	1849.1470	3961	1470.1960	102	128.9817	2.1785	0.0339
1989	1890.8550	4309	1813.5010	99	151.1360	2.1892	0.0338
1990	2280.4710	3577	1625.1460	92	156.6999	2.1833	0.0358
1991	3669.0360	4307	2392.2870	86	208.2422	1.5556	0.0344
1992	2474.5460	3235	1505.8140	62	178.0744	1.2589	0.0366
1993	2482.2700	4203	1619.0490	63	125.3869	0.9515	0.0351
1994	2315.4900	4491	1309.5630	66	93.9576	0.8599	0.0346
1995	1931.0460	5075	1015.1610	61	58.5788	0.5953	0.0338
1996	2304.2340	5370	1055.3400	73	56.2697	0.5409	0.0337
1997	3654.6590	6194	994.6040	73	43.7798	0.5654	0.0332
1998	4226.1770	6598	1452.3520	65	74.7536	0.9120	0.0331
1999	7573.0180	8046	2051.9760	65	89.7587	0.9601	0.0323
2000	7503.1400	7680	1751.2315	70	73.5207	0.6884	0.0326
2001	8370.7990	7344	1023.0800	60	40.3410	0.3936	0.0330
2002	7976.8590	6347	1124.6527	57	54.7338	0.3944	0.0336
2003	7947.1150	5676	669.6359	56	33.7578	0.3298	0.0339
2004	6091.1790	6393	1204.7328	56	56.3464	0.5537	0.0337
2005	4506.6460	5346	1174.7071	54	65.8646	0.6650	0.0343
2006	3544.3540	4362	1308.8400	42	84.5394	0.8842	0.0355
2007	3127.3930	3659	1203.7072	27	86.4721	0.7915	0.0365
2008	4150.1920	3406	1274.3986	26	110.9800	0.8742	0.0370
2009	3874.2100	3443	1128.4378	23	89.0993	0.8118	0.0369
2010	4551.2510	3314	1136.1358	25	81.8686	0.8100	0.0373
2011	4476.9130	3969	897.7095	26	49.2213	0.6470	0.0362
2012	4483.2820	3210	613.6124	29	40.8033	0.5232	0.0377
2013	4217.1500	3052	742.0920	26	58.2177	0.9262	0.0381
2014	1265.5160	3042	920.7774	28	77.9687	1.1383	0.0380
2015	1462.1300	2959	1050.0345	29	106.4365	1.2382	0.0383

Figure 8.59. Blue Grenadier from the SET in depths between $0-1000 \mathrm{~m}$, taken by Trawl, omitting the Spawning fishery (zone 40 between June and August). The top left plot depicts the depth distribution of shots containing Blue Grenadier from the SET omitting the Spawning fishery (zone 40 between June and August) in depths 0 1000 m by Trawl. The top right plot depicts the catch distribution by depth by zone. The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Blue Grenadier catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Blue Grenadier catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.60. Blue Grenadier from the SET in depths between $0-1000 \mathrm{~m}$, taken by Trawl, omitting the Spawning fishery (zone 40 between June and August). The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates (relative to the mean of the standardized catch rates), and 95% CI (vertical lines).

Table 8.56. Blue Grenadier from the SET in depths between $0-1000 \mathrm{~m}$, taken by Trawl, omitting the Spawning fishery (zone 40 between June and August). Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE \sim Year+Vessel+DepCat
Model 4	LnCE \sim Year+Vessel+DepCat+Month
Model 5	LnCE Year+Vessel+DepCat+Month+Zone
Model 6	LnCE \sim Year+Vessel+DepCat+Month+Zone+DayNight
Model 7	LnCE \sim Year+Vessel+DepCat+Month+Zone+DayNight+Zone:Month
Model 8	LnCE \sim Year+Vessel+DepCat+Month+Zone+DayNight+Zone:DepCat

Table 8.57. Blue Grenadier from the SET in depths between $0-1000 \mathrm{~m}$, taken by Trawl, omitting the Spawning fishery (zone 40 between June and August). Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted R^{2} (adj_ $\left.R^{2}\right)$ and the change in adjusted $R^{2}(\%$ Change $)$. The optimum is Model 7 (Zone:Month). Depth category: DepC.

	Year	Vessel	DepC	Month	Zone	DayNight	Zone:Month	Zone:DepC
AIC	127710	103612	88804	83594	80527	77613	74341	76042
RSS	348282	292129	262016	252300	246755	241607	235777	238570
MSS	25479	81632	111745	121461	127006	132154	137984	135191
Nobs	139326	139326	138468	138468	138468	138468	138468	138468
Npars	30	229	247	258	263	266	321	356
adj_ R^{2}	6.798	21.713	29.773	32.371	33.855	35.234	36.772	36.006
\%Change	0.000	14.915	8.060	2.599	1.484	1.378	1.538	0.772

Figure 8.61. The relative influence of each factor used on the final trend in the optimal standardization for Blue Grenadier non-spawning fishery. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.20 Silver Warehou Z10-50 (TRS - 37445006 - Seriolella punctata)

Trawl data selected for analysis corresponded to records from zones 10 to 50 and depths between 0 600 m .

Figure 8.62. The trends in catches and catch rates for zones $10-50$, split east and west.

Catch rates in the east show approximately similar trends, though there are some differences between 2000 and 2003. In the west the pattern in catch rates are noisy but relatively flat from 1992 to 2006 followed by a decline. Trends appear to be different between the east and west.

Table 8.58. Silver Warehou from Zones 10 to 50 and depths $0-600 \mathrm{~m}$ by Trawl. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Zone:Month and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Month	StDev
1986	1156.5330	2438	1135.2960	86	32.2897	1.6137	0.0000
1987	782.1510	1509	757.2980	76	35.5040	1.6663	0.0561
1988	1646.1870	2249	1617.2400	87	42.9346	2.1278	0.0509
1989	926.2570	2049	907.4200	80	30.7291	1.7120	0.0537
1990	1346.5850	1983	1290.9590	81	40.6488	1.8580	0.0542
1991	1453.1690	2290	1207.4810	78	25.6943	1.2661	0.0531
1992	733.7670	1858	625.2760	56	27.9497	1.1138	0.0555
1993	1815.8010	3864	1735.0090	61	33.3011	1.2694	0.0485
1994	2309.5100	4519	2300.0830	57	34.7142	1.3482	0.0474
1995	2002.8810	5015	1968.6070	58	29.7678	1.2207	0.0468
1996	2188.2440	6080	2137.3730	67	22.7319	1.1414	0.0461
1997	2562.0160	5765	2305.7850	61	25.3481	1.1729	0.0467
1998	2166.0212	4702	1976.6670	57	26.6416	1.1254	0.0476
1999	2834.0520	5147	2685.6730	58	31.2497	0.9627	0.0472
2000	3401.5633	6735	3325.0720	63	26.1343	0.8732	0.0460
2001	2970.4067	7345	2816.4640	58	21.8403	0.7340	0.0458
2002	3841.4390	8423	3659.2765	57	23.0006	0.7933	0.0453
2003	2910.0946	7405	2782.8079	64	20.4602	0.7933	0.0458
2004	3202.0836	7861	3036.7484	58	23.3439	0.8796	0.0456
2005	2647.9671	6920	2558.2815	56	20.0277	0.8657	0.0461
2006	2191.1968	5663	2076.2746	47	18.2145	0.7606	0.0470
2007	1816.5165	4657	1665.2355	33	20.1239	0.7148	0.0481
2008	1381.1590	4400	1279.9289	32	16.1202	0.6492	0.0484
2009	1285.3059	4387	1109.6456	28	15.8837	0.6709	0.0484
2010	1189.4336	4484	1082.6024	28	13.2592	0.5548	0.0484
2011	1108.7509	4940	1042.7738	30	12.6164	0.5138	0.0479
2012	781.1541	3768	750.5568	29	10.4075	0.4218	0.0497
2013	584.0728	2979	502.9518	29	11.6081	0.4613	0.0515
2014	356.8551	2891	333.4079	27	9.3123	0.3791	0.0517
2015	367.8410	2665	332.9070	28	7.9890	0.3363	0.0525

Figure 8.63. Silver Warehou from zones 10 to 50 and depths $0-600 \mathrm{~m}$ by Trawl. The top left plot depicts the depth distribution of shots containing Silver Warehou from zones 10 to 50 in depths $0-600 \mathrm{~m}$ by Trawl. The top right plot depicts the catch distribution by depth by zone. The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Silver Warehou catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Silver Warehou catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.64. Silver Warehou from Zones 10 to 50 and depths $0-600 \mathrm{~m}$ by Trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates (relative to the mean of the standardized catch rates). The blue line corresponds to last year's standardized indices.

Table 8.59. Silver Warehou from Zones 10 to 50 and depths $0-600 \mathrm{~m}$ by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE \sim Year+Vessel+Month
Model 4	LnCE \sim Year+Vessel+Month+Zone
Model 5	LnCE \sim Year+Vessel+Month+Zone+DepCat
Model 6	LnCE \sim Year+Vessel+Month+Zone+DepCat+DayNight
Model 7	LnCE \sim Year+Vessel+Month+Zone+DepCat+DayNight+Zone:Month
Model 8	LnCE \sim Year+Vessel+Month+Zone+DepCat+DayNight+Zone:DepCat

Table 8.60. Silver Warehou from Zones 10 to 50 and depths $0-600 \mathrm{~m}$ by Trawl. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted R^{2} (adj_ R^{2}) and the change in adjusted $R^{2}(\%$ Change). The optimum is Zone:Month (Model 7). Depth Category: DepC.

	Year	Vessel	Month	Zone	DepC	DayNight	Zone:Month	Zone:DepC
AIC	160044	137623	131317	128813	125927	125887	123995	124365
RSS	441578	372889	355814	349010	341559	341443	336437	336984
MSS	18090	86779	103853	110658	118109	118225	123231	122684
Nobs	134991	134991	134991	134099	134099	134099	134099	134099
Npars	30	231	242	272	276	279	323	399
adj_ R^{2}	3.915	18.740	22.455	23.920	25.542	25.565	26.633	26.471
\%Change	0.000	14.825	3.714	1.465	1.622	0.024	1.067	-0.161

Figure 8.65. The relative influence of each factor used on the final trend in the optimal standardization for Silver Warehou in zones $10-50$. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.21 Silver Warehou Z10-30 (TRS - 37445006 - Seriolella punctata)

Table 8.61. Silver Warehou from Zones 10 to 30 and depths $0-600 \mathrm{~m}$ by Trawl. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Zone:DepC and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:DepC	StDev
1986	1156.5330	1318	491.7080	66	26.2914	1.7747	0.0000
1987	782.1510	784	266.3420	56	24.5689	1.7074	0.0780
1988	1646.1870	1675	932.7990	69	36.4292	2.2083	0.0659
1989	926.2570	1399	337.8800	63	22.5921	1.8764	0.0695
1990	1346.5850	1414	992.2860	59	39.7032	2.3326	0.0705
1991	1453.1690	1584	578.0110	64	21.0464	1.3769	0.0704
1992	733.7670	1274	438.2490	41	28.4491	1.4644	0.0733
1993	1815.8010	2318	982.5520	49	27.6682	1.4399	0.0664
1994	2309.5100	2866	1541.9790	46	30.3557	1.5810	0.0650
1995	2002.8810	3335	1194.4620	45	25.9959	1.3995	0.0636
1996	2188.2440	4514	1116.6110	53	18.6397	1.1687	0.0622
1997	2562.0160	3883	1036.5460	48	19.2212	1.1463	0.0637
1998	2166.0212	2849	779.0660	43	17.8248	0.9671	0.0652
1999	2834.0520	2400	905.8040	43	17.6648	0.8339	0.0669
2000	3401.5633	3162	722.0340	49	12.0589	0.6736	0.0648
2001	2970.4067	3155	637.3550	40	10.0296	0.6284	0.0650
2002	3841.4390	3989	709.3435	42	11.2474	0.7268	0.0639
2003	2910.0946	3986	569.4015	50	10.4670	0.6786	0.0638
2004	3202.0836	3587	488.1205	46	11.0406	0.7804	0.0644
2005	2647.9671	3840	441.7305	42	10.6058	0.7253	0.0640
2006	2191.1968	2968	389.8176	35	9.2290	0.6120	0.0657
2007	1816.5165	1870	275.1950	23	8.8816	0.4851	0.0697
2008	1381.1590	2326	401.1699	24	9.9089	0.5602	0.0678
2009	1285.3059	2330	375.0856	23	11.8427	0.6408	0.0679
2010	1189.4336	2137	286.2760	20	8.2239	0.4680	0.0688
2011	1108.7509	2027	218.1696	22	6.8693	0.4011	0.0694
2012	781.1541	1863	190.1950	20	6.7481	0.3613	0.0701
2013	584.0728	1452	158.9600	21	8.6082	0.4539	0.0728
2014	356.8551	1346	88.9805	22	6.2581	0.3115	0.0736
2015	367.8410	1286	64.7780	22	4.3431	0.2161	0.0743

Figure 8.66. Silver Warehou from zones 10 to 30 and depths $0-600 \mathrm{~m}$ by Trawl. The top left plot depicts the depth distribution of shots containing Silver Warehou from zones 10 to 30 in depths $0-600 \mathrm{~m}$ by Trawl. The top right plot depicts the catch distribution by depth by zone. The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Silver Warehou catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Silver Warehou catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.67. Silver Warehou from Zones 10 to 50 and depths $0-600 \mathrm{~m}$ by Trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates (relative to the mean of the standardized catch rates). The blue line corresponds to last year's standardized indices.

Table 8.62. Silver Warehou from Zones 10 to 50 and depths $0-600 \mathrm{~m}$ by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE \sim Year+Vessel+Month
Model 4	LnCE \sim Year+Vessel+Month+Zone
Model 5	LnCE \sim Year+Vessel+Month+Zone+DepCat
Model 6	LnCE \sim Year+Vessel+Month+Zone+DepCat + DayNight
Model 7	LnCE \sim Year+Vessel+Month+Zone+DepCat + DayNight + Zone:Month
Model 8	LnCE \sim Year+Vessel+Month+Zone+DepCat+DayNight+Zone:DepCat

Table 8.63. Silver Warehou from Zones 10 to 50 and depths $0-600 \mathrm{~m}$ by Trawl. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted R^{2} (adj_ R^{2}) and the change in adjusted R^{2} (\%Change). The optimum is Zone:DepC (Model 8). Depth Category: DepC.

	Year	Vessel	Month	Zone	DepC	DayNight	Zone:Month	Zone:DepC
AIC	81122	75037	71375	69737	69443	69427	68478	68435
RSS	221627	202890	192895	188398	187625	187566	185013	184711
MSS	18485	37222	47216	51714	52487	52545	55098	55400
Nobs	72937	72937	72937	72455	72455	72455	72455	72455
Npars	30	209	220	250	252	255	277	315
adj_ R^{2}	7.662	15.260	19.422	21.267	21.588	21.609	22.652	22.738
\%Change	0.000	7.598	4.162	1.844	0.321	0.021	1.043	0.086

Figure 8.68. The relative influence of each factor used on the final trend in the optimal standardization for Silver Warehou in zones $10-30$. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.22 Silver Warehou Z4050 (TRS - 37445006 - Seriolella punctata)

Table 8.64. Silver Warehou from Zones 40 and 50 and depths $0-600 \mathrm{~m}$ by Trawl. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Zone:Month and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Month	StDev
1986	1156.5330	1120	643.5880	23	41.1238	1.4596	0.0000
1987	782.1510	725	490.9560	26	52.8667	1.6261	0.0830
1988	1646.1870	574	684.4410	27	69.3486	1.8895	0.0881
1989	926.2570	650	569.5400	27	59.5779	1.6075	0.0903
1990	1346.5850	569	298.6730	26	43.0973	1.0505	0.0899
1991	1453.1690	706	629.4700	29	40.2037	1.1417	0.0858
1992	733.7670	584	187.0270	21	26.8907	0.8673	0.0888
1993	1815.8010	1546	752.4570	23	43.9668	1.1739	0.0737
1994	2309.5100	1653	758.1040	26	43.8060	1.0816	0.0716
1995	2002.8810	1680	774.1450	24	38.9540	0.8550	0.0716
1996	2188.2440	1566	1020.7620	26	40.2805	0.9816	0.0727
1997	2562.0160	1882	1269.2390	24	44.8612	1.1659	0.0707
1998	2166.0212	1853	1197.6010	22	49.4206	1.3781	0.0712
1999	2834.0520	2747	1779.8690	24	51.4384	1.1423	0.0681
2000	3401.5633	3573	2603.0380	28	51.8176	1.1309	0.0668
2001	2970.4067	4190	2179.1090	29	39.2417	0.8619	0.0660
2002	3841.4390	4434	2949.9330	27	43.7767	0.9131	0.0657
2003	2910.0946	3419	2213.4064	28	44.6963	0.9503	0.0671
2004	3202.0836	4274	2548.6279	25	43.7609	1.0361	0.0660
2005	2647.9671	3080	2116.5510	24	44.2429	1.1357	0.0679
2006	2191.1968	2695	1686.4570	21	38.5112	0.9990	0.0687
2007	1816.5165	2787	1390.0405	16	34.8382	1.0216	0.0684
2008	1381.1590	2074	878.7590	17	27.8222	0.8090	0.0704
2009	1285.3059	2057	734.5600	13	22.1498	0.7006	0.0706
2010	1189.4336	2347	796.3264	14	20.4833	0.6373	0.0696
2011	1108.7509	2913	824.6042	17	19.2600	0.6144	0.0683
2012	781.1541	1905	560.3618	15	15.8987	0.4608	0.0720
2013	584.0728	1527	343.9918	16	15.4251	0.4354	0.0741
2014	356.8551	1545	244.4274	14	13.1656	0.4175	0.0740
2015	367.8410	1379	268.1290	13	14.1038	0.4560	0.0756

Figure 8.69. Silver Warehou from zones 40 and 50 and depths $0-600 \mathrm{~m}$ by Trawl. The top left plot depicts the depth distribution of shots containing Silver Warehou from zones 40 and 50 in depths $0-600 \mathrm{~m}$ by Trawl. The top right plot depicts the catch distribution by depth by zone. The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Silver Warehou catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Silver Warehou catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.70. Silver Warehou from Zones 40 and 50 and depths $0-600 \mathrm{~m}$ by Trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates (relative to the mean of the standardized catch rates). The blue line corresponds to last year's standardized indices.

Table 8.65. Silver Warehou from Zones 40 and 50 and depths $0-600 \mathrm{~m}$ by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE \sim Year+Vessel+Month
Model 4	LnCE \sim Year+Vessel+Month+Zone
Model 5	LnCE \sim Year+Vessel+Month+Zone+DepCat
Model 6	LnCE \sim Year+Vessel+Month+Zone+DepCat+DayNight
Model 7	LnCE \sim Year+Vessel+Month+Zone+DepCat+DayNight+Zone:Month
Model 8	LnCE \sim Year+Vessel+Month+Zone+DepCat+DayNight+Zone:DepCat

Table 8.66. Silver Warehou from Zones 40 and 50 and depths $0-600 \mathrm{~m}$ by Trawl. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted R^{2} (adj_ R^{2}) and the change in adjusted $R^{2}(\%$ Change). The optimum is Zone:Month (Model 7). Depth Category: DepC.

	Year	Vessel	Month	Zone	DepC	DayNight	Zone:Month	Zone:DepC
AIC	66542	58833	55930	54397	53565	53270	53035	53078
RSS	181156	159489	152146	148166	146176	145463	144858	144870
MSS	10159	31827	39169	43149	45140	45852	46458	46445
Nobs	62054	62054	62054	61644	61644	61644	61644	61644
Npars	30	128	139	169	170	173	184	203
adj_ R^{2}	5.266	16.465	20.296	22.342	23.384	23.754	24.058	24.028
\%Change	0.000	11.199	3.832	2.046	1.042	0.370	0.304	-0.030

Figure 8.71. The relative influence of each factor used on the final trend in the optimal standardization for Silver Warehou in zones 40 and 50. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor 3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.23 Blue Warehou Z10-30 (TRT - 37445005 - Seriolella brama)

Trawl data selected for analysis corresponded to records from zones 10,20 , and 30 from depths less than or equal to 400 m .

Table 8.67. Blue Warehou from zones 10 to 30 in depths $0-400 \mathrm{~m}$ by Trawl. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Zone:DepC and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:DepC	StDev
1986	211.8770	701	138.7900	40	22.9634	2.1208	0.0000
1987	405.8510	457	168.1520	40	23.2716	2.5966	0.1047
1988	543.9760	775	334.0470	33	34.8726	3.1977	0.0953
1989	776.0410	1178	664.7090	41	52.6588	4.0194	0.0926
1990	881.3530	826	508.2700	42	46.5510	3.7240	0.0975
1991	1284.1940	1567	465.1580	54	23.0208	1.9626	0.0922
1992	934.4050	1351	407.0970	40	24.1440	1.5937	0.0928
1993	829.5730	2192	431.5160	45	20.7168	1.2686	0.0896
1994	944.8050	2443	473.1760	43	17.5991	1.2233	0.0886
1995	815.3840	2643	464.3400	44	15.3167	1.1139	0.0885
1996	724.4080	3550	531.1030	49	14.6399	1.1452	0.0876
1997	935.1594	2481	404.2950	42	11.8800	1.1166	0.0898
1998	903.2421	2555	457.2320	39	13.8638	1.0473	0.0893
1999	590.9751	1642	131.5910	39	5.7056	0.5784	0.0923
2000	470.2475	2221	185.5790	41	5.0089	0.4800	0.0903
2001	285.4641	1475	57.3440	33	2.7894	0.2861	0.0938
2002	290.4765	1858	62.9810	36	2.2078	0.2172	0.0923
2003	233.9681	1324	42.0775	38	1.8331	0.1677	0.0953
2004	232.4455	1249	52.0505	38	2.7248	0.2291	0.0970
2005	289.0633	830	21.2863	33	1.8011	0.1534	0.1014
2006	379.5272	776	25.7195	28	2.2327	0.1818	0.1026
2007	177.7756	584	16.7583	14	1.8647	0.1906	0.1075
2008	163.2600	738	27.4410	18	2.6539	0.2672	0.1032
2009	135.2235	447	36.8840	15	3.5956	0.3146	0.1122
2010	129.3300	372	12.0425	15	2.0876	0.1977	0.1178
2011	103.2946	435	9.8117	13	1.7081	0.1626	0.1136
2012	52.2722	356	9.9005	14	1.6727	0.1352	0.1188
2013	67.9643	166	3.6740	17	1.6983	0.1246	0.1475
2014	15.3153	89	1.7870	12	1.0422	0.0821	0.1834
	5.4345	55	1.5870	9	1.5278	0.1019	0.2227

Figure 8.72. Blue Warehou from zones 10 to 30 in depths $0-400 \mathrm{~m}$ by Trawl. The top left plot depicts the depth distribution of shots containing Blue Warehou from zones 10 to 30 in depths $0-400 \mathrm{~m}$ by Trawl. The top right plot depicts the catch distribution by depth by zone. The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Blue Warehou catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Blue Warehou catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.73. Blue Warehou from zones 10 to 30 in depths $0-400 \mathrm{~m}$ by Trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates (relative to the mean of the standardized catch rates). The blue line corresponds to last year's standardized indices.

Table 8.68. Blue Warehou from zones 10 to 30 in depths $0-400 \mathrm{~m}$ by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE Year+Vessel+DepCat
Model 4	LnCE \sim Year+Vessel+DepCat+Month
Model 5	LnCE \sim Year+Vessel+DepCat+Month+Zone
Model 6	LnCE Year+Vessel+DepCat+Month+Zone+DayNight
Model 7	LnCE \sim Year+Vessel+DepCat+Month+Zone+DayNight+Zone:Month
Model 8	LnCE \sim Year+Vessel+DepCat+Month+Zone+DayNight+Zone:DepCat

Table 8.69. Blue Warehou from zones 10 to 30 in depths $0-400 \mathrm{~m}$ by Trawl Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted $R^{2}\left(\operatorname{adj} R^{2}\right)$ and the change in adjusted R^{2} (\%Change). The optimum is Zone:DepC (Model 8). Depth Category: DepC.

	Year	Vessel	DepC	Month	Zone	DayNight	Zone:Month	Zone:DepC
AIC	37392	32685	32029	31761	31382	31296	31048	31005
RSS	101479	88686	86970	86334	85405	85193	84527	84348
MSS	38494	51287	53004	53640	54568	54780	55447	55625
Nobs	37336	37336	37111	37111	37111	37111	37111	37111
Npars	30	192	212	214	225	228	250	268
adj_ R^{2}	27.445	36.315	37.512	37.965	38.614	38.761	39.204	39.303
\%Change	0.000	8.870	1.197	0.454	0.649	0.147	0.443	0.099

Figure 8.74. The relative influence of each factor used on the final trend in the optimal standardization for Blue Warehou in zone $10-30$. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.24 Blue Warehou Z4050 (TRT - 37445005 - Seriolella brama)

Trawl data corresponding to zones 40 and 50 from depths less than or equal to 600 m were analysed.
Table 8.70. Blue Warehou from zones 40 and 50 in depths $0-600 \mathrm{~m}$ by Trawl. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr} \mathrm{)} .\mathrm{The} \mathrm{optimum} \mathrm{model} \mathrm{is} \mathrm{Zone:Month} \mathrm{and} \mathrm{standard} \mathrm{deviation} \mathrm{(StDev)}$ relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Month	StDev
1986	211.8770	159	71.3890	14	34.3927	3.5560	0.0000
1987	405.8510	183	215.6450	10	153.6342	3.4959	0.2440
1988	543.9760	180	197.9890	12	104.5294	1.4993	0.2519
1989	776.0410	56	81.3430	13	91.5270	3.8418	0.3122
1990	881.3530	444	298.2960	14	55.8069	1.6072	0.2379
1991	1284.1940	597	647.5370	18	159.6429	2.5887	0.2359
1992	934.4050	538	430.1330	17	88.9759	1.4507	0.2375
1993	829.5730	495	362.8540	21	92.3447	1.0914	0.2389
1994	944.8050	824	449.9010	21	67.3117	1.1900	0.2343
1995	815.3840	825	325.1500	22	45.1964	0.8057	0.2319
1996	724.4080	700	183.5500	24	26.4215	0.5465	0.2334
1997	935.1594	431	243.5470	23	35.6095	0.5740	0.2390
1998	903.2421	582	354.4830	19	58.9967	0.8917	0.2373
1999	590.9751	688	174.3760	19	32.5226	0.4955	0.2366
2000	470.2475	652	203.6200	24	28.2022	0.3953	0.2368
2001	285.4641	686	194.1760	23	27.6016	0.4215	0.2357
2002	290.4765	531	218.1070	23	35.4283	0.5487	0.2381
2003	233.9681	362	175.4480	19	28.2126	0.4881	0.2440
2004	232.4455	437	159.2550	21	28.4995	0.5403	0.2407
2005	289.0633	461	257.8010	18	53.5991	0.8403	0.2412
2006	379.5272	695	337.4725	16	31.8482	0.5851	0.2375
2007	177.7756	466	148.6395	16	22.9820	0.4988	0.2412
2008	163.2600	353	117.7735	12	20.3955	0.3990	0.2436
2009	135.2235	308	89.0030	11	18.4388	0.2936	0.2457
2010	129.3300	407	105.2905	12	17.5511	0.3453	0.2411
2011	103.2946	519	77.9065	14	14.3950	0.3101	0.2396
2012	52.2722	262	32.7576	14	8.1485	0.1826	0.2507
2013	67.9643	305	57.9275	13	12.4449	0.2445	0.2470
2014	15.3153	60	11.6460	9	9.3797	0.1917	0.3078
	5.4345	18	0.5810	5	2.6356	0.0806	0.4405

Figure 8.75. Blue Warehou from zones 40 and 50 in depths $0-600 \mathrm{~m}$ by Trawl. The top left plot depicts the depth distribution of shots containing Blue Warehou from zones 40 and 50 in depths $0-600 \mathrm{~m}$ by Trawl. The top right plot depicts the catch distribution by depth by zone. The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Blue Warehou catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Blue Warehou catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.76. Blue Warehou from zones 40 and 50 in depths $0-600 \mathrm{~m}$ by Trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates (relative to the mean of the standardized catch rates). The blue line corresponds to last year's standardized indices.

Table 8.71. Blue Warehou from zones 40 and 50 in depths $0-600 \mathrm{~m}$ by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE \sim Year+Vessel+Month
Model 4	LnCE \sim Year+Vessel+Month+DepCat
Model 5	LnCE \sim Year+Vessel+Month+DepCat+DayNight
Model 6	LnCE \sim Year+Vessel+Month+DepCat+DayNight+Zone
Model 7	LnCE \sim Year+Vessel+Month+DepCat+DayNight+Zone+Zone:Month
Model 8	LnCE \sim Year+Vessel+Month+DepCat+DayNight+Zone+Zone:DepCat

Table 8.72. Blue Warehou from zones 40 and 50 in depths $0-600 \mathrm{~m}$ by Trawl. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted $R^{2}\left(\operatorname{adj} R^{2}\right)$ and the change in adjusted R^{2} (\%Change). The optimum is Model 7 (Zone:Month). Depth category: DepC.

	Year	Vessel	Month	DepC	DayNight	Zone	Zone:Month	Zone:DepC
AIC	14702	13550	12522	11725	11671	11667	11631	11644
RSS	40017	36229	33466	31345	31203	31189	31050	30993
MSS	5847	9635	12398	14519	14661	14675	14814	14871
Nobs	13224	13224	13224	13160	13160	13160	13160	13160
Npars	30	111	122	152	155	156	167	186
adj_ R^{2}	12.557	20.345	26.359	30.863	31.161	31.186	31.435	31.461
\%Change	0.000	7.787	6.014	4.505	0.298	0.025	0.248	0.026

Figure 8.77. The relative influence of each factor used on the final trend in the optimal standardization for Blue Warehou in zone $40-50$. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.25 Blue Warehou Z10-50 (TRT - 37445005 - Seriolella brama)

Trawl data corresponding to zones 10 to 50 in depths $0-600 \mathrm{~m}$ and vessels present in the fishery for more than two years were analysed.

Figure 8.78. Trends in the catches and geometric mean catch rates for Blue Warehou across each of the zones $10-50$, split east and west. The extreme catch rates in zone 40 reflect very small catches.

The severe depletion in the east is evident but in the west the catch rates are noisy then flat. They are depressed primarily because of early high values that reflect very low catches or relatively high catches. Zone 50 is the main part of the western Blue Warehou fishery.

Table 8.73. Blue Warehou from zones 10 to 50 in depths $0-600 \mathrm{~m}$ by Trawl. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Zone:Month and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Month	StDev
1986	211.8770	862	210.2890	54	24.6804	2.2862	0.0000
1987	405.8510	655	384.5560	51	38.9818	2.6160	0.0923
1988	543.9760	963	532.3580	45	42.2791	2.9372	0.0894
1989	776.0410	1239	746.1520	50	53.5132	4.0117	0.0879
1990	881.3530	1284	822.4190	56	49.3618	2.8641	0.0891
1991	1284.1940	2193	1119.7880	66	38.9026	2.2386	0.0850
1992	934.4050	1910	840.6520	57	34.6593	1.6326	0.0858
1993	829.5730	2714	797.0890	58	27.0343	1.2922	0.0837
1994	944.8050	3294	926.5050	57	24.5529	1.2411	0.0825
1995	815.3840	3494	791.2120	58	19.7089	1.0447	0.0823
1996	724.4080	4277	715.6340	66	16.0435	1.0578	0.0818
1997	935.1594	2925	648.1530	57	13.9067	1.0573	0.0840
1998	903.2421	3151	813.7120	50	18.0398	1.0513	0.0834
1999	590.9751	2371	309.6460	57	9.5296	0.5643	0.0852
2000	470.2475	2905	390.3170	59	7.3031	0.4863	0.0840
2001	285.4641	2215	253.4310	52	5.6332	0.3270	0.0860
2002	290.4765	2411	281.2400	53	4.0510	0.2758	0.0857
2003	233.9681	1708	218.3395	51	3.2829	0.2215	0.0883
2004	232.4455	1700	211.5094	51	4.9660	0.3044	0.0889
2005	289.0633	1297	279.4293	45	6.0446	0.2834	0.0913
2006	379.5272	1474	363.2420	36	7.8259	0.2853	0.0903
2007	177.7756	1052	165.4073	25	5.6675	0.2597	0.0938
2008	163.2600	1100	145.3175	27	5.0903	0.2942	0.0930
2009	135.2235	766	126.2322	24	6.9116	0.2940	0.0979
2010	129.3300	783	117.5180	22	6.3064	0.2343	0.0978
2011	103.2946	966	91.4787	23	5.5254	0.2205	0.0951
2012	52.2722	633	46.4206	25	3.2664	0.1578	0.1020
2013	67.9643	492	62.5255	26	6.0280	0.1873	0.1076
2014	15.3153	159	14.2100	18	2.7908	0.1411	0.1478
	5.4345	80	4.5055	13	2.2595	0.1325	0.1929

Figure 8.79. Blue Warehou from zones 10 to 50 in depths $0-600 \mathrm{~m}$ by Trawl. The top left plot depicts the depth distribution of shots containing Blue Warehou from zones 10 to 50 in depths $0-600 \mathrm{~m}$ by Trawl. The top right plot depicts the catch distribution by depth by zone. The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Blue Warehou catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Blue Warehou catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.80 . Blue Warehou from zones 10 to 50 in depths $0-600 \mathrm{~m}$ by Trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates (relative to the mean of the standardized catch rates). The blue line corresponds to last year's standardized indices.

Table 8.74. Blue Warehou from zones 10 to 50 in depths $0-600 \mathrm{~m}$ by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE Year+Vessel+DepCat
Model 4	LnCE \sim Year+Vessel+DepCat+Zone
Model 5	LnCE \sim Year+Vessel+DepCat+Zone+Month
Model 6	LnCE Year+Vessel+DepCat+Zone+Month+DayNight
Model 7	LnCE \sim Year+Vessel+DepCat+Zone+Month+DayNight+Zone:Month
Model 8	LnCE \sim Year+Vessel+DepCat+Zone+Month+DayNight+Zone:DepCat

Table 8.75. Blue Warehou from zones 10 to 50 in depths $0-600 \mathrm{~m}$ by Trawl. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted $R^{2}\left(\operatorname{adj} R^{2}\right)$ and the change in adjusted R^{2} (\%Change). The optimum is Zone:Month (Model 7). Depth category: DepC.

	Year	Vessel	DepC	Zone	Month	DayNight	Zone:Month	Zone:DepC
AIC	63016	49075	47768	46574	45866	45825	44798	45052
RSS	175199	132350	128801	125788	123992	123879	121187	121432
MSS	32856	75706	79254	82267	84063	84176	86868	86623
Nobs	51073	51073	50784	50784	50784	50784	50784	50784
Npars	30	222	252	256	267	270	314	390
adj_ R^{2}	15.744	36.111	37.785	39.236	40.090	40.141	41.391	41.184
\%Change	0.000	20.367	1.675	1.450	0.855	0.051	1.250	-0.207

Figure 8.81. The relative influence of each factor used on the final trend in the optimal standardization for Blue Warehou in zone $10-50$. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.26 Pink Ling TW (LIG - 37228002 - Genypterus blacodes)

Figure 8.82. Trends in the catches and geometric mean catch rates for Pink Ling taken by Trawler across zones $10-50$ split between east and west.

The trends in the geometric mean catch rates in the east all follow approximately the same trajectory, albeit with some noise (Figure 8.82). In the west, however, zones 40 and 50 appear to follow rather different trajectories with rates increasing since 2005 in zone 40 while staying flat in zone 50 . However, this may simply reflect that catches were increasing in zone 40 and were decreasing in zone 50.

8.4.27 Pink Ling Z10-30 (LIG - 37228002 - Genypterus blacodes)

Trawl data corresponding to zones 10,20 and 30 from depths greater than 250 m and less than 600 m were analysed.

Table 8.76. Pink Ling from zones 10 to 30 in depths between $250-600 \mathrm{~m}$ by Trawl. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Zone:DepC and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:DepC	StDev
1986	678.9770	4512	498.2980	80	20.6651	1.1405	0.0000
1987	765.0660	4260	492.3140	77	19.4237	1.2312	0.0223
1988	583.0770	3613	400.0770	77	20.2595	1.1591	0.0234
1989	678.8960	3879	422.0770	77	19.1575	0.9908	0.0232
1990	674.4790	2794	413.0820	68	26.8201	1.4647	0.0254
1991	736.8030	2938	370.2970	72	26.3050	1.4412	0.0254
1992	568.3080	2437	331.3060	58	25.0704	1.1202	0.0267
1993	892.7960	3525	504.4740	59	25.3075	1.0577	0.0244
1994	895.4310	4066	470.2650	63	23.5158	1.0831	0.0235
1995	1208.8930	4361	586.6860	57	25.8106	1.3677	0.0230
1996	1233.2650	4268	667.5830	63	27.6570	1.3576	0.0232
1997	1696.8475	4808	732.6540	62	27.9375	1.3850	0.0228
1998	1592.3980	4909	730.4580	57	26.0156	1.3719	0.0226
1999	1651.5715	5964	832.6550	59	25.2286	1.2526	0.0221
2000	1507.3786	5112	660.3260	62	22.4167	1.1025	0.0230
2001	1392.8101	4569	485.6305	53	19.0505	0.8505	0.0238
2002	1330.1940	3902	360.5923	52	15.8480	0.7521	0.0246
2003	1353.1029	4310	445.7625	57	18.2826	0.7702	0.0242
2004	1495.1340	3359	347.2374	54	16.7949	0.6900	0.0257
2005	1203.1954	3454	329.9497	51	16.3326	0.6405	0.0253
2006	1069.2001	2593	323.1010	38	21.3189	0.7683	0.0273
2007	875.9218	1652	204.3070	23	20.5015	0.7465	0.0313
2008	980.2672	2382	329.0357	24	25.1511	0.8704	0.0284
2009	775.0457	1947	212.3617	27	18.2953	0.6273	0.0301
2010	906.2231	1991	271.1322	23	20.7020	0.7755	0.0297
2011	1081.9062	2201	294.8960	22	23.4304	0.8158	0.0290
2012	1030.9058	1972	273.3230	24	24.3541	0.8741	0.0300
2013	735.6858	1561	183.9784	22	21.3662	0.7373	0.0320
2014	850.4257	1614	231.8756	24	24.5893	0.8401	0.0314
2015	716.7958	1656	189.3976	24	21.6332	0.7157	0.0316

Figure 8.83. Pink Ling from zones 10 to 30 in depths between $250-600 \mathrm{~m}$ by Trawl. The top left plot depicts the depth distribution of shots containing Pink Ling from zones 10 to 30 in depths $250-600 \mathrm{~m}$ by Trawl. The top right plot depicts the catch distribution by depth by zone. The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Pink Ling catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Pink Ling catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.84. Pink Ling from zones 10 to 30 in depths between $250-600 \mathrm{~m}$ by Trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates (relative to the mean of the standardized catch rates). The blue line corresponds to last year's standardized indices.

Table 8.77. Pink Ling from zones 10 to 30 in depths between $250-600 \mathrm{~m}$ by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year + DepCat
Model 3	LnCE \sim Year+ Vessel+DepCat
Model 4	LnCE \sim Year+Vessel+DepCat+Zone
Model 5	LnCE \sim Year+Vessel+DepCat+Zone + Month
Model 6	LnCE \sim Year+ Vessel+DepCat+Zone + Month + DayNight
Model 7	LnCE \sim Year+ Vessel+DepCat + Zone + Month + DayNight + Zone:Month
Model 8	LnCE \sim Year+ Vessel+DepCCat + Zone + Month + DayNight+Zone:DepCat

Table 8.78. Pink Ling from zones 10 to 30 in depths between $250-600 \mathrm{~m}$ by Trawl. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted R^{2} (adj_ R^{2}) and the change in adjusted R^{2} (\%Change). The optimum is Zone:DepC (Model 8). Depth category: DepC.

	Year	DepC	Vessel	Month	Zone	DayNight	Zone:Month	Zone:DepC
AIC	33822	16626	4296	599	480	-106	-1185	-2231
RSS	140727	118184	103618	99830	99705	99117	98007	96914
MSS	2765	25307	39874	43662	43787	44375	45484	46578
Nobs	100609	100609	99717	99717	99717	99717	99717	99717
Npars	30	214	235	243	246	248	270	306
adj_ R^{2}	1.898	17.462	27.618	30.259	30.344	30.753	31.514	32.253
\%Change	0.000	15.564	10.156	2.640	0.085	0.409	0.760	0.739

Figure 8.85. The relative influence of each factor used on the final trend in the optimal standardization for Pink Ling from zones 10 to 30 . The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.28 Pink Ling Z4050 (LIG - 37228002 - Genypterus blacodes)

Trawl data selected for analysis corresponded to records from zones 40 and 50 in depths greater than 200 m and less or equal to 800 m .

Table 8.79. Pink Ling from zones 40 and 50 in depths between $200-800 \mathrm{~m}$ by Trawl. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Zone:DepC and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:DepC	StDev
1986	678.9770	1265	112.9440	23	17.1417	1.1978	0.0000
1987	765.0660	1310	206.3410	28	24.0155	1.3479	0.0370
1988	583.0770	1026	95.7030	32	17.6676	1.0508	0.0402
1989	678.8960	1469	183.1210	34	21.9840	1.0769	0.0381
1990	674.4790	1524	147.4120	32	16.9021	0.9691	0.0388
1991	736.8030	1896	198.9250	37	16.4027	1.0376	0.0370
1992	568.3080	1632	102.0640	24	11.9918	0.7713	0.0380
1993	892.7960	2253	235.4850	24	17.1332	1.0455	0.0367
1994	895.4310	2110	247.7930	24	20.5621	1.2599	0.0365
1995	1208.8930	3515	426.8070	25	20.0607	1.2893	0.0343
1996	1233.2650	3403	448.0440	26	19.9984	1.3655	0.0347
1997	1696.8475	3732	577.4340	24	21.1891	1.4330	0.0343
1998	1592.3980	3709	558.5210	21	22.4124	1.4107	0.0346
1999	1651.5715	3794	427.9200	24	18.0495	1.1182	0.0345
2000	1507.3786	4656	509.3340	28	16.3658	0.9981	0.0341
2001	1392.8101	5100	502.3720	28	14.7225	0.8904	0.0340
2002	1330.1940	4633	429.5610	27	13.4055	0.7707	0.0341
2003	1353.1029	3822	360.2349	27	12.6257	0.7747	0.0345
2004	1495.1340	3901	306.2357	25	11.7174	0.7279	0.0346
2005	1203.1954	2663	195.7375	23	9.9452	0.6069	0.0359
2006	1069.2001	2322	209.9851	21	10.6509	0.6430	0.0366
2007	875.9218	2532	287.3451	16	12.6778	0.7052	0.0362
2008	980.2672	1795	214.2319	17	14.6108	0.9135	0.0377
2009	775.0457	1976	260.6090	13	14.0039	0.8895	0.0372
2010	906.2231	2337	272.1558	14	13.1460	0.8653	0.0364
2011	1081.9062	2792	356.8662	16	13.2635	0.8565	0.0358
2012	1030.9058	2342	344.9726	14	14.5232	0.9152	0.0368
2013	735.6858	1720	272.2423	17	15.6511	1.0396	0.0385
2014	850.4257	1849	278.7479	15	16.3305	1.0334	0.0379
2015	716.7958	1628	235.0769	13	15.4463	0.9965	0.0389

Figure 8.86. Pink Ling from zones 40 and 50 in depths between $200-800 \mathrm{~m}$ by Trawl. The top left plot depicts the depth distribution of shots containing Pink Ling from zones 40 and 50 in depths $200-800 \mathrm{~m}$ by Trawl. The top right plot depicts the catch distribution by depth by zone. The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Pink Ling catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Pink Ling catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.87. Pink Ling from zones 40 and 50 in depths between $200-800 \mathrm{~m}$ by Trawl. The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates (relative to the mean of the standardized catch rates). The blue line corresponds to last year's standardized catch rates.

Table 8.80. Pink Ling from zones 40 and 50 in depths between $200-800 \mathrm{~m}$ by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE \sim Year+DepCat
Model 3	LnCE \sim Year+DepCat+Vessel
Model 4	LnCE \sim Year+DepCat+Vessel+Month
Model 5	LnCE \sim Year+DepCat+Vessel+Month+Zone
Model 6	LnCE \sim Year+DepCat+Vessel+Month+Zone+DayNight
Model 7	LnCE \sim Year+DepCat+Vessel+Month+Zone+DayNight+Zone:Month
Model 8	LnCE \sim Year+DepCat+Vessel+Month+Zone+DayNight+Zone:DepCat

Table 8.81. Pink Ling from zones 40 and 50 in depths between $200-800 \mathrm{~m}$ by Trawl. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted R^{2} (adj_ R^{2}) and the change in adjusted R^{2} (\%Change). The optimum is Zone:DepC (Model 8). Depth category: DepC.

	Year	DepC	Vessel	Month	Zone	DayNight	Zone:Month	Zone:DepC
AIC	142	-11047	-17527	-20187	-21241	-21269	-22760	-22116
RSS	78788	67806	62262	60163	59357	59331	58194	58646
MSS	3902	14884	20428	22527	23334	23359	24496	24044
Nobs	78706	78213	78213	78213	78213	78213	78213	78213
Npars	30	60	156	167	168	171	182	201
adj_ R^{2}	4.684	17.938	24.555	27.088	28.065	28.093	29.461	28.895
\%Change	0.000	13.254	6.617	2.533	0.976	0.028	1.368	-0.565

Figure 8.88. The relative influence of each factor used on the final trend in the optimal standardization for Pink Ling from zones 40 and 50. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.29 Western Gemfish and GAB (GEM - 37439002 - Rexea solandri)

Trawl data selected for analysis corresponded to records from zones 40 and 50 with $82,83,84$, and 85 (the GAB) above $-42^{\circ} \mathrm{S}$, in depths greater than 100 and less than or equal to 600 m .

Table 8.82. Western Gemfish from zones 40 and 50, and the GAB in depths between $100-600 \mathrm{~m}$ by Trawl (now represented by TW and TDO). Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Zone:Month and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Month	StDev
1986	3639.9550	1698	306.4910	25	29.2406	2.2764	0.0000
1987	4660.4470	1280	261.6060	29	30.7446	2.1692	0.0458
1988	3515.8190	1399	255.4090	36	25.3713	2.0431	0.0481
1989	1778.3250	1396	184.4330	37	19.1431	1.5556	0.0489
1990	1206.8970	1241	145.5200	35	14.4402	1.3691	0.0529
1991	580.3220	1568	279.2890	32	19.1549	1.3425	0.0496
1992	494.4410	799	96.8810	21	15.1631	0.9905	0.0567
1993	353.4100	896	108.2890	21	11.5326	0.8467	0.0557
1994	232.1790	1041	109.8960	24	11.4211	0.8734	0.0533
1995	181.7460	1285	106.8040	26	9.1790	0.8259	0.0509
1996	382.1960	1573	161.7360	32	9.5346	0.9634	0.0491
1997	571.9758	2088	214.0380	28	8.9720	0.8553	0.0470
1998	404.8147	1958	206.7570	26	10.2560	1.0244	0.0479
1999	448.6767	2337	322.9730	24	12.0677	1.0222	0.0467
2000	336.4642	2325	260.6825	30	9.7749	0.8757	0.0471
2001	331.4862	2326	258.4500	30	10.0470	0.8219	0.0472
2002	195.8983	1746	128.4288	28	6.4820	0.6300	0.0490
2003	267.9710	1612	201.0612	33	8.8661	0.6876	0.0499
2004	568.8517	1931	478.0203	30	10.6711	0.7411	0.0497
2005	511.7585	1796	368.5067	27	12.7461	0.7358	0.0504
2006	544.8936	1591	434.7030	26	11.9765	0.6941	0.0514
2007	599.1098	1380	415.0929	21	11.0165	0.6368	0.0524
2008	294.8605	1225	155.5205	19	6.7358	0.6460	0.0530
2009	194.8654	1255	104.8608	16	5.8844	0.7000	0.0526
2010	220.6510	1663	127.5652	18	6.1259	0.7509	0.0501
2011	147.7397	1258	73.2852	16	5.7046	0.7419	0.0527
2012	168.5996	1028	99.0475	18	6.4833	0.8053	0.0559
2013	103.8201	684	47.0844	20	6.4814	0.6946	0.0612
2014	130.2023	809	87.7275	17	9.9349	0.9350	0.0587
2015	86.3213	700	49.7927	14	6.3453	0.7455	0.0622

Figure 8.89. Western Gemfish from zones 40 and 50 , and the GAB (zones $82,83,84$, and 85) in depths between $100-600 \mathrm{~m}$ by Trawl. The top left plot depicts the depth distribution of shots containing Western Gemfish from zones 40 and 50 , and the GAB (zones $82,83,84$, and 85) in depths $100-600 \mathrm{~m}$ by Trawl. The top right plot depicts the catch distribution by depth by zone. The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Gemfish catches across east and west regions (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Gemfish catches across east and west regions (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.90. Western Gemfish from zones 40 and 50 , and the GAB (zones 82, 83, 84, and 85) in depths between $100-600 \mathrm{~m}$ by Trawl. The dashed black line represents the geometric mean catch rate, solid black line the standardized catch rates and solid blue line the standardized catch rates from last year's analysis. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 8.83. Western Gemfish from zones 40 and 50 , and the GAB (zones $82,83,84$, and 85) in depths between $100-600 \mathrm{~m}$ by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year + DepCat
Model 3	LnCE \sim Year+DepCat + Vessel
Model 4	LnCE \sim Year + DepCat + Vessel+Zone
Model 5	LnCE \sim Year+DepCat+Vessel+Zone + DayNight
Model 6	LnCE \sim Year+DepCat + Vessel+Zone + DayNight + Month
Model 7	LnCE \sim Year + DepCat + Vessel+Zone + DayNight + Month + Zone:Month
Model 8	LnCE \sim Year + DepCat+Vessel+Zone + DayNight + Month + Zone:DepCat

Table 8.84. Western Gemfish from zones 40 and 50 , and the GAB (zones $82,83,84$, and 85) in depths between $100-600 \mathrm{~m}$ by Trawl. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted $R^{2}\left(\operatorname{adj} R^{2}\right)$ and the change in adjusted R^{2} (\%Change). The optimum is Zone:Month (Model 7). Depth category: DepC.

	Year	DepC	Vessel	Zone	DayNight	Month	Zone:Month	Zone:DepC
AIC	37234	23463	15973	14919	14208	14011	12805	13434
RSS	102376	74570	62513	61015	60016	59716	57945	58597
MSS	8493	36299	48357	49855	50853	51154	52925	52272
Nobs	43888	43701	43701	43701	43701	43701	43701	43701
Npars	30	55	164	167	172	183	238	308
adj_ R^{2}	7.600	32.657	43.405	44.757	45.655	45.913	47.451	46.774
\%Change	0.000	25.058	10.747	1.353	0.897	0.259	1.537	-0.677

Figure 8.91. The relative influence of each factor used on the final trend in the optimal standardization for Western Gemfish from zones 40 and 50 and the GAB. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.30 Western Gemfish Z4050 (GEM - 37439002 - Rexea solandri)

Trawl data selected for analysis corresponded to records from zones 40 and 50 in depths between 100 and 600 m .

Table 8.85. Western Gemfish from zones 40 and 50 in depths between $100-600 \mathrm{~m}$ by Trawl. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Zone:Month and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Month	StDev
1986	3639.9550	1687	306.8610	24	29.5835	2.3624	0.0000
1987	4660.4470	1209	248.8790	26	31.5896	2.2926	0.0450
1988	3515.8190	1235	226.9560	27	26.9924	2.3013	0.0472
1989	1778.3250	1082	156.5780	29	23.3363	1.8505	0.0494
1990	1206.8970	1057	136.0850	29	15.9031	1.4359	0.0528
1991	580.3220	1384	249.4150	28	22.0062	1.3854	0.0494
1992	494.4410	665	80.9300	15	16.7792	0.9587	0.0576
1993	353.4100	718	102.4890	17	16.5820	0.9235	0.0570
1994	232.1790	839	95.3780	20	16.2263	0.9943	0.0542
1995	181.7460	990	84.6880	21	12.0017	0.8791	0.0519
1996	382.1960	1182	145.5880	26	13.4563	0.9632	0.0499
1997	571.9758	1389	153.5890	21	13.2702	0.8583	0.0483
1998	404.8147	1259	121.6610	20	13.2167	0.9092	0.0498
1999	448.6767	1694	176.3230	19	12.8407	0.8665	0.0474
2000	336.4642	1933	228.9645	28	12.5253	0.9343	0.0472
2001	331.4862	1711	170.7050	27	12.1527	0.7582	0.0482
2002	195.8983	1418	85.6338	24	7.1142	0.5782	0.0494
2003	267.9710	1076	122.4803	24	11.1647	0.6711	0.0520
2004	568.8517	1232	105.5549	24	7.9006	0.6521	0.0521
2005	511.7585	1073	117.6765	18	10.5982	0.6897	0.0531
2006	544.8936	889	101.4170	18	8.9869	0.5575	0.0558
2007	599.1098	715	61.0609	16	7.4736	0.5345	0.0582
2008	294.8605	770	53.0883	16	7.5204	0.6104	0.0570
2009	194.8654	925	56.8320	12	6.4884	0.6897	0.0545
2010	220.6510	1364	86.8772	14	6.3620	0.7212	0.0505
2011	147.7397	1158	57.9422	13	5.6504	0.7507	0.0523
2012	168.5996	820	50.6973	14	5.3756	0.6983	0.0576
2013	103.8201	582	38.7114	15	5.5756	0.6099	0.0623
2014	130.2023	691	70.5258	14	8.8163	0.8816	0.0595
2015	86.3213	706	47.7637	13	5.7229	0.6817	0.0606

Figure 8.92. Western Gemfish from zones 40 and 50 in depths between $100-600 \mathrm{~m}$ by Trawl. The top left plot depicts the depth distribution of shots containing Western Gemfish from zones 40 and 50 in depths $100-600$ m by Trawl. The top right plot depicts the catch distribution by depth by zone. The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Western Gemfish catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Western Gemfish catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.93. Western Gemfish from zones 40 and 50 in depths between $100-600 \mathrm{~m}$ by Trawl. The dashed black line represents the geometric mean catch rate, solid black line the standardized catch rates and solid blue line standardized catch rates from last year's analysis. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 8.86. Western Gemfish from zones 40 and 50 in depths between $100-600 \mathrm{~m}$ by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE \sim Year+Vessel+DepCat
Model 4	LnCE \sim Year+Vessel+DepCat+DayNight
Model 5	LnCE \sim Year+Vessel+DepCat+DayNight + Month
Model 6	LnCE \sim Year+Vessel+DepCat+DayNight + Month+Zone
Model 7	LnCE \sim Year+Vessel+DepCat + DayNight + Month+Zone + Zone:Month
Model 8	LnCE \sim Year+Vessel+DepCat + DayNight + Month + Zone + Zone:DepCat

Table 8.87. Western Gemfish from zones 40 and 50 in depths between $100-600 \mathrm{~m}$ by Trawl. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted R^{2} (adj_ R^{2}) and the change in adjusted R^{2} (\%Change). The optimum is Zone:Month (Model 7). Depth category: DepC.

	Year	Vessel	DepC	DayNight	Month	Zone	Zone:Month	Zone:DepC
AIC	22704	15045	8459	7896	7527	7524	7182	7278
RSS	65828	52066	42561	41841	41351	41346	40897	40980
MSS	8573	22334	31839	32559	33049	33055	33504	33420
Nobs	33453	33453	33311	33311	33311	33311	33311	33311
Npars	30	123	148	151	162	163	174	188
adj_ R^{2}	11.446	29.762	42.541	43.508	44.150	44.156	44.745	44.609
\%Change	0.000	18.317	12.779	0.967	0.642	0.006	0.588	-0.136

Figure 8.94. The relative influence of each factor used on the final trend in the optimal standardization for Western Gemfish from zones 40 and 50. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.31 Western Gemfish GAB (GEM - 37439002 - Rexea solandri)

Trawl data selected for analysis corresponded to records from all vessels, zones $82,83,84$, and 85 (the GAB) and depths between 100 and 600 m .

Table 8.88. Western Gemfish in the GAB in depths between 100 and 600 m by Trawl. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Zone:Month and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Month	StDev
1995	181.7460	326	22.8450	6	3.8779	0.6884	0.0000
1996	382.1960	449	19.2390	7	3.8858	0.9075	0.0930
1997	571.9758	717	61.7730	9	4.2096	0.8931	0.0884
1998	404.8147	708	85.2200	8	6.3801	1.4515	0.0903
1999	448.6767	653	146.9330	7	10.0539	1.7468	0.0929
2000	336.4642	427	32.1620	6	2.8433	0.6315	0.0986
2001	331.4862	669	90.2810	8	5.7470	1.0710	0.0926
2002	195.8983	353	43.3413	8	4.3575	0.9221	0.1017
2003	267.9710	565	79.3545	11	5.4980	0.8444	0.0971
2004	568.8517	720	372.9160	10	17.0005	1.1049	0.0972
2005	511.7585	743	253.8402	10	16.0998	0.9321	0.0986
2006	544.8936	709	333.2422	11	16.7217	0.9530	0.0974
2007	599.1098	697	358.0045	10	15.2782	0.8371	0.0958
2008	294.8605	495	104.3260	7	5.4956	0.8169	0.0978
2009	194.8654	350	48.9613	4	4.5291	0.7693	0.1042
2010	220.6510	339	42.6375	4	4.9524	0.8460	0.1046
2011	147.7397	218	20.2225	4	5.2471	0.8244	0.1171
2012	168.5996	305	52.2863	5	9.0523	1.2742	0.1087
2013	103.8201	148	9.6908	6	8.7711	1.1884	0.1320
2014	130.2023	167	19.1975	5	12.5046	1.1455	0.1359
2015	86.3213	65	3.9625	2	7.7844	1.1518	0.1761

Figure 8.95. Western Gemfish in the GAB (zones $82,83,84$, and 85) in depths between 100 and 600 m by Trawl. The top left plot depicts the depth distribution of shots containing Western Gemfish from zones in the GAB (zones $82,83,84$, and 85) in depths $100-600 \mathrm{~m}$ by Trawl. The top right plot depicts the catch distribution by depth by zone. The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Western Gemfish catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Western Gemfish catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.96. Western Gemfish in the GAB (zones 82, 83, 84, and 85) in depths between 100 and 600 m by Trawl. Upper graph: The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates (relative to the mean of the standardized catch rates). The blue line corresponds to last year's standardized indices. Lower graph: Standardized indices (solid black line), 95\% CI (vertical lines) and geometric mean (dashed black line). The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 8.89. Western Gemfish in the GAB (zones $82,83,84$, and 85) in depths between 100 and 600 m by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+DepCat
Model 3	LnCE \sim Year+DepCat+Vessel
Model 4	LnCE \sim Year+DepCat+Vessel+Month
Model 5	LnCE \sim Year+DepCat+Vessel+Month+DayNight
Model 6	LnCE Year+DepCat+Vessel+Month+DayNight + Zone
Model 7	LnCE \sim Year+DepCat+Vessel+Month+DayNight + Zone + Zone:Month
Model 8	LnCE \sim Year + DepCat+Vessel+Month+DayNight + Zone + Zone:DepCat

Table 8.90. Western Gemfish in the GAB (zones 82, 83, 84, and 85) in depths between 100 and 600 m by Trawl. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted $R^{2}\left(\right.$ adj_ $\left.R^{2}\right)$ and the change in adjusted $R^{2}(\%$ Change $)$. The optimum is Zone:Month (Model 7). Depth category: DepC.

	Year	DepC	Vessel	Month	DayNight	Zone	Zone:Month	Zone:DepC
AIC	11023	7137	5711	5029	4780	4553	4244	4495
RSS	30043	20099	17277	16077	15664	15296	14720	14973
MSS	3263	13206	16029	17228	17641	18010	18585	18333
Nobs	9823	9781	9781	9781	9781	9781	9781	9781
Npars	21	46	73	84	87	90	123	165
adj_R R^{2}	9.613	39.373	47.742	51.314	52.550	53.653	55.244	54.277
\%Change	0.000	29.760	8.370	3.572	1.236	1.103	1.591	-0.967

Figure 8.97. The relative influence of each factor used on the final trend in the optimal standardization for Western Gemfish in the GAB (zones 82, 83, 84, and 85). The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.32 Offshore Ocean Perch Z1020 (REG - 37287001 Helicolenus percoides; 200 m)

The depth distribution of offshore Ocean Perch was revised to $300-700 \mathrm{~m}$ to avoid overlap with inshore Ocean Perch following a Slope RAG meeting (Nov. 2009). However, this decision was reversed in 2010 and the analysis was repeated using 200-700 m.

Table 8.91. Offshore Ocean Perch from zones 10 and 20 in depths $200-700 \mathrm{~m}$ by Trawl. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Zone:Month and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Month	StDev
1986	262.4460	3479	207.3630	77	12.1440	1.0506	0.0000
1987	198.3470	3140	132.7970	70	8.9237	0.9752	0.0257
1988	186.7120	2808	150.7650	73	10.5074	1.0881	0.0268
1989	206.2580	3036	160.0040	67	10.6494	1.0426	0.0266
1990	180.5600	1970	115.9430	57	12.0207	1.3930	0.0299
1991	223.1880	2093	138.9910	53	13.4339	1.4545	0.0296
1992	169.6690	1855	114.3790	48	11.8942	1.2305	0.0305
1993	259.3100	2924	199.1860	53	12.9555	1.2385	0.0272
1994	257.2410	3014	180.9550	49	11.8001	1.1500	0.0269
1995	239.9510	3146	150.3410	50	10.4874	1.0391	0.0266
1996	263.2350	3411	176.8080	53	9.8364	0.9325	0.0262
1997	296.3336	3725	193.7730	54	9.7119	0.9964	0.0259
1998	292.0978	3850	194.6290	49	9.4285	0.8781	0.0257
1999	290.6426	4406	219.0650	52	9.7566	0.9847	0.0254
2000	269.8270	4180	180.9002	53	7.5503	0.7876	0.0258
2001	281.5414	4063	184.8160	43	8.3993	0.8847	0.0260
2002	255.3073	3648	150.6642	45	7.3691	0.8373	0.0268
2003	322.7355	3960	185.0060	53	7.6242	0.8930	0.0265
2004	316.1390	3129	150.4585	46	8.0648	0.8908	0.0278
2005	316.7690	3089	170.0795	46	9.3641	1.0031	0.0277
2006	237.6008	2326	113.1680	39	7.8433	0.8583	0.0296
2007	180.5792	1528	94.9000	22	9.9183	1.0781	0.0334
2008	184.2667	1843	101.8360	23	9.1917	0.9908	0.0319
2009	173.8793	1694	99.6075	23	9.0355	0.9823	0.0328
2010	195.5993	1759	118.1070	21	9.8647	0.9838	0.0323
2011	186.7935	1874	116.6955	22	9.0998	0.8747	0.0318
2012	180.5639	1693	114.1412	22	9.9671	0.9321	0.0326
2013	166.4426	1232	100.1720	20	12.0121	0.9690	0.0359
2014	141.2040	1170	95.5290	20	11.1743	0.8659	0.0364
2015	124.7333	1107	87.421	19	9.2999	0.7148	0.0375

Figure 8.98. Offshore Ocean Perch from zones 10 and 20 in depths $200-700 \mathrm{~m}$ by Trawl. The top left plot depicts the depth distribution of shots containing Offshore Ocean Perch from zones 10 and 20 in depths 200 700 m by Trawl. The top right plot depicts the catch distribution by depth by zone. The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Offshore Ocean Perch catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Offshore Ocean Perch catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.99. Offshore Ocean Perch from zones 10 and 20 in depths $200-700 \mathrm{~m}$ by Trawl. The dashed black line represents the geometric mean catch rate, solid black line the standardized catch rates and solid blue line standardized catch rates from last year's analysis. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 8.92. Offshore Ocean Perch from zones 10 and 20 in depths $200-700 \mathrm{~m}$ by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE~Year+DepCat
Model 3	LnCE \sim Year + DepCat+Vessel
Model 4	LnCE~Year+DepCat+Vessel+Month
Model 5	LnCE \sim Year + DepCat + Vessel+Month + DayNight
Model 6	LnCE~Year+DepCat+Vessel+Month+DayNight+Zone
Model 7	LnCE~Year+DepCat+Vessel+Month+DayNight+Zone+Zone:Month
Model 8	LnCE \sim Year + DepCat+Vessel+Month+DayNight+Zone+Zone:DepCat

Table 8.93. Offshore Ocean Perch from zones 10 and 20 in depths $200-700 \mathrm{~m}$ by Trawl. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted R^{2} (adj_ R^{2}) and the change in adjusted R^{2} (\%Change). The optimum is Zone:Month (Model 7). Depth category: DepC.

	Year	DepC	Vessel	Month	DayNight	Zone	Zone:Month	Zone:DepC
AIC	24958	12380	3328	1110	591	549	-1544	184
RSS	110292	93975	83677	81386	80860	80815	78725	80401
MSS	2186	18502	28801	31091	31618	31662	33752	32077
Nobs	81152	80724	80724	80724	80724	80724	80724	80724
Npars	30	55	214	225	228	229	240	254
adj_ R^{2}	1.908	16.394	25.409	27.441	27.908	27.946	29.800	28.294
\%Change	0.000	14.486	9.015	2.032	0.467	0.039	1.854	-1.507

Figure 8.100. The relative influence of each factor used on the final trend in the optimal standardization for Offshore Ocean Perch from zones 10 and 20. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor 3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

Figure 8.101. Offshore Ocean Perch, depths > 200 m for Trawl and Auto Line (AL), in zones 10 and 20 between 1986 and 2015. Upper plot: Catches through time taken by Trawl and by Auto Line. Some of the decline in trawl catches in recent years have been made up by the Auto Long Lining. Lower plot: Geometric mean catch rates for Offshore Ocean Perch in depth $200-700 \mathrm{~m}$ for both trawl and Auto Line scaled to the mean of each series for comparison.

8.4.33 Inshore Ocean Perch Z1020 (REG - 37287001 - H. percoides; 0-200m)

A separate analysis was required for Inshore Ocean Perch following a Slope RAG meeting (Nov. 2009). These were defined as all those Ocean Perch reported as caught between $0-299 \mathrm{~m}$ to avoid overlap with Offshore Ocean Perch. However, in 2010 this decision was reversed and the analysis was repeated for depths 0-200 m .

Table 8.94. Inshore Ocean Perch from zones 10 and 20 in depths $0-200 \mathrm{~m}$ by Trawl. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Zone:DepC and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:DepC	StDev
1986	262.4460	3479	207.3630	77	12.1440	1.0506	0.0000
1987	198.3470	3140	132.7970	70	8.9237	0.9752	0.0257
1988	186.7120	2808	150.7650	73	10.5074	1.0881	0.0268
1989	206.2580	3036	160.0040	67	10.6494	1.0426	0.0266
1990	180.5600	1970	115.9430	57	12.0207	1.3930	0.0299
1991	223.1880	2093	138.9910	53	13.4339	1.4545	0.0296
1992	169.6690	1855	114.3790	48	11.8942	1.2305	0.0305
1993	259.3100	2924	199.1860	53	12.9555	1.2385	0.0272
1994	257.2410	3014	180.9550	49	11.8001	1.1500	0.0269
1995	239.9510	3146	150.3410	50	10.4874	1.0391	0.0266
1996	263.2350	3411	176.8080	53	9.8364	0.9325	0.0262
1997	296.3336	3725	193.7730	54	9.7119	0.9964	0.0259
1998	292.0978	3850	194.6290	49	9.4285	0.8781	0.0257
1999	290.6426	4406	219.0650	52	9.7566	0.9847	0.0254
2000	269.8270	4180	180.9002	53	7.5503	0.7876	0.0258
2001	281.5414	4063	184.8160	43	8.3993	0.8847	0.0260
2002	255.3073	3648	150.6642	45	7.3691	0.8373	0.0268
2003	322.7355	3960	185.0060	53	7.6242	0.8930	0.0265
2004	316.1390	3129	150.4585	46	8.0648	0.8908	0.0278
2005	316.7690	3089	170.0795	46	9.3641	1.0031	0.0277
2006	237.6008	2326	113.1680	39	7.8433	0.8583	0.0296
2007	180.5792	1528	94.9000	22	9.9183	1.0781	0.0334
2008	184.2667	1843	101.8360	23	9.1917	0.9908	0.0319
2009	173.8793	1694	99.6075	23	9.0355	0.9823	0.0328
2010	195.5993	1759	118.1070	21	9.8647	0.9838	0.0323
2011	186.7935	1874	116.6955	22	9.0998	0.8747	0.0318
2012	180.5639	1693	114.1412	22	9.9671	0.9321	0.0326
2013	166.4426	1232	100.1720	20	12.0121	0.9690	0.0359
2014	141.2040	1170	95.5290	20	11.1743	0.8659	0.0364
2015	124.7333	1107	87.4210	19	9.2999	0.7148	0.0375

Figure 8.102. Inshore Ocean Perch from zones 10 and 20 in depths $0-200 \mathrm{~m}$ by Trawl. The top left plot depicts the depth distribution of shots containing Offshore Ocean Perch from zones 10 and 20 in depths $0-200 \mathrm{~m}$ by Trawl. The top right plot depicts the catch distribution by depth by zone. The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Offshore Ocean Perch catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Offshore Ocean Perch catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.103. Inshore Ocean Perch from zones 10 and 20 in depths $0-200 \mathrm{~m}$ by Trawl. The dashed black line represents the geometric mean catch rate, solid black line the standardized catch rates and solid blue line standardized catch rates from last year's analysis. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 8.95. Inshore Ocean Perch from zones 10 and 20 in depths $0-200 \mathrm{~m}$ by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE \sim Year+Vessel+DepCat
Model 4	LnCE \sim Year+Vessel+DepCat+Month
Model 5	LnCE \sim Year+Vessel+DepCat+Month+DayNight
Model 6	LnCE Year+Vessel+DepCat+Month+DayNight+Zone
Model 7	LnCE \sim Year+Vessel+DepCat+Month+DayNight+Zone+Zone:Month
Model 8	LnCE \sim Year+Vessel+DepCat+Month+DayNight+Zone+Zone:DepCat

Table 8.96. Inshore Ocean Perch from zones 10 and 20 in depths $0-200 \mathrm{~m}$ by Trawl. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted R^{2} (adj_ R^{2}) and the change in adjusted R^{2} (\%Change). The optimum is Zone:DepC (Model 8). Depth category: DepC.

	Year	Vessel	DepC	Month	DayNight	Zone	Zone:DepC	Zone:Month
AIC	6018	2540	1588	1511	1438	1365	1280	1365
RSS	24081	19279	17777	17671	17591	17507	17395	17483
MSS	3869	8671	10173	10279	10359	10443	10554	10466
Nobs	16941	16941	16513	16513	16513	16513	16513	16513
Npars	30	175	185	196	197	200	210	211
adj_ R^{2}	13.694	30.306	35.681	36.021	36.306	36.600	36.964	36.642
\%Change	0.000	16.613	5.374	0.341	0.285	0.294	0.364	-0.322

Figure 8.104. The relative influence of each factor used on the final trend in the optimal standardization for Inshore Ocean Perch from zones 10 and 20. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.34 John Dory Z1020 (DOJ - 37264004 - Zeus faber)

Trawl data corresponding to zones 10 and 20 in depths $0-200 \mathrm{~m}$ were analysed.
Table 8.97. John Dory from zones 10 and 20 in depths 0 to 200 m by Trawl. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Zone:DepC and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:DepC	StDev
1986	231.7150	6417	202.2230	90	12.0754	1.6922	0.0000
1987	206.0900	4662	181.5810	78	14.5313	1.9540	0.0209
1988	181.9840	4540	161.6280	73	13.4584	1.8114	0.0212
1989	217.9240	4814	188.4680	70	14.2742	1.9801	0.0211
1990	167.8530	3701	136.7740	60	12.9727	1.8086	0.0231
1991	172.2910	4041	126.6960	53	11.8881	1.4447	0.0228
1992	130.8493	3938	109.1163	49	9.5571	1.2149	0.0230
1993	240.4380	5431	181.0670	55	11.6096	1.5267	0.0215
1994	267.8680	6556	209.3850	55	11.0915	1.4423	0.0205
1995	185.6720	6043	167.2860	52	10.0702	1.2238	0.0206
1996	160.7530	6391	146.3450	59	8.4122	0.9629	0.0205
1997	87.7655	4468	79.1930	60	6.2670	0.7489	0.0225
1998	109.0292	5091	98.4870	53	6.9524	0.7773	0.0216
1999	132.8421	5547	120.9940	56	7.7587	0.9178	0.0213
2000	164.0530	6962	147.3445	58	7.2348	0.8504	0.0204
2001	129.2998	6627	116.3130	50	5.7830	0.7136	0.0206
2002	150.9738	6688	136.4103	49	6.7049	0.6996	0.0208
2003	156.9439	6558	137.3210	51	6.7367	0.6782	0.0207
2004	166.0275	7094	147.6960	51	6.7630	0.7173	0.0204
2005	107.3895	4934	88.6397	48	5.7083	0.5947	0.0222
2006	85.4007	3727	71.6251	43	5.8304	0.6674	0.0238
2007	62.4793	2844	51.6850	23	5.9518	0.6076	0.0258
2008	116.7894	3852	102.9915	26	8.7102	0.9115	0.0239
2009	91.7065	3148	79.7460	23	8.3442	0.8407	0.0251
2010	61.9744	3078	52.4480	24	5.3200	0.5361	0.0255
2011	74.8052	3428	57.4000	22	5.2685	0.5607	0.0247
2012	67.1300	3387	56.5785	22	5.3487	0.5529	0.0246
2013	63.4930	2685	48.9130	23	5.6624	0.5811	0.0261
2014	46.5936	2648	35.4220	23	3.8079	0.4330	0.0263
2015	73.5552	2800	54.7662	29	5.6939	0.5497	0.0260

Figure 8.105. John Dory from Zones 10 and 20 in depths 0 to 200 m by Trawl. The top left plot depicts the depth distribution of shots containing John Dory zones 10 and 20 in depths 0 to 200 m by Trawl. The top right plot depicts the catch distribution by depth by zone. The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains John Dory catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains John Dory catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.106. John Dory from Zones 10 and 20 in depths 0 to 200 m by Trawl. The graph standardizes catch rates relative to the mean of the standardized catch rates. Standardized catch rates (solid black line), 95\% CI (vertical lines) and geometric mean (dashed black line).

Table 8.98. John Dory from Zones 10 and 20 in depths 0 to 200 m by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE \sim Year+Vessel+DepCat
Model 4	LnCE \sim Year+Vessel+DepCat+DayNight
Model 5	LnCE \sim Year+Vessel+DepCat+DayNight + Month
Model 6	LnCE Year+Vessel+DepCat+DayNight + Month+Zone
Model 7	LnCE \sim Year+Vessel+DepCat+DayNight + Month+Zone+Zone:Month
Model 8	LnCE \sim Year+Vessel+DepCat+DayNight + Month+Zone+Zone:DepCat

Table 8.99. John Dory from Zones 10 and 20 in depths 0 to 200 m by Trawl. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted $R^{2}\left(\operatorname{adj} _R^{2}\right)$ and the change in adjusted R^{2} (\%Change). The optimum is Zone:DepC (Model 8). Depth category: DepC.

	Year	Vessel	DepC	DayNight	Month	Zone	Zone:Month	Zone:DepC
AIC	29433	13717	12008	9741	8559	8525	7842	7359
RSS	174729	156070	153004	150556	149275	149237	148493	147987
MSS	25911	44571	47636	50084	51366	51403	52148	52654
Nobs	142100	142100	140918	140918	140918	140918	140918	140918
Npars	30	196	206	209	220	221	232	231
adj_ 2	12.897	22.107	23.631	24.851	25.485	25.503	25.869	26.122
\%Change	0.000	9.211	1.524	1.220	0.634	0.018	0.366	0.253

Figure 8.107. The relative influence of each factor used on the final trend in the optimal standardization for John Dory from zones 10 and 20. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.35 Mirror Dory Z10-50 (DOM - 37264003 - Zenopsis nebulosus)

Trawl data corresponding to zones 10 to 50 in depths $0-600 \mathrm{~m}$ and all vessels reporting Mirror Dory were analysed.

Figure 8.108. The catches and geometric mean catch rates from 1986-2012 for Mirror Dory split between east (zones $10-30$) and west (zones 40 and 50). The general trends in catch rates, in periods of significant catches, are similar across zones within the east and west. This implies that the assumption that there are no Year x Zone interactions is valid.

Table 8.100. Mirror Dory from zones 10 to 50 in depths 0 to 600 m by Trawl. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Zone:Month and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Month	StDev
1986	402.0480	3198	375.3350	91	39.2923	1.2628	0.0000
1987	450.7660	3103	429.0900	92	40.5389	1.3563	0.0310
1988	346.0140	3189	328.2200	88	33.8322	1.2321	0.0310
1989	591.6310	3068	524.8630	84	54.1685	1.5189	0.0315
1990	295.7640	1906	264.3460	73	36.4669	1.4181	0.0362
1991	240.3130	2229	183.6870	77	26.1034	1.1876	0.0348
1992	166.9803	2245	149.2240	72	21.6080	1.0305	0.0349
1993	306.2200	3289	285.1910	72	30.8083	1.1148	0.0318
1994	297.2680	3826	280.1780	70	24.7710	1.0037	0.0310
1995	244.9240	4207	234.4100	69	20.4951	0.9274	0.0305
1996	352.7220	5831	327.3160	84	18.6495	0.8969	0.0291
1997	459.6263	6681	436.4460	80	21.1399	0.9536	0.0288
1998	355.7935	5572	346.7060	68	21.7227	0.8579	0.0294
1999	309.4810	5543	298.1670	74	18.7583	0.6994	0.0296
2000	171.0664	5581	165.1355	79	10.6637	0.4960	0.0298
2001	243.3623	7013	235.1330	74	11.9013	0.5812	0.0292
2002	449.5550	8204	435.3746	69	18.8684	0.7799	0.0287
2003	613.8621	7797	560.9170	71	27.0358	0.9415	0.0287
2004	507.3770	6484	452.6005	69	24.2230	0.9012	0.0295
2005	579.8856	6190	523.8135	66	28.8815	1.0015	0.0296
2006	419.5564	4293	363.0748	54	29.0772	0.9839	0.0312
2007	289.6026	3400	268.1030	33	26.0002	0.9458	0.0329
2008	396.2424	3377	376.3640	34	37.5237	1.1347	0.0329
2009	476.5154	3567	461.7812	32	38.8778	1.2461	0.0326
2010	579.9761	3702	561.2296	32	46.7110	1.1935	0.0325
2011	514.5297	3921	506.2050	33	41.2284	1.1030	0.0321
2012	365.4882	2757	357.9945	33	41.9667	0.7959	0.0344
2013	279.8848	2172	261.8533	32	45.7026	0.9058	0.0362
2014	189.9533	1601	131.9813	29	31.2560	0.7435	0.0393
2015	240.3220	1463	147.1550	28	39.9183	0.7865	0.0410

Figure 8.109. Mirror Dory from zones 10 to 50 in depths 0 to 600 m by Trawl. The top left plot depicts the depth distribution of shots containing Mirror Dory zones 10 to 50 in depths 0 to 600 m by Trawl. The top right plot depicts the catch distribution by depth by zone. The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Mirror Dory catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Mirror Dory catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.110. Mirror Dory from Zones 10 to 50 in depths 0 to 600 m by Trawl. The graph standardizes catch rates relative to the mean of the standardized catch rates. Standardized catch rates (solid black line), $95 \% \mathrm{CI}$ (vertical lines) and geometric mean (dashed black line).

Table 8.101. Mirror Dory from zones 10 to 50 in depths 0 to 600 m by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE Year+Vessel+Month
Model 4	LnCE \sim Year+Vessel+Month+DepCat
Model 5	LnCE \sim Year+Vessel+Month+DepCat+DayNight
Model 6	LnCE Year+Vessel+Month+DepCat+DayNight+Zone
Model 7	LnCE \sim Year+Vessel+Month+DepCat+DayNight+Zone+Zone:Month
Model 8	LnCE \sim Year+Vessel+Month+DepCat+DayNight+Zone+Zone:DepCat

Table 8.102. Mirror Dory from zones 10 to 50 in depths 0 to 600 m by Trawl. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted $R^{2}\left(\operatorname{adj} R^{2}\right)$ and the change in adjusted R^{2} (\%Change). The optimum is Zone:Month (Model 7). Depth category: DepC.

	Year	Vessel	DepC	Month	DayNight	Zone	Zone:Month	Zone:DepC
AIC	80759	58249	56393	45062	43609	42712	38112	41706
RSS	238667	198801	195847	178224	176152	174877	168427	173205
MSS	16132	55998	58952	76575	78647	79922	86373	81594
Nobs	125409	125409	125409	124719	124719	124719	124719	124719
Npars	30	235	246	270	273	277	321	373
adj_ R^{2}	6.310	21.831	22.986	29.902	30.715	31.214	33.728	31.819
\%Change	0.000	15.522	1.155	6.916	0.813	0.499	2.514	-1.909

Figure 8.111. The relative influence of each factor used on the final trend in the optimal standardization for Mirror Dory from zones 10 to 50. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.36 Mirror Dory East (DOM - 37264003 - Zenopsis nebulosus)

Trawl data selected for analysis corresponded to records from zones 10 to 30 in depths $0-600 \mathrm{~m}$ and all vessels reporting Mirror Dory.

Table 8.103. Mirror Dory from Zones 10 to 30 in depths 0 to 600 m by Trawl. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Zone:Month and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Month	StDev
1986	402.0480	3140	367.9350	80	39.3096	1.1963	0.0000
1987	450.7660	2961	413.5710	70	40.7350	1.2945	0.0324
1988	346.0140	3067	313.2370	77	33.7080	1.1718	0.0323
1989	591.6310	2997	513.7360	70	54.4064	1.4137	0.0328
1990	295.7640	1811	254.3800	61	36.4032	1.3418	0.0378
1991	240.3130	2020	170.9040	68	27.1227	1.1572	0.0372
1992	166.9803	2039	140.9250	57	22.3554	1.0060	0.0371
1993	306.2200	3012	267.0610	62	32.4231	1.0875	0.0337
1994	297.2680	3496	262.0160	62	25.9551	0.9607	0.0328
1995	244.9240	3498	196.2670	58	21.7028	0.8703	0.0327
1996	352.7220	4393	212.1710	69	16.7077	0.7656	0.0315
1997	459.6263	4775	288.1360	65	19.4994	0.8116	0.0314
1998	355.7935	4103	230.4950	55	19.4367	0.7302	0.0319
1999	309.4810	4225	234.8730	59	19.2731	0.6485	0.0321
2000	171.0664	4601	142.6745	63	11.3498	0.5081	0.0320
2001	243.3623	4544	128.9480	54	10.0086	0.5074	0.0323
2002	449.5550	5041	194.5926	53	14.0316	0.6385	0.0318
2003	613.8621	5363	405.7085	58	29.9382	0.9328	0.0313
2004	507.3770	4274	292.6610	57	25.8699	0.8851	0.0326
2005	579.8856	4417	423.6310	55	37.1607	1.1323	0.0324
2006	419.5564	3230	297.5593	44	35.2650	1.1329	0.0342
2007	289.6026	2223	203.1620	22	33.8239	1.2242	0.0375
2008	396.2424	2495	317.7050	26	47.8049	1.3596	0.0369
2009	476.5154	2232	338.4877	27	55.3346	1.4319	0.0378
2010	579.9761	2105	383.4800	25	70.8452	1.1972	0.0382
2011	514.5297	2254	347.0670	26	64.2791	1.1995	0.0377
2012	365.4882	1739	287.7780	24	67.2055	0.9408	0.0403
2013	279.8848	1569	207.8363	24	59.1746	0.9742	0.0413
2014	189.9533	1084	83.9653	23	35.4959	0.7039	0.0461
2015	240.3220	954	107.1480	24	59.8964	0.7759	0.0492

Figure 8.112. Mirror Dory from zones 10 to 30 in depths 0 to 600 m by Trawl. The top left plot depicts the depth distribution of shots containing Mirror Dory zones 10 to 30 in depths 0 to 600 m by Trawl. The top right plot depicts the catch distribution by depth by zone. The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Mirror Dory catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Mirror Dory catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.113. Mirror Dory from Zones 10 to 30 in depths 0 to 600 m by Trawl. The dashed black line represents the geometric mean catch rate, solid black line the standardized catch rates and solid blue line the standardized catch rates from last year's analysis. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 8.104. Mirror Dory from Zones 10 to 30 in depths 0 to 600 m by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+Vessel
Model 3	LnCE Year+Vessel+DepCat
Model 4	LnCE \sim Year+Vessel+DepCat+Month
Model 5	LnCE \sim Year+Vessel+DepCat+Month+DayNight
Model 6	LnCE \sim Year+Vessel+DepCat+Month+DayNight+Zone
Model 7	LnCE \sim Year+Vessel+DepCat+Month+DayNight+Zone+Zone:Month
Model 8	LnCE \sim Year+Vessel+DepCat+Month+DayNight+Zone+Zone:DepCat

Table 8.105. Mirror Dory from zones 10 to 30 in depths 0 to 600 m by Trawl. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted $R^{2}\left(\operatorname{adj} R^{2}\right)$ and the change in adjusted R^{2} (\%Change). The optimum is Zone:Month (Model 7). Depth category: DepC.

	Year	Vessel	DepC	Month	DayNight	Zone	Zone:Month	Zone:DepC
AIC	66003	49268	38672	36812	36145	35361	33780	34978
RSS	189378	157794	140397	137589	136598	135448	133105	134753
MSS	18447	50031	67428	70236	71227	72377	74720	73072
Nobs	93662	93662	93160	93160	93160	93160	93160	93160
Npars	30	207	231	242	245	247	269	295
adj_R	8.848	23.906	32.277	33.624	34.100	34.654	35.768	34.955
\%Change	0.000	15.059	8.371	1.347	0.476	0.554	1.115	-0.813

Figure 8.114. The relative influence of each factor used on the final trend in the optimal standardization for Mirror Dory from zones 10 to 30. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.37 Mirror Dory West (DOM - 37264003 - Zenopsis nebulosus)

Trawl data selected for analysis corresponded to records from zones 40 and 50 in depths $0-600 \mathrm{~m}$ and all vessels reporting Mirror Dory.

Table 8.106. Mirror Dory from Zones 40 to 50 in depths 0 to 600 m by Trawl. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr} \mathrm{)} .\mathrm{The} \mathrm{optimum} \mathrm{model} \mathrm{is} \mathrm{Zone:Month} \mathrm{and} \mathrm{standard} \mathrm{deviation} \mathrm{(StDev)}$ relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Month	StDev
1986	402.0480	57	7.3740	10	37.8926	2.4182	0.0000
1987	450.7660	142	15.5190	23	36.0604	1.6631	0.1876
1988	346.0140	122	14.9830	17	37.1811	1.3527	0.1981
1989	591.6310	71	11.1270	15	45.3237	1.6690	0.2099
1990	295.7640	95	9.9660	14	37.8770	1.1784	0.2141
1991	240.3130	209	12.7830	17	17.7768	0.8254	0.1861
1992	166.9803	205	8.2890	20	14.5194	0.6867	0.1880
1993	306.2200	276	18.0100	18	16.7714	0.7900	0.1835
1994	297.2680	330	18.1620	20	14.7748	0.7171	0.1815
1995	244.9240	709	38.1430	23	15.3638	0.9072	0.1781
1996	352.7220	1438	115.1450	26	23.4103	1.2887	0.1779
1997	459.6263	1906	148.3100	24	24.4653	1.3047	0.1775
1998	355.7935	1469	116.2110	20	27.5790	1.2403	0.1779
1999	309.4810	1318	63.2940	23	17.1138	0.7984	0.1781
2000	171.0664	980	22.4610	28	7.8627	0.4514	0.1790
2001	243.3623	2469	106.1850	29	14.1812	0.7926	0.1772
2002	449.5550	3158	240.4320	28	24.8208	1.1652	0.1769
2003	613.8621	2429	154.8985	27	20.6958	0.9774	0.1772
2004	507.3770	2208	159.8094	25	20.4507	0.9851	0.1774
2005	579.8856	1769	100.0055	23	15.1798	0.7727	0.1777
2006	419.5564	1061	65.3505	19	15.7843	0.6580	0.1789
2007	289.6026	1177	64.9410	16	14.4232	0.5877	0.1786
2008	396.2424	879	58.5330	17	16.1944	0.6699	0.1792
2009	476.5154	1333	123.2455	14	20.0140	1.0251	0.1780
2010	579.9761	1596	177.5496	14	26.4545	1.2380	0.1777
2011	514.5297	1662	157.8060	16	21.5957	0.9415	0.1777
2012	365.4882	1018	70.2165	15	16.6445	0.5561	0.1789
2013	279.8848	602	53.7610	15	22.1155	0.7475	0.1808
2014	189.9533	516	47.8960	10	22.8337	0.8163	0.1814
2015	240.3220	508	39.9920	10	18.7325	0.7759	0.1820

Figure 8.115. Mirror Dory from zones 40 to 50 in depths 0 to 600 m by Trawl. The top left plot depicts the depth distribution of shots containing Mirror Dory zones 40 to 50 in depths 0 to 600 m by Trawl. The top right plot depicts the catch distribution by depth by zone. The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Mirror Dory catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Mirror Dory catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.116. Mirror Dory from zones 40 to 50 in depths 0 to 600 m by Trawl. Standardized indices (solid black line), $95 \% \mathrm{CI}$ (vertical lines) and geometric mean (dashed black line).

Table 8.107. Mirror Dory from Zones 40 to 50 in depths 0 to 600 m by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE~Year+Vessel
Model 3	LnCE~Year+Vessel+Month
Model 4	LnCE~Year+Vessel+Month+DepCat
Model 5	LnCE \sim Year + Vessel+Month+DepCat + DayNight
Model 6	LnCE \sim Year + Vessel+Month + DepCat + DayNight + Zone
Model 7	LnCE \sim Year + Vessel+Month + DepCat + DayNight+Zone+Zone:Month
Model 8	LnCE \sim Year + Vessel + Month + DepCat+DayNight+Zone+Zone:DepCat

Table 8.108. Mirror Dory from zones 40 to 50 in depths 0 to 600 m by Trawl. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted $R^{2}\left(\operatorname{adj} R^{2}\right)$ and the change in adjusted R^{2} (\%Change). The optimum is Zone:Month (Model 7). Depth category: DepC.

	Year	Vessel	Month	DepC	DayNight	Zone	Zone:Month	Zone:DepC
AIC	10894	3940	2374	886	-105	-484	-834	-535
RSS	44626	35634	33894	32114	31114	30740	30379	30654
MSS	2260	11252	12993	14773	15773	16146	16508	16233
Nobs	31712	31712	31712	31524	31524	31524	31524	31524
Npars	30	121	132	151	154	155	166	174
adj_ R^{2}	4.733	23.710	27.411	31.180	33.316	34.115	34.866	34.261
\%Change	0.000	18.977	3.701	3.769	2.136	0.799	0.751	-0.606

Figure 8.117. The relative influence of each factor used on the final trend in the optimal standardization for Mirror Dory from zones $40-50$. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor 3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.38 Ribaldo Z10-50 (RBD - 37224002 - Mora moro)

Trawl data corresponding to zones 10 to 50 in depths $0-1000 \mathrm{~m}$ were analysed.
Table 8.109. Ribaldo from zones 10 to 50 in depths 0 to 1000 m by Trawl. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr} \mathrm{)} .\mathrm{The} \mathrm{optimum} \mathrm{model} \mathrm{is} \mathrm{Zone:Month} \mathrm{and} \mathrm{standard} \mathrm{deviation} \mathrm{(StDev)} \mathrm{relates} \mathrm{to} \mathrm{the}$ data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Month	StDev
1986	4.1040	72	3.5240	11	14.6630	2.2732	0.0000
1987	7.9410	158	7.2920	14	10.2593	1.2769	0.1378
1988	10.8980	123	8.0490	22	16.5570	1.9794	0.1530
1989	11.3420	136	7.7110	14	18.2556	1.7824	0.1510
1990	3.6680	58	2.2590	11	8.9113	1.3914	0.1717
1991	7.8080	145	5.1620	22	7.9930	1.3958	0.1507
1992	13.3330	226	11.6890	26	9.7616	1.3904	0.1419
1993	22.7770	330	19.7620	37	11.2449	1.1616	0.1419
1994	41.9380	423	23.6220	30	11.8156	1.2821	0.1395
1995	90.3230	1147	86.2990	26	12.3128	1.3672	0.1359
1996	82.2780	1492	77.0120	32	10.1757	1.0388	0.1357
1997	103.1154	1714	96.5670	30	9.8023	0.9093	0.1353
1998	99.9134	1666	91.9750	33	9.6723	0.8781	0.1355
1999	72.1498	1133	59.6680	32	8.7093	0.8075	0.1362
2000	66.7914	1174	53.8450	38	7.4217	0.7456	0.1361
2001	82.4788	1129	52.6190	37	6.7580	0.6991	0.1361
2002	157.8426	1142	57.2360	30	6.7896	0.6426	0.1363
2003	180.8106	1307	65.9550	35	6.6903	0.6297	0.1360
2004	180.9607	1257	66.4169	33	7.2233	0.6896	0.1362
2005	90.3599	671	30.0311	32	6.3449	0.6069	0.1381
2006	122.5935	637	32.0832	34	6.3304	0.6367	0.1381
2007	78.3142	404	15.5712	24	3.2493	0.4394	0.1410
2008	78.4750	367	17.6183	24	4.7326	0.5982	0.1416
2009	104.9600	572	33.4102	20	5.6978	0.6686	0.1387
2010	91.9240	681	37.1429	22	5.5961	0.7010	0.1379
2011	93.9468	863	44.4726	20	5.8293	0.7061	0.1369
2012	107.2292	759	42.4445	19	6.1631	0.7128	0.1377
2013	122.3639	928	68.9605	23	8.5808	0.8607	0.1370
2014	134.0078	815	55.8475	22	7.8160	0.8717	0.1373
2015	99.1166	739	50.5253	25	7.5382	0.8574	0.1379

Figure 8.118. Ribaldo from zones 10 to 50 in depths 0 to 1000 m by Trawl. The top left plot depicts the depth distribution of shots containing Ribaldo from zones 10 to 50 in depths 0 to 1000 m by Trawl. The top right plot depicts the catch distribution by depth by zone. The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Ribaldo catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches < 30 kg) and bottom right plot contains Ribaldo catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.119. Ribaldo from zones 10 to 50 in depths 0 to 1000 m by Trawl. Upper graph: The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates (relative to the mean of the standardized catch rates). The blue line corresponds to last year's standardized catch rates. Lower graph: Standardized indices (solid black line), 95% CI (vertical lines) and geometric mean (dashed black line). This illustrates the impact on the relative uncertainty of the relatively small number of records, especially in the early years.

Table 8.110. Ribaldo from zones 10 to 50 in depths 0 to 1000 m by Trawl. Statistical model structures used in this analysis. DepCat is a series of 50 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE~Year+Vessel
Model 3	LnCE~Year+Vessel+DepCat
Model 4	LnCE~Year+Vessel+DepCat+Zone
Model 5	LnCE~Year+Vessel+DepCat+Zone+DayNight
Model 6	LnCE~Year+Vessel+DepCat+Zone+DayNight + Month
Model 7	LnCE \sim Year+Vessel+DepCat+Zone+DayNight + Month+Zone:Month
Model 8	LnCE \sim Year+Vessel+DepCat+Zone+DayNight+Month+Zone:DepCat

Table 8.111. Ribaldo from zones 10 to 50 in depths 0 to 1000 m by Trawl. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted $R^{2}\left(\operatorname{adj} R^{2}\right)$ and the change in adjusted R^{2} (\%Change). The optimum is Zone:Month (Model 7). Depth category: DepC.

	Year	Vessel	DepC	Zone	DayNight	Month	Zone:Month	Zone:DepC
AIC	-1731	-5436	-6669	-7416	-7542	-7600	-8185	-7928
RSS	20547	17120	16006	15467	15375	15320	14859	14822
MSS	1662	5088	6203	6741	6833	6889	7349	7386
Nobs	22268	22063	22063	22063	22063	22063	22063	22063
Npars	30	80	206	210	213	224	268	424
adj_ R^{2}	7.361	22.634	27.253	29.687	30.097	30.314	32.271	31.952
\%Change	0.000	15.273	4.619	2.434	0.409	0.217	1.956	-0.319

Figure 8.120. The relative influence of each factor used on the final trend in the optimal standardization for Ribaldo from zones 10 to 50 . The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

Figure 8.121. Ribaldo from zones 10 to 50 in depths 0 to 1000 m by Trawl. Geometric mean catch rate and catch (t) by zones 10-30 (left plots) and zone 40, 50 (right plots).

8.4.39 Ribaldo AL Z10-50 GAB (RBD - 37224002 - Mora moro)

Auto Line Ribaldo data selected for analysis corresponded to records from zones $10-50$ and the GAB in depths 0 to 1000 m . The DayNight factor was not employed in the standardization analysis.

Table 8.112. Ribaldo taken by Auto Line in zones $10,20,3040,50$ and the GAB in depths 0 to 1000 m . Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates (kg/shot). The optimum model is Zone:Month and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Month	StDev
1997	103.1154	22	1.4050	1	50.5984	0.4255	0.0000
1998	99.9134	13	1.7530	2	88.6126	0.4263	0.4488
1999	72.1498	24	1.9470	1	40.6973	0.3522	0.3814
2000	66.7914	43	9.0390	1	96.6841	0.3405	0.3390
2001	82.4788	63	15.7200	2	157.4316	1.2321	0.3143
2002	157.8426	259	95.4965	4	135.9460	2.8714	0.2856
2003	180.8106	337	102.8823	7	75.0323	2.1583	0.2832
2004	180.9607	714	96.5886	11	51.6307	1.9305	0.2804
2005	90.3599	308	37.1892	7	44.5029	1.1682	0.2849
2006	122.5935	605	65.3525	8	39.5723	1.1415	0.2806
2007	78.3142	393	28.1252	6	25.0254	0.6992	0.2823
2008	78.4750	401	56.7722	6	39.2440	0.8160	0.2809
2009	104.9600	433	68.2730	6	49.5683	0.8080	0.2801
2010	91.9240	381	51.6696	5	47.4481	0.7682	0.2812
2011	93.9468	356	46.4764	5	45.6603	0.9184	0.2811
2012	107.2292	295	58.8469	6	60.9351	0.8502	0.2820
2013	122.3639	275	49.8231	5	48.7494	0.6671	0.2831
2014	134.0078	265	66.2288	5	57.9143	0.7407	0.2838
2015	99.1166	194	34.8787	3	51.9909	0.6857	0.2866

Figure 8.122. Ribaldo by Auto Line. The top left plot depicts the depth distribution of shots containing Ribaldo from zones 10 to 50 and the GAB in depths 0 to 1000 m by Auto Line employed in the standardization analysis. The top right plot depicts the catch distribution by depth by zone. The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Ribaldo catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Ribaldo catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.123. Standardized catch rates for Ribaldo by Auto Line. Upper graph: The dashed black line represents the geometric mean catch rate and the solid black line the standardized catch rates (relative to the mean of the standardized catch rates). The blue line corresponds to last year's standardized indices. Lower graph: Standardized indices (solid black line), 95% CI (vertical lines) and geometric mean (dashed black line). The graph standardizes catch rates relative to the mean of the standardized catch rates. The same statistical models that were used for the trawl analysis were also used here (Table 8.113).

Table 8.113. Ribaldo from zones 10 to 50 in depths 0 to 1000 m by Auto Line. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE~Year+Vessel
Model 3	LnCE \sim Year+Vessel+DepCat
Model 4	LnCE \sim Year+Vessel+DepCat+Zone
Model 5	LnCE \sim Year+Vessel+DepCat+Zone+Month
Model 6	LnCE Year+Vessel+DepCat+Zone+Month
Model 7	LnCE \sim Year+Vessel+DepCat+Zone+Month+Zone:Month
Model 8	LnCE \sim Year+Vessel+DepCat+Zone+Month+Zone:DepCat

Table 8.114. Ribaldo taken by Auto Line. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted $R^{2}\left(\operatorname{adj} R^{2}\right)$ and the change in adjusted $R^{2}(\%$ Change $)$. The optimum is Zone:Month (Model 7). Depth category: DepC.

	Year	Vessel	DepC	Zone	Month	Zone:Month	Zone:DepC
AIC	5176	3128	2734	2642	2600	2445	2664
RSS	13982	9509	8692	8522	8421	7949	7459
MSS	693	5166	5983	6153	6254	6726	7216
Nobs	5381	5381	5362	5362	5362	5362	5362
Npars	19	32	72	79	90	167	447
adj_ R^{2}	4.402	34.829	39.976	41.069	41.650	44.106	44.561
\%Change	0.000	30.427	5.147	1.093	0.581	2.455	0.456

Figure 8.124. The relative influence of each factor used on the final trend in the optimal standardization for Ribaldo from zones 10 to 50 and the GAB. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.40 Ocean Jackets Z1050 (LTC - 37465006 - Nelusetta ayraudi)

Alternate: Leather Jackets (LTH - 37465000)

Trawl data from zones 10 to 50 in depths $0-300 \mathrm{~m}$ and all vessels and records reporting leatherjackets were included. This is the second year this data has been considered

Table 8.115. Ocean Jackets from zones 10 to 50 in depths 0 to 300 m by Trawl. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Zone:DepCat and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:DepCat	StDev
1986	56.4290	2472	44.6950	75	5.0326	0.6460	0.0000
1987	53.3540	1445	28.1510	61	5.1085	0.6866	0.0368
1988	66.3040	1911	45.7250	66	6.2067	0.8269	0.0342
1989	71.6660	1808	32.7780	65	4.8860	0.7127	0.0348
1990	90.9690	1548	33.1570	46	4.9715	0.7007	0.0367
1991	170.4810	1329	24.7880	46	4.4265	0.6070	0.0387
1992	88.8840	1207	24.9160	41	4.8188	0.6239	0.0397
1993	71.8970	1342	29.2450	42	5.0852	0.6728	0.0393
1994	74.4380	1449	34.8850	45	5.9751	0.7592	0.0378
1995	140.1790	2222	59.0530	41	6.0061	0.7585	0.0343
1996	199.5710	2571	72.1980	54	6.3291	0.7798	0.0335
1997	177.4190	2007	52.4820	51	5.4556	0.7075	0.0352
1998	189.8986	2488	68.0120	44	5.2611	0.7041	0.0337
1999	202.8050	2681	88.1900	52	7.0007	0.8236	0.0332
2000	198.8111	2981	73.1510	52	5.1869	0.6609	0.0328
2001	222.5697	3190	64.2490	55	4.1918	0.5879	0.0326
2002	378.4963	4875	199.4070	61	5.4889	0.6992	0.0307
2003	482.3066	5504	187.3785	58	5.0841	0.6652	0.0302
2004	692.5927	6213	313.1105	60	8.3073	1.0824	0.0298
2005	890.6138	5162	342.8585	54	9.8912	1.2445	0.0306
2006	741.5297	4636	301.7370	50	10.2758	1.3759	0.0311
2007	564.8329	3092	285.3964	27	14.0314	1.6420	0.0334
2008	490.3988	3554	318.3140	29	13.7134	1.5577	0.0329
2009	609.9797	3260	376.1120	28	16.0145	1.7454	0.0333
2010	483.8922	3259	300.1655	29	13.2397	1.4447	0.0333
2011	487.4438	3224	277.1800	29	12.3456	1.3667	0.0333
2012	519.6479	3443	343.8395	30	14.4818	1.5709	0.0330
2013	488.2250	2835	264.7285	28	13.7429	1.5781	0.0340
2014	511.8626	3374	273.1295	28	12.0639	1.4088	0.0331
2015	411.1243	3004	244.9400	31	11.7216	1.3604	0.0337

Figure 8.125. Ocean Jackets from zones 10 to 50 in depths 0 to 300 m by Trawl. The top left plot depicts the depth distribution of shots containing Ocean Jackets from zones 10 to 50 in depths 0 to 300 m by Trawl employed in the analysis. The top right plot depicts the catch distribution by depth by zone. The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Ocean Jackets catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Ocean Jackets catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.126. Ocean Jackets from zones 10 to 50 in depths 0 to 300 m by Trawl. The dashed black line represents the geometric mean catch rate, solid black line the standardized catch rates and solid blue line the standardized catch rates from last year's analysis. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 8.116. Ocean Jackets from Zones 10 to 50 in depths 0 to 300 m by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE~Year+Vessel
Model 3	LnCE \sim Year + Vessel + DepCat
Model 4	LnCE~Year+Vessel+DepCat+Month
Model 5	LnCE \sim Year + Vessel+DepCat + Month + Zone
Model 6	LnCE \sim Year + Vessel+DepCat+Month+Zone+DayNight
Model 7	LnCE~Year+Vessel+DepCat+Month+Zone+DayNight + Zone:Month
Model 8	LnCE \sim Year + Vessel+DepCat+Month+Zone+DayNight + Zone:DepCat

Table 8.117. Ocean Jackets from Zones 10 to 50 in depths 0 to 300 m by Trawl. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted $R^{2}\left(\operatorname{adj} R^{2}\right)$ and the change in adjusted R^{2} (\%Change). The optimum is Zone:DepC (Model 8). Depth category: DepC.

	Year	Vessel	DepC	Month	Zone	DayNight	Zone:Month	Zone:DepC
AIC	19643	6620	6088	5316	4556	4382	3157	4184
RSS	110017	94527	93336	92492	91686	91498	90133	91222
MSS	16322	31812	33003	33847	34653	34841	36206	35117
Nobs	88086	88086	87495	87495	87495	87495	87495	87495
Npars	30	202	217	228	231	234	279	267
adj_ R^{2}	12.890	25.009	25.940	26.600	27.237	27.384	28.430	27.575
\%Change	0.000	12.119	0.931	0.660	0.637	0.147	1.046	-0.855

Figure 8.127. The relative influence of each factor used on the final trend in the optimal standardization for Ocean Jackets from Zones 10 to 50. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

Figure 8.128. Ocean Jackets from Zones 10 to 50 in depths 0 to 300 m by Trawl. The catches taken in each of the four main SESSF zones is depicted with the total catch across these zones. The scales on the y-axis changes between graphs.

8.4.41 Ocean Jackets GAB (LTC - 37465006 - Nelusetta ayraudi)

Alternate: Leatherjackets (LTH - 37465000)

Data from zones 82 and 83 in the GAB in depths $0-300 \mathrm{~m}$ by Trawl and all vessels and records reporting leatherjackets were included. This is the second year this data has been considered.

Table 8.118. Ocean Jackets from zones 82 and 83 in depths 80 to 220 m by Trawl. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Zone:Month and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Month	StDev
1986	56.4290	141	8.4900	1	11.5206	1.2151	0.0000
1987	53.3540	212	22.6320	3	13.7002	1.0210	0.1068
1988	66.3040	245	15.5900	7	14.0350	1.1758	0.1868
1989	71.6660	576	34.7140	7	11.9652	1.2139	0.1851
1990	90.9690	920	51.3800	11	11.1086	0.8285	0.1827
1991	170.4810	1252	139.7970	8	15.0694	1.0644	0.1821
1992	88.8840	954	59.5340	7	9.0287	0.9154	0.1820
1993	71.8970	819	38.7640	4	6.3105	0.6199	0.1820
1994	74.4380	745	36.6600	5	5.7741	0.5435	0.1827
1995	140.1790	1316	78.8320	5	6.2242	0.7093	0.1813
1996	199.5710	1725	123.4690	6	7.8262	0.8285	0.1810
1997	177.4190	2135	121.0640	9	6.4622	0.6869	0.1810
1998	189.8986	1799	116.4370	9	7.1373	0.7496	0.1810
1999	202.8050	1585	108.9700	7	7.8084	0.8565	0.1814
2000	198.8111	1552	122.3260	5	7.8146	0.8759	0.1815
2001	222.5697	1993	146.1530	6	8.6637	0.9136	0.1813
2002	378.4963	1798	148.3705	6	9.0807	0.9641	0.1814
2003	482.3066	2837	279.6050	9	10.8621	1.1028	0.1811
2004	692.5927	3433	364.4399	9	12.7575	1.2024	0.1810
2005	890.6138	4317	522.9095	10	13.9012	1.2802	0.1810
2006	741.5297	3609	408.4483	11	12.0564	0.9937	0.1810
2007	564.8329	2647	254.8505	8	10.2989	0.8926	0.1813
2008	490.3988	2351	146.3620	6	7.4758	0.7642	0.1814
2009	609.9797	2160	219.9650	4	10.4196	1.0585	0.1814
2010	483.8922	1792	168.2025	4	12.6091	1.2018	0.1817
2011	487.4438	1856	190.9830	4	13.1259	1.2246	0.1816
2012	519.6479	1712	154.6335	5	12.8980	1.1694	0.1818
2013	488.2250	2209	203.8610	6	13.9358	1.2876	0.1815
2014	511.8626	2006	206.0260	6	14.5330	1.3440	0.1816
2015	411.1243	1570	148.6155	3	14.6190	1.2965	0.1820
10							

Figure 8.129. Ocean Jackets from zones 82 and 83 in depths 80 to 220 m by Trawl. The top left plot depicts the depth distribution of shots containing Ocean Jackets from Zones 82 and 83 in depths 80 to 220 m by Trawl. The top right plot depicts the catch distribution by depth by zone. The middle left plot depicts the number of vessels through time and middle right plot contains the number of records used in analysis. The bottom left plot contains Ocean Jackets catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains Ocean Jackets catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 8.130. Ocean Jackets from zones 82 and 83 in depths 80 to 220 m by Trawl. The dashed black line represents the geometric mean catch rate, solid black line the standardized catch rates and blue line the standardized catch rates based on last year's analysis. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 8.119. Ocean Jackets from zones 82 and 83 in depths 80 to 220 m by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year+DayNight
Model 3	LnCE \sim Year+Daynight + DepCat
Model 4	LnCE \sim Year+DayNight + DepCat + Vessel
Model 5	LnCE \sim Year+DayNight + DepCat+Vessel+Month
Model 6	LnCE Year+DayNight + DepCat + Vessel+Month+Zone
Model 7	LnCE \sim Year + DayNight + DepCat + Vessel+Month+Zone+Zone:Month
Model 8	LnCE \sim Year + DayNight + DepCat+Vessel+Month+Zone+Zone:DepCat

Table 8.120. Ocean Jackets from zones 82 and 83 in depths 80 to 220 m by Trawl. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted R^{2} (adj_ R^{2}) and the change in adjusted R^{2} (\%Change). The optimum is Zone:Month (Model 8). Depth category: DepC.

	Year	DayNight	DepC	Zone	Vessel	Month	Zone:Month	Zone:DepC
AIC	2409	-3149	-5858	-8322	-9659	-9681	-9905	-9683
RSS	54669	49148	46216	44008	42869	42850	42647	42823
MSS	3979	9499	12431	14639	15778	15797	16001	15824
Nobs	52266	52266	51841	51841	51841	51841	51841	51841
Npars	30	33	48	85	96	97	108	112
adj_ R^{2}	6.732	16.146	21.125	24.839	26.769	26.801	27.133	26.826
\%Change	0.000	9.414	4.979	3.714	1.930	0.031	0.332	-0.307

Figure 8.131. The relative influence of each factor used on the final trend in the optimal standardization for Ocean Jackets from zones 82 and 83. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

8.4.42 Deepwater Flathead (FLD - 37296002 - Platycephalus conatus)

Data from the GAB fishery, depths between $0-1000 \mathrm{~m}$, taken by Trawl. Previous analyses have restricted analyses to vessels present for more than two years and which caught an average annual catch $>4 \mathrm{t}$. However, these data filters have only very minor effects upon the observed trend in catch rates, so all Trawl data between $0-1000 \mathrm{~m}$ were used in the analysis. Catches in 1986/1987 corresponded to the first four months of the year, were relatively low and only taken by a single vessel, so were omitted from analyses.

Table 8.121. Deepwater Flathead taken by Trawl in the GAB in depths between $0-1000 \mathrm{~m}$. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Zone:Ves and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:Ves	StDev
$1987 / 1988$	80.3340	453	76.8400	9	27.6907	0.4679	0.0000
$1988 / 1989$	317.2490	815	314.0740	9	56.0806	0.9390	0.0502
$1989 / 1990$	402.5570	1126	397.4970	7	53.0361	0.9633	0.0507
$1990 / 1991$	430.2310	1501	423.2260	11	49.0776	1.0404	0.0497
$1991 / 1992$	621.1150	1781	611.2140	13	54.5388	0.9522	0.0481
$1992 / 1993$	524.0620	984	509.2170	4	76.9248	1.2104	0.0500
$1993 / 1994$	593.1100	900	585.6450	7	91.4997	1.5531	0.0504
$1994 / 1995$	1285.9330	1745	1258.8930	6	106.3058	1.9671	0.0478
$1995 / 1996$	1585.1240	1862	1559.4390	5	125.2137	1.9094	0.0477
$1996 / 1997$	1499.2260	2784	1466.6360	8	79.3934	1.2654	0.0469
$1997 / 1998$	1029.9880	2908	1012.4710	10	50.9703	0.8971	0.0467
$1998 / 1999$	690.3890	2558	682.1710	7	34.6696	0.6678	0.0471
$1999 / 2000$	571.0500	2102	545.8370	7	39.1315	0.8121	0.0482
$2000 / 2001$	846.6200	2413	775.5200	6	43.0405	0.8781	0.0477
$2001 / 2002$	973.9438	2448	912.9710	6	51.5431	1.0460	0.0477
$2002 / 2003$	1711.5006	3144	1632.1305	8	73.4099	1.5175	0.0472
$2003 / 2004$	2272.7170	4536	2188.2269	10	68.4174	1.4288	0.0470
$2004 / 2005$	2158.9205	5551	2100.1866	10	55.0520	1.1513	0.0467
$2005 / 2006$	1433.1321	5349	1358.4065	11	37.5227	0.7493	0.0468
$2006 / 2007$	1015.4786	4254	969.1785	11	32.9286	0.6430	0.0467
$2007 / 2008$	1041.3325	4003	971.1735	7	35.9047	0.7236	0.0472
$2008 / 2009$	813.9210	3118	775.7370	5	40.6974	0.8516	0.0475
$2009 / 2010$	849.8300	3205	829.7290	4	39.1349	0.8012	0.0474
$2010 / 2011$	970.0015	2805	930.2880	4	50.8864	1.0292	0.0477
$2011 / 2012$	965.0510	3270	788.7420	4	38.5448	0.7888	0.0475
$2012 / 2013$	1017.8855	3611	876.1815	5	37.9414	0.7753	0.0473
$2013 / 2014$	882.6720	3304	672.6200	7	31.9933	0.6695	0.0474
$2014 / 2015$	544.6340	2572	484.7460	4	29.3345	0.6183	0.0480
$2015 / 2016 \wedge$	491.0775	996	231.2270	3	34.3758	0.6832	0.0513

[^1]Table 8.122. Reported catch of Deepwater Flathead by method across all methods and years.

Year	AL	BL	DL	DS	GN	OTT	PTB	TDO	TW
1987/1988									80.3340
1988/1989									317.2490
1989/1990									402.5570
1990/1991									429.8560
1991/1992									620.2830
1992/1993									523.6620
1993/1994									593.1100
1994/1995									1278.8130
1995/1996									1582.3740
1996/1997									1497.8160
1997/1998									1029.8980
1998/1999			0.01						690.0790
1999/2000									570.9100
2000/2001					0.0010				846.6190
2001/2002					0.0033				973.9405
2002/2003					0.0091				1711.4915
2003/2004					0.0091				2272.7079
2004/2005	0.001	0.021			0.1120				2158.7865
2005/2006					0.0021				1433.1300
2006/2007					0.0011				1015.4775
2007/2008									1041.3325
2008/2009									813.9210
2009/2010									849.8300
2010/2011				5.3030				24.5290	940.1695
2011/2012				136.6770		13.5050		606.9670	207.9020
2012/2013				103.4930		0.6500		512.3310	401.4115
2013/2014				83.7710		5.3700	11.090	542.9380	239.5030
2014/2015				18.8850				490.4950	35.2540
2015/2016 ${ }^{\wedge}$				79.4555				389.5470	22.0750

${ }^{\wedge}$ subject to change, incomplete financial year

An examination of the depth distribution of catches suggests that this could be modified to become $100-300 \mathrm{~m}$ with essentially no loss of information and the outcomes do not differ from the base case adopted here (Figure 8.132; All vessels and $0-1000 \mathrm{~m}$).

Figure 8.132. The depth distribution of records for the Deepwater Flathead fishery taken by Trawl in the GAB.

Figure 8.133. Schematic map of the distribution of catches of Deepwater Flathead from 1987/1988 to 2011/2012 taken by all methods (Table 8.122).

Figure 8.134. The standardized CPUE for Deepwater Flathead from the trawl fishery in the GAB. The dashed black line represents the geometric mean catch rate, solid black line the standardized catch rates and blue line the standardized catch rates based on last year's analysis. The graph standardizes catch rates relative to the mean of the standardized catch rates.

Table 8.123. Deepwater Flathead from the trawl fishery in the GAB by Trawl from $0-1000 \mathrm{~m}$. Statistical model structures used in this analysis. DepCat is a series of 50 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE~Year+Vessel
Model 3	LnCE~Year+Vessel + Zone
Model 4	LnCE~Year + Vessel + Zone + Month
Model 5	LnCE \sim Year + Vessel + Zone + Month + DepCat
Model 6	LnCE~Year+Vessel + Zone + Month + DepCat + DayNight
Model 7	LnCE~Year+Vessel + Zone + Month + DepCat + DayNight + Zone:Month
Model 8	LnCE~Year+Vessel + Zone + Month + DepCat + DayNight + Zone:Vessel
Model 9	LnCE \sim Year + Vessel + Zone + Month + DepCat + DayNight + Zone:DepCat

Table 8.124. Deepwater Flathead from the trawl fishery in the GAB by Trawl from $0-1000 \mathrm{~m}$. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted $R^{2}\left(\operatorname{adj} R^{2}\right)$ and the change in adjusted R^{2} (\%Change). The optimum model is Zone:Ves (Model 8). Depth category: DepC; Vessel: Ves; Month: Mth.

	Year	Ves	Zone	Month	DepC	DayNight	Zone:Mth	Zone:Ves	Zone:DepC
AIC	-31062	-37097	-41900	-45582	-47351	-49182	-50204	-51160	-49866
RSS	50556	46650	43755	41676	40091	39126	38532	37859	38496
MSS	9074	12980	15874	17954	19538	20503	21097	21770	21133
Nobs	76098	76098	76060	76060	75394	75394	75394	75394	75394
Npars	29	71	76	88	133	136	202	388	406
adj_ R^{2}	15.186	21.695	26.548	30.029	32.648	34.267	35.208	36.182	35.092
\%Change	0.000	6.510	4.853	3.480	2.619	1.619	0.942	0.974	-1.090

8.4.43 Bight Redfish (FLD - 37258004 - Centroberyx gerrardi)

Data from the GAB fishery used in the analysis was based on depths between $0-1000 \mathrm{~m}$, taken by Trawl. Also, analyses were restricted to vessels present for more than two years and which caught an average annual catch $>4 \mathrm{t}$, and that trawled for more than one hour but less than 10 hours. Instead of 5 degree zones across the GAB, 2.5 degree zones were employed to allow better resolution of location based differences in CPUE. An examination of the depth distribution of catches suggests that this could be modified to become $100-250 \mathrm{~m}$ with essentially no loss of information and the outcomes do not differ from the base case adopted here Figure 8.135; All vessels and $0-1000$ m). Catches in 1986/1987 were relatively low and only taken by a single vessel and so were omitted from analysis.

Table 8.125. Bight Redfish taken by Trawl in the GAB in depths between $0-1000 \mathrm{~m}$. Total catch (TotCatch; t) is the total reported in the database, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of catch rates ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Zone:DepC and standard deviation (StDev) relates to the data in the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	Zone:DepC	StDev
$1987 / 1988$	47.4340	184	32.7530	4	29.2533	2.3930	0.0000
$1988 / 1989$	87.9610	492	85.8800	6	32.9965	2.3184	0.1015
$1989 / 1990$	173.5590	827	171.5770	7	31.8857	1.5813	0.0996
$1990 / 1991$	290.1385	1023	250.2255	8	36.6457	1.4044	0.0980
$1991 / 1992$	274.0490	1101	240.4430	7	27.4447	1.2844	0.0962
$1992 / 1993$	132.0980	718	120.1880	3	18.3377	0.9481	0.0985
$1993 / 1994$	108.6860	695	107.4180	5	16.2182	0.9391	0.0990
$1994 / 1995$	163.5980	1282	159.9070	6	11.9237	0.6567	0.0946
$1995 / 1996$	176.9320	1395	175.2770	5	11.8016	0.7942	0.0947
$1996 / 1997$	334.0670	2036	329.7770	6	15.3383	0.9594	0.0930
$1997 / 1998$	375.8710	1930	365.9310	7	16.0229	0.9701	0.0933
$1998 / 1999$	442.2460	1812	440.2960	7	20.2349	1.1147	0.0933
$1999 / 2000$	328.3430	1478	324.4210	7	17.1853	0.9701	0.0955
$2000 / 2001$	398.7389	1697	387.5310	5	15.6494	0.8559	0.0947
$2001 / 2002$	232.9888	1637	225.6420	5	10.8567	0.6710	0.0949
$2002 / 2003$	378.0266	2118	364.3121	8	13.4661	0.7138	0.0937
$2003 / 2004$	862.0778	3154	841.7250	10	20.1099	0.9815	0.0933
$2004 / 2005$	889.9464	3808	758.0925	9	18.3742	0.9521	0.0929
$2005 / 2006$	802.9481	3553	722.8482	10	17.4248	0.9098	0.0930
$2006 / 2007$	961.6332	3293	873.7396	10	21.7750	0.9435	0.0927
$2007 / 2008$	759.0168	2743	683.5350	6	20.0988	0.9031	0.0935
$2008 / 2009$	665.4162	2443	648.7860	4	21.9054	0.9693	0.0941
$2009 / 2010$	463.7251	2298	445.7170	4	17.3788	0.8878	0.0941
$2010 / 2011$	286.5087	1851	277.8890	4	14.2664	0.7144	0.0948
$2011 / 2012$	330.9570	2188	322.8650	4	14.4195	0.7170	0.0945
$2012 / 2013$	266.9629	1873	255.7050	4	15.2641	0.6291	0.0950
$2013 / 2014$	199.6347	1494	187.5580	4	14.6071	0.5827	0.0959
$2014 / 2015$	239.2200	1396	233.3710	4	16.9298	0.6112	0.0966
$2015 / 2016^{\wedge}$	144.3841	389	41.1280	3	12.2527	0.6240	0.1087

[^2]Table 8.126. Reported catch of Bight Redfish by method and years.

Year	Line	GN	PS	DS	Trawl
1987/1988					317.3330
1988/1989					314.5200
1989/1990					0.2280
1990/1991					3.4320
1991/1992					58.7140
1992/1993					22.0120
1993/1994					47.4340
1994/1995					87.9610
1995/1996					173.5590
1996/1997					290.1385
1997/1998					274.0490
1998/1999				0.0100	131.4380
1999/2000					108.6860
2000/2001					162.3110
2001/2002					176.9020
2002/2003					334.0470
2003/2004					375.8110
2004/2005					442.2160
2005/2006					328.3430
2006/2007		1.0369			397.7020
2007/2008	0.6440	3.1238			229.2210
2008/2009	0.0035	3.3255			374.6956
2009/2010	0.0170	4.9658			857.0920
2010/2011	0.0040	5.2114		0.0040	884.7160
2011/2012	0.2452	6.4947	30		766.2082
2012/2013	0.1821	7.9965			953.4546
2013/2014	0.1512	7.7796			751.0860
2014/2015	0.0550	8.1033			657.2580
2015/2016 ${ }^{\wedge}$	0.0880	5.3801			458.2570

[^3]

Figure 8.135. The depth (m) distribution of records for the Bight Redfish fishery taken by Trawl in the GAB.

Table 8.127. Bight Redfish in the GAB by Trawl from $0-1000 \mathrm{~m}$. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE~Year
Model 2	LnCE~Year + DayNight
Model 3	LnCE~Year + DayNight + Zone
Model 4	LnCE~Year + DayNight + Zone + Month
Model 5	LnCE~Year + DayNight + Zone + Month + Vessel
Model 6	LnCE~Year + DayNight + Zone + Month + Vessel + DepCat
Model 7	LnCE~Year + DayNight + Zone + Month + Vessel + DepCat + Zone:Month
Model 8	LnCE~Year + DayNight + Zone + Month + Vessel + DepCat + Zone:Vessel
Model 9	LnCE \sim Year + DayNight + Zone + Month + Vessel + DepCat + Zone $:$ DepCat

Table 8.128. Bight Redfish in the GAB by Trawl from $0-1000 \mathrm{~m}$. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted R^{2} (adj_ R^{2}) and the change in adjusted R^{2} (\%Change). The optimum model is Zone:DepC (Model 7). Depth category: DepC; Vessel: Ves.

	Year	DayNight	Zone	Month	Ves	DepC	Zone:Month	Zone:Ves	Zone:DepC
AIC	31551	25575	20318	16271	15018	14484	13655	13976	13148
RSS	94504	84027	75759	69940	68186	66913	65592	65823	64443
MSS	3063	13539	21808	27626	29381	30653	31974	31743	33123
Nobs	50908	50908	50908	50908	50908	50416	50416	50416	50416
adj_R2	3.086	13.825	22.292	28.245	30.017	31.275	32.513	32.178	33.441
\%Change	0.000	10.739	8.467	5.953	1.773	1.257	1.239	-0.335	1.263

Figure 8.136. The standardized CPUE for Bight Redfish from the trawl fishery in the GAB. Upper graph: The solid black line corresponds to the standardized catch rates (relative to the mean of the standardized catch rates). The blue line corresponds to last year's standardized catch rates and geometric mean (dashed black line). Lower graph: Standardized catch rates (solid black line), 95% CI (vertical lines) and geometric mean (dashed black line).

8.5 Deepwater species

Catch rates for deepwater sharks and oreos are considered here. Both mixed oreos (a basket of oreo species), as well as smooth oreos requires attention however (Table 8.129).

Table 8.129. End of season catches obtained from the summary Catch-Watch data on the AFMA website. These catches are for the May through to April rather than the calendar years of the CPUE analyses.

Common name	Agreed TAC (t)	TAC with over \& under-catch $(\mathbf{t)}$		Available Catch (t)	TAC TAC (\%) caught $(\%)$	Available TAC (\%)
Deepwater Sharks East	47	50.762	22.285	28.477	44	56
Deepwater Sharks West	215	231.059	68.250	162.809	30	70
Orange Roughy (Albany-Esperance)	50	50.000	0.000	50.000	0	100
Orange Roughy (Cascade Plateau)	500	549.744	2.009	547.735	0	100
Orange Roughy (Eastern)	465	465.000	436.384	28.617	94	6
Orange Roughy (Southern)	66	66.000	57.225	8.775	87	13
Orange Roughy (Western)	60	60.000	22.297	37.703	37	63
Oreos	128	140.296	111.040	29.256	79	21
Smooth Oreos (Cascade Plateau)	150	165.000	0.000	165.000	0	100
Smooth Oreos (other)	23	25.177	21.337	3.840	85	15

8.5.1 Eastern Deepwater Sharks

Table 8.130. The names of the various species identified in the catch and effort database.

CAAB Code	Common Name	Scientific Name
37020000	Dogfish	Squalidae
37020002	Black	Dalatias licha
37020003	Brier	Deania calcea
37020004	Platypus	Deania quadrispinosa
37020013	Plunket's Dogfish	Centroscymnus plunketi
37020904	Roughskin	Centroscymnus \& Deania sps.
37020905	Pearl	Deania calcea \& D. quadrispinosa
37020906	Black (roughskin)	Centroscymnus sps.
37990003	Other Sharks	Other Sharks

This basket quota group is made up of many recognized species but only ten have any records, and only eight of these have any significant catches. Dogfish and Other Sharks dominate catches until about 2000. The Black Shark is possibly confounded with two group categories, the Roughskin and the Black Shark - Roughskin. Plunket's Dogfish is possibly confounded with the Roughskin Shark group. Similarly, the Pearl Shark group is a combination of the Brier and Platypus Sharks. The reported distributions of the Brier shark, the Roughskin Shark, and especially the Plunket's Dogfish categories are much less widespread than the others. A number of the fishery characteristics for eastern deepwater sharks have been described in Haddon (2014a).

Table 8.131. Statistical model structures used with Deepwater Sharks. DepCat is a series of 20 metre depth categories. Deep relates to whether the area is open or closed. DayNight reduced the quality of fit.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year + Vessel
Model 3	LnCE \sim Year + Vessel + DepCat
Model 4	LnCE \sim Year + Vessel + DepCat + ORZone
Model 5	LnCE \sim Year + Vessel + DepCat + ORZone + Month
Model 6	LnCE \sim Year + Vessel + DepCat + ORZone + Month + deep
Model 7	LnCE \sim Year + Vessel + DepCat + ORZone + Month + deep + ORZone:Month
Model 8	LnCE \sim Year + Vessel + DepCat + ORZone + Month + deep + Vessel:Month

Figure 8.137. Annual catch (t$)$ of deepwater sharks in the east.

Table 8.132. Eastern deepwater sharks. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted $R^{2}\left(\operatorname{adj} R^{2}\right)$ and the increment in adjusted R^{2} ($\mathrm{D} R^{2}$). The model including the ORZone:Mth interaction term (Model 7) was optimal. There was a trivial effect of being in the open or closed areas (Deep) on the statistical model fit. Year, Vessel, and DepCat dominated the analysis. The DayNight factor was omitted because it detracted from the fit. Depth category: DepC; Month: Mth.

	Year	Vessel	DepC	ORZone	Month	Deep	ORZone:Mth	Vessel:Month
AIC	3720	2059	1153	1139	991	986	957	1950
RSS	15869	13556	12246	12206	12038	12031	11907	11255
MSS	2654	4967	6278	6317	6485	6492	6616	7268
Nobs	11537	11537	11275	11275	11275	11275	11275	11275
Npars	21	99	111	122	126	127	171	985
adj_ R^{2}	14.179	26.189	33.239	33.388	34.280	34.313	34.733	33.428
$\% R^{2}$	0.000	12.010	7.051	0.148	0.893	0.032	0.421	-1.305

Table 8.133. Number of records where Eastern Deepwater Sharks are reported from trawling in OR Zones 10, 20, 21, and 50 , in depths 600 to 1250 m . Vessel represents the count of vessels reporting eastern deepwater sharks. Yield is the total reported catch in tonnes. The geometric mean CE is the raw unstandardized catch rate in $\mathrm{kg} /$ hour. The left hand five columns represent all data, the right hand five columns represent the areas left open following the 700 m closure.

Year	Yield	Records	Effort	Vessels	Geom	YieldO	RecordsO	EffortO	VesselsO	GeomO	
1986	28.926	254	1051.900	25	11.827	26.601	215	913.070	25	11.936	
1987	5.792	97	326.630	26	8.745	4.705	84	280.930	21	8.721	
1988	5.246	38	137.000	18	14.679	4.735	30	110.100	15	15.285	
1989	5.106	69	219.600	16	13.865	4.493	60	191.100	14	13.310	
1990	5.352	42	124.600	17	16.157	2.383	22	67.100	15	7.275	
1991	18.574	105	316.030	19	24.887	8.922	70	212.300	18	21.914	
1992	62.977	103	467.380	18	36.871	4.465	39	210.030	13	12.201	
1993	93.604	258	967.800	19	47.054	22.347	94	356.570	16	23.760	
1994	110.394	420	1604.940	25	37.705	38.693	210	809.550	23	30.290	
1995	114.285	359	1452.710	17	50.193	63.009	219	850.220	16	49.853	
1996	326.351	952	3712.390	26	52.295	263.351	775	2978.510	23	50.875	
1997	194.116	903	4091.140	24	30.823	141.462	699	3130.440	22	29.977	
1998	205.896	1102	4989.310	24	27.601	175.869	947	4174.520	23	27.799	
1999	156.767	1008	4668.600	25	22.184	135.044	867	3968.760	23	22.016	
2000	187.075	889	4252.450	29	27.855	150.603	700	3311.090	25	28.334	
2001	140.686	892	4119.220	27	19.961	114.661	725	3291.450	26	21.440	
2002	160.721	891	4230.080	28	23.381	129.724	737	3423.110	26	23.016	
2003	128.789	963	4744.890	25	16.848	92.133	732	3483.100	22	16.950	
2004	103.248	716	3459.050	29	17.959	75.417	564	2696.830	26	18.117	
2005	61.376	477	2470.230	16	15.739	48.839	371	1915.540	14	16.143	
2006	43.227	408	1959.920	21	11.414	34.263	287	1316.920	20	14.861	
2007	8.418	106	493.530	17	10.127	8.378	104	484.040	17	10.304	
2008	12.904	100	658.310	10	10.800	11.734	95	619.650	10	10.259	
2009	38.892	230	1226.840	14	16.957	38.068	224	1181.760	14	17.134	
2010	24.806	244	1264.020	13	10.087	22.826	230	1162.540	13	10.256	
2011	25.171	242	1351.790	15	10.976	23.614	233	1307.570	15	10.651	
2012	25.926	278	1544.690	16	8.911	25.663	271	1494.620	16	9.085	
2013	20.775	252	1362.100	15	8.595	18.728	225	1206.170	15	8.702	
2014	30.646	283	1833.230	13	11.289	29.491	273	1748.730	13	11.369	
2015	22.379	242	1532.490	13	9.001	21.859	238	1497.710	13	8.973	

Table 8.134. The standardized catch rates for the alternative statistical models for Eastern Deepwater Sharks in OR zones10, 20, 21, and 50, in depths 600 to 1250 m . The optimal model was Model 7 (ORZone:Mth). St Err is the estimate of standard error for the optimum model. Values are relative to the mean of the standardized catch rates. The models for Deep and Vessel:Month were omitted for brevity.

Year	Year	Vessel	DepCat	ORzone	Month	Deep	ORZone:Mth	StErr
1995	2.5444	2.2206	2.0409	2.0590	2.0988	2.1302	2.1026	0.0000
1996	2.6579	2.9169	2.9018	2.9112	2.5329	2.5437	2.5265	0.0727
1997	1.5667	1.6120	1.4546	1.4567	1.3935	1.4004	1.4192	0.0708
1998	1.4027	1.3214	1.1854	1.1917	1.2087	1.2071	1.2192	0.0701
1999	1.1275	1.1274	0.9850	0.9863	1.0088	1.0073	0.9936	0.0702
2000	1.4159	1.3791	1.2043	1.1953	1.2080	1.2056	1.1875	0.0715
2001	1.0146	1.0755	0.9853	0.9801	1.0331	1.0284	1.0382	0.0724
2002	1.1884	1.1656	1.0850	1.0956	1.1365	1.1340	1.1278	0.0723
2003	0.8563	0.8721	0.7848	0.7834	0.7999	0.8015	0.8093	0.0720
2004	0.9130	0.8581	0.7881	0.7829	0.8149	0.8149	0.8187	0.0742
2005	0.8006	0.7947	0.7605	0.7611	0.7775	0.7788	0.7734	0.0800
2006	0.5807	0.5635	0.6775	0.6724	0.6717	0.6723	0.6780	0.0827
2007	0.5177	0.4993	0.7643	0.7594	0.7743	0.7684	0.7656	0.1286
2008	0.5523	0.6119	0.9589	0.9587	0.9811	0.9775	0.9733	0.1275
2009	0.8638	0.9315	1.1493	1.1444	1.1435	1.1378	1.1461	0.0971
2010	0.5138	0.5722	0.6172	0.6136	0.6336	0.6298	0.6312	0.0944
2011	0.5590	0.5504	0.6100	0.6106	0.6419	0.6365	0.6457	0.0962
2012	0.4537	0.4687	0.5290	0.5312	0.5617	0.5569	0.5649	0.0919
2013	0.4377	0.4332	0.4901	0.4899	0.4967	0.4947	0.5077	0.0930
2014	0.5748	0.5605	0.5500	0.5384	0.5814	0.5771	0.5780	0.0889
2015	0.4585	0.4655	0.4780	0.4782	0.5014	0.4971	0.4934	0.0946

Figure 8.138. Eastern Deepwater Sharks reported from trawling in OR Zones 10, 20, 21, and 50, in depths 600 to 1250 m . The black dashed line from 86-14 represents the geometric mean catch rate and the solid black line the optimum standardized catch rates (Model 7). The graph scales the catch rates relative to the mean of the standardized catch rates (depicted by the horizontal grey line at 1.0).

Figure 8.139. The relative impact of the different factors on the changes in the standardized trend. The major effects of both the structural adjustment that occurred across Nov 2005 - Nov 2006, with its change of vessels, and the deepwater closures is clear.

8.5.2 Western Deepwater Sharks

There are numerous species grouped together into the Western Deepwater Sharks (Table 8.135) but only some have data and even fewer have significant catches reported.

Table 8.135. The names of the various species identified in the catch and effort database.

CAAB Code	Common Name	Scientific Name
37020000	Dogfish	Squalidae
37020002	Black	Dalatias licha
37020003	Brier	Deania calcea
37020004	Platypus	Deania quadrispinosa
37020904	Roughskin	Centroscymnus \& Deania sps.
37020905	Pearl	Deania calcea \& D. quadrispinosa
37020906	Black (roughskin)	Centroscymnus sps.
37990003	Other Sharks	Other Sharks

This basket quota group is made up of many recognized species but only seven have any records, and only four have any significant catches reported recently. The Black Shark is possibly confounded with two group categories, the Roughskin and the Black Shark - Roughskin. Similarly, the Pearl Shark is a combination of the Brier and Platypus Sharks.

Table 8.136. Statistical model structures used with Western Deepwater Sharks. DepCat is a series of 20 metre depth categories. Deep relates to whether the area is open or closed.

```
Model 1 Year
Model 2 Year + Vessel
Model 3 Year + Vessel + DepCat
Model 4 Year + Vessel + DepCat + Month
Model 5 Year + Vessel + DepCat + Month + DayNight
Model 6 Year + Vessel + DepCat + Month + DayNight + Deep
Model 7 Year + Vessel + DepCat + Month + DayNight + Deep + Vessel:Month
```

Table 8.137. Statistical model structures used with Western Deepwater Sharks. DepCat is a series of 20 metre depth categories. Deep relates to whether the area is open or closed.

Year	Yield	Records	Effort	Vessels	Geom	YieldO	RecordsO	EffortO	VesselsO	GeomO	
1986	1.030	14	56.400	3	13.861	0.600	8	30.800	3	13.346	
1987	0.558	19	61.500	4	7.496	0.453	15	48.000	3	7.444	
1988	0.525	4	11.000	2	46.530	0.100	1	2.000	1	50.000	
1989	1.200	13	40.000	2	28.124	0.490	6	19.500	2	23.730	
1990	0.250	4	13.000	3	9.554	0.250	4	13.000	3	9.554	
1991	0.315	5	17.600	3	12.628	0.195	2	5.300	2	20.226	
1992	3.580	20	94.160	3	32.371	3.440	18	86.160	3	34.984	
1993	1.785	17	60.750	3	21.610	1.635	14	50.750	3	23.369	
1994	1.512	22	127.810	3	9.830	0.472	8	42.660	2	10.314	
1995	95.256	596	2945.980	10	19.689	51.951	315	1529.980	9	20.276	
1996	185.827	957	4497.240	23	23.740	107.731	598	2737.720	18	24.240	
1997	326.165	1980	10122.680	19	19.644	173.944	1177	5818.150	19	19.148	
1998	396.302	2901	16201.930	18	16.498	176.832	1390	7427.930	18	16.153	
1999	313.300	2218	12578.150	19	16.590	131.936	1105	6023.580	18	14.837	
2000	311.139	1870	10466.010	18	20.996	135.762	895	4682.040	18	20.826	
2001	241.687	1833	10406.490	19	15.555	111.133	938	5215.410	19	14.746	
2002	251.380	1622	10168.040	17	16.598	124.184	831	5057.740	17	16.130	
2003	163.645	1423	9022.050	16	12.058	81.568	740	4589.350	16	12.139	
2004	207.836	1723	10907.720	15	12.985	107.515	889	5443.170	14	13.606	
2005	81.425	805	4815.850	13	10.785	40.669	426	2472.380	12	10.247	
2006	70.907	607	3806.420	12	11.730	41.657	354	2159.470	12	12.343	
2007	8.362	109	681.820	9	6.326	6.462	90	545.960	9	6.420	
2008	15.245	117	784.100	8	12.183	12.210	98	636.210	8	11.864	
2009	32.803	221	1486.740	10	12.503	28.336	194	1298.560	9	12.031	
2010	35.240	265	1641.080	10	11.690	30.988	237	1440.450	10	11.624	
2011	37.562	304	2085.220	11	10.439	32.748	269	1853.300	11	10.204	
2012	36.848	391	2580.970	10	8.870	32.848	356	2312.290	10	8.890	
2013	65.370	629	4442.420	12	9.689	44.329	490	3215.970	12	9.338	
2014	55.428	544	4240.540	9	8.799	35.596	387	2689.250	9	9.305	
2015	48.327	388	3081.470	8	9.754	37.682	332	2546.300	8	9.273	

Table 8.138. Western deepwater sharks. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted R^{2} (adj_ R^{2}) and the increment in adjusted $R^{2}\left(\mathrm{D} R^{2}\right)$. Model 6 was optimal (Deep). The effect of being in the open or closed areas (Deep) was minor. Depth category: DepC.

	Year	DepC	Vessel	Month	DayNight	Deep	Vessel:Month
AIC	901	-130	-2624	-2814	-2824	-2573	901
RSS	22380	21245	18805	18620	18609	17996	22380
MSS	1499	2634	5074	5259	5269	5883	1499
Nobs	21503	21503	21410	21410	21410	21410	21503
Npars	21	65	77	88	89	573	21
adj_ R^{2}	6.191	10.765	20.969	21.706	21.746	22.568	6.191
ΔR^{2}	0.000	4.574	10.204	0.737	0.040	0.822	0.000

Table 8.139. The standardized catch rates for the alternative statistical models for Western Deepwater Sharks in OR zone 30, in depths 600 to 1100 m . The optimal model was Model 6. St Err is the estimate of standard error for the optimum model. Values are relative to the mean of the standardized catch rates.

Year	Year	DepCat	Vessel	Month	DayNight	Deep	Vessel:Month	StErr
1995	1.4376	1.4980	1.5131	1.5685	1.5622	1.5860	1.4376	0.0000
1996	1.7358	1.8634	1.8054	1.7783	1.7712	1.8638	1.7358	0.0507
1997	1.4359	1.5337	1.3925	1.3875	1.3818	1.4461	1.4359	0.0459
1998	1.2059	1.3293	1.1232	1.0976	1.0902	1.0762	1.2059	0.0447
1999	1.2126	1.3378	1.1015	1.0909	1.0852	1.0592	1.2126	0.0456
2000	1.5348	1.5627	1.2835	1.2615	1.2548	1.2331	1.5348	0.0465
2001	1.1370	1.1448	0.9776	0.9752	0.9716	0.9782	1.1370	0.0467
2002	1.2133	1.1659	1.0618	1.0606	1.0581	1.0606	1.2133	0.0471
2003	0.8815	0.8631	0.7784	0.7788	0.7757	0.7900	0.8815	0.0477
2004	0.9492	0.9440	0.7948	0.7879	0.7858	0.7902	0.9492	0.0470
2005	0.7886	0.7465	0.7067	0.6848	0.6832	0.6785	0.7886	0.0526
2006	0.8579	0.8896	0.8575	0.8391	0.8377	0.8305	0.8579	0.0569
2007	0.4645	0.4742	0.8225	0.8204	0.8203	0.8241	0.4645	0.1014
2008	0.8943	0.7881	1.2941	1.3319	1.3338	1.2510	0.8943	0.0978
2009	0.9158	0.8811	1.2188	1.2130	1.2240	1.2136	0.9158	0.0761
2010	0.8560	0.8143	0.9882	1.0080	1.0201	1.0208	0.8560	0.0720
2011	0.7642	0.7025	0.8511	0.8554	0.8659	0.8692	0.7642	0.0676
2012	0.6491	0.5961	0.6023	0.6191	0.6261	0.6225	0.6491	0.0673
2013	0.7086	0.6267	0.6252	0.6254	0.6289	0.6239	0.7086	0.0587
2014	0.6436	0.5990	0.5739	0.5769	0.5786	0.5507	0.6436	0.0602
2015	0.7137	0.6392	0.6277	0.6389	0.6449	0.6318	0.7137	0.0651

Figure 8.140. Western Deepwater Sharks reported from trawling in OR Zone 30, in depths 600 to 1100 m . The black dashed line represents the geometric mean catch rate and the solid black line the optimum standardized catch rates (Model 5). The graph standardizes catch rates relative to the mean of the standardized catch rates, represented by the horizontal fine grey line.

Figure 8.141. The relative impact of the different factors on the changes in the standardized trend. The major effects of both the structural adjustment, with its change of vessels, and the deepwater closures is clear.

8.5.3 Mixed Oreos Basket (spikey, warty, rough, black, \& Oreo Dory)

Spikey (Neocyttus rhomboidalis), Oxeye (Oreosoma atlanticum) warty (Allocyttus verrucosus), rough (Neocyttus psilorhynchus) and black (Allocyttus niger) and grouped oreo dories (i.e. group of oreo species) were considered for analysis. CAAB codes were 37266001, 37266002, 37266004, 37266005, 37266006 and 37266902 (group code). Only spikey, warty and grouped oreo dories were used in the analysis since the other species were seldom caught in very low catches. The 2007, 2012 and 2013 estimated discard rates were $66.9 \%, 9.7 \%(C V=2.6 \%)$ and $18.5 \%(C V=6.5 \%)$ respectively (Upston and Klaer 2013; Upston 2014). The estimated discard rate of mixed oeros for 2015 is 45.35% (Thomson and Upston 2016). Approximately, 89% of the reported catch is given as spikey oreo (Neocyttus rhomboidalis), 2.5% as warty oreo (Allocyttus verrucosus), and 6.4% as oreo dories (37266902).

Table 8.140. Number of records where Mixed Oreos are reported from trawling in OR Zones 10, 20, 21, 30, and 50 , in depths 500 to 1200 m . Vessels represents the count of vessels reporting mixed oreos. Yield is the reported catch (t) of mixed Oreos. The geometric mean CE is the raw unstandardized catch rate in $\mathrm{Kg} / \mathrm{tow}$. Columns 2-6 represent all data while the right hand five columns represent the areas left open following the 700 m closure.

Year	Records	Vessels	Effort	Yield	Geom	RecordsO	VesselsO	EffortO	YieldO	GeomO
1986	166	9	366.590	50.966	65.148	94	8	258.690	33.456	55.224
1987	138	16	353.000	58.029	64.754	55	10	156.200	11.200	47.936
1988	159	12	371.700	31.844	46.006	27	5	81.500	6.310	44.856
1989	350	18	497.400	179.209	194.500	77	7	192.900	17.580	61.084
1990	248	22	171.700	243.868	822.430	16	9	39.200	4.690	48.613
1991	208	22	532.290	81.019	51.915	77	13	300.250	14.378	26.859
1992	567	31	848.380	604.251	266.324	114	17	350.320	62.815	54.879
1993	819	38	1621.350	274.839	88.478	156	23	542.800	47.437	36.280
1994	1057	34	2493.820	283.074	58.626	187	23	715.320	65.146	41.645
1995	1752	29	6060.430	479.955	36.706	580	21	2287.930	203.136	40.106
1996	2091	33	6898.420	419.817	30.411	592	30	2207.330	122.200	25.010
1997	2273	34	9606.900	572.797	30.506	719	26	3168.970	154.515	25.315
1998	2337	33	9872.990	666.374	38.720	565	26	2505.450	168.488	31.043
1999	1910	33	7905.280	440.687	35.087	407	27	1776.120	105.103	30.333
2000	1722	39	7738.930	375.744	28.005	414	31	1821.610	106.794	31.204
2001	1937	37	8684.480	402.390	28.168	562	33	2482.820	106.099	24.431
2002	1452	36	7180.720	212.986	18.087	433	31	2121.860	69.128	16.950
2003	1447	30	7401.700	224.924	17.965	393	23	1925.540	64.188	15.806
2004	1428	30	7501.770	179.164	15.838	368	26	1871.930	48.965	16.391
2005	805	22	4270.530	100.586	13.983	241	20	1184.730	32.694	16.618
2006	635	23	3229.610	79.570	12.610	183	19	906.180	21.671	11.840
2007	378	17	2026.240	57.776	12.844	229	16	1282.770	27.628	8.171
2008	302	16	1751.380	48.294	13.979	194	14	1077.190	22.209	10.938
2009	488	17	2743.410	72.164	13.385	229	17	1312.820	23.740	9.046
2010	499	15	2895.100	75.217	12.443	236	15	1363.800	24.254	9.720
2011	566	17	3514.480	77.279	13.395	254	16	1535.400	25.545	10.412
2012	492	15	3020.500	58.668	10.953	172	13	1057.670	17.913	8.384
2013	705	16	4328.870	138.179	14.166	226	15	1360.680	48.632	12.364
2014	570	16	3994.320	108.082	14.307	161	11	999.800	27.882	11.742
2015	312	13	1796.410	48.577	22.694	185	11	873.680	27.799	28.303

Table 8.141. The catch in tonnes of Mixed Oreos by Orange Roughy (OR) Zone, and, across OR Zones in the current open and closed areas. All data included in the OR Zones.

Year	Total	10	20	21	30	50	Open	Closed
1986	50.966	0.160	30.520		20.278	0.008	33.456	17.510
1987	58.029	0.130	6.470		51.429		11.200	46.829
1988	31.844	0.020	0.150		31.584	0.090	6.310	25.534
1989	179.209		88.650	37.090	53.409	0.060	17.580	161.629
1990	243.868	3.990	170.283	62.765	6.700	0.130	4.690	239.178
1991	81.019	3.091	47.720	13.251	16.572	0.385	14.378	66.641
1992	604.251	31.596	352.104	187.494	31.561	1.496	62.815	541.436
1993	274.839	1.392	102.822	34.641	106.719	29.265	47.437	227.402
1994	283.074	0.882	90.447	34.289	135.657	21.799	65.146	217.928
1995	479.955	1.178	63.472	8.029	401.029	6.247	203.136	276.819
1996	419.817	8.507	92.409	3.451	278.425	37.025	122.200	297.617
1997	572.797	43.955	129.834	1.390	377.317	20.301	154.515	418.282
1998	666.374	33.714	130.832	1.492	379.179	121.157	168.488	497.886
1999	440.687	13.860	126.159	1.265	241.254	58.149	105.103	335.584
2000	375.744	25.925	111.417	0.775	212.965	24.662	106.794	268.950
2001	402.390	19.096	135.779	7.885	219.587	20.043	106.099	296.291
2002	212.986	35.898	59.174	1.025	106.132	10.757	69.128	143.858
2003	224.924	30.992	56.615	7.550	116.664	13.103	64.188	160.736
2004	179.164	11.947	40.235	1.520	113.860	11.602	48.965	130.198
2005	100.586	5.907	22.152	1.500	61.909	9.118	32.694	67.892
2006	79.570	8.231	12.259	0.270	56.615	2.195	21.671	57.899
2007	57.776	2.100	18.507	1.194	34.665	1.310	27.628	30.148
2008	48.294	2.262	16.934		26.437	2.661	22.209	26.085
2009	72.164	4.105	17.181	0.058	46.692	4.128	72.164	
2010	75.217	4.944	24.926	5.860	37.206	2.281	75.217	
2011	77.279	3.615	19.941	1.990	47.829	3.904	77.279	
2012	58.668	2.258	19.275	0.022	33.426	3.687	58.668	
2013	138.179	6.566	48.362	0.180	80.896	2.175	138.179	
2014	108.082	1.273	47.763	0.375	57.634	1.037	108.082	
2015	48.577	12.349	9.252	2.568	20.830	3.578	48.577	
Total	6646.328	319.942	2091.643	417.929	3404.461	412.353	2093.996	4552.332

In the last five years, 52% of the catch has been reported as Oreo Dory, 31% as spikey dory, 12% as oxeye dory and the remainder warty and rough oreos. Only data from OR Zones 10, 20, 21, 30, 50, in depths $500-1200 \mathrm{~m}$ were used in the analysis. All vessels recording mixed oreos were included in the analysis. Orange Roughy zones $40,60,70$ and unknown were removed.

Table 8.142. Statistical model structures used with Mixed Oreos. DepCat is a series of 50 metre depth categories. Closure relates to whether the area is open or closed.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year + Vessel
Model 3	LnCE \sim Year + Vessel + DepCat
Model 4	LnCE \sim Year + Vessel + DepCat + ORzone
Model 5	LnCE \sim Year + Vessel + DepCat + ORzone + DayNight
Model 6	LnCE \sim Year + Vessel + DepCat + ORzone + DayNight + Month
Model 7	LnCE \sim Year + Vessel + DepCat + ORzone + DayNight + Month + Closure
Model 8	LnCE \sim Year + Vessel + DepCat + ORzone + DayNight + Month + Closure +
Model 9	LnCE \sim Year + Vessel + DepCat + ORzone + DayNight + Month + Closure +

Figure 8.142. The standardized catch rates of mixed oreos showing the optimum model (solid black line) and the geometric mean catch rate (grey dashed line) each scaled to the mean of each time series.

Table 8.143. Mixed oreos. Model selection criteria include the Akaike Information Criterion (AIC), residual sum of squares (RSS), model sum of squares (MSS), number of usable observations (Nobs), number of parameters (Npars), adjusted $R^{2}\left(\operatorname{adj} R^{2}\right)$ and the increment in adjusted $R^{2}\left(\mathrm{D} R^{2}\right)$. Model 9 (DepC:Month) was optimal. The effect of being in the open or closed areas (Closure) was minor (Figure 8.143). Depth category: DepC; Month: Mth.

	Year	Vessel	DepC	ORZone	DayNight	Month	Closure	Vessel:Month	DepC:Mth
AIC	19521	15465	13458	12508	11535	10946	10947	10653	10653
RSS	55992	48016	44468	42953	41458	40550	40549	36785	39676
MSS	13627	21603	25150	26666	28161	29068	29070	32834	29943
Nobs	27813	27813	27624	27624	27624	27624	27624	27624	27624
Npars	30	139	153	157	160	171	172	1371	326
adj R^{2}	19.490	30.686	35.772	37.952	40.106	41.393	41.393	44.405	42.332
ΔR^{2}	0.000	11.196	5.086	2.180	2.154	1.287	0.000	3.013	-2.074

Figure 8.143. Relative impact of each factor on the final trend. Blue bars indicate the standardization is above the previous model, red bars indicate it is below. Closures appear to have only a very small effect.

Table 8.144. Reported catches (t) by CAAB code for the data analysed. Up until 2011 the group code Oreo Dory (37266902) had been omitted from the analysis because of confusion with Black Oreo (37266901). The 37266902 reporting code (grouped Oreo dories) appears only to have been introduced in 2005 when quotas were first applied to Mixed Oreos.

Year	37266001	37266002	37266004	37266902	Total
1986	20.565	3.608	32.463		56.636
1987	45.771	18.706	19.200		83.677
1988	46.386	10.830	23.541		80.757
1989	372.495	33.817	17.420		423.732
1990	274.056	4.080	2.257		280.393
1991	117.596	2.722	0.528		120.846
1992	743.462	12.285	1.050		756.797
1993	409.933	4.110	3.071		417.114
1994	351.801	3.103	18.900		373.804
1995	486.155	17.195	14.750		518.100
1996	431.104	0.900	15.956		447.960
1997	1080.351	4.927	21.000		1106.278
1998	1297.604	0.940	24.806		1323.350
1999	554.449	0.080	11.275		565.804
2000	474.784	0.030	30.987		505.801
2001	513.634	0.400	6.090		520.124
2002	305.093	0.095	1.595		306.783
2003	456.249	NA	0.800		457.049
2004	362.796	0.120	1.570		364.486
2005	183.308	3.549	NA	7.573	194.430
2006	67.263	10.490	NA	48.496	126.249
2007	21.435	11.983	NA	56.832	90.250
2007	8.558	1.182	NA	54.874	64.614
2009	110.205	2.145	NA	75.238	187.588
2010	54.371	1.282	NA	74.136	129.789
2011	15.764	7.951	NA	77.348	101.063
2012	8.825	13.821	NA	58.193	80.839
2013	22.664	15.497	NA	125.016	163.177
2014	72.887	22.871	2.895	49.835	148.488
2015	76.561	19.666	0.000	21.515	117.742
Total	8986.123	228.385	250.154	649.056	10113.718

Table 8.145. The standardized catch rates for the alternative statistical models for Mixed Oreos in OR Zones $10,20,21,30$, and 50 , in depths 500 to 1200 m . The optimal model was DepC:Mth. St Err is the estimate of standard error for the optimum model. Values are relative to the mean of the standardized catch rates.

Year	Year	Vessel	DepC	ORZone	DN	Month	Closure	Vessel:Mth	DepC:Mth	StErr
1986	0.9259	0.6333	0.6936	0.8420	0.9225	0.8844	0.8911	1.1006	0.8753	0.00000
1987	0.9327	1.3812	1.2567	1.5599	1.5128	1.6053	1.6112	1.4987	1.6430	0.19495
1988	0.6620	1.2362	1.0848	1.3173	1.2716	1.3846	1.3854	1.3960	1.3114	0.20945
1989	2.7891	3.0942	3.1202	3.1730	3.1360	3.3092	3.3098	3.2212	3.3189	0.18767
1990	11.8076	7.7643	8.8689	6.7189	6.5843	6.2004	6.1969	7.1295	5.8615	0.19086
1991	0.7459	1.1331	1.3460	1.5253	1.5163	1.5218	1.5211	1.3493	1.5379	0.19390
1992	3.8149	3.7416	3.6090	3.3370	3.2136	3.1599	3.1590	3.0061	3.1787	0.17463
1993	1.2667	1.6294	1.5896	1.5760	1.5146	1.5422	1.5399	1.4767	1.5739	54
1994	0.8391	0.9525	0.9159	1.0013	0.9786	1.0038	1.0025	1.0628	1.0630	0.17445
1995	0.5251	0.7563	0.6498	0.7919	0.8191	0.8743	0.8738	0.8379	0.9204	0.17243
1996	0.4350	0.5883	0.4918	0.6376	0.6482	0.6500	0.6493	0.6017	0.6545	0.17284
1997	0.4364	0.6087	0.5220	0.6341	0.6541	0.6659	0.6652	0.6236	0.6752	0.17223
1998	0.5539	0.7871	0.6834	0.8013	0.8168	0.8414	0.8404	0.7852	0.8683	36
1999	0.5020	0.6787	0.6002	0.6903	0.7081	0.7076	0.7065	0.6559	0.7216	0.17255
2000	0.4007	0.5130	0.4542	0.5243	0.5350	0.5366	0.5363	0.4929	0.5478	0.17272
2001	0.4030	0.5340	0.4773	0.5436	0.5627	0.5473	0.5470	0.5075	0.5636	0.17271
2002	0.2588	0.3575	0.3310	0.3787	0.3905	0.3924	0.3922	0.3643	0.4014	0.17357
2003	0.2571	0.3428	0.3164	0.3640	0.3819	0.3775	0.3773	0.3454	0.3892	0.17352
2004	0.2266	0.3036	0.2840	0.3387	0.3545	0.3581	0.3579	0.3324	0.3652	0.17369
2005	0.2002	0.2674	0.2476	0.2993	0.3118	0.3017	0.3015	0.2867	0.3134	0.17579
2006	0.1806	0.2518	0.2331	0.2833	0.3058	0.3155	0.3152	0.3000	0.3239	0.17745
2007	0.1841	0.2388	0.2619	0.3110	0.3325	0.3468	0.3467	0.3153	0.3485	0.18186
2008	0.2005	0.2360	0.2283	0.2723	0.2876	0.2806	0.2807	0.2570	0.2877	0.18506
2009	0.1918	0.2344	0.2128	0.2755	0.2999	0.2952	0.2951	0.2686	0.3102	0.17937
2010	0.1783	0.2147	0.2043	0.2453	0.2685	0.2757	0.2757	0.2532	0.2805	0.17887
2011	0.1919	0.2316	0.2078	0.2514	0.2745	0.2770	0.2769	0.2620	0.2812	0.17804
2012	0.1569	0.2063	0.1870	0.2218	0.2404	0.2422	0.2421	0.2211	0.2486	0.18089
2013	0.2028	0.2993	0.2604	0.3032	0.3170	0.3069	0.3066	0.3035	0.3184	0.17743
2014	0.2049	0.3103	0.2804	0.3226	0.3494	0.3491	0.3487	0.3289	0.3561	0.17893
2015	0.3255	0.4734	0.3816	0.4589	0.4914	0.4466	0.4480	0.4160	0.4607	0.18600

8.5.4 Smooth oreo - Cascade and non-Cascade (37266003 - Pseudocyttus maculatus)

There were very small reported catches of smooth oreos from the Cascade Plateau since $2012(0.03 \mathrm{t})$ and 2015 (0.5 t). Reported catches of smooth oreos from the non-Cascade Plateau were consistently less than 10 t annually over the last five years. Therefore, these were excluded from standardization analyses.

Table 8.146. Smooth oreo catch (t) by Trawl across Orange Roughy zones.

Year	Orange roughy zone							
	10	20	21	30	40	50	60	70
1987		1.67		0.71				
1988	0.10	0.65		14.66				
1990	0.25	85.45	11.22	4.46	64.23			0.02
1991	34.29	176.75	186.10	0.78	48.97	0.13		0.20
1992	16.26	49.78	293.39	1.35	0.45	1.47		
1993	263.00	161.68	538.60	20.90	4.65	0.36	1.35	
1994	0.09	71.85	157.82	34.62	1.52	0.25		
1995	0.86	70.34	198.96	1.71	44.67	2.40		1.20
1996	4.70	12.28	153.38	70.46	6.90			
1997	6.30	10.13	40.12	23.90	71.32	0.60		4.50
1998	3.70	15.38	18.91	32.44	168.91	0.50		286.91
1999	1.46	7.55	30.91	21.68	63.40	4.76	0.12	236.07
2000	0.70	1.42	8.68	23.22	39.56			71.90
2001	10.24	4.31	8.57	22.92	132.18			91.19
2002	8.13	31.75	80.26	44.90	187.02			4.46
2003	1.86	10.82	24.18	68.24	176.91	0.58		0.20
2004	1.60	2.49	5.90	41.54	39.62	3.69		13.20
2005	0.86	4.75	1.91	49.09	57.20	2.76		3.50
2006	0.80	5.87	6.65	10.43	31.77	0.51		
2007	0.25	8.13	2.70	2.60	41.37	0.00		
2008		0.03	0.34		7.49			
2009				0.90	7.26			
2010	0.09	0.14		0.59	0.05	0.11		
2011		0.06		0.06	0.80			
2012		1.10		0.32				
2013	0.04	0.15	0.02	0.24	0.03			
2014		0.05		0.20		0.01		
2015	0.20	0.58		0.05		0.00		

8.6 References

A collection of publications relating to the analysis of catch rates and discard rates only some of which are referred to explicitly here but the rest are included as a resource for anyone interested in pursuing this subject further.

Aitchison, J. (1955). On the distribution of a positive random variable having a discrete probability mass at the origin. Journal of the American Statistical Association 50: 901-908.
Barry, S. C. and A. H. Welsh (2002). Generalized additive modelling and zero inflated count data. Ecological Modelling 157: 179-188.
Bishop, J., Die, D. and Y-G Wang (2000). A generalized estimating equations approach for analysis of the impact of new technology on a trawl fishery. Australian and New Zealand Journal of Statistics 42(2): 159-177.

Bishop, J., Venables, W.N. and Y-G Wang (2004). Analysing commercial catch and effort data from a Penaeid trawl fishery. A comparison of linear models, mixed models, and generalized estimating equations approaches. Fisheries Research 70: 179-193.
Brooks, E. N., Ortiz, M. and L.K. Beerkircher (2005). Standardized catch rates for blue shark and shortfin mako shark from the U.S. pelagic logbook and U.S. pelagic observer program, and U.S. weighout landings. Collected Volume of Scientific Papers ICCAT 58(3): 1054-1072.
Brynjarsdottir, J. and G. Stefansson (2004). Analysis of cod catch data from Icelandic groundfish surveys using generalized linear models. Fisheries Research 70: 195-208.
Dick, E. J. (2004). Beyond "lognormal versus gamma": discrimination among error distributions for generalized linear models. Fisheries Research 70: 351-366.
Haddon, M. (2014a) Eastern Deepwater Sharks. Pp 405-415 in Tuck, G.N. (ed.) 2014. Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2013. Part 2. Project No. 2011/0814 Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 486 p.

Haddon, M. (2014b) Western Deepwater Sharks. Pp 415-425 in Tuck, G.N. (ed.) 2014. Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2013. Part 2. Project No. 2011/0814 Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 486 p.

Helser, T. E., Punt, A. E. and R.D. Methot (2004). A generalized linear mixed model analysis of a multi-vessel fishery resource survey. Fisheries Research 70: 251-264.
Hoyle, S. D. and M. N. Maunder (2006). Standardization of yellowfin and bigeye CPUE data from Japanese longliners, 1976-2004. Inter-American Tropical Tuna Commission Document SAR-707: 19p.
Kawaguchi, S., Candy, S. G. and S. Nicol (2005). Analysis of trends in Japanese krill fishery CPUE data, and its possible use as a krill abundance index. CCAMLR Science 12: 1-28.
Kimura, D.K. (1981) Standardized measures of relative abundance based on modelling $\log (c . p . u . e$.$) ,$ and their application to pacific ocean perch (Sebastes alutus). Journal du Conseil International pour l'Exploration de la Mer. 39: 211-218.
Martin, T. G., Wintle, B.A., Rhodes, J.R., Kuhnert, P.M., Field, S.A., Low-Choy, S.J., Tyre, A.J. and H.P. Possingham (2005). Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecology Letters 8: 1235-1246.

Maunder, M. N. and A. E. Punt (2004). Standardizing catch and effort data: a review of recent approaches. Fisheries Research 70: 141-159.
Myers, R. A. and P. Pepin (1990). The robustness of Lognormal-based estimators of abundance. Biometrics 46: 1185-1192.

Neter, J., Kutner, M.H., Nachtsheim, C.J, and W. Wasserman (1996) Applied Linear Statistical Models. Richard D. Irwin, Chicago. 1407p.
Pennington, M. (1983). "Efficient estimators of abundance, for fish and plankton surveys." Biometrics 39: 281-286.

Punt, A. E., Walker, T.I., Taylor, B.L. and F. Pribac (2000). Standardization of catch and effort data in a spatially-structured shark fishery. Fisheries Research 45: 129-145.
R Development Core Team (2009). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

Rodriguez-Marin, E., Arrizabalaga, H., Ortiz, M., Rodriguez-Cabello, C., Moreno, G. and L.T. Kell (2003). Standardization of bluefin tuna, Thunnes thynnus, catch per unit effort in the baitboat fishery of the Bay of Biscay (Eastern Atlantic). ICES Journal of Marine Science 60: 1216-1231.

Stefánsson, G. (1996) Analysis of groundfish survey abundance data: combining the GLM and delta approaches. ICES Journal of Marine Sciences 53: 577-588.
Stephens, A. and A. MacCall (2004). A multispecies approach to subsetting logbook data for purposes of estimating CPUE. Fisheries Research 70: 299-310.
Syrjala, S. E. (2000). Critique on the use of the delta distribution for the analysis of trawl survey data. ICES Journal of Marine Science 57: 831-842.
Thomson, R., Upston, J. (2016). Draft report of SESSF catches and discards for TAC purposes. CSIRO Marine and Atmospheric Research Report. 41pp.
Venables, W. and C. M. Dichmont (2004). GLMs, GAMs and GLMMs: an overview of theory for applications in fisheries research. Fisheries Research 70: 319-337.
Upston, J., and N. Klaer (2013). Integrated Scientific Monitoring Program for the Southern and Eastern Scalefish and Shark Fishery - Discard estimation 2012. CSIRO Marine and Atmospheric Research Report. 40pp.
Upston, J. (2014). Integrated Scientific Monitoring Program for the Southern and Eastern Scalefish and Shark Fishery - Discard estimation 2013. CSIRO Marine and Atmospheric Research Report. 40pp.
Ye, Y., Al-Husaini, M., and A. Al-Baz (2001). Use of generalized linear models to analyze catch rates having zero values: the Kuwait driftnet fishery. Fisheries Research 53: 151-168.

9. Blue-Eye Auto-Line and Drop-Line CPUE Characterization and Catch-per-Hook 1997-2015

Malcolm Haddon
CSIRO Oceans and Atmosphere, Castray Esplanade, Hobart 7000, Australia

9.1 Executive Summary

In 2013 the stock status for Blue-Eye (Hyperoglyphe antarctica) was assessed using a standardized catch-per-unit-effort (CPUE) time series for the auto-line and drop-line fisheries, which were combined for the purpose so as to extend the length of the time-series available (Haddon, 2010). At that time CPUE was estimated as catch-per-record rather than catch-per-hook. The focus was on the Drop-Line and Auto-Line fisheries because these generated the greatest catches, with the Auto-Line fishery increasing when the Drop-Line fishery declined.

The 2013 CPUE standardizations for Blue-Eye, and the Tier 4 analyses dependent upon them, are no longer considered to provide an adequate representation of trends across and within the Blue-Eye fishery, which could leave the stock status uncertain. The catch-per-record was no longer thought to be representative due to the advent of a number of issues: 1) a reported expansion of whale depredations on auto-line catches in association with the changed behaviour of the fishing vessels in the presence of whales, 2) a restriction of fishing location options due to an increase in the number of marine closures over known Blue-Eye fishing grounds, and 3) a recent movement of fishing effort much further north off the east coast of New South Wales and Queensland has altered the reliability of the current CPUE analyses as an indicator of Blue-Eye relative abundance across the range of the fishery.

Given the extensive spatial heterogeneity of both the Blue-Eye fishery and of the biological properties of the Blue-Eye populations across its spatial distribution, the CPUE analyses conducted were in need of a complete review and possible revision.

Catch-per-record has been used for the CPUE since 2009 (Haddon, 2010). In 2009, the log book records of effort in the two methods was a mixture of total number of hooks, number of lines with number of hooks per line, and other combinations plus errors (this confused mixture was the main reason for moving to catch-per-record in the first place). Since then the data entry has been more consistent leading the way for an attempt at generating CPUE as catch-per-hook, a measure of catch rate deemed to be more realistic and closer to the reality of the fishery. As with the catch-per-record this will generate two time-series, an early one for drop-line that over-laps one for auto-line, but the time-series are now of sufficient length that the general trends should be apparent.

Catches in what is now the GHT made up the majority of the fishery prior to 1997 but records from then are poor and there are multiple estimates of total catches and none are available with any reliable spatial detail. In the last four to five years, related to the move of a larger proportion of the total catch away from the east coast of Tasmania, the use of alternative line methods (rod-reel, hand-line, and others) has increased, although, possibly in response to reductions in the available quota, catches by these methods have started to decline again. In some years, notably 2002, 2005, 2007, and 2011 2014 catches in the High Seas fisheries also increased markedly.

There are some important assumptions in the earlier CPUE analyses. The first is that CPUE reflects changes in the relative stock abundance rather than either the influence of the structural adjustment, or reduced catch rates through whale depredations or from whale avoidance behaviour from shifting into less optimal CPUE areas. In addition, it is assumed the various closures in the south-east have had little or only minor effects on catch rates. In fact, all of these factors are likely to have had some effect.

In reality, the recent relatively large shift in effort and catch to the north-eastern sea-mounts is a change whose impact is difficult to assess. It is the case that examination of the CPUE from the minor line methods (Rod-and-Reel, and Hand-Line) indicates no particular trends in CPUE across the relatively short time-series of such catches, but to make those analyses required amalgamation of data across seamounts so the possibility of serial depletion cannot be excluded. Now that quota is less available these catches seem to have declined again to relatively low levels (Haddon, 2014c; Haddon, 2015).

One of the foundations of the current Tier 4 Blue-Eye assessments is that the CPUE for drop-line and auto-line can be combined. This is the case because both have used catch-per-record (or day) as their unit of CPUE and on that basis their CPUE was comparable (Haddon, 2010). The combination was required because, in 2009, each method alone only had a rather short time-series of usable CPUE (sufficient catches, records and representative coverage of the fishery) that could be used for assessment purposes. Catch-per-day was used because early use of the log-books had often mixed up the reporting of lines and hooks-per-line making their direct use invalid.

An objective of the current work is to set up a more easily repeatable analysis for the generation of total-hooks-set and hence be more open to future correction and critical examination. Separate data selection rules and database manipulations (separate algorithms) were developed for Drop-Line and Auto-Line data sets such that the outcome was a more reliable estimate of the total number of hooks set for each record. These data were used to generate catch-per-hook catch rate data which were in turn used in catch rate standardizations for the two methods.

The two time series of CPUE were combined using catch waiting and scaling the two series to the same mean CPUE of 1.0 for the period of 2002 - 2006, which was the period of overlap. For the catch-per-hook data to be acceptable required there to be sufficient records to provide a reasonable spatial coverage of the fishery as well as reasonably precise estimates of the annual mean values. Drop-Line CPUE were consider acceptable from 1997-2006 and Auto-Line data were acceptable from 2002 2015.

The effect of using catch-per-hook rather than catch-per-record is marked with the catch-per-record exhibiting a recent CPUE recovery not seen in the catch-per-record. It does not seem to matter greatly whether the analysis of catch-per-hook is restricted to zones $20-50$ or extended to include the GAB zones 83,84 , and 85 . Whatever the case the reduced decline in perceived CPUE has implications for any subsequent Tier 4 analysis

9.2 Introduction

Blue-Eye trevalla (Hyperoglyphe antarctica) is managed as a single stock but its stock status is difficult to assess because, as a species, its adults are widely but patchily distributed, although its juveniles stages are widely dispersed. Not only is it patchily distributed but the fishery differs markedly by area through the application of different methods and histories of exploitation. The differences in exploitation history along with sampling different areas in different years may have been sufficient to have led to the appearance of heterogeneity in the biological characteristics of different populations.

There is little consistency between consecutive years in the age structure and length structure of samples (Figure 9.1); for example, cohort progression is difficult or impossible to follow. This lack of consistency has thwarted previous attempts at applying a Tier 1 integrated assessment to Blue-Eye and has made the application of the Tier 3 catch-curve approach equally problematical (Fay, 2007a, b). Such spatial heterogeneity has recently been reviewed and further evidence presented, all of which supported the notion that there were spatially structured differences between Blue-Eye populations between regions around the south-east of Australia (Williams et al., 2016).

Table 9.1. The number of records and catches per year for auto-line, drop-line, and trawl vessels reporting catches of Blue-Eye Trevalla from 1997-2015. Data filters were to restrict the fisheries included to SET, GAB, SEN, GHT, SSF, SSG, and SSH. Methods were limited to AL, DL, TW, and TDO. Finally only CAAB code = 37445001 that identifies Hyperoglyphe antarctica were included.

Year	AL Catch	AL Record	DL Catch	DL Record	TW Catch	TW Record
1997	0.267	3	271.942	575	104.567	1500
1998	27.253	50	343.505	738	82.074	1398
1999	61.590	77	377.032	971	100.329	1712
2000	90.932	93	384.409	1075	95.042	1893
2001	47.884	76	335.873	797	90.218	1809
2002	134.067	234	223.074	619	67.998	1548
2003	219.676	487	221.649	587	28.918	1210
2004	329.608	1338	158.491	515	48.767	1558
2005	301.303	1142	93.779	363	42.969	1169
2006	354.582	1087	114.639	327	66.105	924
2007	455.097	667	46.011	127	38.321	834
2008	281.384	612	15.549	76	36.046	806
2009	325.893	578	30.158	105	39.386	618
2010	236.620	488	42.023	225	43.480	647
2011	267.318	562	59.381	230	23.268	624
2012	217.816	465	34.107	119	10.792	424
2013	190.515	360	7.762	47	22.893	358
2014	227.041	305	10.242	68	29.381	340
2015	198.232	282	46.711	92	25.128	301

The Blue-Eye fishery has a relatively long history and while there is a long history of catches by trawl the majority of the catch has always been taken by line-methods (generally less than 10% of catches are taken by trawl since 2003; Table 9.1). Unfortunately, fisheries data from line methods, in the GHT fishery, only began to be collected comprehensively from late in 1997 onwards (Table 9.1). In addition, in 1997 Auto-Line fishing was introduced as an accepted method in the SESSF although only very little fishing was conducted in 1997 and only in the last two months (Table 9.1, Figure 9.2). Auto-line related effort and catches increased from 2002-2003 onwards at the same time that drop-line records and catches began to decline (Figure 9.2; Table 9.1).

Figure 9.1. Age distributions sampled from the catches of Blue-Eye (Hyperoglyphe antarctica;) for the years 1995 - 2010 (Thomson et al, 2016), illustrating the variation between years. The sample sizes in the bottom row of numbers should be sufficient to provide a good representation if the stock were homogeneous in its properties. Blue-Eye shows inconsistencies every year with annual progressions of year classes being vague and ephemeral at best.

Figure 9.2. The trends in the number of records and the catches of Blue-Eye from $1997-2015$ by the two main line methods (Table 9.1); most catches are now taken by auto-line.

In the two years, 2013 - 2014, the drop-line catches dropped to 10 t or less while auto-line catches continue to dominate the fishery. However, in 2015, drop-line catches increased to about 47 t , while auto-line catches dropped by about 30 t from the previous year (Table 9.1; Figure 9.2).

9.2.1 Current Management

When the Harvest Strategy Policy was implemented in 2007 (DAFF, 2007) a Tier 4 assessment was used to provide advice on annual recommended biological catch (RBC) levels for Blue-Eye instead of a Tier 1 assessment (after both a Tier 1 statistical catch-at-age model and a Tier 3 catch-curve approach were rejected; Fay, 2007a, b). The Tier 4 uses standardized CPUE as an empirical performance measure of relative abundance that is assumed to be representative of the whole stock. The average CPUE across a target period is selected by the RAG to provide the target reference point, which implies a limit CPUE reference point (0.41667 x target reference point) below which target fishing is to stop. In between the target and the limit there is a harvest control rule that reduces the RBC as CPUE
declines. The appropriate characterization of CPUE is therefore very important in this fishery (Little et al., 2011; Haddon, 2014b).

By 2007 the auto-line fishery was already dominating the Blue-Eye fishery but the time series of significant catches by that method was relatively short (only six years from 2002 - 2007; Table 9.1 and Figure 9.2). At that time some way of extending the time series was required to allow for the application of the Tier 4 methodology. Unfortunately, in the log-book records there was, and still is, often confusion in how to record effort (in terms of number of lines and number of hooks per line, or number of line drops, or length of main line) so it was not feasible at that time to estimate CPUE as a catch-per-hook. Instead CPUE was based on catch-per-record, which was equivalent to catch-per-day. The CPUE standardization conducted in 2008 on data from 1997 - 2007 (Haddon, 2009) was the first time that the catch-per-day data from drop-line was combined with auto-line catch-per-day data, with a justification presented to the RAGs. This was followed in 2009 by a summary of the separate autoline and drop-line CPUE and a more detailed defence for their combination (Haddon, 2010). While it was appreciated that the two methods are very different, the intent of combining their data was always to extent the time series of line-caught Blue-Eye back to 1997 rather than 2002. Despite this extension of time, the early Tier 4 Blue-Eye analyses had overlap between the reference period (1997-2006) and the CPUE grad over the final four years (2004-2007); it took three more years for that overlap to cease.

Table 9.2. Catch by SESSF Zone. Data filtered as for Error! Reference source not found.. Only Zones 20, $0,40,50,83,84,85,91$, and 92 have significant catches.

Year	10	20	30	40	50	60	70	82	83	84	85	91	92
1997	3.345	89.408	92.819	83.255	86.142	3.270			0.030		6.947	5.505	
1998	1.647	79.892	170.828	97.873	66.657	2.182			0.100		4.129	1.590	
1999	1.893	75.715	225.703	91.531	86.576	1.386					5.794	21.590	0.050
2000	0.985	45.090	275.350	128.207	95.639	0.045				0.357	9.554	1.100	0.750
2001	0.264	28.590	239.652	100.091	59.845	0.022	0.188		0.150	2.854	23.735	3.186	4.740
2002	0.489	39.713	180.660	75.521	76.950		0.100			1.561	6.530	33.664	7.850
2003	1.288	52.263	153.536	124.815	43.311	0.039				27.664	6.568	57.910	2.400
2004	0.222	73.836	148.512	113.269	63.711	0.742	0.400	0.946	12.713	61.283	54.842	5.045	0.180
2005	1.601	88.195	119.790	64.249	51.496	0.256	1.550	0.057	19.552	29.273	50.756	5.901	4.700
2006	0.192	69.824	157.401	83.899	41.087	0.930	2.420	0.169	31.511	43.438	89.189	10.375	2.500
2007	0.271	53.777	235.551	48.514	47.451	0.552	0.700		29.876	107.069	15.594		
2008	0.117	46.524	129.679	55.478	26.535	0.077		0.015	28.943	32.267	13.346		
2009	0.133	52.751	158.909	86.619	47.509	0.175	5.060		1.633	15.369	15.415	10.515	1.350
2010	0.109	26.136	98.273	54.924	97.551	0.100	1.153		6.549	9.532	15.929	7.932	3.935
2011	0.195	31.725	99.592	45.207	30.612	0.001	10.440		20.576	40.692	14.159	33.689	23.081
2012	0.188	21.728	67.388	77.448	21.092				8.428	9.736	3.752	42.938	10.017
2013	0.015	13.387	55.375	98.820	18.995	0.164	3.252		0.465	16.158	13.250	1.131	
2014	0.005	4.218	91.440	91.993	26.010				2.107	33.759	11.640	4.505	0.510
2015	0.012	9.793	75.974	73.330	26.186	0.546	0.750		2.490	22.160	3.621	37.833	9.872
Total	12.97	902.56	2776.43	1595.04	1013.35	10.49	26.01	1.19	165.12	453.17	364.75	284.41	71.93

In 2013 the stock status for Blue-Eye (Hyperoglyphe antarctica) was assessed using a standardized CPUE time series from the combined auto-line and drop-line fisheries, which combined data from the two methods from 8 zones (SESSF zone $10-50$ with $83-85$; Figure 9.3). In addition, the time series
of CPUE for trawls, relating to SESSF zones 20 - 30 (eastern Bass Strait and eastern Tasmania) and $40-50$ (western Tasmania and western Bass Strait) were examined, although these trawl fisheries only relate to a small fraction of the total fishery so less attention is given them (Haddon, $2014 \mathrm{a}, \mathrm{b}$). This was repeated in 2014 (Sporcic and Haddon, 2014), however, because of the unaccounted influences of factors such as the introduction of closures (both all methods and solely for auto-line), depredations by whales, and having to ignore significant catches taken with other new methods, these standardizations, and the Tier 4 analyses dependent upon them, were no longer considered to provide an adequate representation of trends within, and hence the status of, the Blue-Eye fishery.

One outcome of this was the determination to re-examine the available data to determine whether it would be possible to generate a CPUE series based upon some measure of catch-per-hook rather than catch-per-day. The use of catch-per-hook would allow more fine detail to be discerned and might provide a more informative time-series, although the two methods were no longer likely to be able to be combined. However, the length of time-series for auto-line is now sufficiently long that such a combination is now no longer a requirement. This was conducted last year (Haddon, 2015b) but now needs to be repeated in a manner that will ideally be repeatable by anyone.

9.2.2 Fishery Changes

The fishery as a whole has included a number of large-scale changes in fishing methods and the area of focus for the fishery. Catches in what is now the GHT were significant prior to 1997 but detailed data for that earlier period are not readily available. Catch estimates, have been derived from combining State with Commonwealth estimates, taken from earlier assessment summaries (Tilzey, 1999; Smith and Wayte, 2002; Table 9.3; Figure 9.4) and have the status of being an agreed catch history. While trawl catches have continued at a low ($<10 \%$) but steady level since 2003 there has been a switch from drop-line (alternatively demersal-line) to auto-line. Also, related to the move of a proportion of the total catch away from the east coast up to the north-east seamount region, in the last three to four years the use of alternative line methods (rod-reel, hand-line, etc) has increased, although perhaps now that the TAC is decreasing the proportion of the total catch being taken by these 'minor line' methods is declining again (Figure 9.4 and Figure 9.5; Table 9.4).

Multiple issues have combined to cast doubt on the use of the combined auto-line and drop-line CPUE data; the issues included reported whale depredations, the effects of closures, and the advent of a number of new line fishing methods north of $-35^{\circ} \mathrm{S}$, all of which have, or have been reported to have, increased since the increase in use of the auto-line method. In amongst a detailed consideration of the CPUE for all areas and methods (Haddon, 2015) a preliminary examination of the line data was made to determine whether it would be possible to go through the database records for the Blue-Eye fishery and generate a catch-per-hook index to see if the use of the rather crude catch-per-day index was affecting the outcome of the standardization.

9.3 Objectives

The intent of this report is to attempt to estimate the Blue-Eye Trevalla CPUE in terms of catch-perhook for both the drop-line and the auto-line fisheries. The specific objectives were to:

1. Review and amend the database records for the drop-line fishery to allow for the calculation of a catch-per-hook CPUE.
2. Review and amend the database records for the auto-line fishery to allow for the calculation of a catch-per-hook CPUE.
3. Compare the catch-per-hook standardized data for the two fisheries with that from the catch-perday standardization across both species.

9.3.1 Report Structure

There will be four main sections to the results:

1. The report will first of all review the current distribution of catches across all methods and areas.
2. Secondly, it will consider the current arrangements with auto-line and drop-line data illustrating the current form of CPUE standardization, which combines the catch-per-shot data from both methods.
3. In the analysis of catch-per-hook first the drop-line fishery data will be considered, the database amended in a defensible manner, and a re-analysis of the CPUE using catch-per-hook made.
4. The same process of amending the database where appropriate followed by a reanalysis will be applied to the auto-line fishery.

The implications of these analyses will be examined in the discussion

9.4 Methods

9.4.1 Catch Rate Standardization

9.4.1.1 Data Selection

Blue-Eye catches were selected by method and area for CPUE analyses. CPUE from these specific areas were standardized using the methods described below and reported elsewhere (Haddon, 2014a).

Figure 9.3. A schematic diagram depicting the statistical reporting zones in the SESSF, as used in this document. The GAB fishery is to the west of Zone 50. The main SESSF trawl zones are zones $10-50$. Each zone extends out to the boundary of the EEZ, except for zones 50 and 60 , and for zones 92 and 91 , which are bounded by zone 70 .

Figure 9.4. All reported catches of Blue-Eye by all methods from 1986 - 2015 in 0.5 degree squares. At least two records per square were required for inclusion. The legend units are in tonnes summed across all years.

9.4.1.2 General Linear Modelling

Where trawling was the method used, catch rates were kilograms per hour fished; except for the analyses later in this document all other methods were as catch-per-shot because the various line and net methods record effort in widely varying ways (the number of hooks, the number of lines of hooks, or the number of line drops etc; there is greater consistency in more recent years but still sufficient heterogeneity to make the use of catch-per-hook unreliable). Once the database records were amended for internal consistency, then analyses based on catch-per-hook were conducted. All catch rates were natural log-transformed and a General Linear Model was used rather than using a Generalized Linear Model with a log-link on the untransformed data; this has advantages in terms of normalizing the data while stabilizing the variance, which the Generalized Linear Model approach does not always achieve appropriately (Venables \& Dichmont, 2004). The statistical models were variants on the form: LnCE $=$ Year + Vessel + Month + DepthCategory + Zone + Daynight. In addition, there were interaction terms which could sometimes be fitted, such as Month:Zone or Month: DepthCategory, although with the use of finer spatial areas other simpler models or more idiosyncratic terms were occasionally used. Thus, the CPUE, conditioned on positive catches of the species of interest, was statistically modelled with a normal GLM on log-transformed CPUE data:

$$
\begin{equation*}
\operatorname{Ln}\left(C P U E_{i}\right)=\alpha_{0}+\alpha_{1} x_{i, 1}+\alpha_{2} x_{i, 2}+\sum_{j=3}^{N} \alpha_{j} x_{i j}+\varepsilon_{i} \tag{4}
\end{equation*}
$$

where $\operatorname{Ln}\left(C P U E_{i}\right)$ is the natural logarithm of the catch rate (either $\mathrm{kg} / \mathrm{h}, \mathrm{kg} / \mathrm{shot}$, or $\mathrm{kg} / \mathrm{hook}$) for the $i-$ th shot, $x_{i j}$ are the values of the explanatory variables j for the i-th shot and the α_{j} are the coefficients for the N factors j to be estimated (α_{0} is the intercept, α_{1} is the coefficient for the first factor, etc.).

9.4.1.3 The Year Effect

For the lognormal model the expected back-transformed year effect involves a bias-correction to account for the log-normality; this then focuses on the mean of the distribution rather than the median:

$$
\begin{equation*}
C P U E_{t}=e^{\left(\gamma_{t}+\sigma_{t}^{2} / 2\right)} \tag{5}
\end{equation*}
$$

where γ_{t} is the Year coefficient for year t and σ_{t} is the standard deviation of the log transformed data (obtained from the analysis). The year coefficients were all divided by the average of the year coefficients to simplify the visual comparison of catch rate changes:

$$
\begin{equation*}
C E_{t}=\frac{C P U E_{t}}{\left(\sum C P U E_{t}\right) / n} \tag{6}
\end{equation*}
$$

where CPUE_{t} is the yearly coefficients from the standardization, $\left(\Sigma \mathrm{CPUE}_{\mathrm{t}}\right) / \mathrm{n}$ is the arithmetic average of the yearly coefficients, n is the number of years of observations, and CE_{t} is the final time series of yearly index of relative abundance

9.5 Results

9.5.1 Reported Catches

Blue-Eye have been a target species before the formation of the SESSF, with large catches reported from eastern Tasmania taken primarily by drop-line. The estimates of total catch through time vary in their completeness and quality and earlier reviews have generated different values (Table 9.3). In particular, prior to 1997, non-trawl catches were only poorly recorded. At very least these early estimates indicate the significant scale of fishing mainly by drop-line, prior to the introduction of autoline vessels.

Table 9.3. Early estimates of total Blue-Eye Trevalla catches, tonnes, across all methods within the SET area. The North Barrenjoey is included as being extra South-East Trawl area catches. Tilzey (1998) is only for catches north of Barrenjoey. Recent catches from 2005 are derived from Catch Documentation Records (CDR).

Year	Recent	Tilzey (1998)	Tilzey (1999)	Smith \& Wayte (2002)
1980			207	207
1981			257	257
1982			276	276
1983			236	236
1984		7	388	350
1985		9	510	525
1986		38	285	341
1987		105	345	468
1988		210	505	725
1989		174	531	717
1990		243	647	819
1991		181	599	717
1992		60	633	643
1993		38	634	628
1994	801.327	27	729	730
1995	740.046	19	716	725
1996	893.428	16	868	890
1997	733.985		1040	989
1998	472.287			566
1999	572.689			651
2000	656.847			710
2001	586.572			648
2002	512.111			
2003	588.064			
2004	633.794			
2005	496.316			
2006	546.700			
2007	740.396			
2008	438.611			
2009	418.548			
2010	393.971			
2011	354.600			
2012	332.397			
2013	354.972			
2014	269.331			
2015	299.075			

9.5.2 Catch by Method

In the catch and effort log book database there are 15 fishing methods listed that report catches of Blue-Eye, although six of those, along with the 'unknown' category only account for about 0.2% of total catches from 1986 to 2014 (Table 9.4), although in 1991 and 1992 they constitute up to 8% of catches (all of which was in 'unknown' method and so was likely by trawl, which was the only method reported in detail at the time). Only six methods have each accounted for more than 1% of total reported catches through that period; data have only been collected for methods other than trawl since 1998, with incomplete data collection in 1997 (Figure 9.5).

Figure 9.5. Catches of seven methods that together account for about 98.6% of all reported catches of Blue-Eye (Table 9.4) from 1996 - 2015. The codes are AL - auto-line, DL - drop-line, TW - trawl, GN - gill net, TL trot line, RR - Rod and Reel, and HL - Hand Line. The dominance of drop-line and then auto-line is apparent.

Recently, on the northern sea mounts off the east coast the use of hydraulic reels and hand lines (RR and HL) have expanded (Figure 9.4, Figure 9.5), although these have now declined while drop-line catches have increased in the latest year. This latter may be because of the return to the use of dropline gear in the South Australian shark fishery increasing the opportunity to use the gear in other fisheries.

The trawl fishery averaged about 75 t from 1986 to 2002 and about 51t from 2003 to 2012 and averaged about 16% of the total fishery from 1998 to 2002, and about 7.8% of the fishery from 2003-2014; in 2011 catches by trawl reduced by $\sim 20 t$ but estimated discard rates remained low (Upston, 2014), the 2012 trawl catch was the lowest recorded at only about 11 t . The non-trawl fishery has always taken the largest proportion of the total catch but useful data have only become available since 1997, with more complete data only being available from 1998 (see Table 9.3 for a previously agreed upon catch history back to 1980). In 1997 auto-lining was introduced as an accepted method in the SESSF and its catches grew to take over from drop-lining, which had been the dominant method used up until then (Figure 9.5, Figure 9.10). The time series for auto-line is truncated to start in 2001 or 2002 as catches only started to be taken over a wider area and in appreciable total amounts after that time (Table 9.4; Figure 9.9); before that time catches were very patchy and varied by location from year to year.
Table 9.4. Reported annual catches of Blue-Eye from 1986-2014 by method, Auto-Line, Drop-Line, Trawl, Gill Net, Rod and Reel, Trot Line, Bottom Line, and Hand Line. Other includes unknown, pole and line, fish trap, Danish seine, pelagic longline, and trolling. The landings relate to annual formal landings against quota
but differ from those reported in AFMA's Catch-Watch which relate to fishing seasons (May - April). TAC is the Agreed TAC; from 1992 - 1997 the TAC in trawl only, a non-trawl allocation of 530 t was included in 1998. The season in 2007 was 16 months long, which is why the landings and TAC appear high relative to surrounding seasons.

Year	AL	DL	TW	GN	RR	TL	BL	HL	Other	Total	Landing	TAC
1986			37.774						0.188	37.962		
1987			15.495							15.495		
1988		0.160	103.969						1.048	105.177		
1989			88.066							88.066		
1990			78.686						0.612	79.298		
1991			69.576						6.448	76.024		
1992		0.415	46.055						2.835	49.305		
1993			59.598						0.056	59.654		
1994			109.839						0.016	109.975		
1995			58.533						0.039	58.572		
1996			71.148						0.444	71.684		
1997	0.267	271.942	104.567	59.022		6.148	28.382		0.281	471.466		
1998	27.253	343.505	82.074	14.282			4.526	0.100	1.001	475.965		630
1999	61.590	377.032	100.329	34.711		0.030	0.889		0.294	574.984		630
2000	90.932	384.409	95.042	92.406			1.739		0.678	671.352		630
2001	47.884	335.873	90.218	106.679		19.600	3.326		0.023	648.321		630
2002	134.067	223.074	67.998	1.951		23.415	6.493		0.001	843.859		630
2003	219.676	221.649	28.918	40.846		28.080	8.589			605.272		690
2004	329.608	158.491	49.659	0.171		20.116	2.318		0.003	612.260		621
2005	301.303	93.779	43.194	0.016			1.941		0.400	755.186	496.316	621
2006	354.582	114.639	66.105	0.002			1.187			573.727	546.700	560
2007	455.097	48.011	38.321	0.003			0.632			937.142	740.396	785
2008	281.384	21.449	36.046	0.016			0.724		0.070	398.941	438.611	560
2009	325.893	43.378	39.386		7.550		1.740		3.162	521.038	418.548	560
2010	236.620	42.073	43.480		56.788		0.022			437.399	393.971	428
2011	267.318	59.381	23.268	0.111	59.962		0.049	17.118		554.219	354.600	326
2012	217.818	34.107	10.792	0.003	14.792		1.377	21.171		463.835	332.397	388
2013	190.515	7.762	22.893		14.125		3.311	24.083	0.002	398.377	354.972	388
2014	227.041	10.242	29.381		2.600		0.377	20.233		460.526	269.331	335
2015	198.286	46.857	25.128		0.925	0.404	0.168		0.701	295.024	299.075	335

9.5.3 Catches by Fishery

Most catches are taken in the gillnet, hook and trap fishery, then the south east trawl fishery, and finally the East coast deepwater and high seas fisheries (Table 9.5).

Table 9.5. Reported catches by fishery and the landings against quota. Total is all fisheries combined, SET is the south east trawl, GHT is the gillnet, hook and trap fishery (combined with the southeast non-trawl, the southern shark fishery, southern shark gillnet fishery, and the southern shark hook fishery). ECD \& HS is the
combined catches of the east coast deep-water fishery and the high seas trawl and high seas non-trawl. Other combines 8 other fisheries, which only account for about 0.28% of total catches from 1994 to 2015.

Year	Landings	Total	SET	GHT	GAB	ECD+HST+HSN	Other
1986		37.962	37.962				
1987		15.495	15.467		0.028		
1988		105.177	101.767	0.160	3.250		
1989		88.066	87.691		0.375		
1990		79.298	76.373		2.925		
1991		76.024	75.716		0.308		
1992		49.305	49.275		0.030		
1993		59.654	59.519		0.135		
1994		109.975	109.730		0.125		0.120
1995		58.572	57.967		0.605		
1996		71.684	71.245		0.347		0.092
1997		471.466	103.464	365.945	1.199		0.858
1998		475.965	79.878	390.601	2.261		3.225
1999		574.984	95.572	474.482	4.822		0.108
2000		671.352	84.204	570.152	10.850	5.408	0.738
2001		648.321	69.535	513.378	20.690	35.284	9.434
2002		843.859	66.849	389.000	1.150	371.351	15.510
2003		605.302	27.108	518.839	1.810	57.022	0.523
2004	496.316	612.260	46.939	510.704	2.723	51.549	0.346
2005	546.700	755.186	34.497	397.439	8.698	314.499	0.054
2006	740.396	573.727	54.136	470.410	11.968	37.196	0.016
2007	438.611	937.142	37.362	503.743	0.960	394.673	0.405
2008	418.548	398.943	35.969	303.573	0.147	58.947	0.308
2009	393.971	521.038	39.410	381.699		99.609	0.320
2010	354.600	437.399	43.480	335.502		58.327	0.090
2011	332.397	554.219	23.268	403.940		124.670	2.341
2012	354.972	463.835	10.781	289.268	0.011	162.453	1.322
2013	269.331	398.377	22.895	239.796		134.908	0.778
2014	299.075	460.526	29.370	260.493	0.011	169.951	0.702
2015	496.316	295.024	25.150	247.318		22.370	0.186

9.5.4 Catch by Zone

The fishery has been focussed largely around the south-east for many years, especially off the east and west coasts of Tasmania. In the last four years zones 70, 91 , and 92 have increased in their importance to the fishery, although the reduction in TAC has seen a drop in the absolute catches from the area. The limited number of years in the north-east with available data restricts the possibilities for analysis, and this is further restricted by a proliferation of different fishing methods associated with this shift off effort and catch (Table 9.6; Figure 9.6).
Table 9.6. Catches in tonnes of Blue-Eye taken by all methods by zone (Figure 9.3). 80 includes all the GAB catches. The zones are arranged approximately from north-east to south-west.

	70	91	92	10	20	30	40	50	60	80
1986		0.020		12.712	5.771	3.346	4.927	11.058	0.128	
1987				1.882	6.881	3.269	0.214	2.931	0.250	0.068
1988		0.585		3.076	18.841	1.460	23.834	53.101	1.020	3.250
1989		0.101		9.506	10.088	23.654	24.905	19.080	0.031	0.375
1990				4.201	11.622	29.411	14.880	16.030	0.139	2.925
1991				14.119	20.771	18.256	7.871	13.986	0.120	0.308
1992				2.498	13.663	3.408	7.739	21.679	0.063	0.030
1993		0.015		2.360	14.582	24.092	5.892	12.567	0.001	0.135
1994	0.115	0.030		2.886	14.894	74.892	8.140	8.842	0.046	0.125
1995		0.080		2.778	8.719	19.763	12.605	13.791	0.201	0.635
1996		0.075		4.927	9.842	25.660	9.134	21.450	0.192	0.347
1997		10.835	0.140	6.046	149.869	92.819	83.333	100.036	4.149	16.843
1998		1.590		1.820	93.370	171.130	97.903	66.989	4.211	7.967
1999		21.590	0.050	1.893	106.166	225.832	91.532	86.924	5.109	7.044
2000	5.408	1.100	0.750	0.985	129.528	275.937	129.247	95.971	8.559	9.923
2001	34.930	3.186	4.740	0.264	86.447	239.668	100.831	60.290	0.708	48.991
2002	7.469	33.664	7.850	0.489	41.624	180.660	75.524	77.538	0.012	37.437
2003	14.668	57.910	2.400	1.288	91.447	153.646	124.815	43.761	1.567	70.485
2004	36.796	10.045	0.180	0.222	73.957	148.512	113.269	64.437	0.745	152.432
2005	2.607	7.451	4.700	1.601	88.198	119.790	64.249	51.935	0.267	100.616
2006	2.540	10.375	2.516	0.192	69.824	157.401	83.899	41.217	0.932	165.364
2007	16.174			0.271	53.777	235.939	48.581	47.631	0.552	152.539
2008	8.100			0.170	46.583	130.524	55.478	26.535	0.110	74.574
2009	7.631	12.615	22.758	0.133	54.023	159.609	86.619	47.601	0.195	32.416
2010	1.797	34.124	34.027	0.109	26.136	98.273	54.924	97.572	0.100	32.010
2011	14.271	79.995	52.926	0.195	31.830	99.656	45.235	30.612	0.012	75.426
2012	15.079	74.673	13.189	0.188	21.728	67.578	77.448	22.012		22.196
2013	5.546	37.203	1.138	0.015	13.389	58.686	98.820	19.005	0.164	29.874
2014		24.379	0.918	0.005	6.339	103.029	94.445	26.010		49.222
2015	0.750	38.423	11.212	0.012	9.793	77.010	76.218	27.388	0.568	30.108
Total	173.880	460.062	159.494	76.842	1329.701	3022.909	1722.511	1227.978	30.150	1123.665

Figure 9.6. Annual catch in Blue-Eye in the four zones 20, 30, 40, and 50, the GAB (zones $82-85$) and the Seamounts (zones 91, 92, and 70 from 1986-2015.

In 1998 one global TAC of 630 t was introduced to cover both the trawl and the GHT fisheries; this was divided 100 t for trawl and 530 t for GHT. An increase in effort and catch, particularly in the dropline fishery on the east coast of Tasmania is reported to be a response in anticipation of that management change, with fishers believing that increasing their catch history would lead to an increase in their allocation of quota. Since 1997 total catches have declined to just over one third of the agreed catches in 1997 (Figure 9.7). The distribution of catches in different regions indicate the changes in the intensity of fishing (Figure 9.6) with the proportion changes occurring through time showing the dominance of zone 30 as well as that changes in the location of fishing can occur rapidly from year to year (Figure 9.9).

Figure 9.7. Total historical catches of Blue-Eye (not including high-seas catches), with estimates from 1985 1999 from Smith and Wayte (2002); see Table 9.3. The apparent spike of catches in 2007 relates to the 16 month season represented by that point.

Figure 9.8. Schematic map of the distribution of Blue-Eye catches taken by AL and DL between 1997 - 2015. The zones (Figure 9.3) are used to discern the distribution of catches. A comparison with Figure 9.4 illustrate the different areas fished by different methods. Data east of the Longitude $155^{\circ} \mathrm{E}$ (the vertical green line) are currently excluded from the assessment of the GHT fishery.

9.5.5 Auto-Line and Drop-Line Catches

Blue-Eye catches taken with Auto-Line and Drop-Line are patchily distributed and the distribution of those catches has changed through time (Figure 9.8). Only the catches from the north-east region near
and around the off-shore sea-mounts are excluded from the assessment of Blue-Eye (those west of Longitude $155^{\circ} \mathrm{E}$. The catches and effort have been so variable and patchily distributed across the different sea-mounts and sub-regions that obtaining a valid CPUE index for the areas is currently not plausible (Haddon, 2015). As a result only zones 20, 30, 40, 50, and 83, 84, and 85 are used. The zones 83, 84, and 85 are in the GAB (see Figure 9.3).

Table 9.7. Catch by zone of Blue-Eye taken by Auto Line and Drop Line. This omits zones 10, 60, and 82, which had 3.5, 10.1, and 0.6 tonnes of reported catch respectively.

Year	20	30	40	50	83	84	85	70	91	92
1997	78.856	80.730	40.189	45.057			5.778		3.745	
1998	72.375	158.987	62.428	40.616			1.968		1.100	
1999	64.394	194.861	74.856	51.698			0.972		16.910	0.050
2000	38.200	193.204	113.492	59.732		0.332	5.234		0.350	0.750
2001	20.659	214.492	87.241	28.957	0.15	2.364	3.935	0.06	3.186	4.740
2002	34.257	151.014	63.101	56.757		1.561	5.08		30.164	7.850
2003	46.296	142.138	75.155	33.329		27.313	4.875		57.890	2.400
2004	62.288	123.851	82.704	46.213	5.738	58.988	36.367	0.4	4.945	0.180
2005	85.093	100.828	59.423	42.908	19.258	29.173	42.215	1.55	4.881	4.700
2006	67.115	117.711	80.403	27.980	31.135	43.306	77.221	2.42	10.375	2.500
2007	50.186	227.145	41.324	28.367	29.801	100.647	15.337	0.7		
2008	44.439	111.803	50.407	13.668	27.543	32.267	13.214			
2009	48.524	136.003	79.413	36.219	1.633	15.369	14.826	5.06	10.515	1.150
2010	25.422	83.915	47.662	69.919	6.549	9.532	15.929	1.153	7.932	3.495
2011	30.838	92.203	41.476	18.131	20.576	40.527	14.159	10.44	31.289	22.010
2012	21.176	65.587	71.830	17.454	8.417	9.736	3.752		39.805	10.017
2013	13.151	51.497	84.457	14.244	0.465	16.152	13.25	3.252	1.131	
2014	3.878	69.016	87.153	20.619	2.107	33.103	11.629		4.505	0.510
2015	9.031	52.005	72.576	24.076	2.49	21.672	3.621	0.75	35.272	9.872
Total	816.176	2366.989	1315.288	675.943	155.862	442.042	289.362	25.785	263.994	70.223

The focus of this work is the auto-line and drop-line fisheries and there have been large changes in these in terms of both catches and location of those catches (Figure 9.9).

The catch rate time series for both methods are now relatively long but catches were relatively low and the number of records was below 70 each year for auto-line before 2001. Drop-line catches have been $<=10 \mathrm{t}$ and with 54 and 65 records in the past two years (Table 9.1; Figure 9.10). By excluding those years of minimum data from the auto-line and drop-line data, when it is combined, not surprisingly, the current standardization, based on catch-per-day shows greater similarities to the drop-line trajectory early on and the auto-line trajectory later on (Figure 9.10). Based on catch-per-day, the autoline CPUE by itself is now indicating a return to the longer term average CPUE, having completely recovered the decline that appeared to have occurred in 2010. This by itself needs discussion for its management implications but the notion of pursuing CPUE as catch-per-hook remains more intuitively plausible and more likely to reflect changes in the fishery if they have occurred.

Figure 9.9. Distribution of each year's catch across regions. All graphs are on the same vertical scale. Fishery changes occurred in 2007 (the introduction of the HSP) and 2010 (beginning of TAC reduction).

Figure 9.10. A comparison of the standardization for Blue-Eye catch-per-day across zones $20-50$ and $83-85$ combined and conducted separately for auto-line from 2001 - 2015 and drop-line from 1997 - 2006. The respective catches across those zones at the same time show the changeover from one method to the other.

Figure 9.11. Standardized CPUE for the auto-line and drop-line fisheries combined using catch-per-record as the unit of catch rate. The dashed line is the unstandardized geometric mean CPUE. The red bars are the 95% confidence intervals around the mean estimates (their asymmetry reflects the log-normal distribution of the CPUE data. Each time series is called to its own mean value so both series now have a mean of 1.0 for ease of visual comparison of trends. Data filtered to include only drop-line and auto-line from between $200-600 \mathrm{~m}$ depth and zones $20-50$ and $83-85$.

9.5.6 CPUE from the Drop Line Fishery

Currently the stock status of Blue-Eye is determined using a SESSF Tier 4 harvest strategy, and in practice this would use the combined CPUE of the drop-line and the auto-line fisheries to provide a time series. The most recent CPUE analysis of catch-per-record (catch-per-day; Figure 9.11) indicates that after a relatively strong decline between 2009-2010 the CPUE is rising, with the error bounds now once again encompassing the longer term rescaled average of 1.0.

While the overall distribution of CPUE from the two methods (as catch-per-record) were sufficiently similar in 2007 and 2008 to allow combination (Haddon, 2010) it is clear that the proportional distribution of each method has changed through time, with catches by drop-line being replaced by auto-line catches following 2001 (Figure 9.5, Figure 9.10; Table 9.1). Given the large area over which fishing could occur, most of the catches tend to be focused in zones $20-50$ with an occasionally significant fishery developing in the GAB and a couple of years of auto-line effort in the northeast. There were two years of auto-line fishing on the Cascade Plateau but that is currently closed to autoline fishing. Both auto-line and drop-line catches and effort move between zones a good deal (Figure 9.9 and Table 9.7), although zone 30 (east Tasmania) has often been a favoured fishing area, with reports that this was especially the case before 1997 for Drop-Line.

The early period from 1997 onwards is especially important to the CPUE analysis as the initial relatively high level of CPUE in 1997 is influential on the perceived changes in catch rate since then. Of course, in 1997 the catches were essentially all from drop-line as only 0.27 t were taken by Autoline, and that was only in a very restricted area on the west coast of Tasmania in the months of November and December. The reason the CPUE was estimated as catch-per-record is because with the drop-line vessels, for example, the fields in the logbook for recording the number of lines and the number of hooks were mixed up in a large number of instances. To determine whether the very high CPUE in the drop-line fishery in 1997 was being affected by the use of catch-per-day all drop-line data for zones $20-50$ plus 83,84 , and 85 were extracted and the effort fields examined (in fact labelled effort_unit_value and effort_unit_sub_code_value). It was possible to discover the records which had most likely been mixed across each other (for example, 2000 lines of 5 hooks was deemed an error as
were 80 drops of 5 hooks) and these were reversed so that more plausible effort estimates in terms of number of lines and number of hooks per line, were available. In the current database there are a few erroneous records with a few combinations of unknown Units or Sub-Units (Table 9.8). Fortunately, out of a total reported catch of 2880.446 t only 10.934 t are not reported using units of NLD with subunits of AHL; thus 99.62% of all catches are accounted for with such a selection.

Table 9.8. The catch (t) and number of records (in parentheses) of effort Units (as rows) and effort SubUnits (as columns). NLD is 'number of line lifts per day', THS is 'total number of hooks set', AHL is 'average number of hooks per line', and TLM is 'total length of mainline used (kms)'. FA, HRS, and M are not known.

	Unknown	AHL	HRS	TLM
Unknown	$1.4(6)$	0	0	0
FA	0	0	$1.324(11)$	0
HRS	0	$0.789(8)$	0	0
M	0	0	$3.471(23)$	0
NLD	0	$2869.512(7793)$	$0.8(4)$	0
THS	0	0	0	$3.15(3)$

9.5.6.1 Data Selection Criteria

To analyse the Drop-Line catch and effort data requires various data selections to be made. Obviously a selection for 'Method' = "DL" is required. But in addition other selections for zone, depth and fishery are required (Table 9.9).

Table 9.9. The data selection criteria used to isolate those records relating to Drop-Line catches. Previous analyses of CPUE have not used zones 91 and 92 so separate analyses will need to be conducted with and without these.

Method	DL
Catch	>0
Start Year	1997
Final Year	2015
CAAB code	37445001
Lower Depth	200
Deepest Depth	600
Effort Unit	NLD
Effort Sub-Unit	AHL
Fishery	SEN, SSF, SSG, GHT
SESSF Zone	$20,30,40,50,84,85,91,92$

In any analysis of fisheries data using categorical variables, such as depth categories or regional zones, it is very common for there to be some levels within a variable that will be empty or contain very few observations. The linear models used to characterize the general trends in CPUE, while attempting to remove the effect of variables other than the stock size, generates expected values for each level or cell of each categorical variable (e.g. a mean for each month in an attempt to account for seasonality). An ideal statistical analysis would have equal numbers of observations within each cell. Properly designed experiments obtain great statistical power to detect differences from having such balanced data. Instead, within fisheries, statistical analyses rely on large numbers of observations to reduce the
effects of having blatantly unbalanced data. Nevertheless, removal of empty and almost empty levels from categorical variables can reduce the number of empty cells in such analyses and improve their stability.

After review of the individual data fields some data selection was clearly required to remove very minor numbers of observations. For example, there were Blue-Eye catches in zones 10, 60, 70, and 83 but they were all minor (Table 9.22; Figure 9.12) and so these were omitted from the analysis.

Figure 9.12. Catch (t) of Blue-Eye by SESSF zone taken by Drop-Line between 1997 - 2015

Similarly, catches at depths other than those between 200 - 600 m were relatively minor although there were even records out to 3000 m (assumed erroneous) so both presumed erroneous as well as minor depth values were omitted (Figure 9.13).

Figure 9.13. The catch at depth of Blue-Eye from 1997-2015 taken by Drop-Line.

The initial data selection based on the criteria listed (Table 9.9) constrained the analysis down to about 13.0% of the records and 23.0% of the catches of Blue-Eye (Table 9.10).

Table 9.10. The number of records and catches associated with applying each selection criterion. The Effort categories effectively identify the Method, which is why Method has so little effect. The two 'Delta' rows designate the difference between columns. The effect of selecting on depth, years, zones, and fishery was to lose 6.8% of DL catches.

Statistic	Total	Effort	Depth	Years	Zones	Method	Fishery
Records	52302	7824	7626	7603	7263	7262	7258
DeltaR	0	44478	198	23	340	1	4
Catch	11569.4	2877.369	2815.878	2808.625	2684.48	2684.03	2682.849
DeltaC	0	8692.034	61.491	7.253	124.145	0.450	1.181

There were also extreme values in some of the fields such as the number of line drops and average number of hooks per line (Figure 9.14), which entailed searching for the most reasonable values above which to eliminate further data as implausible.

Figure 9.14. The number of line-drops and the average number of hooks per line reported by each vessel in individual records before editing implausible combinations. There were, for example, 2 records of 4000 line drops and 2 records of 2400 Hooks per Line.

Initially an upper limit of 100 line drops and 300 hooks per line were considered (Figure 9.15), however, the resulting data cloud suggested a final range of $1-40$ for the number of line drops and 1 - 200 for the number of hooks (Figure 9.16; Table 9.11).

Figure 9.15. Number of hooks per line (generally there is an inverse relationship between number of lines and number of hooks). Limits used were 100 drops/lines and 300 hooks. Values were jittered to illustrate local concentrations of points.

Figure 9.16. The final selection criteria for the number of line drops (or lifts) per day and the average number of hooks per line. Final limits used were $1-40$ drops/lines and $1-200$ hooks inclusive. Values were jittered to illustrates local concentrations of points.

Table 9.11. The effect of data selection in terms of number of line drops and average number of hooks per line. The removal of records with missing data removed $\sim 0.6 \%$ of catch, and with the removal of records with >40 line drops a day and >200 hooks per line there was a total loss of 3.27% of all catches by drop-line.

	Remove Zeros	$<=100 ;<=300$	$<=40 ;<=200$
Total	2682.849	2666.989	2666.989
Selection	2666.989	2601.283	2579.87
Data Retained	0.9941	0.9754	0.9673
Data Rejected	0.0059	0.0246	0.0327
Catch Difference	15.8605	65.7055	87.1185

Prior to the adjustment and data selection the frequency distribution of the number of lines used was extremely skewed (Figure 9.14), while after the data processing peaks were observed at $1,10,15$, and 20 line drops a day and $50,75,100,120$, and 150 hooks per line (Figure 9.17). These rounding effects when recording the data are the reason it typically takes on a grid like appearance when catches are plotted against effort (Figure 9.15, Figure 9.16). This grid like property of the CPUE data can influence the stability of the standardization. The number or records and total catch omitted remains minor with those up at 40 NLD and 200 AHL also being minor (Figure 9.17; Table 9.11).

Figure 9.17. The distributions of the number of line drops (NLD) and the average number of hooks per line (AHL) after cleaning and removal of data with NLD values >40 and AHL values >200.

9.5.6.2 Single Line Drops

The relatively high frequency of single line drops (Figure 9.17) was unexpected so this was explored further. When the number of records per zone is compared to the number of records per zone where only single line drops were reported it is clear that large changes in reporting practices occurred but only in zones 30 and 50 and only in some years (Table 9.12).

The effect of the records reporting only one line drop can be quite marked. They only make up a small proportion of the total catches up to 2005 (a maximum of 3%) and so are less influential but from 2006 onwards, except for 2014 and 2015, makes up more than 27% and up to 63% of all catches (Table 9.13). When all CPUE data are plotted, post-2005 reveals a bimodal distribution relative to the pre2006 distribution, which is a direct reflection of this increased percentage of single line reports (Figure 9.18; the bimodality largely disappears when the single line drop records are removed, and the data from the two periods become more comparable).

Even if the catch-per-hook analysis is not accepted to replace the catch-per-shot analysis the impact of these single shots is enough to make the distributions of the catch-per-shot differ between the autoline and drop-line and so would need to be removed or the combination no longer used.

Table 9.12. The total number of records for the selected Drop-Line records compared with the number of records reporting only single line drops in zones 20 to 91 . ' >1 ' is the number of records that list more than one line drop while the column labelled ' 1 ' are the list of records that only report one line drop. The other columns report the zone records of single line drops.

Year	> 1	1	20	30	40	50	84	91
1997	451							
1998	662							
1999	745	23	2			21		
2000	896	51				50		1
2001	660	45				45		
2002	586	24				20	4	
2003	577	2		1		1		
2004	486	1		1				
2005	343							
2006	251	67		65	2			
2007	86	38		37	1			
2008	21	50		50				
2009	61	51		50		1		
2010	149	61		61				
2011	154	57		53	4			
2012	97	22		20	2			
2013	27	16		15	1			
2014	55	1				1		
2015	67							

Figure 9.18. The log-transformed CPUE (catch/[line-drops x hooks]) from 1997 - 2005 and 2006 - 2015, both with (left columns) and without single drops (right column). The mode of relatively high \log (catch-per-hook) results from single line drops. The negative value is the estimated mean of the fitted normal distribution.

Table 9.13. The catches and number of records taken by Drop-Line in zones 20-50 where either 1 line was reported or > 1 line. The $\%$ Records and $\%$ Catch indicate a large change occurs from 2006 onwards.

Year	Catch $(\mathrm{L}>1)$	Records $(\mathrm{L}>1)$	Catch $(\mathrm{L}=1)$	Records $(\mathrm{L}=1)$	\%Catch $(\mathrm{L}=1)$	\%Records $(\mathrm{L}=1)$	Vessels
1997	227.666	429					33
1998	313.473	647					26
1999	319.579	730	2.945	23	0.91	3.05	26
2000	347.112	873	7.610	50	2.15	5.42	28
2001	295.627	621	9.174	45	3.01	6.76	23
2002	170.335	517	3.178	20	1.83	3.72	20
2003	134.966	446	0.066	2	0.05	0.45	20
2004	81.265	312	0.030	1	0.04	0.32	16
2005	48.481	206					14
2006	37.604	101	18.065	67	32.45	39.88	10
2007	16.926	65	21.841	38	56.34	36.89	9
2008	5.177	20	8.803	50	62.97	71.43	5
2009	7.827	30	9.991	51	56.07	62.96	9
2010	15.468	101	9.241	61	37.40	37.65	9
2011	16.916	96	13.017	57	43.49	37.25	9
2012	13.029	71	4.898	22	27.32	23.66	8
2013	4.608	24	2.303	16	33.32	40.00	5
2014	3.257	31	0.260	1	7.39	3.13	4
2015	1.086	19					5

The records reporting single lines post-2006 have a major impact on the perceived CPUE. Post-2006 (following the structural adjustment), the proportion of single lines increases to $>50 \%$ and catches from >1 lines reduce to no more than 17 t and generally no more than 64 records per year at most (although there were 101 records in 2010; Table 9.13). A comparison of the standardized CPUE for drop-line catches from 1997-2006, with and without the single line records illustrates the very large effect these single lines have on records following 2005 (compare Figure 9.19, Figure 9.20, and Figure 9.21). The inclusion of records reporting single lines leads to a similarly noisy but flat time-series after the transition in effort reporting through 2006, however, as evidenced by the wider confidence intervals the later observations are based on far fewer record numbers (Table 9.13). It is apparent that the structural adjustment and associated changes in fishing behaviour (and reporting behaviour) have broken the drop-line CPUE time-series. Of most importance to this is the almost complete changeover in the vessels doing the drop-line fishing. Only one of the significant fishers remained after the structural adjustment and an array of new vessels entered the fishery. It is recommended that the post2006 drop-line data not be used in future in conjunction with the earlier data as it is too sparse, and has a completely different character. If used alone it is also clear that it is effectively flat but is so noisy (sparse data) that it would be uninformative to any stock assessment that tried to use it.

A final confirmation that the character of the CPUE changed when single line drops were recorded is provided by examining the records of individual vessels (Table 9.14).

Figure 9.19. The standardized drop-line CPUE from which all records reporting a single line are removed. The low catches and number of records following 2006 (Table 9.13) would make an extension out to 2014 unreliable.

Figure 9.20. The standardized drop-line CPUE from which all records reporting a single line are retained. This time series is extended to 2014 to illustrate the expanded impact of the increased proportion of single lines post2005; although the small number of records and very low catches in the last two years makes this even less reliable.

Figure 9.21. The geometric mean CPUE (catch-per-hook) with and without single drops. The numbers of records in the later years become relatively few but the distortion in the general trend brought about by single drops is apparent. Standardization fails because of an almost complete change-over of vessels doing the fishing after 2006/2007.

When most of the data is made up of single line drops then the CPUE tends to be >1.0 and when it is mostly or only made up of >1 line drop then it tends to be below 1.0 (Table 9.14). Such a change in recording implies the data has a mixture of two categories.

Table 9.14. The bias corrected geometric mean CPUE for three individual vessels from the Drop-Line fleet. The CPUE is in the V1, V2, and V3 columns, while the number of records with >1 line-drops is in V\# 0 and the records with single NLD values is in V\#_1 columns. V1 in 1998 has a high CPUE but has only 5 records all with > 1 NLD. However, these were made up of four records of 4 line drops and one record with only 2 line drops (of 50 hooks each) so these were exceptionally high.

Year	V1	V1_0	V1_1	V2	V2_0	V2_1	V3	V3_0	V3_1
1997				0.3518	19				
1998	1.4417	5		0.3979	61				
1999	1.3905	21	20	0.2970	76				
2000	2.6199		50	0.2000	84				
2001	3.4965		44	0.1918	72				
2002	1.7530	25	20	0.1247	51				
2003	0.3140	29	1	0.1701	52				
2004	0.2404	26		0.1570	55				
2005	0.2173	11		0.1115	59				
2006	0.3059	5		2.9587	1	66			
2007				6.5619		33			
2008				2.0312	6	50			
2009				2.9143		48			
2010				1.9730	6	61			
2011				2.7616	9	34	2.5565		23
2012				2.5848	1	4	3.9952	3	18
2013							2.5946		16

The catch rate trajectory described when effort is taken to be the corrected hooks by lines differs from that obtained when using catch-per-day (Figure 9.22; see Sporcic and Haddon, 2014 for standard methods). When using all hook x line data (ignoring the single line drop problem) the increase in single line records would lead to a lower total catch-per-day but a higher catch-per-hook-line. Once the impact of the rise in single lines being reported is identified this difference becomes significant.

Figure 9.22. A comparison of drop-line CPUE using catch-per-hook (from Figure 9.19) with drop-line CPUE using catch-per-day from the four zones $20-50$.

The catch-per-hook trend line begins at a lower level and ends at a higher level than the catch-per-day series (Figure 9.22). However, both have wide uncertainty bars (e.g Figure 9.19 and Figure 9.20). Both time series can be considered to be noisy and uncertain even while oscillating around the mean of 1.0 . If all SESSF zones in which significant catches have been taken are included then the same pattern emerges in the standardization except that both trends are lower in 2006 and the catch-per-hook is closer to the lower value of catch-per-day in 2006 (Figure 9.23; Figure 9.23).

Figure 9.23. A comparison of drop-line CPUE using catch-per-hook (from Figure 9.19) with drop-line CPUE using catch-per-day from all zones $20-50,83-85$, and 91 and 92.

9.5.7 CPUE from the Auto Line Fishery

Auto-line vessels only gained licenses to operate in the SESSF from 1997 although they only began operations in November 1997 on the west coast of Tasmania. Catches in the North East by auto-line only increased since the TAC within the SESSF has declined in recent years (Figure 9.24), although auto-line is now excluded from Zones 70 and 92.

Table 9.15. Catches of Blue-Eye (tonnes) reported as being taken by Auto-line since 1997 for those zones where catches are continuous and potentially amenable to a CPUE analysis. See Figure 9.3 for the block descriptions; zone 0 includes catches from zones $10,60,70,91$, and 92 , as well as outside the SESSF and includes the High Seas Non-Trawl fishery. The high catch purporting to be in Zone 30 in 2000 actually included over 50 tonnes from the Cascade Plateau.

Year	Total	0	20	30	40	50	83	84	85
1997	0.267				0.267				
1998	27.253	12.064		0.233	14.956				
1999	61.040	12.809	35.575	1.725	10.932				
2000	90.756	7.061	12.243	56.804	14.648				
2001	47.884	0.242	2.000	31.044	14.598				
2002	133.747	2.100	2.640	65.131	42.576	21.300			
2003	219.676	7.260	20.634	97.288	84.594	9.900			
2004	324.805	2.152	62.886	91.921	82.155	26.754	11.981	15.316	31.641
2005	300.602	1.815	84.953	60.283	57.163	36.472	19.058	5.145	35.715
2006	353.763	8.569	67.075	67.257	77.940	25.672	31.144	0.330	75.777
2007	448.511	0.550	48.019	195.532	41.074	23.907	29.791	94.300	15.337
2008	279.398	0.017	44.450	98.763	51.837	11.408	27.543	32.167	13.214
2009	323.923	4.655	50.874	124.045	79.579	32.355	1.633	15.369	15.415
2010	236.620	0.100	25.642	69.142	50.841	63.093	5.764	7.153	14.884
2011	266.793	40.196	30.835	69.502	38.459	14.160	20.576	40.127	12.939
2012	213.670	33.644	21.176	55.333	70.428	11.183	8.417	9.736	3.752
2013	190.515	4.175	13.151	45.406	84.451	13.684	0.465	16.158	13.025
2014	225.853	4.950	3.867	67.697	87.153	19.442	0.607	31.049	11.089
2015	192.101	11.365	9.031	51.862	72.641	22.563	0.541	20.487	3.611
Total	3937.176	153.723	535.049	1248.968	976.289	331.893	157.519	287.336	246.398
\%Total	100.0	3.9	13.6	31.7	24.8	8.4	4.0	7.3	6.3

Figure 9.24. Total reported catches of Blue-Eye by auto-line by region. The North East includes zones 70, 91, and 92 , the east coast is zones $20-30$, the west coast is $40-50$, and the GAB is $83-85$.

Figure 9.25 . A change in catches by auto-line by specific zone within regions. Note the vertical scales are the same in each case so all plots are comparable. Dots are included in the North-East as some zones are not necessarily fished every year.

The east coast of Tasmania and eastern Bass Strait (Horseshoe and Flinders Island) have dominated catches, although since about 2002 catches off western Tasmania have been approximately 100 t per annum and since 2004 catches from the GAB have featured, although these have declined since 2009 (Figure 9.24).

The auto-line fishery for Blue-Eye exhibits some clear seasonal trends around Tasmania but the trend in the GAB is less clear (Figure 9.25 and Figure 9.26), which may be related to the recently reduced catches.

Figure 9.26. The total catch per month across years 1997-2015 for three main regions. Seasonality is less apparent in the GAB but is still present. In the North East catches are scattered through the years and there is insufficient data to describe any seasonality.

The specification of depth bounds of $200-600$ metres might appear intuitively as being relatively narrow, however, a consideration of the catch of Blue-Eye at depth by Auto-Line indicates these to be sensible bounds to use in practice (Error! Reference source not found.).

Figure 9.27. The catch at depth by Auto-Line vessels from 1997 p 2015 across zones $20-50$ and $83-85$.

Just as with Drop-Line the effort reporting is in terms of the main Unit of effort with a Sub-Unit of effort included. There are two main codes although there are also 55 with unknown Unit and Sub-Unit. Initially in 1997 and 1998 the main unit of effort was the Number-of-Lines-Set, however, as this could lead to confusion of whether total hooks set meant per line set or the total for the day it is fortunate that NLS was made obsolete sometime in 1999. This in turn led to the major issue with the Auto-Line effort reporting being that the Total Hooks Set switched from being a Sub-Unit code to being a Unit
code sometime in 1999 (Table 9.16 and Table 9.17). This source of confusion appears to have propagated confusion in the log-book entries for a number of years following the changes and is the main reason this data needs review.

Table 9.16. A tabulation of the different Unit types identified (rows) and Sub-Units codes identified (columns). NLS is number of lines per shot (obsolete after 1999) and THS is Total Number of Hooks per Shot, finally TLM is Total Length of Mainline used.

Unit	Unknown	THS	TLM
Unknown	55	0	0
NLS	0	71	0
THS	0	0	8286

Even before editing the database confusions such that the Total-Hooks-Set was corrected as best it could be the number of records available for CPUE standardization only rose above 100 in 2002 onwards. From 1997-2001 the number of records were sparse as was the geographical spread of the distribution of catch. In 2000 the catches and records are also distorted by relatively high catches being taken down on the Cascade Plateau.

Table 9.17. The number of records in each year under the different Unit and Sub-Unit codes. NLS is number of lines per shot (obsolete after 1999) and THS is Total Number of Hooks per Shot, and TLM is Total Length of Mainline used. 'Final' are the final number of records per year after the Total-Hooks-Set was corrected for database confusions.

		Unit	Sub-Unit	THS	THS	TLM
Year	Unknown	NLS	THal			
1997	0	3	0	3	0	3
1998	0	28	0	28	0	28
1999	0	40	9	40	9	45
2000	0	0	29	0	29	28
2001	0	0	65	0	65	63
2002	0	0	226	0	226	226
2003	0	0	433	0	433	432
2004	55	0	1135	0	1135	1125
2005	0	0	1127	0	1127	1116
2006	0	0	1064	0	1064	1062
2007	0	0	652	0	652	652
2008	0	0	603	0	603	600
2009	0	0	544	0	544	541
2010	0	0	482	0	482	482
2011	0	0	524	0	524	522
2012	0	0	425	0	425	425
2013	0	0	349	0	349	349
2014	0	0	292	0	292	292
2015	0	0	250	0	250	250

A total of 14 vessels have reported catches of Blue-Eye caught using Auto-Line since 1997, although a maximum of 11 report in any single year (Figure 9.28). The active fleet expanded between 2002 2004. The structural adjustment occurred from November 2005 to Nov 2006 and that (along with TAC changes) appears to have stabilized numbers at about six vessels, with only three or four contributing in recent years. However, the four lowest catching vessels, across all years 1997 - 2015, have only landed totals of either $0.815,3.55,6.0$, or 6.256 t of Blue-Eye in between $1-6$ years of fishing. By selecting those vessels catching more than 10 tonnes a more representative number of vessels reporting significant catches per year is obtained (Figure 9.28). However, for the standardization analysis no selection on minimum catch was made.

Figure 9.28. The number of auto-line vessels reporting Blue-Eye catches per year of the fishery compared with the number of vessels that caught more than a total of 10 tonnes over the 19 years from 1997-2015. Vertical dashed line is 2006.5 , identifying the structural adjustment.

9.5.7.1 Auto-Line Catch-per-Hook

There remain numerous confusions in the database, especially in the early years. There was an early change in the database which mixed up a large number of the unit-code-values and sub-unit-codevalues so that the 'total-hooks-set' (THS) field might contain ' 15000 ' or perhaps just ' 2 '. Other errors occurred but the most important were such transposition errors. The main field used is 'total-hooksset', so the focus was on making the values in that field defensible for as many records as possible (Figure 9.29).

 Sub-Unit-Value is supposedly the total-hooks-set (THS). The spread of values includes a few hundred with low values, which lead to elevated catch-rates. After passing through the reorganisation and selection algorithm (Table 9.18) the result is the lower panel which has far fewer smaller values with only minor changes elsewhere. These plots relate to all years combined.

There were some records which appeared to be more representative of drop-line fishing than auto-line (e.g. a unit-value $=20$, and subunit-value $=100$), such potential errors may need clarification by examination of the original data-sheets or by tracing back records for the individual vessels involved to determine their usual fishing methods at the same times and places to determine whether they are actually Drop-Line records.

Even when the uncertainty generated in the analyses of catch-per-hook by flawed data are managed through data editing or exclusion, it became evident that there have been other sources of change that could influence fishing behaviour, in terms of hooks set, and hence CPUE (Figure 9.30). For example, in 1999 - 2000 it is clear that operators reported setting more than 15,000 hooks. However, from 2001 - 2009 it would appear that something led to them using up to 15,000 hooks, and then from 2010 onwards that maximum appears to have decreased to 13,000 hooks (Figure 9.30). Numerous other changes have occurred in the auto-line fishery with catches only being more evenly distributed among multiple fishers following the structural adjustment (Nov 2005 - Nov 2006). The structural adjustment also had the effect, or removing primarily those who had been catching the least, and with so few vessels in the fishery this too can influence CPUE of the remaining vessels, which thus cannot be captured by a standardization.

Figure 9.30. The frequency distribution of total number of hooks set each year from 1998 - 2015, after correcting the database so that Total-Hooks-Set was no longer mixed up with other records.

An attempt was made to generate a repeatable algorithm to make the changes required to the database to isolate the total-hooks-set from among the confusions currently expressed within the effort related fields. Introducing new columns titled 'hooks', 'CE', and 'LnCE' incremental steps were applied checking the distribution of hooks, the corresponding log transformed CPUE, and visually inspecting the effort fields in the database at each step to clarify the next steps if any (Figure 9.31).

The generation of a cleaner representation of the total-hooks-set per record involves both selecting and manipulating data fields in the current database (Table 9.18 and Table 9.19).

Figure 9.31. The distribution of the log-transformed CPUE (kg/hook) with the top panel using the naïve UnitValues as representing total-hooks-set. The bottom panel, set on the same scales, uses the total-hooks-set after the different selections and database manipulations (see Figure 9.29 for the total-hooks-set in each case).

Table 9.18. The data selection criteria used followed by the steps in the database manipulations that were used to generate a relatively clean column of total-hooks-set for Auto-Line. UV = Unit-Value and SUV - Sub-UnitValue within the database (see Table 9.19).

Step	Description
Total	All Blue-Eye records in the AFMA catch and Effort database
Method	Only those records reporting a method of "AL"
Depth	Only depths between $200-600$ metres
Years	Only data from 1997 - 2015
Zones	Only records reporting zones 20, 30, 40, 50, 83, 84, 85
Fishery	Only records reporting either "SEN" or "GHT"
U-THS	Transfer the UV to hooks
9798SUV	Transfer SUV recorded as THS to hooks
H0-SUVgt0	Transfer the SUV if it was >0 and the UV $=0$
noEffort	Remove records with no effort; neither UV nor SUV
SUVgtUV	Transfer SUV which are $>$ UV where UV >1000 and hooks >20
CEgt10	Remove 2 remaining records with CPUE $>10 \mathrm{Kg} /$ hook
Hlt1000	Remove 2 records with fewer than 1000 hooks.

Table 9.19. The sequence of data selection and editing and their effects on the amount of Blue-Eye catch and number of records. Codes below Fishery are described in Table 9.18.

	Records	Difference	Catch (t)	Δ Catch	$\%$ AL
Total	52302	0	11569.400	0	
Method	9545	42757	4261.211	7308.192	100
Depth	9000	545	4001.779	259.432	93.91
Years	8836	164	3900.517	101.262	91.54
Zones	8365	471	3611.321	289.196	84.75
Fishery	8335	30	3591.132	20.189	84.27
U-THS	8335	0	3591.132	0	84.27
9798SUV	8335	0	3591.132	0	84.27
H0-SUVgt0	8335	0	3591.132	0	84.27
noEffort	8254	81	3584.629	6.502	84.12
SUVgtUV	8254	0	3584.629	0	84.12
CEgt10	8252	2	3578.829	5.800	83.99
Hlt1000	8250	2	3575.779	3.050	83.91

Once catch-per-hook CPUE data were available these could then be standardized using standard methods (Figure 9.32). Standardizations only begin in 2002 after which sufficient data to be representative are available.

Figure 9.32. The standardized CPUE for Blue-Eye taken by Auto-Line from 2002 - 2015 from zones 20, 30, $40,50,83,84$, and 85 . While the error bars are wide note the difference between the solid standardized trend and the unstandardized geometric mean (dashed line).

The optimum statistical model fitted to the available data from $2002-2015$ was LnCE = Year + Vessel + Month + Zone + DepCat + DayNight + Month:Zone in each case. Catch-per-hook from zones 20 85 and from zones $20-50$, were compared with the catch-per-day analysis from zones $20-50$ (Table 9.20; Figure 9.33). Only minor differences are apparent between the inclusion of the GAB data (zones $83-85$) and considering only zones $20-50$. However, the catch-per-hook estimates generate a flatter trend than that deriving from the catch-per-day analysis.

Table 9.20. The geometric mean unstandardized CPUE (Geom), and the optimum models from standardizations of all Auto-Line Blue-Eye catches as catch-per-hook (cph) from zones $20-85$ (y2085), zones $20-50$ (y2050), and as catch-per-day (cpd) for zones $20-50$ (yCPD). The final column is the total reported catch from the records included in The AL CPUE analyses.

Year	Geom-cph	Geom-cpd	y2050	y2085	yCPD	AL Catch
2002	0.6024	0.7863	0.7681	0.7982	0.9336	131.366
2003	0.8589	0.6567	0.9814	1.0105	1.2881	156.966
2004	0.6139	0.3394	1.0614	1.1473	1.2039	227.589
2005	0.4759	0.4114	0.9160	0.8383	1.0908	237.854
2006	0.6088	0.6967	1.0275	0.9948	1.2125	237.218
2007	1.5558	1.5810	1.3542	1.3757	1.3300	308.245
2008	0.9909	1.1665	1.1093	1.0029	1.0921	205.017
2009	1.2935	1.5166	1.1114	1.0829	1.1223	279.887
2010	0.8120	0.9249	0.7405	0.7201	0.6945	202.140
2011	1.0567	0.8874	0.8374	0.8604	0.7237	151.689
2012	0.8343	0.8147	0.7511	0.7998	0.6852	158.120
2013	1.1956	1.0478	0.9227	1.0044	0.7661	156.342
2014	1.6616	1.7500	1.3410	1.2563	1.0191	176.813
2015	1.4398	1.4206	1.0780	1.1084	0.8383	155.946

Figure 9.33. A comparison of the standardized catch rates for auto-line vessels using catch-per-day (blue line and dotted black line), and catch-per-hook (red, green, and dashed black line). All three main lines have high levels of uncertainty (e.g. Figure 9.32), but the relative flattening of the catch-per-hook trajectory is clear. All trends were scaled to an average of 1.0 .

9.5.8 Compare Drop-Line and Auto-Line

With a standardized Drop-Line CPUE index available for 1997 - 2006, and an Auto-Line index from 2002 - 2014 the two could also be compared (Figure 9.34). Whether they can be combined to permit a standard Tier 4 analysis to continue (using 1997-2006 as a reference period) still needs to be decided. However, the standardized time series in each case are both scaled to have a mean of 1.0 during the overlap period of 2002-2006, and both series (using catch-per-hook CPUE) exhibit similar variation around the longer term average of 1.0. For the provision of management advice it would be possible to use a catch-weighted average of the two lines over the period of overlap (Figure 9.34; Table 9.21).

Figure 9.34. A comparison of Blue-Eye standardized catch-per-hook estimates for Drop-Line and Auto-Line catches of Blue-Eye from zones $20-50$. A catch-weighted average of the lines from the two methods leads to a compromise in the years 2002 - 2006. If the 2001 auto-line estimates had been included this would have raised the average in 2001 slightly but at that point in time Drop-Line catches still dominated (Table 9.21). Catch-perDay across the combined Drop-Line and Auto-Line catches is include as a dotted line.

Table 9.21. The optimum standardized CPUE (scaled to a mean of 1.0) for both drop-line, DL, and auto-line, AL. These are re-scaled so that the average CPUE between $2002-2006=1.0$ in both cases (the columns with a 'Scale'postfix. The catch weighted CPUE (CWtCE) is only catch weighted over the 2002 - 2006 overlap period.

Year	DropLine	AutoLine	DLScale	ALScale	Combined	$\begin{array}{r} \text { AL } \\ \text { Catch } \end{array}$	$\begin{array}{r} \text { DL } \\ \text { Catch } \end{array}$
1997	1.4977		1.8589		1.8589	0.267	271.942
1998	1.2406		1.5398		1.5398	27.253	346.557
1999	1.2115		1.5036		1.5036	61.590	377.140
2000	1.0037		1.2457		1.2457	90.932	384.504
2001	1.0179		1.2634		1.2634	49.681	341.384
2002	0.8013	1.1351	0.9945	1.1351	1.0502	151.397	230.814
2003	0.6441	0.9527	0.7994	0.9528	0.8752	219.937	224.989
2004	0.7456	1.0291	0.9254	1.0291	0.9946	335.648	167.621
2005	0.7079	0.8877	0.8786	0.8877	0.8855	301.303	98.349
2006	1.1297	0.9952	1.4021	0.9952	1.0942	364.916	117.344
2007		1.3106		1.3107	1.3107	470.439	49.016
2008		1.0743		1.0743	1.0743	284.412	24.155
2009		1.0793		1.0793	1.0793	329.683	43.378
2010		0.7194		0.7194	0.7194	241.202	43.443
2011		0.8114		0.8114	0.8114	286.419	59.381
2012		0.7338		0.7338	0.7338	229.068	34.487
2013		0.9009		0.9009	0.9009	231.541	7.762
2014		1.3149		1.3149	1.3149	263.423	10.242
2015		1.0558		1.0559	1.0559	219.761	47.938

9.6 Discussion

9.6.1 Assumptions about CPUE

There are some important assumptions in the analyses previously conducted on Blue-Eye Trevalla and those conducted in this document. These assumptions apply to all species whose stock status assessments rely on CPUE. The first is that changes in CPUE directly reflect changes in the relative stock abundance rather than the influence of other factors such as the structural adjustment, or reduced catch rates through whale depredations or from whale avoidance behaviour from shifting into less optimal CPUE areas. In addition, the various closures in the south-east are assumed to have little or only minor effects on catch rates as are the recent reductions in TAC, which mostly coincide with the introduction of important Blue-Eye closures on the east coast of Tasmania. In addition there would appear to have been large and sudden changes in the fishing behaviours with regard the total number of hooks set in a shot. CPUE reflects fishing behaviour and, potentially, any factor that may lead to a change in fishing behaviour may affect CPUE. Such things are confounded with stock size changes. That is, a change in the CPUE brought about by a management change, can easily be confused for a change in the stock. Catch rate standardization is a method of using statistical methods in an attempt to take account of such external factors, with common examples of important potentially influential factors being which vessel is fishing, where they are fishing, at what depth they are fishing, and what month they are fishing. The process of standardization is completely dependent upon the availability of quality data concerning the factors being considered.

9.6.2 Other Factors Affecting CPUE

There are some influential factors whose potential effects upon CPUE would be difficult to identify and isolate as a confounding effect with stock size. Any influence that occurs as an apparently instant transition so that for a sequence of years it is not there but after a given date it is present (such as the introduction of a closure, or a change in almost all the vessels fishing following the structural adjustment, or a limitation placed on maximum effort or catch per day) is very difficult to correct for, if at all.

In the case of a closure, if the closure is on favoured fishing grounds then there will undoubtedly be a change in fishing behaviour (which, in the case of Blue-Eye is confounded with reductions in TAC). While it is known where the vessels would not be operating it is not known where effort that would have been expended in the now closed region will be transferred to.

The structural adjustment between Nov 2005 - Nov 2006 led to a reduction in the number of vessels operating in the Blue-Eye fishery and this is very apparent in the trawl fleet and the drop-line fleet, both of which decline significantly in numbers from 2005-2007 onwards. Such a reduction in vessel numbers, and which vessels are actually fishing, may have altered fishing behaviour in ways that are not characterized in the standardization. In the case of Blue-Eye drop-line vessels, a major change did occur in how effort was being reported with the proportion of records reporting single lines instead of multiple lines increasing dramatically. This is mixed up with the big change in the vessels actually fishing with most significant fishers leaving the fishery after the structural adjustment (one remained). Such transitions invalidate application of the statistical standardization and almost the only thing that can be done is to treat the different periods separately.

One large issue with the analysis of any of the line and hook methods is uncertainty over the representativeness of any single year's data for the fishery. The minor-line methods are still patchily distributed over different sea-mounts and off-shore areas and even auto-line and drop-line have widely varying coverage across the different important statistical reporting zones within the SESSF. This is especially the case with auto-line following its adoption in 1997; for example, there were significant catches in only four zones, $20-50$, from 2002 onwards and catching in the GAB only started to become important from 2003/2004 onwards. Similarly, although also inversely, after 2006 reducing catches by drop-lining meant they did not occur consistently every year in all four zones $20-50$ and have remained at low and declining levels $(<20 \mathrm{t})$ throughout that period.

9.6.3 Catch-per-Record vs Catch-per-Hook

The use of catch-per-day or record stemmed from early records of effort data being confused so that for example, with drop-lines the number of separate lines used and the number of hooks per line were sometime placed in each other's fields on the log-books and thereby in the database. For a single and particular species in particular areas it was, however, possible to examine what appeared to be atypical data and reverse obvious errors (for example cases of 200 lines each of 10 hooks, should obviously be reversed). This use of a different measure of effort gives a very different time-series of CPUE than when catch-per-day or record is used. The use of catch-per-day avoids the issue of the remarkable change in effort reporting that appears to have followed the structural adjustment. Intuitively, however, catch-per-hook appears a more realistic reflection of the variation of practice within the fishery. It is certainly an area that requires further analysis and consideration.

Using catch-per-record means that when significant changes occur in fishing behaviour these would be missed. By missing such major changes, inappropriate data can continue to be used as still representing the fishery. Thus, if catch-per-record data is to continue being used for the provision of management advice then some extra data selection will need to be made to focus on those fishing events that are more typical of the fishery.

One very influential change in how effort was reported occurred with the proportion of single drops (in the drop-line fishery) increasing dramatically following 2006; this is directly related to the advent of an array of new vessels entering the fishery. In terms of catch-per-hook these greatly distort the CPUE although if they are removed from consideration the geometric mean CPUE flattens remarkably and is very different from when all data are considered together. This, plus the almost complete change in the fleet of vessels doing the drop-lining fishing, along with the major reduction in the number of drop-line records available post-2006, justify only using the drop-line CPUE from 1997-2006 when examining catch-per-hook, and similar arguments apply to the use of catch-per-record.

The auto-line fleet only began to expand and distribute catches from about 2002 onwards, other changes include the first gear limitation (to 15,000 hooks maximum) in 2001 and the rapid expansion of the auto-line fleet from 2002 onwards. The data up to 2000/2001 are not widely distributed spatially each year and are not distributed among many vessels. For this reason it is difficult to justify using the auto-line data before 2002.

9.7 Conclusion

The diversity of methods used to fish for Blue-Eye and the patchy nature of the fishing grounds mean that there is no simple, catch-all analysis that can be used to summarize the fishery as a whole. Nevertheless, it remains possible to focus on the methods that lead to the greatest proportion of the catches.

1. It has proven possible to develop relatively simple algorithms, which if followed lead to the clarification of effort in terms of total hooks set that in turn allows for an alternative, intuitively more realistic measure of CPUE.
2. Separate and different algorithms for handing the Drop-Line and Auto-Line data within the catch and effort database were required to enable effort in each case to be characterized in terms of total number of hooks set.
3. Using those algorithms the Drop-Line and Auto-Line data were re-structured and catch-rates estimates in terms of $\mathrm{kg} /$ hook for both methods.
4. As has been done previously, it was possible to combine the two, using a catch weighted approach over the overlap period. When this was done for both the catch-per-hook and catch-perday data the outcome of the standardization was rather different; with the standardized data recovering from 2012, which is a trend not seen in the catch-per-day trend.

There is now sufficient evidence that the validity of the catch-per-day analyses conducted on BlueEye catch rates should now be questioned. There are undoubted uncertainties that were not previously accounted for in the CPUE time-series that were used for earlier management advice, but at the time there were few useful alternatives. Alternatives are now available and by following the algorithms described in this results section these analyses should be repeatable when more data becomes available.

9.8 References

AFMA (2005) Mammal depredation on demersal longlines: A review prepared by AFMA for the Gillnet, Hook and Trap Fishery. 24p.
AFMA (2013) SESSF Total Allowable Catch recommendations for the 2014-15 season. Australian Fisheries Management Authority. 33p.
Burnham, K.P. \& D.R. Anderson (1998) Model Selection and Inference. A practical InformationTheoretic approach. Springer-Verlag, New York Ltd. 353p.
DAFF (2007) Commonwealth Fisheries Harvest Strategy. Policy and Guidelines. Department of Agriculture, Fisheries and Forestry. 55p.
Fay, G. (2007a) Tier 3 Calculations for Blue-Eye Trevalla (Hyperoglyphe antarctica) using data up to and including 2005. Pp 520 - 527 in Tuck, G.N. (ed.) (2007) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2006-2007. Volume 1: 2006. AFMA Project 2006/813. CSIRO Marine and Atmospheric Research, Hobart. 570p.

Fay, G. (2007b) Data appraisal and progress on Harvest Strategy Evaluation for Blue-Eye Trevalla: update for July 2007 SlopeRAG meeting. Pp 474 - 497 in Tuck, G.N. (ed.) (2007) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2006-2007. Volume 2: 2007. AFMA and CSIRO Marine and Atmospheric Research, Hobart. 584p.

Gomon, M., Bray, D., and R. Kuiter (eds) (2008) Fishes of Australia's Southern Coast. Museum Victoria. 928p.
Kimura, D.K. (1981) Standardized measures of relative abundance based on modelling $\log (c . p . u . e$.$) ,$ and their application to pacific ocean perch (Sebastes alutus). Journal du Conseil International pour l'Exploration de la Mer. 39: 211-218.
Haddon, M. (2009) Catch rate standardizations 2008 (for ata 1986 - 2007) pp 30-168 in Tuck, G.N. (ed.) 2009. Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2008. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 645 p.

Haddon, M. (2010) Blue-Eye Summary (TBE - 37445001 - H. antarctica. Pp $99-104$ in Tuck, G.N. (ed) (2010) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery: 2009. CSIRO Marine and Atmospheric Research, Hobart. 428p.

Haddon, M. (2014a) Standardized Catch Rates for Selected Species from the SESSF. (Data 1986 2012). Pp $57-275$ in Tuck, G.N. (ed) (2014) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery: 2013. Part 2. AFMA Project 2011/0814. CSIRO Wealth from Oceans, Hobart. 486p.

Haddon, M. (2014b) Tier 4 Analyses in the SESSF, including Deep Water species. Data from 1986 2012. Pp 352 - 461 in Tuck, G.N. (ed) (2014) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery: 2013. Part 2. AFMA Project 2011/0814. CSIRO Wealth from Oceans, Hobart. 486p.

Haddon, M. (2014c) Blue-Eye Fishery Characterization. Pp 329 - 351 in Tuck, G.N. (ed) (2014) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery: 2013. Part 2. Australian Fisheries Management Authority and CSIRO Wealth from Oceans, Hobart. 486p.

Haddon, M. (2015) Blue-Eye Fishery Characterization 1986-2013. Pp 277 - 327 in Tuck, G.N. (ed) (2014) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery: 2014. Part 2. Australian Fisheries Management Authority and CSIRO Wealth from Oceans, Hobart. 432p.

Haddon, M. (2015b) Blue-Eye Auto-Line and Drop-Line CPUE Characterization 1986-2014. Report presented to the SLOPE RAG. Nov 2015. 40p.
Little, L.R., Wayte, S.E., Tuck, G.N., Smith, A.D.M., Klaer, N., Haddon, M., Punt, A.E., Thomson, R., Day, J. and M. Fuller (2011) Development and evaluation of a cpue-based harvest control rule for the southern and eastern scalefish and shark fishery of Australia. ICES Journal of Marine Science. 68(8): 1699-1705.
Neter, J., Kutner, M.H., Nachtsheim, C.J, and W. Wasserman (1996) Applied Linear Statistical Models. Richard D. Irwin, Chicago. 1408p.
Pease, D.S. (2012) Acoustic techniques to mitigate killer whale (Orcinus orca) and Demersal Longline fishing interactions in Australia. Honours Thesis, Australian Maritime College Tasmania. 112 p.
Peterson, M.J., Mueter, F., Criddle, K. and A.C. Haynie (2014) Killer whale depredation and associated costs to Alaskan Sablefish, Pacific Halibut and Greenland Turbot longliners. PLOS One 9: e88906. doi:10.1371/journal.pone. 0088906

Punt, A.E., Walker, T.I., Taylor, B.L., and F. Pribac (2000) Standardization of catch and effort data in a spatially structured shark fishery. Fisheries Research 45: 129-145.

Punt, A.E., Walker, T.I., and A. Gason (2004) Initial assessments of Sawshark (Pristiophorus cirratus and P. nudipinnis) and Elephant Fish (Callorhinchus milii) pp335-369 in Tuck, G.N. and A.D.M. Smith Stock Assessment fo South East and Southern Shark Fishery Species. FRDC Project 2001/005 CSIRO Marine Research, Hobart. 412p.
Punt, A.E. and A. Gason (2006) Revised Standardized Catch-Rate Series for School and Gummy Shark based on Data up to 2005. CSIRO Martine and Atmospheric Research, Hobart.
R Development Core Team (2009). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
Smith, A.D.M. and S.E. Wayte (eds) (2002) The South East Fishery 2002. Compiled by the South East Fishery Assessment Group. Australian Fisheries Management Authority, Canberra. 271p.
Sporcic M. and M. Haddon (2014) Catch rate standardization for selected SESSF species (data to 2013). Report to SLOPE and SHELF RAGs 2014. CSIRO Oceans and Atmosphere. Hobart, 228p.
Sporcic, M. (2015) Catch rate standardization for selected SESSF species (data to 2014). Draft document presented to SESSF RAG Aug, 2015. 231 p.
Thomson, R., Fuller, M., Deng, R. and F. Althaus (2016) Data summary for the Southern and Eastern Scalefish and Shark Fishery: Logbook, Landings and Observer Data to 2015. CSIRO, Hobart. 276p.
Tilzey, R. (ed) (1998) The South East Fishery 1997. Fishery Assessment Report. Compiled by the South East Fishery Assessment Group, Australian Fisheries Management Authority, Canberra. 214 p .
Tilzey, R. (ed) (1999) The South East Fishery 1998. Fishery Assessment Report. Compiled by the South East Fishery Assessment Group, Australian Fisheries Management Authority, Canberra. 199p.
Upston, J. (2014) Integrated Scientific Monitoring Program for the Southern and Eastern Scalefish and Shark Fishery - Discard estimation 2013 (draft) AFMA and CSIRO Oceans and Atmosphere. Hobart, 34p.

Venables, W. and C. M. Dichmont (2004). GLMs, GAMs and GLMMs: an overview of theory for applications in fisheries research. Fisheries Research 70: 319-337.
Williams, A., Hamer, P., Haddon. M., Robertson, S., Althaus, F., Green, M. and J. Kool (2016) Determining Blue-eye Trevalla stock structure and improving methods for stock assessment. DRAFT Final Report FRDC Project No 2013/015. Fisheries Research Development Corporation and CSIRO Oceans and Atmosphere, Hobart, 123p.

9.9 Appendix: Extra Tables and Figures

Table 9.22. Reported catch in each SESSF Zone, only those with bold headers were analysed in the standardization.

Year	10	20	30	40	50	60	70	82	83	84	85	91	92
1997	2.361	81.546	80.730	40.722	45.977	3.270					5.778	5.503	
1998	0.050	72.375	158.954	49.692	40.856	2.150					1.968	1.590	
1999		29.061	193.339	65.244	55.078	0.348					0.972	11.470	0.050
2000		26.170	187.555	104.457	59.822					0.357	5.504	0.520	
2001		18.659	191.312	72.643	29.127		0.060		0.150	2.814	4.345	3.186	4.740
2002		31.617	87.014	20.530	35.487		4.700			1.561	5.380	33.664	5.750
2003		25.822	47.450	33.081	29.464		1.300			27.547	4.875	50.680	2.400
2004		6.332	42.729	12.169	23.579	0.060	0.120	0.850	0.026	45.762	21.725	5.045	
2005		0.140	42.590	2.261	6.651		1.550	0.350	0.200	24.128	6.500	4.870	4.700
2006		0.290	55.118	2.463	2.308		0.120			42.976	1.444	7.240	2.500
2007		2.174	32.071	0.250	4.460		2.700		0.010	6.347			
2008	0.051		13.319		2.260		8.100			0.100			
2009		0.150	11.958	0.010	5.700		1.060					12.430	12.070
2010			17.803	0.165	6.826		1.153		0.785	2.379	1.045	7.932	4.075
2011		0.003	23.158	3.615	3.971		0.100			0.400	1.220	9.993	16.921
2012			10.254	1.403	6.271							15.496	0.683
2013			6.091	0.007	0.910		0.529				0.225		
2014		0.011	2.665		2.547				1.500	2.469	0.540		0.510
2015			0.215		1.521		0.750		1.949	1.185	0.010	28.193	10.937
Total	2.462	294.349	1204.327	408.709	362.815	5.828	22.242	1.200	4.620	158.025	61.531	197.812	65.336

Table 9.23. Catch in tonnes of Blue-Eye by fishing method. AL - auto-line, DL - drop-line, TW - trawl, GN - gillnet, RR - rod-and-reel, TL - trot-line, HL -hand-line, BL - bottom-line, PL - pole-and-line, FP - fish-trap, LDR - new code, DS - Danish seine. The data are restricted to the years 1997 - 2015 and in the fisheries: GHT, SEN, SSF, SSG, SSH, SET, and GAB.

Year	AL	DL	TW	GN	RR	TL	HL	BL	PL	FP	LDR	Unknown	DS
1997	0.267	271.942	104.567	59.022		6.148		28.382		0.165		0.055	0.061
1998	27.253	343.505	82.074	14.282			0.100	4.526		0.936		0.030	0.035
1999	61.590	377.032	100.329	34.711		0.030		0.889		0.229		0.041	0.024
2000	90.932	384.409	95.042	92.406				1.739		0.666			0.012
2001	47.884	335.873	90.218	106.679		19.600		3.326		0.016			0.007
2002	134.067	223.074	67.998	1.951		23.415		6.493					0.001
2003	219.676	221.649	28.918	40.846		28.080		8.589					
2004	329.608	158.491	49.659	0.171		20.116		2.318					0.003
2005	301.303	93.779	43.194	0.016				1.941				0.400	
2006	354.582	114.639	66.105	0.002				1.187					
2007	455.097	48.011	38.321	0.003				0.632					
2008	281.384	21.449	36.046	0.016				0.724					0.070
2009	325.893	43.378	39.386		7.550			1.740	3.138				0.024
2010	236.620	42.073	43.480		56.788			0.022					
2011	267.318	59.381	23.268	0.111	59.962		17.118	0.049					
2012	217.818	34.107	10.792	0.003	14.792		21.171	1.377					
2013	190.515	7.762	22.893		14.125		24.083	3.311					0.002
2014	227.041	10.242	29.381		2.600		20.233	0.377					
2015	198.286	46.857	25.128		0.925	0.404		0.168			0.679		0.022
Total	3967.132	2837.653	996.797	350.219	156.742	97.792	82.706	67.791	3.138	2.012	0.679	0.526	0.261

Table 9.24. Number of records in the AFMA database relating to each method. AL - auto-line, DL - drop-line, TW - trawl, GN - gillnet, RR - rod-and-reel, TL - trot-line, HL - hand-line, BL - bottom-line, PL - pole-and-line, FP - fish-trap, LDR - new code, DS - Danish seine. The data are restricted to the years 1997 - 2015 and in the fisheries: GHT, SEN, SSF, SSG, SSH, SET, and GAB.

Year	AL	DL	TW	GN	RR	TL	HL	BL	PL	FP	LDR	Unknown	DS
1997	3	575	1500	364	0	14	0	251	0	3	0	4	2
1998	50	738	1398	176	0	0	1	66	0	9	0	1	7
1999	77	971	1712	231	0	2	0	22	0	16	0	3	4
2000	93	1075	1893	328	0	0	0	27	0	13	0	0	4
2001	76	797	1809	348	0	41	0	27	0	1	0	0	3
2002	234	619	1548	33	0	63	0	34	0	0	0	0	1
2003	487	587	1210	137	0	94	0	36	0	0	0	0	0
2004	1338	515	1568	10	0	59	0	23	0	0	0	0	2
2005	1142	363	1170	4	0	0	0	9	0	0	0	1	0
2006	1087	327	924	1	0	0	0	8	0	0	0	0	0
2007	667	130	834	2	0	0	0	5	0	0	0	0	0
2008	612	84	806	6	0	0	0	10	0	0	0	0	2
2009	578	131	618	0	11	0	0	10	5	0	0	0	3
2010	488	226	647	0	79	0	0	3	0	0	0	0	0
2011	562	230	624	4	95	0	59	3	0	0	0	0	0
2012	466	119	424	1	29	0	43	15	0	0	0	0	0
2013	360	47	358	0	22	0	43	4	0	0	0	0	1
2014	305	68	340	0	25	0	51	2	0	0	0	0	0
2015	283	98	301	0	8	20	0	9	0	0	3	0	2

Table 9.25. Other fisheries in which catches of Blue-Eye are reported in the AFMA catch-effort database. HST - High-Sea Trawl, HSN - High-Sea Non-Trawl, ECD - East Coast Deepwater Trawl, CSF - Coral Sea Fishery, NFO - Norfolk Island Offshore Demersal Finfish Fishery, TUN - Tuna Fishery, ECT - Eastern Tuna \& Billfish Fishery, WDW - Western Deepwater Trawl fishery, STR - South Tasman Rise Fishery, JMF - Jack Mackerel Fishery, VIT - Victorian Inshore Trawl Fishery, WTF - Southern \& Western Tuna \& Billfish Fishery.

Year	HST	HSN	ECD	CSF	NFO	TUN	ECT	WDW	STR	JMF	VIT	WTF	Unknown
1994								0.120					
1995													
1996						0.065		0.027					
1997						0.858							
1998				3.052		0.173							
1999				0.100									0.008
2000			5.408	0.095				0.543		0.100			
2001			35.284	0.014	8.686				0.720			0.014	
2002	273.747	95.214	2.390	11.300	4.210								
2003	0.013	43.640	13.368	0.273	0.240						0.010		
2004	0.843	14.930	35.776	0.246				0.100					
2005	307.936	4.570	1.992	0.006							0.048		
2006	24.158	13.039					0.016						
2007	365.284	16.343	13.046	0.005			0.400						
2008	53.509	5.438		0.125			0.183						
2009	93.649	3.790	2.171				0.320						
2010	52.465	5.862		0.090									
2011	104.913	16.800	2.957	2.336							0.005		
2012	138.072	10.463	13.918	1.322									
2013	92.982	40.258	1.668	0.768							0.010		
2014	134.270	35.681		0.702									
2015		22.370		0.186									
Total	1641.840	328.396	127.979	20.619	13.136	1.096	0.919	0.790	0.720	0.100	0.073	0.014	0.008

Table 9.26. The annual catches of Blue-Eye, as tonnes, reported in the AFMA catch-effort database for the various fisheries. GAB - Great Australian Bight, GHT - Gillnet Hook and Trap, SEN - South-East Non-Trawl, SSF, SSG, and SSH - Southern Shark Fishery, Gillnet fishery, and Hook fishery respectively, and SET - SouthEast Trawl.

Year	GAB	GHT	SEN	SSF	SSG	SSH	SET	Total
1997	1.199		365.945				103.464	470.608
1998	2.261		390.536		0.063	0.002	79.878	472.740
1999	4.822		471.878	0.995	1.609		95.572	574.876
2000	10.850		564.351	5.801			84.204	665.206
2001	20.690		512.679	0.699			69.535	603.603
2002	1.150	0.027	388.327	0.646			66.849	456.998
2003	1.810	518.839				27.108	547.757	
2004	2.723	510.704				46.939	560.365	
2005	8.698	397.439				34.497	440.633	
2006	11.968	470.410				54.136	536.515	
2007	0.960	503.743				37.362	542.064	
2008	0.147	303.573				35.969	339.689	
2009		381.699				39.410	421.109	
2010		335.502					43.480	378.982
2011		403.940					10.781	300.060
2012	0.011	289.268					22.895	262.691
2013		239.796					29.370	289.874
2014	0.011	260.493						
2015		247.318						
Total	67.300	4862.751	2693.715	8.141	1.672	0.002	929.864	8563.446

Table 9.27. Number of records for Blue-Eye in each fishery reported in the AFMA catch-effort database. See Table 9.26 for fishery names.

Year	GAB	GHT	SEN	SET	SSF	SSG	SSH	Total
1997	39	0	1212	1465	0	0	0	2716
1998	53	0	1034	1353	0	5	1	2446
1999	100	0	1262	1619	31	26	0	3038
2000	44	0	1496	1853	40	0	0	3433
2001	98	0	1279	1714	11	0	0	3102
2002	4	1	967	1545	15	0	0	2532
2003	24	1341	0	1186	0	0	0	2551
2004	52	1945	0	1518	0	0	0	3515
2005	105	1519	0	1065	0	0	0	2689
2006	27	1423	0	897	0	0	0	2347
2007	25	804	0	809	0	0	0	1638
2008	4	712	0	804	0	0	0	1520
2009	0	735	0	621	0	0	0	1356
2010	0	796	0	647	0	0	0	1443
2011	0	953	0	624	0	0	0	1577
2012	1	673	0	423	0	0	0	1097
2013	0	476	0	359	0	0	0	835
2014	1	451	0	339	0	0	0	791
2015	0	421	0	303	0	0	0	724

10. CPUE standardizations for selected shark SESSF species (data to 2015)

Miriana Sporcic
CSIRO Oceans and Atmosphere, Castray Esplanade, Hobart 7000, Australia

10.1 Executive Summary

This report focuses on data from years 1997 - 2015 available in the Commonwealth logbook database. The logbook database contains records relating to all methods and areas and allow for a detailed analysis, which is required to provide a complete view of the current state of the fishery.

Reported catches of school shark are relatively low and those from trawling do not appear to be targeted, as evidenced by the large proportion of $<30 \mathrm{~kg}$ shots present in the logbook data. Nevertheless, the areas where they are caught have not changed greatly and yet the standardized catch-per-unit effort (CPUE) has begun to increase significantly, with the exception of 2014. This is a positive sign, which when combined with the observation of increased proportions of smaller school sharks in the ISMP sampling are a first clear evidence of school sharks showing some signs of recovery.

There has been an increase in reported gillnet catches of gummy shark and standardized CPUE in South Australia and Bass Strait during 2015. By contrast, standardized CPUE of gillnet caught gummy shark around Tasmania remained flat since 2014. Reported catches by bottom line remained at 229 t for both 2013 and 2014, and dropped to 192 t in 2015, while there was a drop of $\sim 8 \mathrm{t}$ reported (i.e. 92 t to 84 t) in 2015 relative to 2014 for trawl. Standardized CPUE for bottom line and trawl have increased steadily since 2013, remaining above the long-term average. These analyses used number of operations as the effort unit, and ignore zero catches. It would be desirable, in future, to perform analyses that include (i) alternative effort unit(s), e.g. total net length and (ii) targeted gummy shark shots with no associated catches.

Like school shark, elephant fish are a non-targeted species, as indicated by the large proportion of small shots (i.e. $<30 \mathrm{~kg}$). Gillnet standardized CPUE is flat and noisy, and decreased in 2015. However this analysis ignores discarding and uses number of shots instead of net length as a unit of effort. In recent years discard rates for elephant fish have been very high, which may imply that their CPUE is in fact increasing. It would be desirable, in the future to perform analyses that account for discards.

Sawshark are considered to be a bycatch group which is supported by the high proportion of $<30 \mathrm{~kg}$. Catches are reported by both gillnets and trawls. Standardized CPUE for gillnets exhibits a steady decline since about 2001. However, a detailed analysis should be considered that uses net length as an effort unit instead of shot. Trawl caught sawshark standardized indices exhibit a noisy but flat trend, with an increase in 2014 reaching the long term average. By contrast, sawshark standardized CPUE by Danish seine (which has the highest proportion of shots $<30 \mathrm{~kg}$ among methods) has been flat since 2006 and increased about the long-term mean in 2015. However, this species group is also discarded (13% to 28%; discarded for 2011-2014) no estimate available for 2015) may artficially inflate these estimates.

10.2 Introduction

Commercial catch-per-unit effort (CPUE) data are used in very many fishery stock assessments in Australia as an index of relative abundance. This is based on the assumption that there is a direct relationship between CPUE and exploitable biomass. However, many other factors can influence CPUE, including vessel, gear, depth, season, area, and time of fishing (e.g. day or night). The use of CPUE as an index of relative abundance requires the removal of the effects of variation due to changes in these factors on the assumption that what remains will provide a better estimate of the underlying biomass. This process of adjusting the time series for the effects of other factors is known as standardization and the accepted way of doing this is to use a statistical modelling procedure that focuses attention onto the annual average CPUE adjusted for the (average) variation brought about by all the other measureable factors identified. The diversity of species and methods in the SESSF fishery means that each fishery/stock for which standardized CPUE are required requires its own set of conditions and selection of data. This report updates and extends standardized indices (based on data to 2014 inclusive) for 10 different stocks.

10.2.1 Limits of Standardization

The use of commercial CPUE as an index of relative abundance of exploitable biomass can breakdown when there are factors that significantly influence CPUE which cannot be accounted for and employed in a GLM standardization analysis. Over the last two decades there have been a number of major management interventions in the South East Scalefish and Shark Fishery (SESSF) including the introduction of the quota management system in 1992 and that of the Harvest Strategy Policy (HSP) and associated structural adjustment in 2005 - 2007. The combination of limited quotas and the HSP is now controlling catches in such a way that many fishers have been altering their fishing behaviour to take into account the availability of quota and their own access to quota needed to land the species taken in the mixed species SESSF. As such, this may bias standardized CPUE.

10.3 Methods

The southern shark fishery extends from New South Wales, around Tasmania, and across to Western Australia (Table 10.1, Figure 10.1).

Figure 10.1. Shark statistical reporting areas and statistical regions. WA is Western Australia, WSA is Western South Australia, CSA is Central South Australia, ESA is Eastern South Australia (sometimes known as SAV South Australia Victoria), WBS is Western Bass Strait, EBS is Eastern Bass Strait, NSW is New South Wales, ETS is Eastern Tasmania and WTS is Western Tasmania.

Table 10.1. Shark regions and corresponding shark zones used in the analysis.

Shark region	Shark region name	Shark zone
WA	Western Australia	10
WSA	Western South Australia	1
CSA	Central South Australia	2
SAV-E	Southern Australia-Victoria East	3
WBS	Western Bass Strait	4
WT	Western Tasmania	6
ET	Eastern Tasmania	7
EBS	Eastern Bass Strait	5
NSW	New South Wales	8
SAV-W	Southern Australia-Victoria West	9

10.3.1 Catch-per-unit effort Standardization

Data used in the following analyses applies to only the SESSF logbook data. Data from 1997 - 2015 inclusive is used for most species. Catch-per-unit effort (CPUE) was calculated, where there were positive non-zero catches and associated positive non-zero effort levels. These were also log transformed in preparation for the log-linear modelling. Depth of fishing was sub-divided into 20 metre depth categories for inclusion in statistical standardizations (the size of the depth classes varied with fishing method (e.g. 25 m depth classes (out to 600 m) for trawl caught school sharks).

10.3.1.1 The Overall Year Effect

The expected back-transformed year effect for the lognormal model involves a bias-correction to account for the log-normality; this correction returns the mean of the distribution rather than the median:

$$
\begin{equation*}
C P U E_{t}=e^{\left(\gamma_{t}+\sigma_{t}^{2} / 2\right)} \tag{7}
\end{equation*}
$$

γ_{t} is the Year coefficient for year t and σ_{t} is the standard deviation of the log transformed data (obtained from the analysis). The year coefficients were all divided by the average of the Year coefficients to simplify the visual comparison of CPUE changes:

$$
\begin{equation*}
C E_{t}=\frac{C P U E_{t}}{\left(\sum C P U E_{t}\right) / n} \tag{8}
\end{equation*}
$$

$C P U E_{\mathrm{t}}$ is the yearly coefficient from the standardization, $\left(\square C P U E_{t}\right) / n$ is the arithmetic average of the yearly coefficients, n is the number of years of observations, and $C E_{t}$ is the final time series yielding the yearly index of relative abundance.

Analyses were performed in the statistical software R (R Development Core Team, 2009), using the library 'biglm', which is able to analyse the large size datasets available for many of the species considered in this report. It incorporates classical statistical linear model techniques (e.g. GLMs; McCullagh and Nelder, 1989).

The optimum model chosen was the model which contained the lowest estimated AIC statistic (Burnham and Anderson 2002).

10.3.1.2 Factors Considered

Factors considered in the analyses (i.e. categorical variables) were:
Year standard calendar year
Vessel each vessel is uniquely and confidentially identified
Month standard calendar months
Shark Zone standard shark statistical reporting blocks (see Table 10.1)
SharkArea an alternative to shark zone, essential 1 degree squares (see Table 10.1)
Gear gillnets, trawl, bottom line, or Danish seine as appropriate
DepCat $\quad 20 \mathrm{~m}$ categories (or variants depending on species)
DayNight day, night, mixed, unknown categories
DayNight:DepCat an interaction term including depth changes through the day
DepCat:Month
DayNight:Month an interaction term used to include any seasonal changes across areas an interaction term used to include any seasonal changes across when fishing occurred during each day

The DayNight term is availavle for trawl gear, but was not available for non-trawl gears.

10.3.1.3 Presentation of Time Series

Plots of the unstandardized geometric mean CPUE along with the optimum statistical model representing the standardized time series are depicted for each species and/or species groups. This provides a visual indication of whether the standardization alters the trend away from the nominal CPUE. The time series have all been scaled relative to the average of each time series of yearly indices, which means that the overall average in each case equates to one; this centres the vertical location of each series but does not change the relative trends through time.

10.3.2 Data Selection for Different Shark Species

Shark records corresponding to 1997 - 2015 were analysed, except for gummy shark - bottom line (from 1998), gummy shark - trawl (from 1996) and school shark - trawl (1996-2015). The selection of data by fishery, gear type, depth and shark zones for each species is listed in Table 10.2 through to Table 10.5. The small number of records for which no effort data were available (effort $=-1$ or 0 could not be included in the standardization.

10.3.2.1 Gummy Sharks (Mustelus antarcticus)

Table 10.2. Data selection criteria for gummy shark standardization caught by gillnets, trawl and bottom line.

Criteria	Values
CSIRO CODE	37017001
Gillnet:	$6 ", 6.5 "$, and $7 "$ mesh gillnet (GN)
Gear Types	20 m depth classes $1-160 \mathrm{~m}$
Depth	SA: $1,2,3,9 ;$ TAS: 4,$5 ; \mathrm{BS}: 6,7$
Shark zones	$1996-2015$
Years	
Trawl:	TW, TDO, OTT*
Gear type	20 m depth classes $0-500 \mathrm{~m}$
Depth	SA: $1,2,3,9 ;$ TAS: 4,$5 ; \mathrm{BS:} 6,7 \mathrm{NSW}: 8 ; \mathrm{WA:} 10$
Shark zones	$1996-2015$
Years	
Bottom line:	BL
Gear type	20 m depth classes $0-200 \mathrm{~m}$
Depth	$1-10$ inclusive
Shark zones	$1998-2015$
Years	

*"TW" otter trawl; "TDO" otter trawl reported by elog; "OTT" bottom otter twin trawls

10.3.2.2 School Shark (Galeorhinus galeus)

Given the change from targeting, to increasingly active avoidance of school sharks by gillnet fishers during the available time series, an analysis of gillnet CPUE would be invalid and misleading. However, the trawl fishery is unlikely to have targeted school shark at any time, providing a consistent time series of catch and effort data. These were standardized using classical statistical methods
(Haddon, 2014c). There were various data selections made with respect to gear types, depths, and years prior to data analysis (Table 10.3).

Table 10.3. Data selection criteria for trawl caught school shark standardization.

Criteria	Values
Gear Type(s)	Trawl (TW, TDO, OTT); but catches by other methods summarized.
Depth	25 m depth classes $0-600 \mathrm{~m}$
Shark zones	$1-7:$ WSA, CSA, ESA, WBS, EBS, WTS, ETS
Years	$1997-2015$

10.3.2.3 Sawshark

Sawshark are considered to be primarily a bycatch species and are taken mostly by gillnets, trawl and Danish seine. The amounts landed by each of these methods are sufficient to allow a standardization for each method with comparison of outcomes. In each case, the same set of years was used but usually a different set of gears, depths, and shark zones were selected on the basis of the number of fishing operations available (Table 10.4).

Table 10.4. Data selection criteria for sawshark standardizations for gillnet, trawl and Danish seine fisheries.

Criteria	Values
CSIRO CODE(S)	$37023000,37023001,37023002,37023900$
Years	$1997-2015$
Gillnet:	
Gear Type	GN
\quad Depth	$0-150 \mathrm{~m}$
\quad Shark zones	$1-7:$ WSA, CSA, ESA, WBS, EBS, WTS, ETS
Trawl:	
Gear Type(s)	TW and TDO; OTT but catches for all methods summarized.
\quad Depth	20 m depth classes $0-500 \mathrm{~m}$
\quad Shark zones	$1,3-8:$ WSA, ESA, WBS, EBS, WTS, ETS, NSW
Danish seine:	
Gear Type	DS
\quad Depth	$0-240 \mathrm{~m}$
\quad Shark zones	$4-5:$ WBS, EBS

10.3.2.4 Elephant Fish (Callorhinchus milii)

While there are reported catches of elephant fish in the trawl and Danish seine fisheries most catches are reported by the gillnet fishery so a standardization for that that only fishery is undertaken. There are relatively high levels of discarding of elephant fish so an analysis that generates a CPUE series that attempts to include the influence of discard levels as well as reported catches is produced.

The data selection criteria for elephant fish (Table 10.5), attempt to eliminate deeper water chimaerid species that are sometimes grouped under the codes used for elephant fish.

Table 10.5. Criteria for selecting which records to include in the standardization of elephant fish.

Criteria	Values
CSIRO CODE(S)	$37043001,37043000,37043002,37043900,37043901$
Gear Types	Gillnet (GN); but catches for all methods are summarized.
\quad Depth	20 m depth classes $0-160 \mathrm{~m}$
Shark zones	$2-7:$ CSA, ESA, WBS, EBS, WTS, ETS
\quad Years	$1997-2015$

10.4 Results

10.4.1 South Australian gummy shark: Gillnet

Positive non-zero records of catch per shot were employed in the statistical standardization analyses for gummy shark caught by gillnets. Further investigation should be considered to determine whether total net length could be used as an alternative effort unit in standardization analyses.

Table 10.6. Gummy shark taken by gillnet across shark zones from South Australia between of 0 to 160 m in the period 1997-2015. Total catch (TotCatch; t) is the total reported in the database across all gears, TotCat (t) is the total catch reported in the SESSF across all gears, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of CPUE (kg/shot). The optimum model is Model 7 (Table 10.8). SharkZone:DepC and standard deviation (StDev) are the coefficients from the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	SharkZone:DepC	StDev
1997	952.0854	4837	432.3829	56	46.9392	1.0783	0.0000
1998	1401.0623	7370	522.5191	53	34.7557	0.8411	0.0219
1999	1878.4663	6429	615.0027	48	47.8909	1.0463	0.0229
2000	2349.5960	5109	807.3709	37	83.0107	1.7457	0.0246
2001	1669.7930	5074	394.3000	36	42.6727	0.8741	0.0250
2002	1494.9734	5289	409.6034	32	46.2709	0.9287	0.0249
2003	1618.2742	5429	473.1045	37	50.1198	1.0521	0.0253
2004	1656.3767	5435	476.4703	40	50.3723	1.0932	0.0257
2005	1570.5199	5044	485.8724	29	53.0656	1.1114	0.0261
2006	1577.1332	5993	552.8931	28	53.0288	1.0864	0.0253
2007	1574.9505	4555	438.9615	29	56.2384	1.1259	0.0263
2008	1727.7449	4883	543.5174	23	64.0944	1.3222	0.0263
2009	1500.9008	5160	418.4865	23	47.4737	0.9910	0.0263
2010	1404.7877	5268	390.3654	29	41.4997	0.8771	0.0265
2011	1364.7051	3279	229.1685	19	38.6818	0.7759	0.0297
2012	1304.2189	1371	83.0395	15	31.3816	0.5944	0.0379
2013	1307.6117	800	60.4970	18	35.9230	0.6221	0.0467
2014	1381.4137	1476	126.7239	20	49.9737	0.8483	0.0389
2015	1544.2091	1571	154.2236	15	57.6206	0.9859	0.0395

Figure 10.2. Gummy shark in South Australia in depths 0 to 160 m taken by gillnet. The top left plot depicts the depth distribution of shots containing gummy shark from shark zone $1,2,3$ and 9 in depths $0-160 \mathrm{~m}$. The top right plot depicts the distribution of catch by depth within shark zones $1,2,3$ and 9 . The middle left plot depicts the number of vessels through time. The middle right plot contains the number of records used in analysis. The bottom left plot contains gummy shark catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains gummy shark catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 10.3. Gummy shark taken by gillnet in South Australia. Upper plot: The dashed black line represents the geometric mean CPUE and the solid black line the standardized catch rates (each scaled to the mean of each time series). The blue line corresponds to last year's standardized CPUE. Lower plot: Standardized CPUE (solid black line), two times the standard error (vertical lines) and geometric mean (dashed black line).

Table 10.7. Gummy shark from across shark zones in depths 0 to 160 m by gillnet. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year + Vessel
Model 3	LnCE \sim Year + Vessel + DepCat
Model 4	LnCE \sim Year + Vessel + DepCat + SharkZone
Model 5	LnCE \sim Year + Vessel + DepCat + SharkZone + Month
Model 6	LnCE \sim Year + Vessel + DepCat + SharkZone + Month + SharkZone:Month
Model 7	LnCE \sim Year + Vessel + DepCat + SharkZone + Month + SharkZone:DepC

Table 10.8. Gummy shark taken by gillnet across shark zones from South Australia at depths 0 to 160 m in the period 1997-2015. Model selection criteria, include the AIC, the adjusted R^{2} (adj_ R^{2}) and the change in adjusted R^{2} (\%Change). The optimum model is Model 7 (SharkZone:DepC). Depth category: DepC.

	Year	Vessel	DepCat	SharkZone	Month	SharkZone:Month	SharkZone:DepC
AIC	24365	20055	18841	17715	17166	16756	16164
RSS	112569	106616	104486	103065	102383	101803	101108
MSS	3653	9606	11736	13158	13839	14419	15114
Nobs	84372	84372	83768	83768	83768	83768	83768
Npars	19	156	164	175	178	211	202
adj_ R^{2}	3.122	8.096	9.923	11.136	11.721	12.186	12.796
\%Change	0.000	4.974	1.827	1.214	0.584	0.466	0.609

Figure 10.4. The relative influence of each factor on the final trend in the optimal standardization for the South Australian gummy shark gillnet fishery. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph's bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2, black line). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

10.4.2 Bass Strait gummy shark: Gillnet

Positive non-zero records of catch per shot were employed in the statistical standardization analyses for gummy shark caught by gillnets. Further investigation should be considered to determine whether total net length could be used as an alternative effort unit in standardization analyses.

Table 10.9. Gummy shark taken by gillnet across shark zones in Bass Strait between depths of 0 to 160 m in the period 1997-2015. Total catch (TotCatch; t) is the total reported catch in the database across all gears, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of CPUE (kg/shot). The optimum model is model 6 (Table 10.11). SharkZone:Month and standard deviation (StDev) are the coefficients from the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	SharkZone:Month	StDev
1997	952.0854	4384	419.4455	50	53.1660	0.5967	0.0000
1998	1401.0623	5901	716.5877	51	66.9520	0.7342	0.0236
1999	1878.4663	6481	1041.8043	54	84.5960	0.9773	0.0236
2000	2349.5960	6386	1275.3329	49	107.2786	1.1832	0.0236
2001	1669.7930	5928	1069.9627	48	98.9225	1.0539	0.0241
2002	1494.9734	5920	840.8233	47	81.4804	0.8658	0.0242
2003	1618.2742	6076	888.4635	44	84.4294	0.8776	0.0241
2004	1656.3767	5921	883.7388	41	89.4380	0.9313	0.0243
2005	1570.5199	5059	817.3180	39	101.9002	1.0433	0.0252
2006	1577.1332	4087	735.5516	33	106.9539	1.1002	0.0265
2007	1574.9505	3485	875.1630	25	138.6657	1.3419	0.0275
2008	1727.7449	3671	954.5525	26	144.0312	1.4432	0.0274
2009	1500.9008	4091	833.4100	28	120.9260	1.2585	0.0267
2010	1404.7877	4423	744.0505	31	97.6047	1.0059	0.0263
2011	1364.7051	5171	798.1138	32	83.7931	0.9047	0.0257
2012	1304.2189	5445	780.8977	37	79.8678	0.8742	0.0257
2013	1307.6117	5341	758.7125	36	79.7234	0.8385	0.0255
2014	1381.4137	5249	811.8250	36	84.2759	0.8925	0.0257
2015	1544.2091	4970	983.6490	30	107.0144	1.0773	0.0260

Figure 10.5. Gummy shark taken by gillnet in Bass Strait at depths 0 to 160 m . The top left plot depicts the depth distribution of shots containing gummy shark from zone 4 and 5 in depths $0-160 \mathrm{~m}$. The top right plot depicts the distribution of catch by depth within shark zones 4 and 5 . The middle left plot depicts the number of vessels through time. The middle right plot contains the number of records used in analysis. The bottom left plot contains gummy shark catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains gummy shark catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 10.6. Gummy shark taken by gillnet in Bass Strait. Upper plot: The dashed black line represents the geometric mean CPUE and the solid black line the standardized catch rates (each scaled to the mean of each time series). The blue line corresponds to last year's standardized CPUE. Lower plot: Standardized CPUE (solid black line), two times the standard error (vertical lines) and geometric mean (dashed black line).

Table 10.10. Gummy shark from across shark zones in Bass Strait in depths 0 to 160 m by gillnet. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year + Vessel
Model 3	LnCE \sim Year + Vessel + DepCat
Model 4	LnCE \sim Year + Vessel + DepCat + SharkZone
Model 5	LnCE \sim Year + Vessel + DepCat + SharkZone + Month
Model 6	LnCE \sim Year + Vessel + DepCat + SharkZone + Month + SharkZone:Month
Model 7	LnCE \sim Year + Vessel + DepCat + SharkZone + Month + SharkZone:DepC

Table 10.11. Gummy shark taken by gillnet across shark zones from Bass Strait at depths 0 to 160 m during 1997-2015. Model selection criteria, include the AIC, the adjusted $R^{2}\left(\operatorname{adj}_{_} R^{2}\right)$ and the change in adjusted R^{2} (\%Change). The optimum model is Model 6 (SharkZone:Month). Depth category: DepC.

	Year	Vessel	DepCat	SharkZone	Month	SharkZone:Month	SharkZone:DepC
AIC	32400	25479	24414	23737	23735	23471	23652
RSS	136335	126743	124779	123886	123881	123518	123755
MSS	4478	14070	16034	16926	16932	17295	17057
Nobs	97989	97989	97394	97394	97394	97394	97394
Npars	19	133	141	152	153	164	161
adj_R	3.162	9.870	11.259	11.884	11.887	12.135	11.969
\%Change	0.000	6.708	1.389	0.625	0.003	0.248	-0.166

Figure 10.7. The relative influence of each factor on the final trend in the optimal standardization for the Bass Strait gummy shark gillnet fishery. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2, black line). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

10.4.3 Tasmanian gummy shark: Gillnet

Non-zero records of catch per shot were employed in the statistical standardization analyses for gummy shark caught by gillnets. Further investigation should be considered to determine whether total net length could be used as an alternative effort unit in standardization analyses.

Table 10.12. Gummy shark taken by gillnet across shark zones in Tasmania between depths of 0 to 160 m in the period 1997-2015. Total catch (TotCatch; t$)$ is the total reported in the database across all gears, TotCat (t) is the total catch reported in the SESSF across all gears, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of CPUE (kg/shot). The optimum model is Model 6 (Table 10.14). SharkZone:Month and standard deviation (StDev) are the coefficients from the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	SharkZone:Month	StDev
1997	952.0854	203	17.2860	14	45.4643	0.7412	0.0000
1998	1401.0623	547	58.1410	14	48.8017	0.6813	0.1070
1999	1878.4663	797	98.3318	18	64.0234	0.9038	0.1061
2000	2349.5960	507	81.5136	18	86.2155	1.1453	0.1134
2001	1669.7930	565	66.2423	21	66.0826	1.1731	0.1169
2002	1494.9734	778	103.7533	26	61.7342	1.1586	0.1159
2003	1618.2742	799	90.9151	23	58.5075	1.2877	0.1172
2004	1656.3767	884	122.1803	26	64.4966	1.2361	0.1160
2005	1570.5199	660	86.1055	15	69.0883	1.0865	0.1189
2006	1577.1332	700	117.1630	15	92.2733	1.2185	0.1187
2007	1574.9505	835	95.3450	14	57.5239	1.0439	0.1177
2008	1727.7449	635	61.8030	14	52.8743	0.9075	0.1196
2009	1500.9008	533	68.6330	14	66.1554	1.1003	0.1247
2010	1404.7877	534	75.5120	14	75.8358	1.0986	0.1244
2011	1364.7051	686	102.7250	13	87.1495	0.9077	0.1273
2012	1304.2189	1121	130.0615	18	49.5438	0.9550	0.1234
2013	1307.6117	910	96.5810	15	55.4671	0.7937	0.1266
2014	1381.4137	481	61.0560	13	68.1559	0.7781	0.1369
2015	1544.2091	360	53.4210	11	78.9707	0.7830	0.1390

Figure 10.8. Gummy shark taken by gillnet in Tasmania at depths $0-160 \mathrm{~m}$. The top left plot depicts the depth distribution of shots containing gummy shark from shark zones 6 and 7 at depths $0-160 \mathrm{~m}$. The top right plot depicts the distribution of catch by depth within shark zones 6 and 7 . The middle left plot depicts the number of vessels through time. The middle right plot contains the number of records used in analysis. The bottom left plot contains gummy shark catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains gummy shark catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 10.9. Gummy shark taken by gillnet surrounding Tasmania. Upper plot: The dashed black line represents the geometric mean CPUE and the solid black line the standardized catch rates (each scaled to the mean of each time series). The blue line corresponds to last year's standardized CPUE. Lower plot: Standardized CPUE (solid black line), two times the standard error (vertical lines) and geometric mean (dashed black line).

Table 10.13. Gummy shark from across shark zones surrounding Tasmania in depths 0 to 160 m by gillnet. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year + Vessel
Model 3	LnCE \sim Year + Vessel + DepCat
Model 4	LnCE \sim Year + Vessel + DepCat + SharkZone
Model 5	LnCE \sim Year + Vessel + DepCat + SharkZone + Month
Model 6	LnCE \sim Year + Vessel + DepCat + SharkZone + Month + SharkZone:Month
Model 7	LnCE \sim Year + Vessel + DepCat + SharkZone + Month + SharkZone:DepC

Table 10.14. Gummy shark taken by gillnet across shark zones surrounding Tasmania at depths 0 to 160 m during 1997 - 2015. Model selection criteria, include the AIC, the adjusted $R^{2}\left(\operatorname{adj} R^{2}\right)$ and the change in adjusted R^{2} (\%Change). The optimum model is Model 6 (SharkZone:Month). Depth category: DepC.

	Year	Vessel	DepCat	SharkZone	Month	SharkZone:Month	SharkZone:DepC
AIC	6203	908	919	638	628	548	589
RSS	20499	13269	13145	12829	12816	12712	12759
MSS	438	7668	7792	8109	8121	8226	8178
Nobs	12535	12535	12416	12416	12416	12416	12416
Npars	19	97	105	116	117	128	125
adj_ R^{2}	1.953	36.135	36.686	38.155	38.212	38.660	38.445
\%Change	0.000	34.182	0.551	1.469	0.057	0.448	-0.215

Figure 10.10. The relative influence of each factor on the final trend in the optimal standardization for the Tasmanian gummy shark gillnet fishery. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2, black line). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

10.4.4 Gummy shark: Trawl

CPUE (catch/hour) analysis used shots that reported catches of gummy shark (non zero shots), and included a factor for shark zones, more consistent with gillnet and line standardizations than the SESSF trawl zones previously considered (Haddon, 2014). The proportion of zero gummy shark catches reported by trawl (based on all records) is $>60 \%$. Since gummy shark are not targeted by trawl vessels, it is inappropriate to include zero catches in the analysis.

Table 10.15. Gummy shark taken by trawl across shark zones between depths of 0 to 500 m in the period 1996 - 2015. Total catch (TotCatch; t) is the total reported in the database across all gears, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of CPUE (kg/hr). The optimum model is Model 7 (Table 10.17). SharkZone:Month and standard deviation (StDev) are the coefficients from the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	SharkZone:Month	StDev
1996	49.3660	2254	41.0720	74	3.1006	1.0478	0.0000
1997	952.0854	2795	43.9650	77	2.5780	0.9181	0.0277
1998	1401.0623	2465	39.2090	62	2.6347	0.9144	0.0287
1999	1878.4663	2399	38.2530	69	2.6006	0.9459	0.0292
2000	2349.5960	3145	50.5350	74	2.5729	0.8287	0.0281
2001	1669.7930	3372	56.6135	64	2.5298	0.8162	0.0276
2002	1494.9734	4015	61.3995	67	2.3216	0.7746	0.0269
2003	1618.2742	4612	81.3464	73	2.4624	0.8290	0.0265
2004	1656.3767	4834	90.3284	73	2.5926	0.8437	0.0264
2005	1570.5199	5101	96.8855	70	2.7457	0.8597	0.0263
2006	1577.1332	4951	103.1047	62	2.8071	0.8877	0.0265
2007	1574.9505	3655	86.4725	37	2.9373	0.9099	0.0279
2008	1727.7449	3819	87.8080	36	3.0002	1.0736	0.0275
2009	1500.9008	3549	88.7385	31	3.4595	1.1727	0.0278
2010	1404.7877	3755	92.5170	33	3.2692	1.1589	0.0276
2011	1364.7051	4380	101.8220	32	3.1341	1.0539	0.0270
2012	1304.2189	3870	102.4883	31	3.4623	1.1593	0.0276
2013	1307.6117	3524	97.0122	34	4.0329	1.3069	0.0280
2014	1381.4137	3165	91.3406	34	4.1016	1.2686	0.0285
2015	1544.2091	2941	82.9910	36	3.7848	1.2306	0.0289

Figure 10.11. Gummy shark in depths 0 to 160 m taken by trawl. The top left plot depicts the depth distribution of shots containing gummy shark from shark zone 6 and 7 in depths $0-160 \mathrm{~m}$. The top right plot depicts the distribution of catch by depth within shark zones 6 and 7. The middle left plot depicts the number of vessels through time. The middle right plot contains the number of records used in analysis. The bottom left plot contains gummy shark catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains gummy shark catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 10.12. Gummy shark taken by Trawl. Upper plot: The dashed black line represents the geometric mean CPUE and the solid black line the standardized catch rates (each scaled to the mean of each time series). The blue line corresponds to last year's standardized CPUE. Lower plot: Standardized CPUE (solid black line), two times the standard error (vertical lines) and geometric mean (dashed black line).

Table 10.16. Gummy shark from across shark zones in depths 0 to 160 m by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year + Vessel
Model 3	LnCE \sim Year + Vessel + DepCat
Model 4	LnCE \sim Year + Vessel + DepCat + Month
Model 5	LnCE \sim Year + Vessel + DepCat + Month + SharkZone
Model 6	LnCE \sim Year + Vessel + DepCat + Month + SharkZone + DayNight
Model 7	LnCE \sim Year + Vessel + DepCat + Month + SharkZone + DayNight +
Model 8	LnCE \sim Year + Vessel + DepCat + Month + SharkZone + DayNight +

Table 10.17. Gummy shark taken by trawl across shark zones at depths 0 to 160 m during 1997-2015. Model selection criteria, include the AIC, the adjusted $R^{2}\left(\operatorname{adj} _R^{2}\right)$ and the change in adjusted R^{2} (\%Change). The optimum model is Model 7 (SharkZone:Month). Depth category: DepC.

	Year	Vessel	Month	DepCat	DayNight	SharkZone	SharkZone:Month	SharkZone:DepC
AIC	9040	-2828	-4318	-5608	-6728	-7865	-9136	-8390
RSS	82183	69541	68108	66132	65104	64065	62550	63425
MSS	1882	14523	15957	17933	18961	19999	21514	20640
Nobs	72601	72601	72601	71868	71868	71868	71868	71868
Npars	20	149	160	185	188	197	422	296
adj_R	2.213	17.107	18.804	21.130	22.353	23.582	25.154	24.241
\%Change	0.000	14.895	1.696	2.326	1.223	1.229	1.572	-0.913

Figure 10.13. The relative influence of each factor on the final trend in the optimal standardization for the Tasmanian gummy shark trawl fishery. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2, black line). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

10.4.5 Gummy shark: Bottom Line

Records pertaining to shark zones 8 and 10 were omitted from analysis since they contributed very little to the overall catch ($8: 0.02 \% ; 10: 0.007 \%$; less than one tonne in each shark zone). Furthermore, non-zero catches per shot were employed in the statistical standardization analyses for gummy shark caught by bottom line.

Currently, effort units are recorded inconsistently in the logbook database for bottom line caught gummy shark. Any of three alternative pairs of units can be recorded for a shot:
(i) THS (total hooks per set) and TLM (total length of mainline used); (ii) NLP (number of lines per shot) and THS (total number of hooks per set); and (iii) NLS (total number lines per shot) and THS (total number of hooks per shot) and/or HRS (hours). No clear method was apparent for including these inconsistent effort units in a single standardization. However the alternative is to assume that every fishing operation has the same probability of catching sharks, regardless of the number of hooks used, length of line, or soak time. A detailed analysis of these effort units should be investigated to determine whether (i) through to (iii) or some combination could be used as an altenative effort unit in the standardization analyses.

Table 10.18. Gummy shark taken by bottom line across shark zones at depths of 0 to 200 m in the period 1996 - 2015. TotCat (t) is the total catch reported in the SESSF across all gears, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of CPUE (kg/shot). The optimum model is Model 6 (Table 10.20). SharkZone:Month and standard deviation (StDev) are the coefficients from the optimum model.

Year	TotCat	Records	CatchT	Vessels	GeoMean	SharkZone:Month	StDev
1998	1401.0620	72	8.4820	3	89.4931	0.6518	0.0000
1999	1878.4660	335	46.9247	13	95.5411	0.9046	0.1475
2000	2349.5960	483	112.5767	14	142.8284	1.3184	0.1524
2001	1669.7930	543	59.1420	23	55.1650	0.8261	0.1514
2002	1494.9730	507	59.8912	22	61.1717	0.9142	0.1522
2003	1618.2740	629	66.1515	27	61.3844	0.7888	0.1514
2004	1656.3770	593	59.2260	24	56.8428	0.8334	0.1517
2005	1570.5200	585	61.1477	25	57.8756	0.9736	0.1531
2006	1577.1330	494	48.8603	19	50.4682	1.0675	0.1550
2007	1574.9510	627	54.5186	19	40.7575	0.9664	0.1539
2008	1727.7450	599	50.0818	16	36.0171	0.7291	0.1562
2009	1500.9010	822	67.1229	15	37.5970	0.8309	0.1549
2010	1404.7880	684	71.9608	19	48.2002	0.9870	0.1554
2011	1364.7050	1051	87.9336	28	46.2099	1.1251	0.1550
2012	1304.2190	1407	124.1840	24	52.7575	1.1440	0.1544
2013	1307.6120	2519	228.7894	26	50.3615	1.3581	0.1544
2014	1381.4140	2791	226.9177	28	40.8349	1.1255	0.1545
2015	1544.2090	1958	188.4015	28	51.9165	1.4556	0.1552

Figure 10.14. Gummy shark in depths 0 to 200 m taken by bottom line. The top left plot depicts the depth distribution of shots containing gummy shark from shark zone 1-7, 9 in depths $0-200 \mathrm{~m}$. The top right plot depicts the distribution of catch by depth within shark zones 1-7 and 9. The middle left plot depicts the number of vessels through time. The middle right plot contains the number of records used in analysis. The bottom left plot contains gummy shark catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains gummy shark catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 10.15. The standardized CPUE for gummy sharks taken by bottom line showing the optimum model (solid black line) and the geometric mean CPUE (dashed line) each scaled to the mean of each time series. The vertical bars are two times the standard error.

Table 10.19. Gummy shark from across shark zones at depths 0 to 160 m by bottom line. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year + Vessel
Model 3	LnCE \sim Year + Vessel + DepCat
Model 4	LnCE \sim Year + Vessel + DepCat + Month
Model 5	LnCE \sim Year + Vessel + DepCat + Month + SharkZone
Model 6	LnCE \sim Year + Vessel + DepCat + Month + SharkZone + SharkZone:Month
Model 7	LnCE \sim Year + Vessel + DepCat + Month + SharkZone + SharkZone:DepC

Table 10.20. Gummy shark taken by bottom line across shark zones at depths 0 to 200 m during 1998-2015. Model selection criteria, include the AIC, the adjusted $R^{2}\left(\operatorname{adj}_{_} R^{2}\right)$ and the change in adjusted R^{2} ($\%$ Change). The optimum model is Model 6 (SharkZone:Month). Depth category: DepC.

	Year	Vessel	DepCat	SharkZone	Month	SharkZone:Month	SharkZone:DepC
AIC	6502	-346	-430	-468	-499	-624	-543
RSS	24596	16092	15865	15816	15765	15502	15604
MSS	1057	9560	9787	9836	9887	10150	10048
Nobs	16699	16699	16570	16570	16570	16570	16570
Npars	18	136	145	152	163	240	226
adj_R 2	4.021	36.757	37.609	37.779	37.937	38.685	38.332
\%Change	0.000	32.736	0.852	0.170	0.158	0.748	-0.352

Figure 10.16. The relative influence of each factor on the final trend in the optimal standardization for the gummy shark bottom line fishery. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2, black line). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

10.4.6 School shark: Trawl

Positive non-zero records of catch per hour were employed in the statistical standardization analyses for reported school shark caught by trawl. Shark zones used in the analysis were 1-8 and 10. This analysis excludes State catches (Table 10.24; Figure 10.20).

Table 10.21. School shark taken by trawl across shark zones between depths of 0 to 200 m during 1996-2015. Total catch (TotCatch; t) is the total reported in the database across all gears, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of CPUE ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Model 7 (Table 10.23). SharkZone:Month and standard deviation (StDev) are the coefficients from the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	SharkZone:Month	StDev
1996	29.1410	922	24.4410	67	4.2798	1.1974	0.0000
1997	363.6533	1193	23.6930	60	3.5138	1.0398	0.0435
1998	560.0518	962	19.8990	51	3.3436	1.0399	0.0460
1999	485.5591	764	14.2330	51	3.4120	0.9537	0.0504
2000	451.1087	921	16.6700	68	2.6861	0.8139	0.0485
2001	182.5977	860	15.7240	47	2.8884	0.8301	0.0492
2002	205.1494	948	17.0350	57	3.0584	0.8548	0.0484
2003	208.2442	773	13.2407	59	2.7186	0.7919	0.0516
2004	197.7008	699	13.3534	54	2.6630	0.7916	0.0533
2005	208.8549	521	8.3496	45	2.4624	0.8392	0.0571
2006	212.0395	573	10.9540	47	2.6022	0.8256	0.0560
2007	197.7974	350	7.3560	32	2.7737	0.8467	0.0650
2008	234.3531	406	8.9945	30	2.9491	0.9375	0.0610
2009	253.0733	444	13.6965	28	3.2235	1.0327	0.0591
2010	180.1430	437	12.8640	26	3.2832	0.9944	0.0604
2011	182.4215	453	13.8320	28	3.2958	1.1084	0.0596
2012	136.0453	346	11.0003	27	3.7005	1.1462	0.0650
2013	150.0228	375	18.3260	33	5.0015	1.3417	0.0645
2014	199.8103	395	11.2510	26	3.8274	1.2397	0.0621
2015	146.7326	334	12.4380	25	4.1185	1.3748	0.0656

Figure 10.17. School shark in depths 0 to 600 m taken by trawl. The top left plot depicts the depth distribution of shots containing school shark from shark zones $1-8,10$ in depths $0-600 \mathrm{~m}$. The top right plot depicts the distribution of catch by depth within shark zones $1-8$ and 10 . The middle left plot depicts the number of vessels through time. The middle right plot contains the number of records used in analysis. The bottom left plot contains school shark catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains school shark catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 10.18. The standardized CPUE for school sharks taken by trawl showing the optimum model (solid black line) and the geometric mean CPUE (dashed line) each scaled to the mean of each time series. The vertical bars are two times the standard error.

Table 10.22. School shark from across shark zones in depths 0 to 600 m by trawl. Statistical model structures used in this analysis. DepCat is a series of 25 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year + Vessel
Model 3	LnCE \sim Year + Vessel + DepCat
Model 4	LnCE \sim Year + Vessel + DepCat + Month
Model 5	LnCE \sim Year + Vessel + DepCat + Month + SharkZone
Model 6	LnCE \sim Year + Vessel + DepCat + Month + SharkZone + DayNight
Model 7	LnCE \sim Year + Vessel + DepCat + Month + SharkZone + DayNight + SharkZone:Month
Model 8	LnCE \sim Year + Vessel + DepCat + Month + SharkZone + DayNight + SharkZone:DepC

Table 10.23. School shark taken by trawl across shark zones at depths 0 to 600 m during 1996-2015. Model selection criteria, include the AIC, the adjusted R^{2} (adj_ R^{2}) and the change in adjusted R^{2} (\%Change). The optimum model is Model 7 (SharkZone:Month). Depth category: DepC.

	Year	Vessel	DepCat	SharkZone	Month	DayNight	SharkZone:Month	SharkZone:DepC
AIC	2666	-684	-1284	-1369	-1407	-1407	-1433	-1427
RSS	15594	11724	11069	10975	10937	10935	10894	10876
MSS	364	4233	4888	4982	5020	5022	5064	5081
Nobs	12676	12676	12605	12605	12605	12605	12605	12605
Npars	20	153	177	188	191	192	203	216
adj_ R^{2}	2.132	25.637	29.649	30.184	30.413	30.416	30.621	30.657
\%Change	0.000	23.505	4.012	0.535	0.228	0.004	0.205	0.036

Figure 10.19. The relative influence of each factor on the final trend in the optimal standardization for the school shark trawl fishery. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2, black line). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

Figure 10.20. Reported State catches of school sharks. Western Australia is on a separate graph due to the different y-axis scale. Estimates are pending from (i) SA, TAS and WA for 2014 and 2015 and (ii) from Vic and NSW for 2015.

Table 10.24. Reported total State catches of school sharks (t). Estimates are pending from (i) SA, TAS and WA for 2014 and 2015 and (ii) from Vic and NSW for 2015. Extracted from Thomson and Upston (2016).

Year	WA	SA	Vic	Tas	NSW
1992	156.1				
1993	143.1				
1994	62				
1995	82				
1996	53				
1997	56				10.985
1998	20				34.584
1999	15				61.947
2000	42				45.729
2001	22				46.229
2002	11				32.88
2003	17.1				20.909
2004	16	3.794			16.674
2005	2	3.321			20.913
2006	4	4.275	0.544		22.456
2007	2	8.063	0.836	2.104	12.868
2008	13	9.855	0.791	0.728	9.618
2009	9	13.813	0.916	1.304	3.961
2010	5	10.544	0.836	1.605	6.017
2011	1	16.358	0.489	1.903	7.221
2012	1	15.179	0.877	1.935	9.666
2013	0.1	12.02	0.627	1.577	5.298
2014			0.605		4.119
2015					

10.4.7 Elephant fish: Gillnet

The proportion of catches recording $<30 \mathrm{~kg}$ is relatively high in elephant fish reports, indicating that elephant fish are not a primary target species and tend to be caught in small numbers and weights in each shot (Error! Reference source not found.). The preliminary estimate of the proportion discarded or 2015 is 0.75 , corresponding to 182.66 t (Thomson and Upston 2016). Given the high proportion of discards, it is questionable as to whether an analysis including zero catches would be valid. Therefore, only non-zero shots were analysed. The use of effort in units of net length should be investigated for future analyses. Exploratory analyses shows inconsistency in the recording of gillnet effort units in the logbook database, particularly in 1997 and 1998 compared to later years. A detailed effort analsyis is required towards utilizing this in subsequent standardizations (see discussion in Section 10.4.5).

Table 10.25. Elephant fish taken by gillnet across shark zones from Central South Australia (CSA) to Eastern Bass Strait (EBS) at depths of 0 to 160 m and during 1997-2015. Total catch (TotCatch; t) is the total reported in the database across all gears, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of CPUE (kg/shot). The optimum model is Model 6 (Table 10.27). SharkZone:Month and standard deviation (StDev) are the coefficients from the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	SharkZone:Month	StDev
1997	32.0257	1482	25.9637	56	6.2883	0.9238	0.0000
1998	51.9470	2234	42.9950	57	6.1209	0.8549	0.0466
1999	67.7428	2940	59.0129	63	6.8456	1.0142	0.0456
2000	77.4971	2867	67.5423	57	8.3170	1.2764	0.0455
2001	87.6935	2913	76.9756	63	9.3138	1.3123	0.0461
2002	59.2784	2251	39.6659	64	6.1646	0.9379	0.0479
2003	70.5919	2219	45.7141	61	5.9048	0.9220	0.0484
2004	64.7651	1869	32.9099	52	5.8738	0.8765	0.0501
2005	66.3701	1977	34.2006	40	6.2019	0.9144	0.0495
2006	53.2590	1708	31.6755	43	6.1036	0.9862	0.0516
2007	51.6930	1808	34.0480	38	6.6645	1.0669	0.0512
2008	61.4437	2066	39.9947	34	7.0127	1.1405	0.0497
2009	65.3126	2138	44.0663	35	8.2736	1.2814	0.0498
2010	56.7397	2287	34.8855	36	6.1679	1.0001	0.0499
2011	50.4971	2693	33.8475	35	5.3919	0.8812	0.0495
2012	65.9296	2730	44.7281	38	6.5543	1.0183	0.0490
2013	61.9402	2494	38.2604	34	6.7187	0.9438	0.0492
2014	47.2474	2249	30.5315	31	5.9065	0.8464	0.0496
2015	49.3108	1862	28.6513	27	5.6910	0.8028	0.0514

Figure 10.21. Elephant fish taken by gillnet at depths 0 to 100 m in zone 60 . The top left plot depicts the depth distribution of shots containing elephant fish from shark zones 2-7 and 9 in depths $0-160 \mathrm{~m}$. The top right plot depicts the distribution of catch by depth within zone 60 . The middle left plot depicts the number of vessels through time. The middle right plot contains the number of records used in analysis. The bottom left plot contains elephant fish catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains elephant fish catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 10.22. Elephant fish taken by gillnet from shark zones 2-7 and 9 in depths of 0 to 160 m . Upper plot: The dashed black line represents the geometric mean CPUE and the solid black line the standardized catch rates (each scaled to the mean of each time series). The blue line corresponds to last year's standardized CPUE. Lower plot: Standardized CPUE (solid black line), two times the standard error (vertical lines) and geometric mean (dashed black line).

Table 10.26. Elephant fish by gillnet at depths 0 to 160 m from shark zones 2-7 and 9 . Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year + Vessel
Model 3	LnCE \sim Year + Vessel + Month
Model 4	LnCE \sim Year + Vessel + Month + DepCat
Model 5	LnCE \sim Year + Vessel + Month + DepCat + SharkZone
Model 6	LnCE \sim Year + Vessel + Month + DepCat + SharkZone + SharkZone:Month
Model 7	LnCE \sim Year + Vessel + Month + DepCat + SharkZone + SharkZone:DepC

Table 10.27. Elephant fish taken by gillnet across shark regions from CSA to EBS at depths 0 to 160 m during 1997-2015. Model selection criteria, include the AIC, the adjusted $R^{2}\left(\operatorname{adj} R^{2}\right)$ and the change in adjusted R^{2} (\%Change). The optimum model is Model 7 (SharkZone:Month). Depth category: DepC.

	Year	Vessel	Month	DepC	SharkZone	SharkZone:Month	SharkZone:DepC
AIC	25085	21855	21613	21515	21365	20967	21182
RSS	76832	70744	70309	69940	69674	68813	69219
MSS	907	6995	7431	7799	8066	8927	8521
Nobs	42787	42787	42787	42567	42567	42567	42567
Npars	19	170	181	189	195	261	243
adj_R	1.125	8.638	9.176	9.633	9.965	10.939	10.452
\%Change	0.000	7.512	0.539	0.457	0.332	0.975	-0.487

Figure 10.23. The relative influence of each factor on the final trend in the optimal standardization for the elephant fish gillnet fishery. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2, black line). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

Table 10.28. Reported elephant fish catches by method (t) from the Commonwealth Logbook (GENLOG) database across all regions and methods from 1997. Total is the total catch from 1997 - 2015 (across method). Total catch by gear across the years (Total_Gear; t). Discards are not included.

| Year | AL | BL | DL | DS | GA | GN | TDO | TW | Total (t) |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1997 | | 0.005 | 0.011 | 4.963 | | 26.057 | | 0.790 | 31.826 |
| 1998 | | 0.076 | | 7.141 | | 43.076 | | 1.654 | 51.947 |
| 1999 | | 0.021 | 0.033 | 5.625 | | 59.264 | | 2.800 | 67.743 |
| 2000 | 0.045 | 0.047 | 0.046 | 6.715 | 0.026 | 68.028 | | 2.590 | 77.497 |
| 2001 | 0.035 | 0.120 | 0.073 | 6.456 | | 77.369 | | 3.640 | 87.693 |
| 2002 | 0.004 | 0.123 | 0.006 | 11.689 | | 39.666 | | 7.792 | 59.278 |
| 2003 | 0.647 | 0.088 | 0.026 | 12.302 | | 45.752 | | 11.777 | 70.592 |
| 2004 | 1.888 | 0.525 | | 15.157 | | 33.172 | | 14.023 | 64.765 |
| 2005 | 2.065 | | | 12.839 | | 34.229 | | 17.238 | 66.370 |
| 2006 | 0.762 | 0.003 | | 5.396 | | 32.528 | | 14.571 | 53.259 |
| 2007 | 0.271 | 0.037 | | 7.399 | | 34.460 | | 9.526 | 51.693 |
| 2008 | | 0.007 | | 10.325 | | 40.464 | | 10.649 | 61.444 |
| 2009 | | 0.002 | | 8.502 | | 44.134 | | 12.675 | 65.313 |
| 2010 | | 0.004 | | 10.156 | | 35.020 | | 11.560 | 56.740 |
| 2011 | | 0.025 | | 7.629 | | 33.881 | | 8.963 | 50.497 |
| 2012 | | 0.046 | | 10.126 | | 44.841 | | 10.917 | 65.930 |
| 2013 | 0.052 | 0.024 | | 12.983 | | 38.295 | 1.169 | 9.417 | 61.940 |
| 2014 | 0.003 | | | 6.581 | | 30.626 | 3.955 | 6.083 | 47.247 |
| 2015 | | 0.009 | | 9.005 | | 28.883 | 6.612 | 4.802 | 49.311 |
| Total_Gear | | | | | | | | | |
| (t) | 5.772 | 1.161 | 0.195 | 170.984 | 0.026 | 789.744 | 11.736 | 161.466 | 1141.085 |

Table 10.29. Catch (t) of elephant fish by shark reporting zones taken by gillnets. Discards are not included.

Year	WestSA	CentSA	EastSA	WestBS	EastBS	WestTas	EastTas	NSW	WestTas	Total
1997		0.932	1.831	13.958	13.627	0.434	0.206	0.078	0.857	31.921
1998	0.042	2.093	0.235	18.335	24.526	1.743	4.754	0.015	0.165	51.907
1999	1.003	4.885	1.327	17.794	35.153	0.833	6.080	0.035	0.537	67.647
2000	0.285	6.200	0.841	15.298	44.207	1.032	9.336	0.028	0.217	77.445
2001	0.128	9.758	0.929	9.672	52.168	2.492	11.709	0.093	0.435	87.384
2002	0.127	2.170	1.233	11.557	34.244	1.328	7.755	0.299	0.425	59.137
2003	1.498	4.459	0.840	12.470	38.542	2.978	6.944	1.156	0.713	69.601
2004	1.395	2.935	2.385	11.748	35.006	2.215	7.402	0.961	0.438	64.483
2005	1.305	2.448	1.115	13.978	36.616	2.241	6.541	0.947	0.640	65.831
2006	2.022	1.813	0.638	7.274	32.505	2.486	5.624	0.577	0.185	53.122
2007	1.939	2.976	0.698	4.606	29.838	1.840	8.827	0.759	0.147	51.629
2008	1.013	2.829	1.182	6.875	39.453	1.927	6.601	0.615	0.424	60.918
2009	0.495	3.357	1.835	10.528	42.268	0.909	5.227	0.441	0.155	65.215
2010	0.243	3.295	0.532	12.894	33.721	0.512	4.440	0.721	0.257	56.615
2011	0.119	4.379	0.494	8.446	29.839	1.018	4.384	0.745	0.893	50.317
2012	0.003	0.098	0.264	12.145	44.952	1.408	6.034	0.523	0.499	65.925
2013	0.165	0.246	0.392	13.697	40.169	1.397	4.560	0.743	0.560	61.928
2014	0.027	0.135	0.208	10.305	30.144	1.247	4.102	0.891	0.122	47.180
2015		0.236	0.273	7.605	37.927	0.335	2.009	0.667	0.017	49.069

Total	11.807	55.243	17.251	219.181	674.904	28.373	112.534	10.293	7.685	1137.273

10.4.8 Sawshark: Gillnet

Non-zero records of catch per shot were employed in the statistical standardization analyses for sawshark caught by gillnets. Further investigation should be considered to determine whether total net length could be used as an alternative effort unit in standardization analyses.

Table 10.30. Sawshark taken by gillnet across shark regions from Central South Australia to Eastern Bass Strait between depths of 0 to 150 m and during 1997-2014. Total catch (TotCatch; t) is the total reported in the database across all gears, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of CPUE ($\mathrm{kg} /$ shot). The optimum model is model 6 (Table 10.34). SharkZone:Month and standard deviation (StDev) are the coefficients from the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	SharkZone:Month	StDev
1997	214.1599	4346	129.5441	80	13.3998	1.1414	0.0000
1998	284.1927	6573	212.2422	80	12.2238	1.1593	0.0234
1999	292.1391	6941	211.1770	81	12.6922	1.2648	0.0235
2000	352.3844	6342	257.9544	74	17.5508	1.6804	0.0240
2001	338.1462	5921	249.7963	80	17.2911	1.7724	0.0245
2002	255.7574	5665	144.7214	77	10.6221	1.0254	0.0248
2003	318.8120	6354	174.8317	79	10.3777	1.0397	0.0244
2004	314.6146	6103	180.1242	71	11.4436	1.1068	0.0246
2005	296.6669	5263	148.3160	59	10.3383	0.9875	0.0254
2006	317.6979	4806	124.4204	54	9.1939	0.9857	0.0260
2007	214.5345	4447	95.0295	43	7.3232	0.8719	0.0266
2008	211.6896	4379	105.4135	44	8.8781	0.9940	0.0268
2009	191.4528	4666	82.5688	43	7.1489	0.8327	0.0264
2010	192.5017	4776	84.7280	47	7.3529	0.8136	0.0265
2011	197.0364	5022	98.8135	45	7.9242	0.8013	0.0263
2012	158.5591	4285	69.6699	42	6.9015	0.6391	0.0276
2013	165.6645	4051	67.1830	39	7.8626	0.5881	0.0275
2014	166.7128	3895	77.1952	38	8.6437	0.6604	0.0277
2015	162.5917	3824	71.6147	34	8.3240	0.6354	0.0279

Figure 10.24. Sawshark in shark zones $1-7$ in depths 0 to 150 m taken by gillnet. The top left plot depicts the depth distribution of shots containing sawshark from shark zones 1-7 in depths $0-150 \mathrm{~m}$. The top right plot depicts the distribution of catch by depth within shark zones 1-7. The middle left plot depicts the number of vessels through time. The middle right plot contains the number of records used in analysis. The bottom left plot contains sawshark catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains sawshark catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 10.25. Sawshark taken by gillnet. Upper plot: The dashed black line represents the geometric mean CPUE and the solid black line the standardized catch rates (each scaled to the mean of each time series). The blue line corresponds to last year's standardized CPUE. Lower plot: Standardized CPUE (solid black line), two times the standard error (vertical lines) and geometric mean (dashed black line).

Table 10.31. Sawshark from shark zones 1-7 at depths 0 to 150 m by gillnet. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year + Vessel
Model 3	LnCE \sim Year + Vessel + Month
Model 4	LnCE \sim Year + Vessel + Month + DepCat
Model 5	LnCE \sim Year + Vessel + Month + DepCat + SharkZone
Model 6	LnCE \sim Year + Vessel + Month + DepCat + SharkZone + SharkZone:Month
Model 7	LnCE \sim Year + Vessel + Month + DepCat + SharkZone + SharkZone:DepC

Table 10.32. Sawshark taken by gillnet across shark zones 1-7 at depths 0 to 150 m during 1997-2015. Model selection criteria, include the AIC, the adjusted $R^{2}\left(\operatorname{adj} R^{2}\right)$ and the change in adjusted R^{2} (\%Change). The optimum model is Model 6 (SharkZone:Month). Depth category: DepC.

	Year Vessel	Month	DepC	SharkZone	SharkZone:Month	SharkZone:DepC	
AIC	61582	38850	33234	29309	27289	23219	25478
RSS	183401	144787	136158	130747	128027	122604	125552
MSS	7718	46333	54962	60373	63093	68516	65567
Nobs	97659	97659	97101	97101	97101	97101	97101
Npars	19	197	204	210	221	287	263
adj_ R^{2}	4.021	24.090	28.609	31.441	32.860	35.660	34.129
\%Change	0.000	20.070	4.518	2.833	1.419	2.800	-1.531

Figure 10.26. The relative influence of each factor on the final trend in the optimal standardization for the sawshark gillnet fishery. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2, black line). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

10.4.9 Sawshark: Trawl (using Shark Zone)

Non-zero records of catch per hour were employed in the statistical standardization analyses for sawshark caught by trawl.

Table 10.33. Sawshark taken by trawl across shark regions from Central South Australia to Eastern Bass Strait between depths of 0 to 500 m and during 1997-2015. Total catch (TotCatch; t) is the total reported in the database across all gears, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of CPUE ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Model 7 (Table 10.35). SharkZone:Month and standard deviation (StDev) are the coefficients from the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	SharkZone:Month	StDev
1997	214.1599	2025	45.9350	59	3.0297	1.1418	0.0000
1998	284.1927	1485	34.2000	54	2.8938	1.0731	0.0361
1999	292.1391	1561	38.4520	50	3.7791	1.2849	0.0359
2000	352.3844	2094	55.6710	65	4.1146	1.1626	0.0353
2001	338.1462	2070	49.0660	58	3.0880	1.1268	0.0353
2002	255.7574	3096	62.2622	75	2.7652	0.9910	0.0326
2003	318.8120	3957	80.1817	76	2.3522	0.8649	0.0314
2004	314.6146	3906	80.4314	77	2.5885	0.8649	0.0315
2005	296.6669	4428	90.9200	72	2.5786	0.8735	0.0307
2006	317.6979	4073	111.3040	64	2.8887	0.9878	0.0313
2007	214.5345	2205	63.6195	39	2.7224	0.8551	0.0353
2008	211.6896	2562	58.3463	40	2.5111	0.9187	0.0346
2009	191.4528	2545	69.2425	34	3.3781	1.1497	0.0345
2010	192.5017	2654	59.1161	37	2.7260	0.9806	0.0345
2011	197.0364	2678	58.2292	36	2.5914	0.9185	0.0344
2012	158.5591	2334	56.7883	35	2.8468	0.8956	0.0355
2013	165.6645	2303	59.0716	36	3.1325	1.0077	0.0355
2014	166.7128	2024	53.8859	36	3.2138	0.9822	0.0363
2015	162.5917	2093	52.8783	35	2.9129	0.9205	0.0362

Figure 10.27. Sawshark taken by Trawl. The top left plot depicts the depth distribution of shots containing sawshark from shark zones 1-9 in depths $0-500 \mathrm{~m}$. The top right plot depicts the distribution of catch by depth within zone 60 . The middle left plot depicts the number of vessels through time. The middle right plot contains the number of records used in analysis. The bottom left plot contains sawshark catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains sawshark catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 10.28. Sawshark taken by trawl. Upper plot: The dashed black line represents the geometric mean CPUE and the solid black line the standardized catch rates (each scaled to the mean of each time series). The blue line corresponds to last year's standardized CPUE. Lower plot: Standardized CPUE (solid black line), two times the standard error (vertical lines) and geometric mean (dashed black line).

Table 10.34. Sawshark from across shark zones in depths 0 to 500 m by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year + Vessel
Model 3	LnCE \sim Year + Vessel + DepCat
Model 4	LnCE \sim Year + Vessel + DepCat + SharkZone
Model 5	LnCE \sim Year + Vessel + DepCat + SharkZone + Month
Model 6	LnCE \sim Year + Vessel + DepCat + SharkZone + Month + DayNight
Model 7	LnCE \sim Year + Vessel + DepCat + SharkZone + Month + DayNight + SharkZone:Month
Model 8	LnCE \sim Year + Vessel + DepCat + SharkZone + Month + DayNight + SharkZone:DepC

Table 10.35. Sawshark taken by trawl across shark zones at depths 0 to 500 m from Western South Australia to Eastern Bass Strait during 1997-2015. Model selection criteria, include the AIC, the adjusted R^{2} (adj_ R^{2}) and the change in adjusted R^{2} (\%Change). The optimum model is Model 7 (SharkZone:Month). Depth category: DepC.

	Year	Vessel	DepCat	SharkZone	Month	DayNight	SharkZone:Month	SharkZone:DepC
AIC	23140	7431	5700	4306	3357	3257	2164	2301
RSS	79445	57750	55257	53709	52668	52556	51228	51139
MSS	857	22553	25046	26594	27634	27747	29075	29164
Nobs	50093	50093	49615	49615	49615	49615	49615	49615
Npars	19	153	178	186	197	200	288	400
adj_ R^{2}	1.032	27.866	30.943	32.867	34.153	34.289	35.835	35.801
\%Change	0.000	26.834	3.077	1.924	1.286	0.137	1.546	-0.034

Figure 10.29. The relative influence of each factor on the final trend in the optimal standardization for the sawshark trawl fishery. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2, black line). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

10.4.10 Sawshark: Trawl (using Shark Area)

Non-zero records of catch per shot were employed in the statistical standardization analyses for sawshark caught by trawl. This analysis considers the factor SharkArea instead of SharkZone.

Table 10.36. Sawshark taken by trawl across shark areas from Western South Australia to Eastern Bass Strait between depths of 0 to 500 m and during 1997-2015. Total catch (TotCatch; t) is the total reported in the database across all gears, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of CPUE ($\mathrm{kg} / \mathrm{hr}$). The optimum model is Model 7 (Table 10.38). SharkArea:Month and standard deviation (StDev) are the coefficients from the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	SharkArea:Month	StDev
1997	214.1599	2025	45.9350	59	3.0297	1.1753	0.0000
1998	284.1927	1485	34.2000	54	2.8938	1.0320	0.0367
1999	292.1391	1561	38.4520	50	3.7791	1.2375	0.0365
2000	352.3844	2094	55.6710	65	4.1146	1.1809	0.0357
2001	338.1462	2070	49.0660	58	3.0880	1.1410	0.0358
2002	255.7574	3096	62.2622	75	2.7652	1.0328	0.0330
2003	318.8120	3957	80.1817	76	2.3522	0.8884	0.0318
2004	314.6146	3906	80.4314	77	2.5885	0.8572	0.0320
2005	296.6669	4428	90.9200	72	2.5786	0.8726	0.0312
2006	317.6979	4073	111.3040	64	2.8887	1.0077	0.0319
2007	214.5345	2205	63.6195	39	2.7224	0.8679	0.0356
2008	211.6896	2562	58.3463	40	2.5111	0.9101	0.0350
2009	191.4528	2545	69.2425	34	3.3781	1.1340	0.0348
2010	192.5017	2654	59.1161	37	2.7260	0.9769	0.0348
2011	197.0364	2678	58.2292	36	2.5914	0.9172	0.0347
2012	158.5591	2334	56.7883	35	2.8468	0.8821	0.0358
2013	165.6645	2303	59.0716	36	3.1325	0.9775	0.0357
2014	166.7128	2024	53.8859	36	3.2138	0.9872	0.0366
2015	162.5917	2093	52.8783	35	2.9129	0.9215	0.0364

Figure 10.30. Sawshark taken by trawl. Upper plot: The dashed black line represents the geometric mean CPUE and the solid black line the standardized catch rates (each scaled to the mean of each time series). The blue line corresponds to last year's standardized CPUE. Lower plot: Standardized CPUE (solid black line), two times the standard error (vertical lines) and geometric mean (dashed black line).

Table 10.37. Sawshark from across shark zones in depths 0 to 500 m by Trawl. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year + Vessel
Model 3	LnCE \sim Year + Vessel + DepCat
Model 4	LnCE \sim Year + Vessel + DepCat + SharkArea
Model 5	LnCE \sim Year + Vessel + DepCat + SharkArea + Month
Model 6	LnCE \sim Year + Vessel + DepCat + SharkArea + Month + DayNight
Model 7	LnCE \sim Year + Vessel + DepCat + SharkArea + Month + DayNight + SharkArea:Month
Model 8	LnCE \sim Year + Vessel + DepCat + SharkArea + Month + DayNight + SharkArea:DepC

Table 10.38. Sawshark taken by trawl across shark zones at depths 0 to 500 m from Western South Australia to Eastern Bass Strait during 1997-2015. Model selection criteria, include the AIC, the adjusted R^{2} (adj_ R^{2}) and the change in adjusted R^{2} (\%Change). The optimum model is Model 7 (SharkArea:Month). Depth category: DepC.

	Year	Vessel	DepCat	SharkArea	Month	DayNight	SharkArea:Month	SharkArea:DepC
AIC	23140	7431	5700	3415	2450	2361	1212	2472
RSS	79445	57750	55257	52507	51469	51371	49261	49345
MSS	857	22553	25046	27795	28834	28932	31042	30958
Nobs	50093	50093	49615	49441	49441	49441	49441	49441
Npars	19	153	178	220	231	234	696	1284
adj_ R^{2}	1.032	27.866	30.943	34.322	35.607	35.725	37.781	36.914
\%Change	0.000	26.834	3.077	3.380	1.284	0.119	2.056	-0.867

Figure 10.31. The relative influence of each factor on the final trend in the optimal standardization for the sawshark trawl fishery. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2, black line). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

10.4.11 Sawshark: Danish seine (using Shark Zone)

A large proportion of records contain missing effort entries, so CPUE used in the analyses was $\mathrm{kg} /$ shot. Data pertaining to Shark Zones 4 and 5 (Western and Eastern Bass Strait respectively) were used in the analysis.

Table 10.39. Sawshark taken by danish seine across shark regions from Western Bass Strait to Eastern Bass Strait between depths of 0 to 240 m and during 1997-2015. Total catch (TotCatch; t) is the total reported in the database across all gears, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of CPUE ($\mathrm{kg} /$ shot). The optimum model is Model 7 (Table 10.41). SharkZone:Month and standard deviation (StDev) are the coefficients from the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	SharkZone:Month	StDev
1997	214.1599	436	4.0180	13	6.6325	1.4116	0.0000
1998	284.1927	485	6.7500	12	8.3699	1.6272	0.0673
1999	292.1391	613	6.4640	13	6.7292	1.2873	0.0641
2000	352.3844	398	7.1650	11	10.3938	1.8941	0.0720
2001	338.1462	508	7.0290	12	8.6081	1.0746	0.0709
2002	255.7574	2705	24.4030	22	4.5931	0.8910	0.0565
2003	318.8120	3057	22.1803	22	3.8527	0.7871	0.0565
2004	314.6146	3228	24.3190	22	3.7264	0.7296	0.0563
2005	296.6669	2666	17.3475	22	3.2825	0.6555	0.0569
2006	317.6979	2254	17.9365	20	3.9417	0.7593	0.0578
2007	214.5345	2299	21.5465	16	4.3883	0.8525	0.0578
2008	211.6896	2484	22.5495	15	4.6027	0.9027	0.0576
2009	191.4528	2844	21.1270	15	3.9010	0.8591	0.0573
2010	192.5017	2405	17.0375	15	3.9924	0.8834	0.0578
2011	197.0364	2885	25.3570	14	4.4635	0.8643	0.0571
2012	158.5591	2196	20.2490	14	4.5630	0.8413	0.0581
2013	165.6645	2531	20.7945	14	4.3873	0.8602	0.0577
2014	166.7128	1732	13.1949	14	4.1010	0.7539	0.0598
2015	162.5917	2139	24.1762	15	5.4819	1.0651	0.0591

Figure 10.32. Sawshark taken by Danish seine. The top left plot depicts the depth distribution of shots containing sawshark from shark zones 4,5 in depths $0-240 \mathrm{~m}$. The top right plot depicts the distribution of catch by depth within zone 4 and 5. The middle left plot depicts the number of vessels through time. The middle right plot contains the number of records used in analysis. The bottom left plot contains sawshark catches (top black line: total catches, middle blue line: catches used in the analysis; bottom red line: catches $<30 \mathrm{~kg}$) and bottom right plot contains sawshark catches (blue line: catches used in the analysis; red line: catches $<30 \mathrm{~kg}$).

Figure 10.33. Sawshark taken by Danish Seine in shark zones 4 and 5. Upper plot: The dashed black line represents the geometric mean CPUE and the solid black line the standardized catch rates (each scaled to the mean of each time series). The blue line corresponds to last year's standardized CPUE. Lower plot: Standardized CPUE (solid black line), two times the standard error (vertical lines) and geometric mean (dashed black line).

Table 10.40. Sawshark from across shark zones in depths 0 to 240 m by Danish seine. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year + DepCat
Model 3	LnCE \sim Year + DepCat + Vessel
Model 4	LnCE \sim Year + DepCat + Vessel + Month
Model 5	LnCE \sim Year + DepCat + Vessel + Month + SharkZone
Model 6	LnCE \sim Year + DepCat + Vessel + Month + SharkZone + DayNight
Model 7	LnCE \sim Year + DepCat + Vessel + Month + SharkZone + DayNight + SharkZone $:$ Month
Model 8	LnCE \sim Year + DepCat + Vessel + Month + SharkZone + DayNight + SharkZone:DepC

Table 10.41. Sawshark taken by Danish seine across shark zones at depths 0 to 240 m from Western Bass Strait to Eastern Bass Strait during 1997-2015. Model selection criteria, include the AIC, the adjusted R^{2} (adj_ R^{2}) and the change in adjusted R^{2} (\%Change). The optimum model is Model 7 (SharkZone:Month). Depth category: DepCat.

	Year	DepCat	Vessel	Month	SharkZone	DayNight	SharkZone:Month	SharkZone:DepC
AIC	5005	2545	1254	730	595	531	328	373
RSS	43172	39912	38488	37929	37791	37720	37493	37527
MSS	1491	4752	6176	6735	6873	6944	7171	7137
Nobs	37865	37355	37355	37355	37355	37355	37355	37355
Npars	19	36	69	80	81	84	95	101
adj_ R^{2}	3.293	10.556	13.670	14.899	15.206	15.358	15.843	15.754
\%Change	0.000	7.263	3.114	1.229	0.307	0.152	0.484	-0.089

Figure 10.34. The relative influence of each factor on the final trend in the optimal standardization for the sawshark Danish seine fishery. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2, black line). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

10.4.12 Sawshark: Danish seine (using Shark Area)

This analysis in this section is similar to that of the previous section, except that Shark Area was used instead of Shark Zone.

Table 10.42. Sawshark taken by Danish seine across shark areas from Western Western Bass Strait to Eastern Bass Strait between depths of 0 to 240 m and during 1997-2015. Total catch (TotCatch; t) is the total reported in the database across all gears, number of records used in the analysis (Records), reported catch (CatchT; t) in the area and depth used in the analysis and number of vessels used in the analysis (Vessels). GeoMean is the geometric mean of CPUE (kg/shot). The optimum model is Model 7 (Table 10.44). SharkArea:Month and standard deviation (StDev) are the coefficients from the optimum model.

Year	TotCatch	Records	CatchT	Vessels	GeoMean	SharkArea:Month	StDev
1997	214.1599	435	4.0130	13	6.6369	1.4093	0.0000
1998	284.1927	482	6.7250	12	8.3726	1.6045	0.0675
1999	292.1391	612	6.4610	13	6.7381	1.2321	0.0643
2000	352.3844	397	7.1600	11	10.4130	1.7860	0.0720
2001	338.1462	508	7.0290	12	8.6081	1.0807	0.0709
2002	255.7574	2693	24.1670	22	4.5827	0.8886	0.0568
2003	318.8120	3027	21.8343	22	3.8597	0.7879	0.0568
2004	314.6146	3221	24.2960	22	3.7301	0.7417	0.0565
2005	296.6669	2658	17.3015	22	3.2812	0.6706	0.0570
2006	317.6979	2244	17.8885	20	3.9523	0.7890	0.0580
2007	214.5345	2296	21.5415	16	4.3941	0.8794	0.0580
2008	211.6896	2483	22.5435	15	4.6022	0.9196	0.0578
2009	191.4528	2843	21.1220	15	3.9007	0.8651	0.0575
2010	192.5017	2397	17.0055	15	3.9936	0.9167	0.0581
2011	197.0364	2879	25.3350	14	4.4682	0.8940	0.0575
2012	158.5591	2196	20.2490	14	4.5630	0.8505	0.0583
2013	165.6645	2530	20.7845	14	4.3859	0.8797	0.0579
2014	166.7128	1728	13.1579	14	4.0963	0.7613	0.0600
2015	162.5917	2134	24.0882	15	5.4797	1.0435	0.0594

Figure 10.35. Sawshark taken by Danish Seine in shark zones 4 and 5. Upper plot: The dashed black line represents the geometric mean CPUE and the solid black line the standardized catch rates (each scaled to the mean of each time series). The blue line corresponds to last year's standardized CPUE. Lower plot: Standardized CPUE (solid black line), two times the standard error (vertical lines) and geometric mean (dashed black line).

Table 10.43. Sawshark from across shark zones in depths 0 to 240 m by Danish seine. Statistical model structures used in this analysis. DepCat is a series of 20 metre depth categories.

Model 1	LnCE \sim Year
Model 2	LnCE \sim Year + Vessel
Model 3	LnCE \sim Year + Vessel + DepCat
Model 4	LnCE \sim Year + Vessel + DepCat + SharkArea
Model 5	LnCE \sim Year + Vessel + DepCat + SharkArea + Month
Model 6	LnCE \sim Year + Vessel + DepCat + SharkArea + Month + DayNight
Model 7	LnCE \sim Year + Vessel + DepCat + SharkArea + Month + DayNight + SharkArea:Month
Model 8	LnCE \sim Year + Vessel + DepCat + SharkArea + Month + DayNight + SharkArea:DepC

Table 10.44. Sawshark taken by Danish seine across shark areas at depths 0 to 240 m from Western Bass Strait to Eastern Bass Strait during 1997-2015. Model selection criteria, include the AIC, the adjusted $R^{2}\left(\operatorname{adj} R^{2}\right)$ and the change in adjusted R^{2} (\%Change). The optimum model is Model 7 (SharkArea:Month). Depth category: DepCat.

	Year	Vessel	DepCat	SharkArea	Month	DayNight	SharkArea:Month	SharkArea:DepC
AIC	4449	2107	993	456	99	98	-435	-85
RSS	40106	37025	35793	35224	34836	34829	33978	34321
MSS	1363	4444	5676	6245	6632	6640	7491	7148
Nobs	35406	34915	34915	34915	34915	34915	34915	34915
Npars	18	29	63	74	89	92	257	257
adj_R R^{2}	3.241	10.645	13.534	14.881	15.781	15.792	17.458	16.626
\%Change	0.000	7.404	2.889	1.347	0.900	0.011	1.666	-0.832

Figure 10.36. The relative influence of each factor on the final trend in the optimal standardization for the sawshark Danish seine fishery. The top graph depicts the geometric mean (black line) and the optimum model (red line). The difference between them is illustrated by the vertical bars with blue bars indicating the optimum model is higher than the geometric mean and red bars indicating it is lower. The top graph bars are the sum of all the bars in the graphs below. The graphs for individual factors are cumulative. Thus the second graph has the geometric mean (grey line) and the effect of adding Year + factor2 (Model 2, black line). In the third graph, the grey line represents Model 2 and the black line the effect of adding factor3 to the model. The remaining graphs continue in the same cumulative manner except for the interaction terms which are added singularly to the final single factor model.

Figure 10.37. Annual standardized indices of gummy shark (i) gillnet-CPUE for SA, TAS and BS (upper plot). Annual standardized indices of gummy shark for trawl-CPUE and bottom line (BL) CPUE (lower plot).

Figure 10.38. Annual standardized indices of school shark for trawl-CPUE and elephant fish gillnet-CPUE (upper plot). Annual standardized indices of sawshark for trawl-CPUE, gillnet-CPUE and Danish seine-CPUE (lower plot).

10.5 Discussion and Conclusions

10.5.1 Gummy shark - Gillnet

Most gummy shark catches are taken by gillnets (25,520 t; 1997-2015), followed by trawl (1,519 t; 1997-2015) and bottom line ($1,716 \mathrm{t}$; 1997-2015). For consistency with the stock assessment model for gummy shark, the gillnet analysis considered Bass Strait, South Australia and Tasmania separately. Catches are greatest in Bass Strait and least in Tasmania.

Large scale closures to gillnet gear were imposed after 2010 to reduce the risk of interactions with marine mammals. In response, reported gillnet catches of gummy shark fell steadily from 2010 to 2013 (from 390 t to 60 t), in South Australia while bottom line catches decreased (from 72 t in 2010 to 229 t in 2013). By contrast, gillnet catches in South Australia increased in 2014 (127 t) and again in 2015 (154 t) while bottom line catches in the region decreased (227 t in 2014 and 188 t in 2015). This might reflect learning as fishers find new ways to use the more profitable gillnets in the region. This reduced fishing for gummy shark in areas of historical high CPUE has led to apparent changes in the CPUE for gillnets in South Australia. The impact on catches and numbers of records is obvious (Figure 10.2). Such changes may cast some doubt as to whether this series can be considered a reliable indicator of the stock's status in South Australia. Increases in standardized CPUE since 2012 may reflect a real change in abundance, or may reflect learning as the industry adapt to fishing in areas previously unfamiliar to them (Figure 10.3).

Gillnet catches of gummy shark in Bass Strait have been relatively stable ($\sim 800 \mathrm{t}$) in recent years and $\sim 981 \mathrm{t}$ in 2015. Standardized indices increased in the last two years relative to 2013, with the 2015 estimate above the overall long-term average (Figure 10.6). There has been an overall decline since 2008, with increases in the last two years. How much of this decline is due to the avoidance of school shark areas would be difficult to determine.

Tasmania has a relatively minor gummy shark catch and the standardized CPUE has been noisy but relatively flat since 1997 (Figure 10.9). However, the relatively few fishing operations performed in this region result in wide confidence intervals for the standardized CPUE indices.

10.5.2 Gummy shark - Bottom Line

Associated with recent increases in gillnet catches in South Australia, hook catches have decreased in 2015 (Table 10.18). The point estimate of the standardized CPUE increased markedly in 2013 relative to 2012, declined in 2014 and increased in 2015 (above the long-term average. However, taking into account the wide and overlapping confidence bands, there is no difference in the standardized CPUE indices for these years (Figure 10.15).

A CPUE standardization on the bottom line catches (using catch per shot) exhibits much broader confidence intervals owing to the smaller numbers of records relative to gillnet records. Nevertheless, the standardization has a large effect on the geometric mean CPUE, primarily due to the vessel effect (Figure 10.16). Since about 2010, standardized CPUE has been rising above the long term average (with a possible decline in 2014).

10.5.3 School shark

Industry avoidance of school sharks is reasonably successful, although there are reports that a scarcity of quota for leasing at economic prices is making it difficult for operators to land school shark, consequently unmeasured discarding may be occurring. Reports of high school shark availability (SharkRAG No. 1, Meeting Minutes 2014) may also have made it difficult for industry to keep the bycatch ratio of school shark to gummy shark catches below 20%. Discard levels were not estimated from the ISMP in 2015.

There has been a shift within line fishing methods with a greater catch by bottom long-line than by auto-line (e.g. during 2015, $\sim 12.1 \mathrm{t}$ auto-line compared to $\sim 38.3 \mathrm{t}$ bottom line). Reported trawl catches in 2014 and 2015 have remained similar (i.e. $\sim 11.3 \mathrm{t}$ and $\sim 12.5 \mathrm{t}$) (but note that this excludes discards), despite a similar number of records (Table 10.21). Approximately, 83 t of school shark were reported caught by gillnets in 2015, a reduction of $\sim 25 \mathrm{t}$ from 2014.

Due to the change in behaviour of the gillnet industry in moving from targeting school sharks to increasing avoidance, their CPUE cannot be taken to be indicative of the stock status in any way. By contrast, although trawl catches are low, fishers do not appear to have changed their behaviour during 1996-2015. The trend in school shark standardized CPUE taken by trawl is gradually increasing (except for 2014); not as rapidly as for gummy sharks, but it has a similar trend (Figure 10.18). However, inspection of the on-board sampling for length frequencies suggests that there has been an increased proportion of smaller school sharks being measured in 2012, 2014 and 2015, although not evident from the 2013 sample, despite the large sample size (across all methods; Thomson et al. 2016, page 258).

10.5.4 Gummy shark - Trawl

Reported gummy shark catches by trawl of less than 30 kg have been consistently more frequent they are in the gillnet fishery (Figure 10.11), indicating that gummy shark are not targeted by trawl. Most trawl catches are taken from shark zones ESB, WA and WSA. Standardized trawl CPUE has increased by 24% since 2007 (Figure 10.12) and presents a strong contrast to all of the gillnet CPUE trends (Figure 10.3, Figure 10.6, Figure 10.9).

10.5.5 Elephant fish

Elephant fish are predominately taken by gillnet (Table 10.28). Catches are predominately taken in roughly 50 m of water (Figure 10.21). The number of vessels reporting gillnet catches of elephant fish dropped strongly just before the structural adjustment from about 56 vessels down to about 27, and has remained roughly stable since. A high proportion of reported catches are less than 30 kg , which is suggests that the species is rarely if ever targeted (Figure 10.21). There is no trend through time in the proportion of these small catches. Much of the reported catch is from Eastern Bass Strait (Table 10.29). Industry members have indicated that catches made at great distance from markets are seldom landed due to the cost of transportation relative to the low market value of this fish (David Stone, pers comm.).

Reported catches by trawl have remained stable at $\sim 10 \mathrm{t}$ in recent years (Table 10.28), providing insufficient information for a useable standardization. Similarly, Danish seine catches have been consistent but low across the years and are therefore currently not suitable for a useful standardization (Table 10.28).

Standardized CPUE (not adjusted for discards) of gillnet caught elephant fish show occasional rises and falls about the longer term average (Figure 10.22). There is no evidence of an overall rise or fall apparent in the data. The factor having the greatest influence on the CPUE appears to be which vessels are fishing with a major change in the CPUE pattern following the structural adjustment (Figure 10.23).

10.5.6 Sawshark

Sawshark catches have been split primarily between gillnets and trawls, with a lesser quantity taken by Danish seine. Discarding, which has only really been examined in the context of CPUE in recent years, was relatively high ($13-\sim 28 \%$) from 2011 to 2014 (Thomson et al. 2016; page 270). There is no discard estimate for 2015. The structural adjustment certainly affected vessel numbers reporting catches of sawshark with number of gillnet vessels dropping from 79 in 2003 down to 43 in 2007 (Table 10.30). The number of trawl vessels reporting sawshark also approximately halved from about 65 in 2000 (i.e. pre-2007) to about 36 post-2006 (Table 10.33). Danish Seine vessels reporting sawshark dropped from about 22 vessels a year down to about 16 vessels each year (Table 10.39).

For all methods, the average proportion of the catch reported to come from shots of $<30 \mathrm{~kg}$ is also relatively high ($\sim 70 \%$ for Danish seine, 31% for gillnet and 38% for trawl). This indicates that sawshark are not a primary target species and that few individuals are landed from each shot, especially in the Danish seine fishery.

The standardized CPUE for gillnet caught sawshark has been declining since 2004 (except for 2014), although the standardization does not account for the level of discarding that occurred. If discarding has been increasing over time, the inclusion of discarding may lead to an increase in the CPUE exhibited by the fishery. The effect of the South Australian closures can be seen from the impact of the shark zone factors (Figure 10.26). Discard rates have not been calculated by gear type (Thomson 2016) so this question can not be examined.

Trawl catches are taken in a much wider depth range ($0-500 \mathrm{~m}$) than gillnet catches $(0-150 \mathrm{~m})$. Standardized CPUE varies around an average of 1.0, ranging between 0.9 and 1.3 since 1997; it is flat and noisy (Figure 10.28). The impact of the introduction of closures to gillnetting in 2010 is evidenced by the influence of the shark zone factor (Figure 10.29). The use of shark area rather than shark zone for both trawl and Danish seine caught sawshark caused no differences in standardized CPUE indicating that both factors capture the same information.

Danish seine catches tend to be more focussed in shallower depths i.e. less than 100 m . Following an initial high standardized CPUE during 1997-2001, a period when reported catches were consistently < 8 tonnes, the standardized Danish seine CPUE is essentially flat from 2001 to 2013 apart from a small decrease in 2014 and an increase above the long-term average in 2015 (Figure 10.33).

Over the period 2001-2013 Danish seine and trawl based sawshark CPUE follow essentially the same trajectory when placed on the same scale. If these CPUEs are indexing stock status, there is no indication of a change in the relative abundance, despite the downward trend exhibited by gillnetCPUE (Figure 10.38).

10.6 References

Burnham, K.P., Anderson, D.R. (2002). Model selection and multimodel inference: A practical information-theoretic approach ($2^{\text {nd }} E d n$). Springer-Verlag.
Haddon, M. (2014) CPUE Standardization and Characterization of the SESSF Shark Fishery. Data from 1997 - 2013. CSIRO. Hobart. 63 p.
McCullagh, P., Nelder, J. (1989). Generalized Linear Models, Second Edition. Boca Raton: Chapman and Hall/CRC.

Thomson R.B., Sporcic M., Klaer N., Fuller M., Krucic-Golub K. and Upston J. (2015). Data summary for the Southern and Eastern Scalefish and Shark Fishery: Logbook, Landings and Observer Data to 2014 (DRAFT). CSIRO, Australia and AFMA. 282 p.
Thomson, R. (2016). Draft report: Integrated Scientific Monitoring Program for the Southern and Eastern Scalefish and Shark Fishery - Discard estimation 2015. 58 p.

Thomson, R., Upston, J. (2016). Draft report: SESSF catches and discards for TAC purposes. Technical document provided to AFMA October 2015. Draft provided to RAGs 1114 September 2016. 42 pp.

Thomson, R., Fuller, M., Deng, R., Althaus, F. (2016). Data summary for the SESSF: Logbook, Landings and Observer Data to 2015. 282 p.

11. Tier 4 Analyses of Selected Species from the SESSF. Data from 1986 - 2015

Malcolm Haddon
CSIRO Oceans and Atmosphere, Castray Esplanade, Hobart 7000, Australia

11.1 Executive Summary

Four fisheries have been assessed using the Tier 4 methodology in 2016: Mirror Dory East, Mirror Dory East including discards into the CPUE, Mirror Dory West, and Western Gemfish. The Mirror Dory analyses treat the west and east as separate stocks, and also include the high levels of discards that occur in the east. The Western Gemfish analysis contrasts the Tier 4 obtained with and without the inclusion of the recently very high levels of discards.

The TIER 4 analyses conducted this year used the analytical method developed and tested in 2008 and 2009. This has the capacity to provide advice that will manage a fishery in such a manner that it should achieve the target catch rate derived from the chosen reference period. However, the TIER 4 control rule can only succeed if catch rates do in fact reflect stock size. Many factors could contribute to make this assumption fail so care needs to be taken when applying this control rule. It should be made clear that the control rule works to achieve the selected target but there is no guarantee that this truly corresponds to the HSP proxy target for MEY of $48 \% B_{0}$.

The inclusion of discards into the CPUE makes the assumption that there were no complete shots discarded; in other words only part of some or all hauls were discarded and no shots were completely discarded. The analyses depend on adjusting the total catch in each instance while not adjusting the effort. However, if complete shots are discarded then the total effort will be under-estimated biasing the discard CPUE high. Given that some shots may be completely discarded the analysis with discards is thus expected to be biased high, whereas if discards have been variable through time, but are not included in an analysis, then the CPUE from that analysis would be expected to be biased low. Both together bound the possibilities and both need to be considered when setting the TAC.

Table 11.1. Summary of the Tier 4 analyses for Mirror Dory. The target catches are those from the Tier 4 analyses. The Mirror Dory RBCs for east and west need to be combined to obtain the overall RBC.

Mirror Dory	East	East + Discards	West	Total
Scaling	0.5977	0.4664	0.5551	
TAC	437	437	437	437
Target E Catch	372.739	372.739	187.647	560.386
RBC	$\mathbf{2 2 2 . 7 8 1}$	$\mathbf{1 7 3 . 8 2 8}$	$\mathbf{1 0 4 . 1 7 1}$	$\mathbf{2 7 7 . 9 9 9}$

Table 11.2. A comparison of the RBC for Mirror Dory from the last three Tier 4 assessments. The reduction in RBC as a reflection of the relatively rapid changes in CPUE exhibited by the Mirror Dory fisheries is clear. The years designate the last year of data in each case.

Mirror Dory	2012	2013	2015
East + Discards	497.134	523.107	198.278
East	465.000	392.696	222.781
West	183.118	160.809	104.171
Total (E Discard + W)	680.252	683.916	302.449
Total (E \& W)	648.118	553.505	326.952

The Western Gemfish RBC lies somewhere between 139-423t depending on the recent incidence of the discarding if complete shots. If all discarding was of complete shots then the lower value is correct, if all discarding was of total shots then the larger number is correct. It is to be expected that the more appropriate value will lies somewhere in between.

Table 11.3. Summary of the Tier 4 analyses for Western Gemfish. The target catches are those from the Tier 4 analyses.

Western Gemfish	West + Discards	West
Scaling	1.9663	0.6462
TAC	247	247
Target Catch	215.124	215.124
RBC	$\mathbf{4 2 2 . 9 9 7}$	$\mathbf{1 3 9 . 0 2 4}$

11.2 Introduction

11.2.1 Tier 4 Harvest Control Rule

The TIER 4 harvest control rules are the default procedure applied to species for which only limited information is available; specifically no reliable information on either current biomass levels or current exploitation rates.

Ideally, in line with the notion of being more precautionary in the absence of information, the outcome from these analyses should be more conservative than those available from higher TIER analyses; this is now explicitly implemented by imposing a 15% discount factor on the RBC as a precautionary measure unless there are good reasons for not imposing such a discount on particular species. The application of the discount factor will occur unless RAGs generate explicit advice that alternative equivalent precautionary measures are in place (such as spatial or temporal closures) or that there is evidence of historical stability of the stock at current catch levels (AFMA, 2009).

In essence TIER 4 analyses require, as a minimum, a time series of total catches and of standardized catch rates.

The current TIER 4 analysis and control rule underwent Management Strategy Evaluation (Wayte, 2009, Little et al, 2011a), which demonstrated its advantages over an earlier implementation used in 2007 and 2008. Further work has since demonstrated that as long as there is a limit on increases and
decreases to the RBC of no more than 50% then the notion of including a maximum RBC (at 1.25 times the target) is redundant (Little et al, 2011b).

11.3 Methods

11.3.1 TIER 4 Harvest Control Rule

The data required are time series of catches and catch rates. The analyses have been conducted on total catches across the entire SESSF (including State catches, SEF2 landing records, and any discards). For some species, where there is only a single stock and a single primary fishing method, analyses are presented using standardized CPUE data (Haddon, 2013). For other species, there may be multiple stocks or areas or multiple methods and selecting which time series of catch rates to use in the analyses is not always straightforward. In those cases, the standardized time series for the method now accounting for the majority of current catch was used.

All data between 1986 - 2015, relating to catches and discards, from both State waters and SEF2 data sets, were provided by AFMA and the various State agencies, with initial processing by Dr Robin Thomson and Dr Judy Upston of CSIRO. All catch rate data were derived from the standard commercial catch and effort database processed from the AFMA data by CSIRO Hobart and CSIRO Brisbane.

Standard analyses were set up in the statistical software, R (2016) and included in the r4sessf R package, which is currently under development. These standard analyses provide the tables and graphs required for the TIER4 analyses. All data and results for each analysis are presented for complete transparency. The TIER 4 harvest control rule formulation essentially uses a ratio of current catch rates with respect to the selected limit and target reference points to calculate a scaling factor for the current year $\left(S F_{t}\right)$. This scaling factor is applied to the target catch to generate an RBC. To generate a TAC, known discards and State catches are first removed and then, if applicable, the 15% discount is applied. The TAC calculations are conducted by AFMA. This report focusses on providing the estimates of the Recommended Biological Catches.

$$
\begin{gather*}
\text { Scaling Factor }=S F_{t}=\max \left(0, \frac{\overline{C P U E}-C P U E_{\mathrm{lim}}}{C P U E_{\operatorname{targ}}-C P U E_{\mathrm{lim}}}\right) \tag{9}\\
R B C=C_{\mathrm{targ}} \times S F_{t} \tag{10}
\end{gather*}
$$

If new data becomes available, for example, more State data has become available this year, or other large changes occur in the catch rates then the RBC could undergo large changes. Such changes are constrained by the following limits:

$$
\begin{array}{l|l}
R B C_{y}=1.5 R B C_{y-1} & R B C_{y}>1.5 R B C_{y-1} \\
R B C_{y}=0.5 R B C_{y-1} & R B C_{y}<0.5 R B C_{y-1} \tag{11}
\end{array}
$$

where
$R B C_{y} \quad$ is the RBC in year y
CPUE $_{\text {targ }} \quad$ is the target CPUE for the species; Eq. (13)

CPUE $_{\text {lim }} \quad$ is the limit CPUE for the species $=$ either
$(0.2 / 0.48) *$ CPUE $_{\text {targ }}$ or
$(0.2 / 0.40) *$ CPUE $_{\text {targ }}$ depending on the selected target for the species
$\overline{C P U E}$
$C_{t a r g} \quad$ is a catch target derived from a period of historical catch that has been identified as a desirable target in terms of CPUE, catches and status of the fishery, e.g. 1986 - 1995 (Table 11.4). This is an average of the total removals for the selected reference period, including any discards; Eq. (12).

$$
\begin{equation*}
C_{\mathrm{targ}}=\frac{\sum_{y=y r 1}^{y r 2} L_{y}}{(y r 2-y r 1+1)} \tag{12}
\end{equation*}
$$

where L_{y} represents the landings in year y.

$$
\begin{equation*}
C P U E_{\mathrm{targ}}=\frac{\sum_{y=y r 1}^{y r 2} C P U E_{y}}{(y r 2-y r 1+1)} \tag{13}
\end{equation*}
$$

where $C P U E_{y}$ is the catch rate in year $y, y r 2$ and $y r 1$ represent the last and the first years in the reference period respectively.

For each species a table of landings and of standardized catch rates was assembled. These included all catches (Commonwealth landings, Non-trawl catches, combined State catches, and discards). The State catches are available back to 1994 and non-trawl catches are from 1998. Catches prior to 1994 are either taken from an historical catch database or, if no data are available for the species, then they are taken from the AFMA GenLog Catch and Effort database as processed by CSIRO. The catch rates are standardized, usually from 1986, using methods described in Haddon (2014).

Percent discards are estimated from ISMP observations from 1998 to the current year. Discards for earlier years, prior to ISMP sampling, are estimated by taking the overall average percent discard from 1998 to the 2006 and applying that discard rate to the reported landings for the earlier years. The year 2006 was selected as the final year as discarding practices altered at about that time following the structural adjustment and the introduction of the Harvest Strategy Policy. For Eastern Gemfish the average discard rate was determined for 1998-2002 to allow for the non-target nature of the fishery following 2002. The calculation of the earlier discards is done so that the total catches can be estimated even though only the landed catches are available. To calculate the discards for a given year we used

$$
\begin{equation*}
D_{y}=\frac{C_{y} \bar{D}_{98-06}}{\left(1-\bar{D}_{98-06}\right)} \tag{14}
\end{equation*}
$$

Discard proportions for the projected year for which the RBC is being calculated are taken as a weighted mean of the previous four years:

$$
\begin{equation*}
\mathrm{D}_{\mathrm{CUR}}=\left(1.0 \mathrm{D}_{y-1}+0.5 \mathrm{D}_{y-2}+0.25 \mathrm{D}_{y-3}+0.125 \mathrm{D}_{y-4}\right) / 1.875 \tag{15}
\end{equation*}
$$

Where $D_{C U R}$ is the estimated discard rate for the coming year y, D_{y-1} is the discards rate in year $y-1$. The discard rate in year y is the ratio of discards to the sum of landed catches plus those discards (this can vary between $0-100 \%$):

$$
\begin{equation*}
D_{y}=\frac{\text { Discard }_{y}}{\left(\text { Catches }_{y}+\text { Discard }_{y}\right)} \tag{16}
\end{equation*}
$$

For each species, reference years were selected by the RAGs to generate estimates of target catches and target catch rates. In addition, a decision was required as to whether the fishery could be considered as fully developed or otherwise (Error! Reference source not found.). Where a fishery was not onsidered to be fully developed the target catch rate, $C P U E_{\text {targ }}$, was divided by two as a proxy for expected changes to catch rates as the fishery develops and the resource stock size declines towards the target of 48% unfished biomass.

Plots are given of the total removals illustrating the target catch level. In addition, the standardized catch rates are illustrated with the target catch rate and the limit catch rate. Finally, where the data are available, plots are given of the Total removals contrasted with State removals, and of discards and non-trawl catches.

11.3.2 Data Manipulations

The default reference years were 1986-1995, but various species required different reference years to account for the specific development of each fishery; these are noted in each analysis. In addition, Silver Warehou and Ribaldo were two fisheries where the state of development was such that the exhibited catch rates were unlikely to be representative of a developed fishery and so the target catch rates were halved; these details are provided in Table 11.4.

11.3.3 The Inclusion of Discards

Some species, especially redfish (Centroberyx affinis), inshore Ocean Perch (Helicolenus percoides), and Mirror Dory (Zenopsis nebulosus), have experienced high levels of discarding but the reported catch rates relate only to the estimated landed weights. In those species where discarding makes up a significant proportion of the catch (in some years more redfish were discarded than landed and more inshore ocean perch tend to be discarded than landed) it is reasonable to ask how the discards would have affected catch rates. This is an important question because standardized commercial catch rates are used in Australian stock assessments as an index of relative abundance (Haddon, 2010); if ignoring discards leads to a consistent bias this could affect the outcome of the assessments and thus, the assessments should become aware of the effects of discards.

Catch rates are used in assessments as an index of relative abundance through time and it is the trends exhibited by the catch rates that are important rather than their absolute values. If the discard levels are relatively constant through time and evenly distributed amongst the fleet, then their inclusion would not be expected to influence the trends in catch rates except to add noise. In all cases the discard rates are estimates based on sub-sampling the fleet of vessels. That the estimates are uncertain can be seen simply by considering the summary data tables in this document; where discards rates are not low they are very variable between years. Redfish provide an extreme where in 1998 the estimate was 2324 t , which was nearly 56% of the total catch, while in 1999 discards estimated at only 69 t , making up on
about 5% of the total catch. So in those cases where discard levels are low, adding discards to the estimation of catch rates is not expected to alter outcomes.

For those species, such as redfish and ocean perch, where discard rates are much higher it was decided to include those estimated catches to determine their effect on the outcome of the Tier 4 analyses. In 2010 it was concluded that while the inclusion of discards contributed a great deal of noise to the analyses, for those species where discarding made up significant proportions of the overall catch the discard augmented catch rates should be examined each year as a sensitivity analysis to contrast with the outcome from the un-augmented catch rates (Haddon, 2010).

11.3.4 The Analyses Including Discards

Discard rates cannot simply be added to known catches on the way to calculating catch rates. The standardized catch rates are estimated from individual catch and effort records but the estimates of discards are summary estimates for each fishery. While a method for incrementing the standardized catch rates has been developed it should be noted that this ignores all complications relating to unknown aspects of discarding behaviour (is the discard rate constant across all catch sizes, across all vessels, across all areas? etc). This means that including discard catches into the annual catch rate estimates introduces an unknown amount of uncertainty into the analysis. It should also be noted that the discard estimates are highly variable from year to year and derive from relatively small samples of all trips contributing to catches.

The method developed was to find the multiplier needed to adjust ratio mean catch rates and apply that to the standardized catch rates (Haddon, 2010). The ratio mean catch rates require the annual sum of catches for the fishery along with the sum of effort and ratio means calculated for each year. The discard estimates from the fishery can be added to the catch totals and new ratio means calculated and compared. The multiplier needed to make the same changes to the ratio mean catch rates can then be developed and applied to the standardized catch rates.

The ratio mean is simply the sum of all catches divided by the sum of effort

$$
\begin{equation*}
\hat{I}_{R, t}=\frac{\sum C_{t}}{\sum E_{t}} \tag{17}
\end{equation*}
$$

where $\hat{I}_{R, t}$ is the ratio mean catch rate for year $t, \Sigma C_{t}$ is the sum of landed catches in year t, and ΣE_{t} is the sum of effort (as hours trawled) in year t. If ΣD_{t} is the sum of discards in year t then the discard incremented ratio mean catch rate would be

$$
\begin{equation*}
\hat{I}_{D, t}=\frac{\sum C_{t}+\sum D_{t}}{\sum E_{t}} \tag{18}
\end{equation*}
$$

The same values of $\hat{I}_{D, t}$ can also be obtained using the following multiplier

$$
\begin{equation*}
\hat{I}_{D, t}=\left[\left(\sum D_{t} / \sum C_{t}\right)+1\right] \times I_{t} \tag{19}
\end{equation*}
$$

where I_{t} is the catch rate estimate to be modified by the inclusion of discards. If this is the ratio mean from Equ (17) then the augmented catch rates would be identical to those produced by Equ (18). In practice, the catch rates used with the multiplier are the standardized catch rates from Haddon (2010).

In the case of redfish and inshore ocean perch the discard augmented standardized mean catch rates were calculated, and compared visually with the geometric mean and original standardized catch rates. After the re-analysis of the catch rates these can be introduced into the TIER 4 analysis for Inshore Ocean Perch using the standard methods as described in Haddon (2010b).

If discarding is variable through time then it may be worthwhile including those discards into the CPUE calculations. It should be noted that the objective of doing this is to attempt to account for the CPUE being biased low through the actual catches being higher than those reported and those used in the usual CPUE calculations. However, there is a risk that if there were many shots that were totally discarded then including those discards into the CPUE will in fact bias the resulting CPUE high! Because any estimates of the proportion of discarding of complete shots of a species are invariably poor, this means that when including discards into a CPUE analysis to obtain a full appreciation of the effects of discard it is necessary to contract the analysis without discards with the analysis that includes discards. The actual CPUE will be bracketed by the two time series.

Table 11.4. Characteristics used in the TIER 4 method. If a species is not considered to be fully fished during the reference period then the target catch rate is to be divided by two.

	Reference Years	Fully Fished by Reference Period	First year with catches $>$ 100t.	Target CPUE
Species	$1986-1995$	1	1986	0.48
Mirror Dory	$1986-1995$	1	1986	0.48
Mirror Dory East	$1996-2005$	1	1996	0.48
Mirror Dory West	1	1994	0.48	
Western Gemfish Discard	$1992-2001$			

11.3.5 Selection of Reference Periods

The Tier 4 requires a reference period to be selected in order to establish target and limit levels of catch rates and associated target levels of catch that are deemed by the RAG to act as a proxy for the desired state for the fishery. These act as a proxy for the Harvest Strategy Policy reference points of 48% and 20% unfished spawning biomass. The original Tier 4 rule that used a linear regression of the last four year's catch rates to determine whether catches increase or decrease was not able to rebuild a resource towards a desired target level and the current approach was developed so as to be able to manage a fishery towards a target and away from a limit.

The essence of the Tier 4 control rule is that it sets a RAG agreed target catch rate, which has an associated target catch. An estimate of current catch rates (usually the average of the last four years) is compared with the target and a multiplier is estimated which is to be applied to the target catch to generate the recommended biological catch.

To select a reference period requires a time series of comparable catch rates. For this reason the use of standardized catch rates should be an improvement over using, for example, the observed arithmetic or geometric mean catch rates. Catch rate data is available in the SESSF for all targeted species from 1986-2011, although it needs to be noted that the character of the fishery has changed markedly during that period. Little et al. (2009) provide a discussion on how reference periods might be selected.

They proposed a default ten year period of 1986 - 1995, stating: "We have assumed that the average CPUE from 1986 to 1995 corresponds to that which would be attained if the stock were at the level that provides the maximum economic yield, $B_{M E Y}$. The limit CPUE is 40% of this CPUE." (Little et al., 2009, p 234).

For each species, reference years were selected by the RAGs to generate estimates of target catches and target catch rates. In addition, a decision was required as to whether the fishery could be considered as fully developed or otherwise during the reference period or not. Where a fishery was not considered to be fully developed the target catch rate, CPUE targ, was divided by two as a proxy for expected changes to catch rates as the fishery develops and the resource stock size declines towards the assumed proxy target for 48% unfished biomass.

Little et al. (2009) proposed three rules used to estimate the CPUE target:

1. The CPUE target for stocks fully exploited at or prior to 1986 is based on the average CPUE from 1986-1995.
2. Where fishing exploitation up to 1986 is thought to be minimal, the CPUE determined in step 1 is halved (to provide a catch rate proxy for $B_{M E Y}$).
3. Where fishing exploitation after 1986 is low, the first year in which catches are above 100 t signifies the start of the 10 year period for which CPUE targeted is calculated.

Once the average CPUE for the reference period has been selected as the target CPUE then the limit CPUE is defined as 40% of the target. All of these rules make the assumption that the target catch rates have achieved an equilibrium with the target catches. In other words, if the target catch was maintained long enough the target catch rate would be the result.

11.3.6 Treatment of Non-Target Species

In 2012, the SESSF RAG determined that the assessments of those species which do not constitute the economic drivers for a fishery might use the proxy for $\mathrm{B}_{\text {MSY }}$ as the target instead of $\mathrm{B}_{\text {MEY }}$. In practice this means that the target is assumed to be a proxy for B_{40} rather than B_{48}. For the Tier 4, this means modifying the control rule used to estimate the RBC by multiplying the target catch rate by $5 / 6$. If the original target was a proxy for $48 \% B_{0}$, then $5 / 6^{\text {th }}$ or 0.83333 of this target would be a proxy for $B_{40 \%}$. This option may possibly become more important when the new revised harvest strategy policy that is being developed is implemented.

11.3.7 The Tier 4 Assumptions

All stock assessments involve a series of assumptions (Table 11.5). More attention is needed to these assumptions to ensure that the limitations of the Tier 4 assessments are understood.

Table 11.5. The assumptions that need to be met for the Tier 4 assessment to be valid. This list is not necessarily exhaustive and will be added to in future years.

Title	Description
Informative	There is a linear relationship between catch rates and exploitable biomass; if there is hyper-stability (catch rates remain stable while stock size changes) or hyper- depletion (catch rates decline much faster than stock size changes) then the
standard Tier 4 analysis would provide biased results.	
Consistent	
CPUE through	The character of the estimated catch rates has not changed in significant ways through the period from the start of the reference period to the end of the most recent year; If there has been significant effort creep altering the catchability, or there have been changes to the fleet that have altered the relative efficiency of the vessels fishing, or the catchability of the species by the fleet has been altered by other changes then the comparability of recent catch rates with the target period may be compromised. Such changes would obviously reduce the responsiveness of the Tier 4 method to change and may generate completely inappropriate management advice. Included in this clause are the effects of targeting or not targeting of deep water or aggregated species. When catch rates are extremely variable through time, such that mean estimates become unreliable measures of stock status, then the Tier 4 approach cannot be validly applied.
Plausible targetThe reference period provides a good estimate of the stock when at a depletion reference period level of 48\% unfished spawning biomass; the Tier 4 method is based on catch rates and thus relates to exploitable biomass and not spawning biomass. As a minimum the reference period will refer to a period when the stock was in an acceptable,	
productive and sustainable state. But there can be no guarantees that the target	
aimed for is really B48\%.	

11.4 Results for Tier 4 species

11.4.1 Mirror Dory East (DOM - 37264003 - Zenopsis nebulosus)

Mirror Dory East relates to catches of Mirror Dory taken in SESSF zones 10, 20 and 30.

Table 11.6. Mirror Dory data for the TIER 4 calculations. Total is the sum of Discards, State, Non Trawl and SEF2 catches. All values in Tonnes. CE is the standardized catch rate for Zones 10 to 30 in depths $0-600 \mathrm{~m}$ (Sporcic and Haddon, 2016). GeoMean is the geometric mean catch rates. Discards are estimates from 1998 to present. The ratio of discards to catch over the $1998-2006$ period was used to estimate the discards between 1986 and 1997, the proportion of which is the PDiscard. The greyed cells represent the reference period.

Year	Catch	Discards	Total	PDiscard	CE	GeoMean
1986	367.985	91.091	459.076	0.198	1.1970	1.6108
1987	413.571	102.375	515.946	0.198	1.3068	1.7147
1988	313.237	77.539	390.776	0.198	1.1788	1.4520
1989	513.736	127.170	640.906	0.198	1.4157	1.9914
1990	254.380	62.969	317.349	0.198	1.3416	1.7676
1991	170.954	42.318	213.272	0.198	1.1554	1.2213
1992	140.441	34.765	175.206	0.198	1.0048	1.0146
1993	267.091	66.116	333.207	0.198	1.0881	1.2209
1994	303.620	75.158	378.777	0.198	0.9552	1.0060
1995	242.777	60.097	302.874	0.198	0.8680	0.8853
1996	262.435	64.963	327.398	0.198	0.7589	0.6702
1997	361.397	89.460	450.857	0.198	0.8024	0.7430
1998	291.383	76.246	367.629	0.207	0.7236	0.6959
1999	299.692	40.790	340.482	0.120	0.6480	0.6767
2000	186.698	79.861	266.558	0.300	0.5029	0.4157
2001	167.701	159.648	327.348	0.488	0.5026	0.3512
2002	243.363	43.250	286.613	0.151	0.6295	0.4523
2003	533.382	118.276	651.658	0.182	0.9158	0.6678
2004	405.706	110.066	515.772	0.213	0.8766	0.6245
2005	536.383	42.614	578.998	0.074	1.1240	0.8592
2006	402.464	22.031	424.496	0.052	1.1288	0.8932
2007	254.469	48.904	303.373	0.161	1.2094	0.9842
2008	391.325	75.650	466.976	0.162	1.3340	1.2430
2009	411.469	270.788	682.256	0.397	1.4220	1.3625
2010	432.522	188.472	620.994	0.304	1.1899	1.2381
2011	390.628	170.216	560.844	0.304	1.1962	1.0964
2012	338.672	147.576	486.248	0.304	0.9370	0.9714
2013	249.475	2.629	252.103	0.010	0.9644	1.0172
2014	136.620	38.534	175.154	0.220	0.8095	0.6075
2015	190.385	1.230	191.615	0.006	0.8131	0.5455

Table 11.7. RBC calculations for Mirror Dory East. C targ and CPUE $_{\text {targ }}$ relate to the period 1986-1995, CPUE $_{\text {Lim }}$ is 20% of the B_{0} proxy, and $\overline{\boldsymbol{C P} \boldsymbol{U E}}$ is the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. Wt_Discard is the weighted average discards from the last four years, as with Equ (15).

Ref_Year	$1986-1995$
CE_Targ	1.1511
CE_Lim	0.4796
CE_Recent	0.881
Wt_Discard	11.229
Scaling	0.5977
Last Year's TAC	437
Ctarg $^{\text {RBC }}$	372.739

Figure 11.1. Mirror Dory. Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

11.4.2 Mirror Dory East - Discards

Following instructions from the RAG an alternative Tier 4 analysis for the eastern Mirror Dory was performed to determine the impact of recent high levels of discard rate on the catch rates. In this case there was a marked effect, especially in some of the last eight years, the last four are used in the estimate of current CPUE. The effect of this is to alter the estimate of the RBC from about 465 t to 497 t. This enables the reduction to the RBC due to the increased discard levels to be accounted for in the calculation of the TAC.

Table 11.8. Mirror Dory data for the TIER 4 calculations. Total is the sum of Discards, State, Non Trawl, SEF2, and ECDW catches. All values in Tonnes. StandCE is the standardized catch rate for all Zones 10 to 50 in depths $0-1000 \mathrm{~m}$ (Haddon, 2013). GeoMean is the geometric mean catch rates. (D/C) +1 is the multiplier used with StandCE to generate DiscCE (see the Methods).

Year	Catch	Discards	Total	$(\mathrm{D} / \mathrm{C})+1$	StandCE	DiscCE	GeoMean	TAC
1986	367.985	91.091	459.076	1.2475	1.1970	1.1849	1.6108	
1987	413.571	102.375	515.946	1.2475	1.3068	1.2936	1.7147	
1988	313.237	77.539	390.776	1.2475	1.1788	1.1668	1.4520	
1989	513.736	127.170	640.906	1.2475	1.4157	1.4013	1.9914	
1990	254.380	62.969	317.349	1.2475	1.3416	1.3280	1.7676	
1991	170.954	42.318	213.272	1.2475	1.1554	1.1437	1.2213	
1992	140.441	34.765	175.206	1.2475	1.0048	0.9946	1.0146	
1993	267.091	66.116	333.207	1.2475	1.0881	1.0771	1.2209	800
1994	303.620	75.158	378.777	1.2475	0.9552	0.9455	1.0060	800
1995	242.777	60.097	302.874	1.2475	0.8680	0.8592	0.8853	800
1996	262.435	64.963	327.398	1.2475	0.7589	0.7512	0.6702	800
1997	361.397	89.460	450.857	1.2475	0.8024	0.7943	0.7430	800
1998	291.383	76.246	367.629	1.2617	0.7236	0.7243	0.6959	800
1999	299.692	40.790	340.482	1.1361	0.6480	0.5841	0.6767	800
2000	186.698	79.861	266.558	1.4278	0.5029	0.5697	0.4157	800
2001	167.701	159.648	327.348	1.9520	0.5026	0.7784	0.3512	800
2002	243.363	43.250	286.613	1.1777	0.6295	0.5883	0.4523	640
2003	533.382	118.276	651.658	1.2217	0.9158	0.8878	0.6678	576
2004	405.706	110.066	515.772	1.2713	0.8766	0.8842	0.6245	576
2005	536.383	42.614	578.998	1.0794	1.1240	0.9627	0.8592	700
2006	402.464	22.031	424.496	1.0547	1.1288	0.9447	0.8932	634
2007	254.469	48.904	303.373	1.1922	1.2094	1.1441	0.9842	788
2008	391.325	75.650	466.976	1.1933	1.3340	1.2631	1.2430	634
2009	411.469	270.788	682.256	1.6581	1.4220	1.8708	1.3625	718
2010	432.522	188.472	620.994	1.4358	1.1899	1.3555	1.2381	718
2011	390.628	170.216	560.844	1.4358	1.1962	1.3627	1.0964	718
2012	338.672	147.576	486.248	1.4358	0.9370	1.0674	0.9714	718
2013	249.475	2.629	252.103	1.0105	0.9644	0.7733	1.0172	1077
2014	136.620	38.534	175.154	1.2821	0.8095	0.8187	0.6075	808
2015	190.385	1.230	191.615	1.0065	0.8131	0.6493	0.5455	437

Discards make up approximately 19.84 \% of the catch over the 1998-2006 period, but this is an estimate for the combined east and west. According to an earlier RAG decision this value multiplied by proportion of catch taken in the east, was used to estimate the discards for the years 1986 - 1997.

Table 11.9. RBC calculations for Mirror Dory East, with Discards. $\mathrm{C}_{\text {targ }}$ and $\mathrm{CPUE}_{\text {targ }}$ relate to the period 19861995, CPUE ${ }_{\text {Lim }}$ is 20% of the B_{0} proxy, and $\overline{\boldsymbol{C P U E}}$ is the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. Wt_Discard is the weighted average discards from the last four years, as with Equ (15).

Ref_Year	$1986-1995$
CE_Targ	1.1329
CE_Lim	0.472
CE_Recent	0.8236
Wt_Discard	21.121
Scaling	0.5319
Last Year's TAC	437
C $_{\text {targ }}$	372.739
RBC	$\mathbf{1 9 8 . 2 7 8}$

MirrorDoryEDiscard

Figure 11.2. Mirror Dory. Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

11.4.3 Dory West (DOM - 37264003 - Z. nebulosus)

Table 11.10. Mirror Dory West data for the TIER 4 calculations. Total is the sum of Discards, State, Non Trawl and SEF2 catches. All values in Tonnes. CE is the standardized catch rate for Zones 40 to 50 in depths $0-600 \mathrm{~m}$ (Sporcic \& Haddon, 2016). GeoMean is the geometric mean catch rates. Discards are estimates from 1998 to present. The ratio of discards to catch over the 1998 - 2006 period was used to estimate the discards between 1986 and 1997, the proportion of which is the PDiscard.

Year	Catch	Discards	Total	State	PDiscard	CE	GeoMean
1986	5.911	1.463	7.374		0.198	2.4182	37.8926
1987	12.44	3.079	15.519		0.198	1.6631	36.0604
1988	12.01	2.973	14.983		0.198	1.3527	37.1811
1989	8.919	2.208	11.127		0.198	1.6690	45.3237
1990	7.989	1.977	9.966		0.198	1.1784	37.8770
1991	10.247	2.536	12.783		0.198	0.8254	17.7768
1992	7.377	1.826	9.204		0.198	0.6867	14.5194
1993	14.753	3.652	18.404		0.198	0.7900	16.7714
1994	14.844	3.675	18.519	1.414	0.198	0.7171	14.7748
1995	30.848	7.636	38.484	3.632	0.198	0.9072	15.3638
1996	93.491	23.143	116.634	7.634	0.198	1.2887	23.4103
1997	120.196	29.753	149.949	7.365	0.198	1.3047	24.4653
1998	146.909	38.442	185.351	9.046	0.207	1.2403	27.5790
1999	80.762	10.992	91.754	7.835	0.120	0.7984	17.1138
2000	29.391	12.572	41.964	1.512	0.300	0.4514	7.8627
2001	138.097	131.465	269.562	4.655	0.488	0.7926	14.1812
2002	300.692	53.438	354.13	11.966	0.151	1.1652	24.8208
2003	203.644	45.157	248.801	18.918	0.181	0.9774	20.6958
2004	221.538	60.102	281.64	37.575	0.213	0.9851	20.4507
2005	126.623	10.06	136.682	14.026	0.074	0.7727	15.1798
2006	88.39	4.839	93.228	15.384	0.052	0.6580	15.7843
2007	81.341	15.632	96.973	6.957	0.161	0.5877	14.4232
2008	72.097	13.938	86.034	3.439	0.162	0.6699	16.1944
2009	149.818	98.595	248.414	9.372	0.397	1.0251	20.0140
2010	200.256	87.261	287.517	3.807	0.303	1.2380	26.4545
2011	177.612	77.395	255.007	1.904	0.304	0.9415	21.5957
2012	82.634	36.008	118.642	1.195	0.303	0.5561	16.6445
2013	64.532	0.68	65.212	1.251	0.010	0.7475	22.1155
2014	77.931	0.821	78.753	0.050	0.010	0.8163	22.8337
2015	71.06	0.459	71.519		0.006	0.7759	18.7325

Discards make up approximately 19.84% of the catch over the 1998-2006 period, used for estimating discard rates for 1986 - 1997. Discard rates for 2013 - 2015 are draft estimates.

Table 11.11. RBC calculations for Mirror Dory West. $\mathrm{C}_{\text {targ }}$ and CPUE $_{\text {targ }}$ relate to the period 1996-2005, CPUE $_{\text {Lim }}$ is 20% of the B_{0} proxy, and $\overline{\boldsymbol{C P U E}}$ is the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. Wt_Discard is the weighted average discards from the last four years, as with Equ (15).

Ref_Year	$1996-2005$
CE_Targ	0.9776
CE_Lim	0.4074
CE_Recent	0.7240
Wt_Discard	2.955
Scaling	0.5551
Last Year's TAC	437
Ctarg $^{\text {RBC }}$	187.647

Figure 11.3. Mirror Dory. Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

11.4.4 Western Gemfish (GEM - 37439002 - Rexea solandri)

Western Gemfish occurs both in the GAB and in the SESSF, but only the SESSF fishery component has a set TAC and quota. This year a Tier 1 assessment is being developed for the Western Gemfish stock but that is currently defined as including those fish in the GAB and those taken in SESSF Zone 50. A specific mechanism for converting the outcome of that Tier 1 assessment into a quota setting RBC for the SESSF has still to be agreed upon. In the meantime, to ensure that TAC setting is possible a Tier 4 analysis of the western gemfish catches taken in the SESSF is presented here. The data (Table 11.12) can be used to conduct both an ordinary Tier 4 analysis as well as the Tier 4 including discards which modifies the CPUE time-series in an attempt to include discarded fish (Table 11.13; Figure 11.4 and Figure 11.5).

Table 11.12. Western Gemfish data from SESSF zones 40 and 50 for the TIER 4 calculations. Total is the sum of Discards, State, Non Trawl and SEF2 catches. All values in Tonnes. CE is the standardized catch rate for Zones 40 to 50 in depths $0-600 \mathrm{~m}$ (Sporcic \& Haddon, 2016). GeoMean is the geometric mean catch rates. Both scaled to a mean of 1.0 between 1992 - 2015. Discards are estimates from 1998 to 2006. The ratio of discards to catch over the 1998 - 2006 period was used to estimate the discards between 1992 and 1997, the proportion of which is the PDiscard. (D/C) +1 is the multiplier used with StandCE to generate DiscCE (see the Methods).

Year	Catch	Discards	Total	$(\mathrm{D} / \mathrm{C})+1$	StandCE	DiscCE	GeoMean
1992	84.384	3.820	88.204	1.0453	1.2524	1.0099	1.6518
1993	90.489	4.097	94.586	1.0453	1.2064	0.9728	1.6323
1994	153.086	6.930	160.016	1.0453	1.2989	1.0474	1.5973
1995	146.940	6.652	153.592	1.0453	1.1484	0.9261	1.1815
1996	228.378	10.339	238.717	1.0453	1.2583	1.0146	1.3247
1997	288.838	13.076	301.914	1.0453	1.1212	0.9041	1.3063
1998	185.314	11.996	197.310	1.0647	1.1877	0.9756	1.3011
1999	270.981	4.995	275.976	1.0184	1.1319	0.8893	1.2641
2000	348.854	29.965	378.818	1.0859	1.2205	1.0225	1.2330
2001	253.121	8.990	262.111	1.0355	0.9905	0.7912	1.1963
2002	138.694	9.120	147.814	1.0658	0.7553	0.6210	0.7003
2003	177.360	12.574	189.934	1.0709	0.8767	0.7243	1.0991
2004	149.555	8.905	158.461	1.0595	0.8519	0.6963	0.7777
2005	156.447	1.580	158.027	1.0101	0.9010	0.7021	1.0433
2006	159.639	0.545	160.184	1.0034	0.7283	0.5638	0.8847
2007	99.359	5.119	104.479	1.0515	0.6982	0.5664	0.7357
2008	86.396	9.006	95.401	1.1042	0.7974	0.6793	0.7403
2009	87.488	51.008	138.496	1.5830	0.9010	1.1003	0.6387
2010	121.226	31.837	153.064	1.2626	0.9421	0.9177	0.6263
2011	79.705	120.438	200.143	2.5110	0.9807	1.8997	0.5562
2012	59.962	28.486	88.448	1.4751	0.9122	1.0381	0.5292
2013	43.768	99.628	143.396	3.2763	0.7967	2.0138	0.5489
2014	73.430	23.383	96.812	1.3184	1.1517	1.1714	0.8679
2015	50.364	78.093	128.458	2.5506	0.8905	1.7523	0.5634

Discards make up approximately 4.3 \% of the catch over the 1998-2006 period, used for estimating discard rates for 1986 - 1997. Discard rates for 2015 are draft estimates.

Table 11.13. RBC calculations for Western Gemfish. $\mathrm{C}_{\text {targ }}$ and $\mathrm{CPUE}_{\text {targ }}$ relate to the period 1992-2001, CPUE $_{\text {Lim }}$ is 20% of the B_{0} proxy, and $\overline{\boldsymbol{C P U E}}$ is the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. Wt_Discard is the weighted average discards from the last four years, as with Equ (15).

	With Discards	Without Discards
Ref_Year	$1992-2001$	$1992-2001$
CE_Targ	0.9554	1.1816
CE_Lim	0.3981	0.4923
CE_Recent	1.4939	0.9378
Wt_Discard	63.068	63.068
Scaling	1.9663	0.6462
Last Year's TAC	247	247
C $_{\text {targ }}$	215.124	215.124
RBC	$\mathbf{4 2 2 . 9 9 7}$	$\mathbf{1 3 9 . 0 2 4}$

Figure 11.4. Western Gemfish (Zones 40 and 50) with inclusion of discards (the fine pink line in the top left graph). Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

WesternGemfishZ4050

Figure 11.5. Western Gemfish (Zones 40 and 50) without the inclusion of discards (the fine pink line in the top left graph). Top left is the total removals with the fine line illustrating the target catch. Top right represents the standardized catch rates with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

11.5 References

AFMA (2009) SESSF Stock Assessment Methods and TAC Setting Process Version 1.5. 8p.
Haddon, M. (2010) Tier 4 Analyses (data from 1986 - 2008. Pp 319 - 369 in Tuck, G.N. (ed) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2009 Part 2. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 428 pp.
Haddon, M. (2014) Catch Rate Standardizations for Selected Species from the SESSF (data 19862012) pp $57-275$ in Tuck, G.N. (ed.) (2014) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2013. Part 2. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 487 p.

Little, R., Tuck, G.N., Haddon, M., Day, J., Klaer, N., Smith, A.D.M., Thomson, R., and S. Wayte (2009) Developing CPUE targets for the Tier 4 harvest strategy of the SESSF. Pp 233-254 in Tuck, G.N. (ed) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery: 2008 Part 2. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 331 pp.
Little, L.R., Wayte, S.E., Tuck, G.N., Smith, A.D.M., Klaer, N., Haddon, M., Punt, A.E., Thomson, R., Day, J. and M. Fuller (2011a) Development and evaluation of a cpue-based harvest control rule for the southern and eastern scalefish and shark fishery of Australia. ICES Journal of Marine Science. 68(8): 1699-1705.
Little, L.R., Wayte, S.E. and Tuck, G.N. The effects of Cmax on the Tier 4 Harvest Control Rule. Pp 3-9 in Tuck, G.N. (ed) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery: 2010 Part 2. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 419 pp.

R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Sporcic, M and M. Haddon (2016) Statistical CPUE standardizations for selected SESSF species (data to 2015). DRAFT - Prepared for the Australian Fisheries Management Authority SERAG meeting 11-12 October 2016. CSIRO Oceans and Atmosphere, Hobart. 206p.
Wayte, S.E. and Fuller, M. (2008) Tier 4 Harvest Control Rule applied to deepwater species 2008. Report to Deep RAG, December 2008. 23p.
Wayte, S.E. (ed.) 2009. Evaluation of new harvest strategies for SESSF species. CSIRO Marine and Atmospheric Research, Hobart and Australian Fisheries Management Authority, Canberra. 137 p.

12. Blue-Eye (Hyperoglyphe antarctica) Tier 4 Analysis using Catch-perHook for Auto-Line and Drop-Line from 1997-2015

Malcolm Haddon
CSIRO Oceans and Atmosphere, Castray Esplanade, Hobart 7000, Australia

12.1 Executive Summary

The Tier 4 analysis for Blue-Eye (Hyperoglyphe antarctica) is based on the CPUE, as catch-per-hook, from SESSF zones $20-50$ but the catches that go towards generating the target catch include all areas and methods except the GAB. This is a reflection of the hypothesis that the Blue-Eye in the GAB constitute a separate stock. However, currently in the GHT fishery, the Blue-Eye quota also applies in the GAB , so there is some confusion over the assessment and management details that may require attention.

The effect of the CPUE standardization is, as expected, to reduce the variation exhibited by the nominal catch rates seen in the fishery. However, in more recent years there still remains some relatively large rises and falls in catch rate over relatively short periods. This seems likely to reflect the fact that there are very few Auto-Line vessels that make large contributions to the fishery so if they alter their fishing patterns (perhaps in response to whale depredation or some other factor) then large changes in catch rates can occur. Such large changes over short periods are certainly not a direct reflection of equivalent changes in the stock size in such a long-lived species. For greater stability in the RBC predicted from the Tier 4 analysis it might be necessary to increase the number of years over which the more recent CPUE is averaged for comparison with the target.

The RBC from the analysis based on catch-per-hook catch rates is now 526 t .
This is a relatively large change in the RBC from last year, which is a reflection of the potential behaviour of the Tier 4 when CPUE is recovering from a relatively low period. The Tier 4 uses the last four years of the time-series to compare with the CPUE observed in the target period. In the most recent year, even though the CPUE has dropped from 2014, the 2015 figure remains much higher than the 2010 value that it has replaced in the four-year average, hence the recent increase. If such variation is deemed undesirable this too could be smoothed out by increasing the number of years over which to take the recent average.

12.2 Introduction

Blue-Eye trevalla (Hyperoglyphe antarctica) is currently managed as a single stock but its stock status is difficult to assess because, as a species, its adults are widely but patchily distributed, although its juveniles stages are widely dispersed. Not only is it patchily distributed but the fishery differs markedly by area through the application of different methods and histories of exploitation. The differences in exploitation history along with sampling different areas in different years may have been sufficient to have led to the appearance of heterogeneity in the biological characteristics of different populations. It is certainly the case that there is little consistency between consecutive years in the age structure and length structure of samples (Figure 12.1). Expected cohort progression is difficult or impossible to
follow using current data. This lack of consistency has thwarted previous attempts at applying a Tier 1 integrated assessment to Blue-Eye and has made the application of the Tier 3 catch-curve approach equally problematical (Fay, 2007a, b). Such spatial heterogeneity has recently been reviewed and further evidence presented, which supported the hypothesis that spatially structured differences existed between Blue-Eye populations around the south-east of Australia (Williams et al., 2016).

Figure 12.1. Age distributions sampled from the catches of Blue-Eye (Hyperoglyphe antarctica;) for the years 1995 - 2010 (Thomson et al, 2016), illustrating the variation between years. The sample sizes in the bottom row of numbers should be sufficient to provide a good representation if the stock were homogeneous in its properties. Blue-Eye shows inconsistencies every year with annual progressions of year classes being vague and ephemeral at best.

The Blue-Eye fishery has a relatively long history especially around Tasmania, however, while there is a long history of catches by trawl the majority of the catch has always been taken by line-methods (generally less than 10% of all catches have been taken by trawl since 2003; Table 12.1). Unfortunately, fisheries data from line methods, in the GHT fishery, only began to be collected comprehensively from late in 1997 onwards (Table 12.1). In addition, in 1997 Auto-Line fishing was introduced as an accepted method in the SESSF although very little fishing was conducted in 1997 and only in the last two months (Table 12.1, Figure 12.2). Auto-line related effort and catches increased from 2002-2003 onwards at the same time that drop-line records and catches began to decline (Figure 12.2; Table 12.1).

In the two years, 2013 - 2014, the drop-line catches dropped to 10 t or less while auto-line catches continue to dominate the fishery. However, in 2015, drop-line catches increased again to about 47 t , while auto-line catches dropped by about 30 t from the previous year (Table 12.1; Figure 12.2).

Figure 12.2. The trends in the number of records and the catches of Blue-Eye from 1997-2015 by the two main line methods (Table 12.1); most catches are now taken by auto-line.

Table 12.1. The number of records and catches per year for auto-line, drop-line, and trawl vessels reporting catches of Blue-Eye Trevalla from 1997-2015. Data filters were to restrict the fisheries included to SET, GAB, SEN, GHT, SSF, SSG, and SSH. Methods were limited to AL, DL, TW, and TDO. Finally only CAAB code $=$ 37445001 that identifies Hyperoglyphe antarctica were included.

Year	AL Catch	AL Record	DL Catch	DL Record	TW Catch	TW Record
1997	0.267	3	271.942	575	104.567	1500
1998	27.253	50	343.505	738	82.074	1398
1999	61.590	77	377.032	971	100.329	1712
2000	90.932	93	384.409	1075	95.042	1893
2001	47.884	76	335.873	797	90.218	1809
2002	134.067	234	223.074	619	67.998	1548
2003	219.676	487	221.649	587	28.918	1210
2004	329.608	1338	158.491	515	48.767	1558
2005	301.303	1142	93.779	363	42.969	1169
2006	354.582	1087	114.639	327	66.105	924
2007	455.097	667	46.011	127	38.321	834
2008	281.384	612	15.549	76	36.046	806
2009	325.893	578	30.158	105	39.386	618
2010	236.620	488	42.023	225	43.480	647
2011	267.318	562	59.381	230	23.268	624
2012	217.816	465	34.107	119	10.792	424
2013	190.515	360	7.762	47	22.893	358
2014	227.041	305	10.242	68	29.381	340
2015	198.232	282	46.711	92	25.128	301

12.2.1 Current Assessment and Management

When the Harvest Strategy Policy was implemented in 2007 (DAFF, 2007) a Tier 4 assessment was used to provide advice on annual recommended biological catch (RBC) levels for Blue-Eye instead of a Tier 1 assessment (after both using a Tier 1 statistical catch-at-age model or a Tier 3 catch-curve approach were rejected; Fay, 2007a, b). The Tier 4 uses standardized CPUE as an empirical performance measure of relative abundance that is assumed to be representative of the impact of catches on the whole stock. The average CPUE across a target period is selected by the RAG to provide the target reference point, which implies a limit CPUE reference point (0.41667 x target reference point; $0.41667 * 0.48=0.2$) below which targeted fishing is to stop. In between the target and the limit there is a harvest control rule that reduces the RBC as CPUE declines. The appropriate characterization of CPUE is therefore very important in this fishery (Little et al., 2011; Haddon, 2014b).

By 2007 the auto-line fishery was already dominating the Blue-Eye fishery but the time-series of significant catches by that method was relatively short (only six years of useful data from 2002-2007; Table 12.1 and Figure 12.2). At that time some way of extending the time series was required to allow for the application of the Tier 4 methodology. Unfortunately, in the log-book records there was, and still is, often confusion in how to record effort (in terms of number of lines and number of hooks per line, or number of line drops, or length of main line, etc.) so it was not feasible at that time to estimate CPUE as a catch-per-hook. Instead CPUE was based on catch-per-record, which was equivalent to catch-per-day. The CPUE standardization conducted in 2008 on data from 1997 - 2007 (Haddon, 2009) was the first time that the catch-per-day data from drop-line was combined with auto-line catch-per-day data, with a justification presented to the RAGs. This was followed in 2009 by a summary of the separate auto-line and drop-line CPUE and a more detailed defence for their combination (Haddon, 2010). While it was appreciated that the two methods are very different, the intent of combining their data was always to extent the time series of line-caught Blue-Eye back to 1997 rather than 2002; a difficulty brought about by the switch from Drop-Line fishing to Auto-Line fishing (Figure 12.2). Despite the extension of the time-series, the first few Tier 4 Blue-Eye analyses had overlap between the reference period (1997-2006) and the CPUE grad over the final four years (2004-2007); it took three more years for that overlap to cease.

Table 12.2. Blue-Eye catch by SESSF Zone. Data filtered as for Table 12.1; restrict the fisheries included to SET, GAB, SEN, GHT, SSF, SSG, and SSH. Methods were limited to AL, DL, TW, and TDO. Only Zones 20, $30,40,50,83,84,85,91$, and 92 have significant catches across all methods.

Year	10	20	30	40	50	60	70	82	83	84	85	91	92
1997	3.345	89.408	92.819	83.255	86.142	3.270			0.030		6.947	5.505	
1998	1.647	79.892	170.828	97.873	66.657	2.182			0.100		4.129	1.590	
1999	2.593	75.715	225.703	91.531	86.576	1.386	0.507				5.794	21.590	0.050
2000	0.985	45.090	275.350	128.207	95.664	0.045				0.357	9.554	1.100	0.750
2001	0.264	28.590	239.652	100.091	59.845	0.022	0.188		0.150	2.854	23.735	3.186	4.740
2002	0.489	39.713	180.660	75.521	76.950		0.100			1.561	6.530	33.664	7.850
2003	1.318	52.263	153.536	125.145	43.361	0.039				27.664	6.568	57.910	2.400
2004	0.222	73.836	148.512	113.323	63.726	0.742	0.400	0.946	12.713	61.283	54.842	5.045	0.180
2005	1.601	88.195	119.790	64.249	51.686	0.256	1.550	0.057	19.552	29.273	50.756	5.901	4.700
2006	1.732	69.824	157.401	83.899	41.087	0.930	2.420	0.169	31.511	43.438	89.189	10.375	2.500
2007	0.271	53.777	235.551	48.514	47.451	0.552	0.700		29.876	107.069	15.594		
2008	0.117	46.524	129.679	55.478	26.535	0.077		0.015	28.943	32.267	13.346		
2009	0.133	52.751	158.909	86.619	47.509	0.175	5.060		1.633	15.369	15.415	10.515	1.350
2010	0.109	26.136	98.273	54.924	97.551	0.100	1.153		6.549	9.532	15.929	7.932	3.935
2011	0.195	31.725	99.592	45.207	30.612	0.001	10.440		20.576	40.692	14.159	33.689	23.081
2012	0.188	21.728	67.388	77.448	21.092				8.428	9.736	3.752	42.938	10.017
2013	0.015	13.387	55.375	98.820	18.995	0.164	3.252		0.465	16.158	13.250	1.131	
2014	0.005	4.218	91.440	91.993	26.010				2.107	33.759	11.640	4.505	0.510
2015	0.012	9.793	75.974	73.330	26.186	0.546	0.750		2.490	22.160	3.621	37.833	9.872
Total	15.240	902.563	2776.430	1595.427	1013.633	10.487	26.520	1.188	165.122	453.171	364.750	284.408	71.934

In 2013 the stock status for Blue-Eye (Hyperoglyphe antarctica) was assessed using a standardized CPUE time series from the combined auto-line and drop-line fisheries (catch-per-day), which combined data from the two methods from 8 zones (SESSF zone $10-50$ with $83-85$). In addition, the time series of CPUE for trawls, relating to SESSF zones $20-30$ (eastern Bass Strait and eastern Tasmania) and $40-50$ (western Tasmania and western Bass Strait) were examined, although these trawl fisheries only relate to a small fraction of the total fishery so less attention is given them (Haddon, 2014 a, b).

This Blue-Eye analysis based on catch-per-day was repeated in 2014 (using data to the end of 2013; Sporcic and Haddon, 2015), however, because of the unaccounted influences of factors such as the introduction of closures (both all methods and solely for auto-line), depredations by whales, and having to ignore significant catches taken with other new methods, these standardizations, and the Tier 4 analyses dependent upon them, were no longer considered to provide an adequate representation of trends within, and hence the status of, the Blue-Eye fishery.

One outcome was the decision to re-examine available data to determine if it would be possible to generate a CPUE series based upon some measure of catch-per-hook rather than catch-per-day. The use of catch-per-hook would allow more fine detail to be discerned and might provide a more informative time-series, although it was no longer guaranteed that data from the two methods would still be able to be combined. However, the length of time-series for auto-line is now sufficiently long that such a combination is now no longer a requirement (although selecting a new target period might
still be an issue). This catch-per-hook analysis was conducted last year and repeated this year (Haddon, 2015,2016), with the intent of making the analysis easily repeatable.

12.2.2 Tier 4 Assessments

Blue-Eye (Hyperoglyphe antarctica) is a valuable and iconic species within the SESSF with most of the catches from 1997 - 2015 being taken in the Gillnet, Hook, and Trap fishery (GHT) using the Drop-Line and Auto-line methods.

The TIER 4 harvest control rules are the default procedure applied to species for which only limited information is available; specifically no reliable information on either current biomass levels or current exploitation rates. The Tier 4 assessment is the basis for an empirical harvest strategy that uses standardized catch rates as the fishery performance measure upon which a control rule is based (Little et al, 2011; Haddon, 2014b).

Ideally, in line with the notion of being more precautionary in the absence of information, the outcome from these analyses should be more conservative than those available from higher TIER analyses; this is now explicitly implemented by imposing a 15% discount factor on the RBC as a precautionary measure unless there are good reasons for not imposing such a discount on particular species. The application of the discount factor will occur unless RAGs generate explicit advice that alternative equivalent precautionary measures are in place (such as spatial or temporal closures) or that there is evidence of historical stability of the stock at current catch levels (AFMA, 2009).

In essence TIER 4 analyses require, as a minimum, a time series of total catches and of standardized catch rates.

12.3 Methods

12.3.1 Catch-per-Hook rather than Catch-per-Day

12.3.1.1 Catch-per-Day

Estimating the catch-per-day is simple. The database records are first filtered as appropriate for the species, the method, the regions, the depths, etc, and then catch rates are set as the daily catches and these are log-transformed when included in the CPUE standardizations.

An apparent advantage of catch-per-day is that it is less sensitive to changes in the routines used when data recording. For example, as will be seen in the Drop-Line effort data the NLD = number of line drops field held the value of 1 infrequently up to about 2006 but after that date the proportion of such records in the data increased markedly. This has almost no effect on the trend taken from catch-perday but introduced an enormous bias when using catch-per-hook, which meant the time series for catch-per-hook needed to cut shorter than when using catch-per-day.

On the other hand, this only seems to be an advantage and is really a weakness as it makes clear that using catch-per-day has the potential to obscure or hide major changes in fishing behaviour (at least the recording of it) through time.

12.3.1.2 Catch-per-Hook

Given that Auto-Line and Drop-Line fishing methods are very different it is not surprising that different approaches are needed to manipulate the database records to generate an acceptable timeseries of total-hooks-set per day. An objective of this work was to produce a repeatable algorithm of steps required to obtain the total-hooks-set by method. The process of exploring the data to sort out such an algorithm for both Drop-Line and Auto-Line was described in detail in Haddon (2016). Here only the algorithms and the resulting standardizations will be presented.

The standardization methods have been described previously (Haddon, 2014a) but the essentials are provided here to allow this document to be stand-alone.

12.3.2 Catch Rate Standardization

12.3.2.1 General Linear Modelling

Where trawling was the method used, catch rates were kilograms per hour fished; except for the analyses later in this document all other methods were as catch-per-shot because the various line and net methods record effort in widely varying ways (the number of hooks, the number of lines of hooks, or the number of line drops etc; there is greater consistency in more recent years but still sufficient heterogeneity to make the use of catch-per-hook unreliable). Once the database records were amended for internal consistency, then analyses based on catch-per-hook were conducted. All catch rates were natural log-transformed and a General Linear Model was used rather than using a Generalized Linear Model with a log-link on the untransformed data; this has advantages in terms of normalizing the data while stabilizing the variance, which the Generalized Linear Model approach does not always achieve appropriately (Venables \& Dichmont, 2004). The statistical models were variants on the form: LnCE $=$ Year + Vessel + Month + DepthCategory + Zone + Daynight. In addition, there were interaction terms which could sometimes be fitted, such as Month:Zone or Month: DepthCategory, although with the use of finer spatial areas other simpler models or more idiosyncratic terms were occasionally used. Thus, the CPUE, conditioned on positive catches of the species of interest, was statistically modelled with a normal GLM on log-transformed CPUE data:

$$
\begin{equation*}
\operatorname{Ln}\left(C P U E_{i}\right)=\alpha_{0}+\alpha_{1} x_{i, 1}+\alpha_{2} x_{i, 2}+\sum_{j=3}^{N} \alpha_{j} x_{i j}+\varepsilon_{i} \tag{20}
\end{equation*}
$$

where $\operatorname{Ln}\left(C P U E_{i}\right)$ is the natural logarithm of the catch rate (either $\mathrm{kg} / \mathrm{h}, \mathrm{kg} / \mathrm{shot}$, or $\mathrm{kg} / \mathrm{hook}$) for the i th shot, $x_{i j}$ are the values of the explanatory variables j for the i-th shot and the α_{j} are the coefficients for the N factors j to be estimated (α_{0} is the intercept, α_{1} is the coefficient for the first factor, etc.).

12.3.2.2 The Year Effect

For the lognormal model the expected back-transformed year effect involves a bias-correction to account for the log-normality; this then focuses on the mean of the distribution rather than the median:

$$
\begin{equation*}
C P U E_{t}=e^{\left(\gamma_{t}+\sigma_{t}^{2} / 2\right)} \tag{21}
\end{equation*}
$$

where γ_{t} is the Year coefficient for year t and σ_{t} is the standard deviation of the \log transformed data (obtained from the analysis). The year coefficients were all divided by the average of the year coefficients to simplify the visual comparison of catch rate changes:

$$
\begin{equation*}
C E_{t}=\frac{C P U E_{t}}{\left(\sum C P U E_{t}\right) / n} \tag{22}
\end{equation*}
$$

where CPUE $_{t}$ is the yearly coefficients from the standardization, $\left(\Sigma \mathrm{CPUE}_{\mathrm{t}}\right) / \mathrm{n}$ is the arithmetic average of the yearly coefficients, n is the number of years of observations, and CE_{t} is the final time series of yearly index of relative abundance.

12.3.2.3 Major Factors in Standardizations

The CPUE standardizations are linear models that consider linear relationships between the various factors included in the statistical models and the natural log and catch rates (LnCE). The specific model that was found to be optimum in all cases was:

$$
\text { LnCE }=\text { Year }+ \text { Vessel }+ \text { Month }+ \text { Zone }+ \text { DepCat }+ \text { Month:Zone }
$$

Generally, irrespective of the detail of the Blue-Eye data being analysed the order of the variables reflected the relative amount of data variation each factor accounted for in the statistical models. The SESSF zones do not follow a consistent sequence all around the coast (Figure 12.3).

A total of seven separate standardizations were conducted on the catch-per-hook data (Table 12.3). In line with the RAG minutes from last year the only combination of Auto-Line and Drop-Line standardizations which were amalgamated were those where only zones $20-50$ were included in the analysis, although some alternative are discussed. Rather than try to amalgamate separate standardizations alternatives were also considered which treated fishing method as a factor, and in addition, a further analysis was attempted which treated the Number of Line Drops as a two value factor (1 or >1). The combined analyses were compared with a single catch-per-day standardization (for zones $20-50$).

Table 12.3. The characteristics of the five factors included in the standardizations. The two time-series only overlap in the period 2002-2006. Seven separate standardizations were conducted consisting of three zone combinations for Drop-Line (all omitted records containing number-line-drops $=1$), and two combinations for Auto-Line. In addition, a separate standardization was conducted where all data was combined but Method was included as a factor. Finally the combined analysis was repeated but including the 'ones' variable as a factor instead of removing those records with 1 line drop recorded.

Factor	Drop-Line	Auto-Line
Year	$1997-2006$	$2002-2015$
Vessel	96 unique vessels	14 unique vessels
Month	$1-12$	$1-12$
Zone	$20-50,+(84,85),+91$	$20-50,+(83-85)$
DepCat	$200-600$	$200-600$
Method	DL	AL
ones	0,1	0

Figure 12.3. A schematic diagram depicting the statistical reporting zones in the SESSF, as used in this document. The GAB fishery is to the west of Zone 50. The main SESSF trawl zones are zones $10-50$. Each zone extends out to the boundary of the EEZ, except for zones 50 and 60, and for zones 92 and 91, which are bounded by zone 70 .

12.3.3 TIER 4 Harvest Control Rule

The standardizations are developed for use in the Tier 4 harvest control rule (Little et al, 2011; Haddon, 2014b). The data required to conduct a Tier 4 assessment are time series of catches and catch rates. For some species, where there is only a single stock and a single primary fishing method, analyses are presented using standardized CPUE data (Haddon, 2014b). For other species, there may be multiple stocks or areas or multiple methods and selecting which time series of catch rates to use in the analyses is not always straightforward. In those cases, the standardized time series for the method now accounting for the majority of current catch was used. With Blue-Eye, in order to obtain a time-series of sufficient length the catch rates from Drop-Line and Auto-Line have been combined.

Standard analyses were set up in the statistical software, R Core Team (2016). These standard analyses provide the tables and graphs required for the Tier 4 analyses. All data and results for each analysis are presented for complete transparency. The TIER 4 harvest control rule formulation essentially uses a ratio of current catch rates with respect to the selected limit and target reference points to calculate a scaling factor for the current year $\left(S F_{t}\right)$. This scaling factor is applied to the target catch to generate an RBC. To generate a TAC, known discards and State catches are first removed and then, if applicable, the 15% discount is applied. The TAC calculations are conducted by AFMA. This report focusses on providing the estimates of the Recommended Biological Catches.

$$
\begin{equation*}
\text { Scaling Factor }=S F_{t}=\max \left(0, \frac{\overline{C P U E}-C P U E_{\mathrm{lim}}}{C P U E_{\mathrm{targ}}-C P U E_{\mathrm{lim}}}\right) \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
R B C=C_{\operatorname{targ}} \times S F_{t} \tag{24}
\end{equation*}
$$

If new data becomes available, for example, more State data has become available this year, or other large changes occur in the catch rates then the RBC could undergo large changes. Such changes are constrained by the following limits:

$$
\begin{array}{l|l}
R B C_{y}=1.5 R B C_{y-1} & R B C_{y}>1.5 R B C_{y-1} \tag{25}\\
R B C_{y}=0.5 R B C_{y-1} & R B C_{y}<0.5 R B C_{y-1}
\end{array}
$$

where
$R B C_{y} \quad$ is the RBC in year y
CPUE $_{\text {targ }} \quad$ is the target CPUE for the species; Eq. (13)
$C P U E_{\text {lim }} \quad$ is the limit CPUE for the species $=$ either
$(0.2 / 0.48) *$ CPUE $_{\text {targ }}$ or
$(0.2 / 0.40) *$ CPUE $_{\text {targ }}$ depending on the selected target for the species
$\overline{C P U E} \quad$ the average CPUE over the past m years; m tends to be the most recent four years.
$C_{t a r g} \quad$ is a catch target derived from a period of historical catch that has been identified as a desirable target in terms of CPUE, catches and status of the fishery, e.g. 1986-1995 (For Blue-Eye this is set at 1997-2006). This is an average of the total removals for the selected reference period, including any discards; Eq. (12).

$$
\begin{equation*}
C_{\mathrm{targ}}=\frac{\sum_{y=y r 1}^{y r 2} L_{y}}{(y r 2-y r 1+1)} \tag{26}
\end{equation*}
$$

where L_{y} represents the landings in year y.

$$
\begin{equation*}
C P U E_{\text {targ }}=\frac{\sum_{y=y r 1}^{y r 2} C P U E_{y}}{(y r 2-y r 1+1)} \tag{27}
\end{equation*}
$$

where $C P U E_{y}$ is the catch rate in year $y, y r 2$ and $y r 1$ represent the last and the first years in the reference period respectively.

For each species a table of landings and of standardized catch rates was assembled. These included all catches (Commonwealth landings, Non-trawl catches, combined State catches, and discards). The standardization CPUE are those provided in the current document and are set as catch-per-hook (contrasted with a single catch-per-day standardization.

Percent discards are estimated from ISMP observations from 1998 to the current year. Fortunately, discard rates for Blue-Eye are invariably low (Upston and Thomson, 2016).

12.3.3.1 Reference Points

For each species, reference years were selected by the RAGs to generate estimates of target catches and target catch rates. In the case of Blue-Eye in Zones $20-50$ this period was assumed to be 1997 2006 (the first ten years of the improved data collection period).

Plots are given of the total removals illustrating the target catch level. In addition, the standardized catch rates are illustrated with the target catch rate and the limit catch rate.

12.3.3.2 Tier 4 Specification

The Tier 4 analysis for Blue-Eye in 2016 will be:

- based upon the catch-per-hook time series of Drop-Line and Auto-Line data.
- the Drop-Line time-series will extend from 1997 - 2006 and the Auto-Line time-series will extend from 2002-2015.
- the two time-series will be combined by setting the mean standardized CPUE in the period 2002 -2006 to 1.0 and using the catch-weighted average trend across the two in the period of overlap.
- the Blue-Eye catch will include all catches from all zones and all methods but not the catch-rates.
- only data from the SET, SEN, and GHT will be included.

12.3.3.3 The Tier 4 Assumptions

All stock assessments involve a series of assumptions (Table 12.4). More attention is needed to these assumptions to ensure that the limitations of the Tier 4 assessments are understood.

Table 12.4. The assumptions that need to be met for the Tier 4 assessment to be valid. This list is not necessarily exhaustive and will be added to in future years.

Title	Description
Informative	There is a linear relationship between catch rates and exploitable biomass; if there CPUE is hyper-stability (catch rates remain stable while stock size changes) or hyper- depletion (catch rates decline much faster than stock size changes) then the Consistent CPUE through time
The character of the estimated catch rates has not changed in significant ways through the period from the start of the reference period to the end of the most recent year; If there has been significant effort creep altering the catchability, or there have been changes to the fleet that have altered the relative efficiency of the vessels fishing, or the catchability of the species by the fleet has been altered by other changes then the comparability of recent catch rates with the target period may be compromised. Such changes would obviously reduce the responsiveness of the Tier 4 method to change and may generate completely inappropriate management advice. Included in this clause are the effects of targeting or not targeting of deep water or aggregated species. When catch rates are extremely variable through time, such that mean estimates become unreliable measures of stock status, then the Tier 4 approach cannot be validly applied.	

Plausible target reference period

The reference period provides a good estimate of the stock when at a depletion level of 48% unfished spawning biomass; the Tier 4 method is based on catch rates and thus relates to exploitable biomass and not spawning biomass. As a minimum the reference period will refer to a period when the stock was in an acceptable, productive and sustainable state. But there can be no guarantees that the target aimed for is really $B_{48 \%} \%$.

Accurate total catch history

Accurate estimates are required for all catches from the stock under consideration during the accepted target period, irrespective of what method was used or whether it was retained or discarded.

12.4 Results

12.4.1 Blue-Eye CPUE Standardization

12.4.1.1 Drop-Line

Only relatively minor differences were obtained between the geometric mean Drop-Line CPUE (as catch-per-hook) and the standardized CPUE. There was a clear decline from 1997 to 2005 after which the trend reversed, although the precision of the mean estimate also declined in 2006, as evidenced by the wider confidence intervals (Figure 12.4). While the details differ between the geometric mean and the standardized time-series the beginning and end points of the Drop-Line CPUE are essentially the same.

Figure 12.4. The standardization of Blue-Eye catches taken by Drop-Line in zones $20-50$, excluding records which recorded single line drops.

If the GAB zones 84 and 85 are included in the analysis then the trend is greatly modified with the standardized trend exhibiting a higher starting point in 1997 and a lower end point in 2006 (Figure 12.5). If Zone 91 is included (not shown) this barely differs visually from the analysis that includes the GAB zones. This is not surprising considering that the catches in the GAB and up in zone 91 (Figure 12.3; Table 12.8) are only very minor up until about 2002.

Catch-per-day CPUE for zones 20 - 50 is similar to the catch-per-hook CPUE for $20-50$ except for 2006 when it ends somewhat lower than the catch-per-hook, though not as low as when the GAB is included.

A comparison of the Drop-Line standardizations illustrates that the differences between the time series all lie within the 95% confidence intervals of the primary standardization within zone $20-50$.

Figure 12.5. The separate standardizations for Drop-Line (left column) and Auto-Line (right column) with three separate analyses being the zones $20-50$ in the top row, the same zones but with the GAB included in the second row, and the Catch-per-Day standardization for zones $20-50$ in the third row. The bottom row combines all three plus the two geometric mean trends for zones $20-50$, one for catch-per-hook and the other for catch-per-day.

12.4.1.2 Auto-Line

The standardization of catch-per-hook data (and catch-per-day) for the Auto-Line fishery for Blue-Eye has a marked effect on the trend relative to that expressed by the geometric mean (Figure 12.6). The overall effect on the trend in CPUE is that the extremes of the lows and highs are moderated so that the trend varies both below and above the mean of 1.0. Some of these variations about the mean of 1.0
are greater than the predicted 95% confidence intervals as are some of the differences between the standardized and geometric mean CPUE trends.

Figure 12.6. The standardization of Blue-Eye catches taken by Auto-Line in zones $20-50$ (single line drops are not an issue for Auto-Line).

The inclusion of the GAB zones (83,84 , and 85) does lead to changes but the general trend of the two time-series is approximately the same (Figure 12.5).

Unlike the Drop-Line analysis, with the Auto-Line data the standardization of catch-per-hook differs significantly from the catch-per-day analysis (Figure 12.5). The overall effect is to flatten the trend of CPUE through time. This means that when the three are compared (Figure 12.5) the contrast between the unstandardized CPUE, and the standardized catch-per-hook and catch-per-day becomes very clear.

12.4.2 Combining Drop-Line with Auto-Line CPUE

The specification for the Tier 4 analysis this year requires that the two time-series (Drop-Line and Auto-Line) be combined in a particular manner. The Drop-Line time-series extends from 1997 - 2006 and that for Auto-Line from 2002-2015. The accepted approach to combining them is to set the mean standardized CPUE in 2002 - 2006 to 1.0 and then using the catch-weighted average trend across the two in the period of overlap (Table 12.5; Figure 12.7).

Table 12.5. The optimum standardizations of the catch-per-hook data for Blue-Eye for both Drop-Line and Auto-Line. DLAL is the catch-weighted CPUE. Catches are in tonnes. ReScale is merely the Combined DLAL CPUE scaled to a mean of 1.0 ready for the Tier 4 analysis.

Years	DL2050	AL2050	DL Catch	AL Catch	DLAL	ReScale
1997	1.8596		254.478	0.267	1.8596	1.4964
1998	1.5404		323.466	15.189	1.5404	1.2395
1999	1.5037		354.242	58.902	1.5037	1.2100
2000	1.2458		378.548	85.201	1.2458	1.0024
2001	1.2642		319.727	47.642	1.2642	1.0172
2002	0.9952	0.8078	219.013	134.067	0.9240	0.7435
2003	0.7989	1.0321	192.327	219.646	0.9232	0.7429
2004	0.9251	1.1162	90.028	273.947	1.0689	0.8602
2005	0.8785	0.9633	62.951	239.181	0.9456	0.7609
2006	1.4024	1.0806	70.039	246.289	1.1519	0.9269
2007		1.4242	39.654	309.325	1.4242	1.1460
2008		1.1667	15.579	207.044	1.1667	0.9388
2009		1.1689	30.158	293.927	1.1689	0.9406
2010		0.7788	37.904	208.718	0.7788	0.6267
2011		0.8807	57.761	206.679	0.8807	0.7086
2012		0.7899	34.107	197.659	0.7899	0.6356
2013		0.9704	7.537	170.274	0.9704	0.7808
2014		1.4102	5.733	198.945	1.4102	1.1348
2015		1.1337	41.405	171.833	1.1337	0.9123

Figure 12.7. The combined standardized CPUE for Drop-Line and Auto-Line for zones $20-50$ (Table 12.4), where the CPUE between 2002-2006 is the catch-weighted values combined, while from $1997-2001$ it is the Drop-Line CPUE and from 2007-2015 it is the Auto-Line CPUE.

12.4.2.1 Alternative Analysis

The current approach has only been adopted because the approach of combining two disparate line methods by analysing them separately and then combining them was adopted originally in 2009 and 2010 (Haddon, 2010). However, instead of independent treatment and then catch-weighting the period of overlap it is also possible to use the catch-per-hook data and include 'Method' as a factor in the standardization:

LnCE \sim Year + Method + Vessel + Month + Zone + DepCat + Month:Zone

Figure 12.8. The standardization of catch-per-hook using the Drop-Line and Auto-Line time-series separately and then combing them, and using the total data set but including 'Method' as a factor in the analysis. All lines are scaled to a mean of 1.0. The period of overlap for the independent time-series by method was $2002-2006$ which are marked by fine vertical grey lines.

When 'Method' is included in the analysis the outcome is very similar to the outcome of the combined analysis (Figure 12.8). This more straightforward analysis might be preferable as an approach to providing the CPUE time-series. The geometric mean for that comparison needs to include method (i.e. use LnCE \sim Year + Method rather than LnCE \sim Year) so as to account for the different scale on which the methods operate. When the parameter describing the difference between the effectiveness of the two methods is examined it estimates that Drop-Line catch-per-hook is about 3.24 times that of Auto-Line.

12.4.2.2 The effect of Closures

A number of relatively large closures have been imposed upon the SESSF, including on the Blue-Eye fishery. In particular the closure off Flinders Island effectively removed a favoured fishing ground.

Figure 12.9. A schematic map of an array of the closures installed in the south-east SESSF region. The red closures are permanent while the four much smaller green areas are seasonal and not present in all years. In all cases trawling is banned within the closed areas, although other methods might be acceptable. Missing from this plot are the very extensive deepwater closures where all waters $<700 \mathrm{~m}$ depth were closed (although this was revised after two years to open a few subsets of that area) and the trawl closure in Bass Strait.

While it is possible that some of these closures would have displaced effort the effect upon catch rates has still to be explored for a catch-per-hook analysis. Three analyses were conducted which were: 1) ignore the closure, 2) include the closure as a factor in the standardization, and 3) remove all catches originally taken within the closures. Only zones 20 and 30 were considered as these included some relatively high proportions of catch through time within areas that became closed.

The only analytical treatment that led to changes in the expressed trends was when all data from within the closures were removed from the analysis (Figure 12.9).

Figure 12.10. Three scenarios where Blue-Eye catch-per-hook data were analysed to determine the effect of closures on catch rates.

12.4.3 Tier 4 Analysis

The Tier 4 data included the total catches, total discards, and the standardized CPUE. The CPUE series used was only for the Drop-Line and Auto-Line fisheries from SESSF zones 20, 30, 40 and 50, but the catches relate to the whole fishery (Table 12.6) excluding the GAB.

Table 12.6. Blue-Eye data for the TIER 4 calculations. Total is the sum of Discards, State, CDR Landings and derives from Thomson and Upston (2016). All values in Tonnes. CE is the standardized catch rate for Zones 20 to 50 in depths $200-600 \mathrm{~m}$ based on catch-per-hook (Haddon, 2016). GeoMean is the geometric mean catch rates. The proportion of discards are in the PDiscard column. The greyed cells represent the reference period. Both the combined CE and the geometric mean have been scaled to an average of 1.0 for ease of visual comparison of trends. TAC in $2016=410 \mathrm{t}$.

Year	Catch	Discards	Total	State	Pdiscard	CE	GeoMean	TAC
1997	829.002		829.002	623.141		1.5951	1.0462	125
1998	602.299	0.006	602.305	130.012	0.00001	1.3213	0.8386	630
1999	712.297	0.007	712.304	139.608	0.00001	1.2898	0.7845	630
2000	756.41	37.638	794.048	99.563	0.04740	1.0686	0.6449	630
2001	683.185	33.919	717.104	96.613	0.04730	1.0843	0.7307	630
2002	629.472	0.126	629.598	117.362	0.00020	0.7926	0.6360	630
2003	646.688	0.129	646.817	58.623	0.00020	0.7919	0.7311	690
2004	711.251	1.425	712.676	77.457	0.00200	0.9169	0.6021	621
2005	564.442	0.006	564.448	71.557	0.00001	0.8111	0.5216	621
2006	620.945	0.062	621.007	57.095	0.00010	0.9880	0.7645	560
2007	653.412	2.888	656.300	68.102	0.00440	1.2216	1.6266	785
2008	415.027	0.998	416.025	41.980	0.00240	1.0007	1.2152	560
2009	481.452	0.005	481.457	38.090	0.00001	1.0026	1.4479	560
2010	450.183	0.144	450.327	50.287	0.00032	0.6680	0.9122	428
2011	504.001	7.513	511.514	45.465	0.01469	0.7554	1.0408	326
2012	360.059	5.045	365.104	35.317	0.01382	0.6775	0.8555	388
2013	266.548	1.015	267.563	22.335	0.00379	0.8323	1.2067	388
2014	315.35	0.481	315.831	18.820	0.00152	1.2097	1.9305	335
2015	287.163	0.255	287.418	18.820	0.00089	0.9725	1.4641	335

BlueEyeALDL

Figure 12.11. Blue Eye Trevalla. Top left is the total removals from the fishery (except for catches in the GAB) with the fine line illustrating the target catch. Top right represents the standardized catch rates (combined DropLine and Auto-Line catch-per-hook) with the upper fine line representing the target catch rate and the lower line the limit catch rate. Thickened lines represents the reference period for catches, catch rates, and the recent average catch rate.

Table 12.7. RBC calculations for Blue Eye. C*(target) and CE_Targ relate to the period 1997-2006, CE_Lim is 41.66% of the target, and CPUE is the average catch rate over the last four years. The RBC calculation does not account for predicted discards of predicted State catches. Wt_Discard is the weighted average discards from the last four years.

BlueEyeALDL	$1997-2015$
Ref_Year	$1997-2006$
CE_Targ	1.0660
CE_Lim	0.4442
CE_Recent	0.9230
Wt_Discard	0.736
Scaling	0.7701
Current TAC	335
C*(target)	682.931
RBC	$\mathbf{5 2 5 . 9 2 3}$

12.5 Discussion

The generation of catch-per-hook catch rate data from the Blue-Eye catch and effort database has produced a time series of combined Drop-Line and Auto-Line CPUE which intuitively provides a better description of what actually occurs in the fishery. Drop-Line catch rates are about three times higher in terms of catch-per-hook than Auto-Line catches. There has been discussion of the possible effects of closures and that of whale depredation. Preliminary analyses of the effects of closures on catch-per-hook indicate that the effects are minimal after standardization of any CPUE time-series (involving only one method). Whale depredations continue to be a difficulty until a concerted effort is made to gather spatially detailed data on whale interactions. Some indications have been possible with the sparse data currently available but a detailed consideration is not currently feasible. Whatever the case, whale depredation would tend to bias the catch rates low (because part of the catch-per-hook was taken by whales), but also the total catch would also be biased low, implying that true fishing related mortality is also biased low.

Despite the difficulties it was possible to combine the two time-series from the two methods to produce a time-series from 1997 - 2015 based on catch-per-hook. This was then used within the standard Tier 4 analysis to generate an expected Recommended Biological Catch.

The Tier 4 analysis is based in the CPUE from SESSF zones $20-50$ but the catches that go towards generating the target catch include all areas and methods except the GAB. This is a reflection of the hypothesis that the Blue-Eye in the GAB constitute a separate stock. However, currently in the GHT fishery, the Blue-Eye quota they have also applies in the GAB, so there is some confusion over the assessment and management details that may require attention.

The effect of the standardization is, as expected, to reduce the variation exhibited by the catch rates seen in the fishery, although in more recent years there still remains some relatively large rises and falls in catch rate over relatively short periods. This seems likely to reflect the fact that there are very few Auto-Line vessels that make large contributions to the fishery so if they alter their fishing patterns (perhaps in response to whale depredation) then large changes in catch rates can occur. Such large changes over short periods are certainly not a direct reflection of equivalent changes in the stock size. For greater stability in the RBC predicted from the Tier 4 analysis it might be necessary to increase the number of years over which the more recent CPUE is averaged for comparison with the target.

12.6 References

A DAFF (2007) Commonwealth Fisheries Harvest Strategy. Policy and Guidelines. Department of Agriculture, Fisheries and Forestry. 55p.
Fay, G. (2007a) Tier 3 Calculations for Blue-Eye Trevalla (Hyperoglyphe antarctica) using data up to and including 2005. Pp 520 - 527 in Tuck, G.N. (ed.) (2007) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2006-2007. Volume 1: 2006. AFMA Project 2006/813. CSIRO Marine and Atmospheric Research, Hobart. 570p.
Fay, G. (2007b) Data appraisal and progress on Harvest Strategy Evaluation for Blue-Eye Trevalla: update from July 2007 Slope RAG meeting. Pp 474 - 497 in Tuck, G.N. (ed.) (2007) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2006-2007. Volume 2: 2007. AFMA and CSIRO Marine and Atmospheric Research, Hobart. 584p.

Haddon, M. (2009) Catch rate standardizations 2008 (for data 1986 - 2007) pp 30-168 in Tuck, G.N. (ed.) 2009. Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2008. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 645 p.
Haddon, M. (2010) Blue-Eye Summary (TBE - 37445001 - H. antarctica. Pp $99-104$ in Tuck, G.N. (ed.) (2010) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery: 2009. CSIRO Marine and Atmospheric Research, Hobart. 428p.
Haddon, M. (2014) Blue Eye Fishery Characterization. pp 329 - 351 in Tuck, G.N. (ed.) (2014) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2013. Part 2. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 487 p.
Haddon, M. (2014a) Standardized Catch Rates for Selected Species from the SESSF. (Data 1986 2012). Pp $57-275$ in Tuck, G.N. (ed) (2014) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery: 2013. Part 2. AFMA Project 2011/0814. CSIRO Wealth from Oceans, Hobart. 486p.

Haddon, M. (2014b) Tier 4 Analyses in the SESSF, including Deep Water Species. Data from 1986 2012 pp 352 - 461 Tuck, G.N. (ed.) (2014) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2013. Part 2. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 487 p.
Haddon, M. (2015) Blue-Eye Auto-Line and Drop-Line CPUE Characterization 1986 - 2014. Report presented to the SLOPE RAG. Nov 2015. 40p.
Haddon, M. (2016) Blue-Eye Auto-Line and Drop-Line CPUE Characterization and Catch-per-Hook 1997-2015. Draft Assessment Document presented the SERAG Nov 2016. p52.
Little, L.R., Wayte, S.E., Tuck, G.N., Smith, A.D.M., Klaer, N., Haddon, M., Punt, A.E., Thomson, R., Day, J. and M. Fuller (2011) Development and evaluation of a cpue-based harvest control rule for the southern and eastern scalefish and shark fishery of Australia. ICES Journal of Marine Science. 68(8): 1699-1705.

R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Sporcic M. and M. Haddon (2015) Catch rate standardization for selected SESSF species (data to 2013). Pp 48 - 276 in Tuck, G.N. (ed)(2014) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2013. Part 2. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 487 p.

Sporcic, M and M. Haddon (2016) Catch rate standardizations for selected SESSF species (data to 2015). CSIRO Oceans and Atmosphere Flagship, Hobart. 206p.

Thomson, R., Fuller, M., Deng, R. and F. Althaus (2016) Data summary for the Southern and Eastern Scalefish and Shark Fishery: Logbook, Landings and Observer Data to 2015. CSIRO, Hobart. 276p.
Thomson, R., and J. Upston (2016) SESSF catches and discards for TAC purposes. CSIRO Oceans and Atmosphere. P 41.
Upston, J. and R. Thomson (2016) Integrated Scientific Monitoring Program for the Southern and Eastern Scalefish and Shark Fishery - Discard estimation 2015 DRAFT. CSIRO Oceans and Atmosphere, Australian Fisheries Management Authority. 56p.

Venables, W. and C. M. Dichmont (2004). GLMs, GAMs and GLMMs: an overview of theory for applications in fisheries research. Fisheries Research 70: 319-337.

Williams, A., Hamer, P., Haddon. M., Robertson, S., Althaus, F., Green, M. and J. Kool (2016) Determining Blue-eye Trevalla stock structure and improving methods for stock assessment. DRAFT Final Report FRDC Project No 2013/015. Fisheries Research Development Corporation and CSIRO Oceans and Atmosphere, Hobart, 123p.

12.7 Supplementary Material

Table 12.8. Catches taken by Drop-Line included in the various standardizations (Table 12.3). The drop-off in catches, except in Zone 30 following 2006 is apparent. These data have removed all records where only one line drop was recorded and hence these values differ from those in Table 12.10.

Year	20	30	40	50	83	84	85	91
1997	76.435	79.630	36.092	32.973			3.870	3.745
1998	72.135	156.451	47.472	37.296			1.720	1.100
1999	27.234	191.741	64.494	38.765			0.560	8.110
2000	25.910	182.032	102.167	44.568		0.332	4.150	0.100
2001	18.659	188.742	72.643	24.757	0.150	2.364	2.755	2.536
2002	31.617	85.914	20.525	35.457		1.561	5.080	29.464
2003	25.722	46.850	32.881	29.359		27.313	4.875	50.680
2004	5.722	40.475	11.203	22.599	0.026	43.428	16.275	4.945
2005	0.140	39.645	2.261	6.626	0.200	24.028	6.208	4.870
2006	0.040	50.858	2.463	2.308		42.241	1.444	6.750
2007	2.174	31.883	0.250	4.190	0.010	6.347		
2008		11.719		2.260		0.100		
2009	0.150	11.958	0.010	5.700				9.230
2010		17.718	0.165	6.826	0.785	2.379	1.045	7.932
2011	0.003	22.388	3.607	3.926		0.400	1.220	4.902
2012		10.254	1.403	6.271				15.496
2013		5.994	0.007	0.910			0.225	
2014	0.011	2.628		0.877	1.500	2.054	0.540	
2015		0.215		0.871	1.949	0.535	0.010	9.609

Table 12.9. Auto-Line Catches. Zone 0 are either unknown or outside the SESSF.

Year	0	10	20	30	40	50	60	70	82	83	84	85	91	92
1997					0.267									
1998	12.064			0.233	14.956									
1999	1.689		35.575	1.725	11.482		1.000						10.120	
2000	5.731		12.243	56.804	14.824								0.580	0.750
2001	0.242		2.000	31.044	14.598									
2002			2.640	65.351	42.576	21.400								2.100
2003			20.634	97.288	84.594	9.900	0.030						7.230	
2004	0.910		63.236	94.791	82.677	27.164	0.662	0.400		12.584	15.316	31.689		0.180
2005	0.484	1.070	84.998	60.426	57.265	36.482	0.250			19.278	5.145	35.895	0.011	
2006	0.550	1.540	67.075	67.257	77.940	25.822	0.924	2.420		31.405	0.330	76.184	3.135	
2007			48.019	196.324	41.074	23.907	0.550			29.791	100.094	15.337		
2008			44.786	99.013	51.837	11.408	0.017			28.943	32.167	13.214		
2009		0.041	50.874	125.545	79.909	32.355	0.169	4.400		1.633	15.369	15.415	0.185	
2010			25.642	69.142	50.841	63.093	0.100			5.764	7.153	14.884		
2011			30.835	69.512	38.809	14.160		10.340		20.576	40.292	12.939	23.696	6.160
2012			21.176	56.348	70.428	11.183				8.417	9.736	3.752	27.442	9.334
2013	0.157		13.151	45.406	84.451	13.684	0.164	2.723		0.465	16.158	13.025	1.131	
2014	0.446		3.867	68.561	87.235	19.442				0.607	31.290	11.089	4.505	
2015	4.356		9.031	54.122	72.715	22.563	0.546			0.541	20.975	3.611	9.772	

Table 12.10. Drop-Line Catches. Zone 0 are either unknown or outside the SESSF.

Year	0	10	20	30	40	50	60	70	82	83	84	85	91	92
1997	6.055	2.361	81.546	80.730	40.722	45.977	3.270					5.778	5.503	
1998	15.871	0.050	72.375	158.954	49.692	40.856	2.150					1.968	1.590	
1999	20.778	0.700	29.061	193.331	65.244	55.078	0.348					0.972	11.470	0.050
2000			26.170	187.555	104.457	59.847					0.357	5.504	0.520	
2001	8.837		18.659	191.312	72.643	29.127		0.060		0.150	2.814	4.345	3.186	4.740
2002	2.070		31.617	87.014	20.530	35.487					1.561	5.380	33.664	5.750
2003			25.822	47.450	33.411	29.464					27.547	4.875	50.680	2.400
2004	0.160		6.332	42.729	12.223	23.579	0.060		0.850	0.026	45.762	21.725	5.045	
2005			0.140	42.590	2.261	6.841		1.550		0.200	24.128	6.500	4.870	4.700
2006	0.300		0.290	55.118	2.463	2.308					42.976	1.444	7.240	2.500
2007			2.174	32.071	0.250	4.460		0.700		0.010	6.347			
2008				13.189		2.260					0.100			
2009			0.150	11.958	0.010	5.700		0.660					10.330	1.350
2010				17.803	0.165	6.826		1.153		0.785	2.379	1.045	7.932	3.935
2011			0.003	23.158	3.615	3.971		0.100			0.400	1.220	9.993	16.921
2012				10.254	1.403	6.271							15.496	0.683
2013				6.091	0.007	0.910		0.529				0.225		
2014			0.011	2.665		2.547				1.500	2.469	0.540		0.510
2015	3.148			0.215		1.521		0.750		1.949	1.185	0.010	28.061	9.872

13. Tiger flathead (Neoplatycephalus richardsoni) stock assessment based on data up to 2015 - development of a preliminary base case

Jemery Day
CSIRO Oceans and Atmosphere, Castray Esplanade, Hobart 7000, Australia

13.1 Executive Summary

This document presents a suggested base case for an updated quantitative Tier 1 tiger flathead (Neoplatycephalus richardsoni) assessment for presentation at the first SERAG meeting in 2016. The last full assessment was presented in Day and Klaer (2013). The preliminary base case has been updated by the inclusion of data up to the end of 2015, which entails an additional 3 years of catch, discard, CPUE, length and age data and ageing error updates since the 2013 assessment and incorporation of survey results from the Fishery Independent Survey from 2008-2014. This document describes the process used to develop a preliminary base case for tiger flathead through the sequential updating of recent data to the stock assessment, using the stock assessment package Stock Synthesis (SS-V3.24Z).

Changes to the last stock assessment include: separating length frequencies into onboard and port collected components, with a joint selectivity pattern estimated; including FIS abundance indices separated into Eastern (SESSF Zones 10 and 20) and Tasmanian (SESSF Zone 30) fleets; weighting length frequencies by shots and trips rather than fish measured; and using a new tuning method.

Results show reasonably good fits to the catch rate data, length data and conditional age-at-length data. This assessment estimates that the projected 2017 spawning stock biomass will be 43% of virgin stock biomass (projected assuming 2015 catches in 2016), compared to 50% at the start of 2014 from the last assessment (Day and Klaer 2013).

13.2 Introduction

13.2.1 Bridging from 2013 to 2016 assessments

The previous full quantitative assessment for tiger flathead was performed in 2013 (Day and Klaer, 2013) using Stock Synthesis (version SS-V3.24f, Methot, August 2012). The 2016 assessment uses the current version of Stock Synthesis (version SS-V3.24Z, Methot, 2015), which has few changes to SS_V3.24f.

As a first step in the process of bridging to a new model, the data used in the 2013 assessment was used in the new software (SS-V3.24Z) and minor updates were made to the 2001-2012 catch history. This was followed by including the data from 2013-2015 into the model. This additional data included new catch, discard, CPUE, length frequency and age-at-length data for 2013, 2014 and 2015 and FIS for 2014. The last year of recruitment estimation was extended to 2012 (2009 in the 2013 assessment). The use of updated software and the inclusion of additional data resulted in some differences in the fits to CPUE, age and length data. The usual process of bridging to a new model by adding new data
piecewise and analysing which components of the data could be attributed to changes in the assessment outcome was conducted with the details outlined below.

13.2.2 Update to Stock Synthesis SSV-3.24Z and updated catch history

The 2013 tiger flathead assessment (2013BaseCase) was initially converted to the most recent version of the software, Stock Synthesis version SS-V3.24Z (Base2013NoHessian).

The next step included updated catch history in the 2013 assessment, which involved minor revisions to the catch history from 2001-2011 and using updated data for 2012 and 2013 to replace the preliminary 2012 and 2013 data used in the 2013 assessment. This includes some corrections to allocations of catches between fleets before 2011 and updates to recent state catches, and replacing the estimated 2013 catch with actual catches. These changes in catch history (B2UpdateCatch01-11) were included after the transition to SS-V3.24Z. There were negligible changes to the spawning biomass and recruitment time series for any of these steps. When these time series are plotted together, it is very difficult to see any difference between them (Figure 13.1and Figure 13.2).

Figure 13.1. Comparison of the spawning biomass time series for the 2013 assessment (2013BaseCase) and a model converted to SS-V3.24Z (Base2013NoHessian) and updates to the 2001-2013 catches to include data which was unavailable to the 2013 assessment (B2UpdateCatch01-11).

Figure 13.2. Comparison of the recruitment time series for the 2013 assessment (2013BaseCase) and a model converted to SS-V3.24Z (Base2013NoHessian) and updates to the 2001-2013 catches to include data which was unavailable to the 2013 assessment (B2UpdateCatch01-11).

13.2.3 Inclusion of new data: 2013-2015

Starting from the converted 2013 base case model with updated catch history, (B2UpdateCatch01-11), additional data from 2013-2015 were added sequentially to develop a preliminary base case for the 2016 assessment:

1. Change final assessment year to 2015 , add catch to 2015 (B3).
2. Add CPUE to 2015 (from Sporcic and Haddon (2016)) (B4).
3. Add FIS indices for 2014, with the FIS abundance index split into two indices to match the spatial zones corresponding to the Eastern trawl and Tasmanian trawl fleets (B6).
4. Add updated discard fraction estimates to 2015 (B7).
5. Update length frequency data, this time including both port and onboard length frequencies for historical data and weighting these length frequencies by number of shots or trips, rather than number of fish (B12).
6. Add updated age error matrix and age-at-length data to 2015 (B13).
7. Change the final year for which recruitments are estimated from 2009 to 2012 (B15).
8. Retune using latest tuning protocols, including Francis weighting on lengths and ages, and without using lambda $=0.1$ to down weight the age and length likelihood (T7_2016Base).

Inclusion of the new data resulted in gradual changes to the estimates of recruitment and the relative spawning biomass time series. Including the new CPUE data resulted in reduced recent recruitment estimates and reduced 2017 relative spawning biomass, with further reductions due to the length and age data. Estimating an additional three years of recruitments (to 2012) resulted in three years of above average recruitment producing a slight increase to the relative spawning biomass in 2017, although at a level below that predicted by the 2013 assessment.

The final tuned model produced changes to the relative spawning biomass from around 1940 onwards, with a reduction in the earlier years, from around 1940-1990, but with an increase to the relative spawning biomass from 1990 onwards. Tuning also resulted in considerable changes to the recruitment time series from around 1940 onwards.

Since the 2013 assessment, standard changes to the procedures used in the Stock Synthesis assessments in the SESSF include:

1. Including both port and onboard length frequency data.
2. Weighting length frequency data by shot or trip numbers rather than fish measured.
3. Modification to the tuning procedures including use of Francis weighting for length and age data.
4. separating the FIS data into areas to match fleets used in the assessments, so in this case separating to an eastern trawl FIS (Zones 10 and 20) and a Tasmanian trawl FIS (Zone 30).

These are considerable changes to the tuning procedures used in the 2013 assessment, so it is not surprising that tuning resulted in considerable changes. Previous tiger flathead assessments have applied a lambda of 0.1 to length and age frequency data to down weight the likelihood from these sources relative to the likelihood from the CPUE and survey data. Weighting these frequencies by shot rather than numbers of fish measured, and using the latest tuning protocols including Francis weighting has allowed these lambdas to be returned to 1 . If it can be avoided, it is preferable to set the lambdas at 1 , rather than make somewhat adhoc decision to balance the likelihood from different data sources and somewhat arbitrarily down weight length and age data.

Inclusion of the new data had relatively minor impacts on the estimates of recruitment and the spawning biomass time series. With recruitment estimated up until 2012, this resulted in the recruitments estimated from 2007-2009 to be revised down, compared to the 2013 assessment. However, the three new years of estimated recruitment $(2010,2011$ and 2012) are all above average. These recruitment events appear to be supported by the recent length data and have resulted in an estimate of the depletion at the start of 2017 of 43% of unexploited stock biomass, SSB_{0}. While the most recent recruitments are well estimated, they should be treated with some caution as it is possible for future data to result in modifications to estimates of recent recruitment events, as occurred with the 2007-2009 recruitment estimates from the 2013 assessment. In that assessment, when recruitment was only estimated to 2007, excluding the above average recruitment estimates in 2008 and 2009, the spawning biomass was estimated to be 40% of SSB_{0}. Since 2005 various values have been used for the target and the breakpoint in the Tier 1 harvest control rule. In 2009, AFMA directed that the 20:35:40 ($\mathrm{B}_{\text {lim: }}$: $\mathrm{B}_{\mathrm{MSY}}: \mathrm{F}_{\text {targ }}$) form of the harvest control rule is used for tiger flathead.

Figure 13.3. Comparison of the spawning biomass time series for the 2013 assessment model converted to SSV3.24Z (2013BaseCase) and various bridging models leading to a proposed 2016 tuned base case model (T7).

Figure 13.4. Comparison of the recruitment time series for the 2013 assessment model converted to SS-V3.24Z (2013BaseCase) and various bridging models leading to a proposed 2016 tuned base case model (T7).

Figure 13.5. Comparison of the spawning biomass time series for the 2013 assessment model converted to SSV3.24Z (2013Base) and various bridging models leading to a proposed 2016 tuned base case model (T7).

Figure 13.6. Comparison of the recruitment time series for the 2013 assessment model converted to SS-V3.24Z (2013Base) and various bridging models leading to a proposed 2016 tuned base case model (T7).

13.3 Acknowledgements

Age data was provided by Kyne Krusic-Golub (Fish Ageing Services), ISMP and AFMA logbook and CDR data were provided by John Garvey (AFMA). Mike Fuller, Roy Deng and Franzis Althaus (CSIRO) pre-processed the data. Athol Whitten provided very useful R code for organising plots. Robin Thomson, Geoff Tuck, Rich Little, Miriana Sporcic, Malcolm Haddon and Judy Upston are thanked for helpful discussions on this work.

13.4 References

Day J and Klaer N (2013) Tiger flathead (Neoplatycephalus richardsoni) stock assessment based on data up to 2012. Unpublished report to Shelf RAG. 70 pp.
Methot RD (2012) User manual for Stock Synthesis. Model Version 3.24f. NOAA Fisheries Service, Seattle. 150 pp.
Methot RD (2015) User manual for Stock Synthesis. Model Version 3.24s. NOAA Fisheries Service, Seattle. 152 pp.
Sporcic M and Haddon M (2016). Catch rate standardizations for selected SESSF Species (data to 2015). Unpublished report to SERAG Data, 11-13 October 2015, Hobart. 214 p.

13.5 Appendix: Preliminary base case diagnostics

Data by type and year, circle area is relative to precision within data type

Figure A 13.1. Summary of data sources for tiger flathead stock assessment.

Figure A 13.2. Growth, discard fraction estimates, landings by fleet and predicted discards by fleet for tiger flathead.

Figure A 13.3. Time series showing depletion of spawning biomass with confidence intervals, recruitment estimates with confidence intervals, stock recruitment curve and recruitment deviation variance check for tiger flathead.

Figure A 13.4. Fits to CPUE by fleet for tiger flathead: steam trawl, old Danish seine, Danish seine, eastern trawl.

Figure A 13.5. Fits to CPUE by fleet for tiger flathead: Tasmanian trawl and the Fishery Independent Survey.
length comps, retained, StTrawl

> Length (cm)

Figure A 13.6. Tiger flathead length composition fits: steam trawl retained.
length comps, retained, DSeine

Figure A 13.7. Tiger flathead length composition fits: Danish seine retained.

length comps, discard, DSeine

Length (cm)

Figure A 13.8. Tiger flathead length composition fits: Danish seine discarded.
length comps, retained, ETrawl

Figure A 13.9. Tiger flathead length composition fits: eastern trawl retained.
length comps, discard, ETrawl

Figure A 13.10. Tiger flathead length composition fits: eastern trawl discarded.

length comps, retained, TasTrawl

Figure A 13.11. Tiger flathead length composition fits: Tasmanian trawl retained.

Pearson residuals, sexes combined, retained, comparing across fleets

Year
Figure A 13.12. Residuals from the annual length compositions (retained) for tiger flathead displayed by year and fleet.

Pearson residuals, sexes combined, discard, comparing across fleets

Year

Figure A 13.13. Residuals from the annual length compositions (discarded) for tiger flathead displayed by year and fleet.

Conditional AAL plot, retained, DSeine

Figure A 13.14. Tiger flathead conditional age-at-length fits: Danish seine part 1.

Conditional AAL plot, retained, DSeine

Figure A 13.15. Tiger flathead conditional age-at-length fits: Danish seine part 2.

Conditional AAL plot, retained, DSeine

Length (cm)

Figure A 13.16. Tiger flathead conditional age-at-length fits: Danish seine part 3.

Conditional AAL plot, retained, ETrawl

Figure A 13.17. Tiger flathead conditional age-at-length fits: eastern trawl part 1.

Conditional AAL plot, retained, ETrawl

Figure A 13.18. Tiger flathead conditional age-at-length fits: eastern trawl part 2.

Conditional AAL plot, retained, ETrawl

Length (cm)

Figure A 13.19. Tiger flathead conditional age-at-length fits: eastern trawl part 3.

Conditional AAL plot, retained, TasTrawl

Figure A 13.20. Tiger flathead conditional age-at-length fits: Tasmanian trawl part 1.

Conditional AAL plot, retained, TasTrawl

Figure A 13.21. Tiger flathead conditional age-at-length fits: Tasmanian trawl part 2.

14. Tiger flathead (Neoplatycephalus richardsoni) stock assessment based on data up to 2015

Jemery Day
CSIRO Oceans and Atmosphere, Castray Esplanade, Hobart 7000, Australia

14.1 Executive Summary

This document updates the 2013 assessment of tiger flathead (Neoplatycephalus richardsoni) to provide estimates of stock status in the SESSF at the start of 2017. This assessment was performed using the stock assessment package Stock Synthesis (version SS-V3.24Z). The 2013 stock assessment has been updated with the inclusion of data up to the end of 2015, comprising an additional three years of catch, discard, CPUE, length and age data and ageing error updates. An additional survey point is included from the Fishery Independent Survey and length frequencies have been included from all four years of the Fishery Independent Survey. A range of sensitivities were explored, including splitting the Fishery Independent Survey into two fleets to match the fleet structure in the assessment, and lowering the final year of recruitment estimation from 2012 to 2009.

The base-case assessment estimates that current spawning stock biomass is 43% of unexploited stock biomass ($S S B_{0}$). Under the agreed 20:35:40 harvest control rule, the 2017 recommended biological catch (RBC) is $2,971 \mathrm{t}$, and remains above the long term yield (assuming average recruitment in the future) of 2,765 t. The average RBC over the three year period 2017-2019 is $2,936 \mathrm{t}$ and over the five year period 2017-2021, the average RBC is $2,909 \mathrm{t}$.

Exploration of model sensitivity showed a variation in spawning biomass from 26% to 51% of $S S B_{0}$ when natural mortality was fixed at values of 0.22 and 0.32 respectively. When recruitment is only estimated to 2009, excluding the three above average recruitment estimates in 2010-2012, the spawning biomass was estimated to be 31% of $S S B_{0}$. For all other sensitivities explored, the variation in spawning biomass was much narrower, ranging between 39% and 45%.

Changes to the last stock assessment include: separating length frequencies into onboard and port collected components, with a joint selectivity pattern estimated; including FIS length frequencies; weighting length frequencies by shots and trips rather than fish measured; and using a new tuning method. The reduction in spawning biomass compared to the last assessment appear to be largely driven by the new data and the resulting modification to the estimates of recent recruitment, in particular to recruitment in the years 2004, 2006, 2007 and 2009.

14.2 Introduction

14.2.1 The Fishery

Tiger flathead have been caught commercially in the south eastern region of Australia since the development of the trawl fishery in 1915. They are endemic to Australian waters and are caught mainly on the continental shelf and upper slope waters from northern NSW to Tasmania and through Bass Strait. Historical records (e.g. Fairbridge, 1948; Allen, 1989; Klaer, 2005) show that steam trawlers
caught tiger flathead from 1915 to about 1960. A Danish seine trawl fishery developed in the 1930s (Allen, 1989) and continues to the present day. Modern diesel trawling commenced in the 1970s.

14.2.2 Previous Assessments

Prior to 2001, the previous quantitative assessment for tiger flathead was from the late 1980s (Allen, 1989). In that report, the assessment for tiger flathead was conducted based on catch and effort data using a surplus production model. The estimate of Maximum Sustainable Yield, MSY, for NSW and eastern Bass Strait was about 2,500 t.

Between 1989 and 2001, assessments of tiger flathead involved examination of trends in catches, catch rates, and in age and length data, but no quantitative assessments were undertaken. Assessments from 1993 to 2001 can be found in the annual reports of SEFAG (the South East Fishery Assessment Group). For example, the 1993 assessment noted that tiger flathead catches from south-east Tasmanian waters contained higher proportions of larger, older fish than those from eastern Bass Strait. This suggested that tiger flathead resources off Tasmania were either more lightly fished than those in the main fishing areas, or that there was a separate stock with different population characteristics off Tasmania.

During the period 2001-2004, data for tiger flathead were collated, summarized and presented at workshops (see Cui et al. (2004) for a detailed summary of these workshops and the analyses presented to them). These workshops led to revisions of the data series, analyses of the data, and to suggestions for revisions to the data sets and research priorities. The 2004 assessment (Cui et al., 2004) used 89 years (1915-2003) of data to estimate the virgin spawning stock biomass and the 2004 spawning stock biomass relative to that in 1915 and provided, for the first time, a complete picture of the dynamics of the tiger flathead fishery.

A number of changes to both the input data and some model structural changes were made and presented in the assessments developed in 2005 (Punt 2005a, Punt 2005b). These assessments considered tiger flathead caught off eastern Tasmania in SEF zone 30 as either separate to, or part of the same stock in zones 10 (E NSW), 20 (E Bass Strait) and 60 (Bass Strait) combined. In the scenario where eastern Tasmanian flathead are part of the same stock, a separate fleet was constructed to account for catches made there. Modifications to estimates of historical catches from Klaer (2005) were incorporated into catch series used in the assessments. Length-frequency data for 1945-1967 and 1971-1984 were obtained, and uncertainty in discard rates was estimated using a bootstrap procedure.

Part of the intention for the 2006 assessment (Klaer, 2006a) was initially to duplicate as far as possible the assessment results from 2005 (Punt, 2005a, Punt 2005b) while implementing the assessment using the Stock Synthesis (SS2) framework. The same assumptions were made about stock structure, i.e. tiger flathead off eastern Tasmania may or may not be the same stock as those off NSW and Victoria. Steepness was treated as an estimable parameter and annual age frequencies were added directly into the model as samples independent to length frequencies. The 2006 Shelf RAG selected the model that treated Tasmanian trawl as a separate fleet fishing the same east coast stock as the most appropriate base case.

The 2009 assessment (Klaer, 2009) moved the model from Stock Synthesis version SS-V2.1.21 (June 2006) to Stock Synthesis version SS-V3. 03 (May 2009). Major changes to previous assessments were the use of age-at-length data to estimate growth parameters, correction to discard estimation for steam trawl, allowing selectivity change in 1985 for diesel trawl and 1978 for Danish seine, and estimation of recruitment 3 years prior to the last year (2005) for the 2009 assessment that used data to the end of 2008.

The 2009 assessment was updated in 2010 (Klaer, 2010) using Stock Synthesis version SS-V3.11a, (Methot September 2010). For the 2010 assessment, changes were made to the treatment of discards prior to 1980, an additional growth parameter was estimated and the assumed value for natural mortality, M, was changed from 0.22 to 0.27 .

The most recent full quantitative assessment for tiger flathead was performed in 2013 (Day and Klaer, 2013) using Stock Synthesis version SS-V3.24f, (Methot August 2011). Results from three years of the winter fishery independent survey (FIS) were included as an additional abundance index in the 2013 assessment, but no FIS length data were included.

14.2.3 Modifications to the Previous Assessments

This assessment uses the current version of Stock Synthesis, version SS-V3.24Z, (Methot 2015).The number of growth parameters estimated and assumptions about mortality and early discarding rates in this assessment are identical to the 2013 assessment (Day and Klaer, 2013). Three growth parameters are estimated (CV, K and l_{min}), natural mortality is assumed to be 0.27 and the discarded catch for steam trawl and for Danish seine prior to 1960 is assumed to be 20% of the retained catch, which translates to a discard ratio (disc/[ret+disc]) of 17%.

An abundance index from the fishery independent survey (FIS) for the winter surveys for four years: 2008, 2010, 2012 and 2014 (Knuckey et al., 2015) was included in the 2013 assessment and this index is retained in this assessment with an additional data point. As the summer FIS was discontinued after 2012, the summer FIS abundance index has not been included in sensitivities in this assessment.

Updates to data used in the previous assessment resulted from improvements in the automatic processing of data and filtering of records. However, some historical length frequency data used in the 2013 assessment are not present in the automatic processing. These length frequencies are included in the current assessment, by using data from the 2013 assessment for the following retained length frequencies:

1. Steam Trawl, Sydney Fish Market - 1953-1958.
2. Eastern Trawl, Sydney Fish Market - 1965-1967.
3. Danish seine, onboard - 1993-1994.

In addition to this historical data, retained for this assessment, there appear to be some changes in the Tasmanian Trawl length frequencies in 2009 and 2010 which may warrant future investigation. Only one shot was recorded from each of the 2009 and 2010 onboard samples, so these length frequencies were excluded, as they were unlikely to be representative. Similarly, the 2009 port length frequency came from less than 100 fish so this length frequency was also excluded. These sample sizes are different to those produced by the 2013 automatic processing, so this may require further investigation.

Discard length frequencies from Danish seine in 1994 and 1995 and eastern trawl from 1994-1996 were excluded in previous assessments as these appear to have unrepresentative distributions. These discard length frequencies were also excluded from the current assessment.

Other substantial changes from the 2013 assessment include:

1. Including both port and onboard length frequency data.
2. Weighting length frequency data by shot or trip numbers rather than numbers of fish measured.
3. Modifications to the tuning procedures including use of Francis weighting for length and age data.
4. Inclusion of length frequency data from the fishery independent surveys from 2008, 2010, 2012 and 2014.

Previous tiger flathead assessments have applied a lambda of 0.1 to length and age frequency data to down weight the likelihood from these sources relative to the likelihood from the CPUE and survey data. Weighting these frequencies by shot rather than numbers of fish measured, and using the latest protocols including Francis weighting has allowed these lambdas to be returned to 1. If it can be avoided, it is preferable to set the lambdas at 1, rather than make somewhat adhoc decisions to balance the likelihood from different data sources and somewhat arbitrarily down weight length and age data.

Updates to data used in the previous assessment resulted from improvements and corrections in the automatic processing of data and filtering of records. Including both port and onboard length frequencies resulted in additional length frequencies, and weighting these by shot or trip numbers altered the relative weighting between years. When shots or trip were not known (Sydney Fish Market, Kapala or Blackburn data), the number of fish measured was divided by 10 and capped at 200. When the number of trips or shots was available, a cap of 120 trips and 200 shots was used to set an upper limit on the sample size, although the limit on trip numbers was never exceeded.

The data updates produced minor modifications to estimates of discards. An updated estimate of the ageing error matrix constructed from the new ageing data was used. As in the 2013 assessment, age-at-length frequency distributions were only used when the gender was known. The only changes to age-at-length data were the addition of three years of new data from 2013 to 2015. Minor revisions were made to the catch history from 2001 onwards, with minor modifications to recent state catch history and some reallocation of catch between fleets due to misclassification of some vessels. Updates to the preliminary 2012 and assumed 2013 catches were made and new 2014 and 2015 catch data was included, with the 2016 catch data (required to calculate a 2017 RBC) assumed to be the same as the 2015 catch data.

Inclusion of the new data had relatively minor impacts on the estimates of recruitment and the spawning biomass time series. With recruitment estimated up until 2012, this resulted in several of the recruitments estimated from 2004-2009 to be revised down, compared to the 2013 assessment. The general recruitment trend before 2004 was unchanged in the new assessment.

The usual process of bridging to a new model by adding new data piecewise and analysing which components of the data could be contributing to changes in the assessment outcome was conducted (Day, 2016).

14.3 Methods

14.3.1 The Data and Model Inputs

14.3.1.1 Biological Parameters

As male and female tiger flathead have different growth patterns (females are substantially larger), a two-sex model has been used.

The parameters of the Von Bertalanffy growth equation are estimated by sex within the model-fitting procedure from age-at-length data. This approach accounts for the impact of gear selectivity on the age-at-length data collected from the fishery and the impact of ageing error. Three growth parameters are estimated (CV, K and $l_{\text {min }}$), with only one growth parameter fixed $\left(l_{\max }=55.9\right)$, with this valued based on the estimate of l_{∞} obtained by Punt(2005a) by fitting von Bertalanffy growth curves to data from SESSF Zones 10 and 20 (NSW and eastern Bass Strait).

Estimates of the rate of natural mortality, M, reported in the literature vary from 0.21 to $0.46 \mathrm{yr}^{-1}$. This assessment uses a value of $0.27 \mathrm{yr}^{-1}$ as the base-case estimate of M as used in the previous assessment (Day and Klaer, 2013) and as previously agreed to by Shelf RAG. Sensitivity to this value is tested. The steepness of the stock-recruitment relationship, h, is estimated by the model, and for the base case is estimated to be 0.62 .

Female tiger flathead become sexually mature at about three years of age, which corresponds to a length of about 30 cm (Klaer, 2010). Maturity is modelled as a logistic function, with 50% maturity at 30 cm . Fecundity-at-length is assumed to be proportional to weight-at-length.

The parameters of the length-weight relationship are the same as those used in the previous assessment $a=5.88 \times 10^{-6}, b=3.31$ (Day and Klaer, 2013), with these parameters originally obtained by fitting von Bertalanffy growth curves to data from SESSF Zones 10 and 20, NSW and eastern Bass Strait (Punt, 2005a).

14.3.1.2 Fleets

The assessment data for tiger flathead have been separated into five 'fleets', which represent one or more gear, regional, or temporal differences in the fishery. Landings data from eastern Tasmania were separated from the catches from the other regions in the east, because the length compositions of catches from this area indicate that it lands larger fish.

1. Steam trawl - steam trawlers (1915-1961).
2. Danish seine - Danish seine from NSW, eastern Victoria and Bass Strait (1929-2015).
3. Eastern trawl - diesel otter trawlers from NSW, eastern Victoria and Bass Strait (1971 - 2015).
4. Tasmanian trawl - diesel otter trawlers from eastern Tasmania (1985-2015).
5. Fishery Independent Survey - (2008-2014).

14.3.1.3 Landed Catches

A landed catch history for tiger flathead, separated into the four 'fleets', is available for all years from 1915 to 2015 (Table 14.1, Figure 14.1 and Figure 14.2). Landings from the FIS fleet were assumed to be zero, with the actual FIS catch included in the scaling up of logbook catches to landed catches.

Klaer (2005) describes the sources of information used to construct the historical landed catch record for each of the fleets to 1986. Quotas were introduced into the fishery in 1992, and from then onwards, records of landed catches as well as estimated catches from the logbook are available. The landings data give a more accurate measure of the landed catch than do the logbook data, but the logbook data contain more detail. For example, it is usually possible to separate logbook records, but not landing records, by fleet. The logbook catches for each fleet from 1992 onwards have been scaled up by the
ratio of landed catches to logbook catches in each year (Thomson, 2002). Prior to 1992, the unscaled logbook catches are used.

In 2007 the quota year was changed from calendar year to the year extending from 1 May to 30 April, however the assessment is based on calendar years. All catches for recent years continue to be those made by calendar year, which may conflict with the fishing year TACs.

Small quantities of tiger flathead are caught in state waters. NSW and Victorian state catches have been added to the eastern trawl fleet, and Tasmanian state catches have been added to the Tasmanian fleet.

In order to calculate the Recommended Biological Catch (RBC) for 2017, it is necessary to estimate the Commonwealth calendar year catch for 2016. The TAC (Table 14.2) was almost unchanged from 2015 to 2016 and the state catches are unknown for 2016. Hence, assuming that the same ratio of the TAC will be caught in 2016 as in 2015, with the same state catches as 2015, is equivalent to assuming that the catch in 2016 is identical to the 2015 catch. This gives estimated 2016 catches for the eastern fleet, the Tasmanian fleet, and the Danish seine fleet of $1,245 \mathrm{t}, 349 \mathrm{t}$ and $1,479 \mathrm{t}$, respectively.

Figure 14.1. Total landed catch of tiger flathead by fleet (stacked) from 1915-2015.

Figure 14.2. Total landed catch of tiger flathead by fleet from 1915-2015.

Table 14.1. Total retained catches (tonnes) of tiger flathead per fleet for calendar years from 1915-2016.

Year	Fleet Trawl	$\begin{array}{r} D \\ \text { Seine } \end{array}$	$\begin{array}{r} E \\ \text { Trawl } \end{array}$	Tas Trawl	Year	Fleet St Trawl	$\begin{array}{r} D \\ \text { Seine } \end{array}$	$\begin{array}{r} \mathrm{E} \\ \text { Trawl } \end{array}$	Tas Trawl	Year	Fleet Trawl	$\begin{array}{r} D \\ \text { Seine } \end{array}$	Trawl	Tas Trawl
1915	371	0	0	0	1951	583	1,625	0	0	1987	0	1,358	1,109	6
1916	373	0	0	0	1952	769	1,499	0	0	1988	0	1,177	1,263	116
1917	432	0	0	0	1953	517	2,235	0	0	1989	0	1,189	1,318	128
1918	671	0	0	0	1954	366	1,737	0	0	1990	0	591	1,425	178
1919	1,151	0	0	0	1955	211	1,932	0	0	1991	0	746	1,461	166
1920	931	0	0	0	1956	157	1,868	0	0	1992	0	1,019	1,080	170
1921	1,297	0	0	0	1957	139	1,459	0	0	1993	0	516	962	194
1922	840	0	0	0	1958	68	1,138	0	0	1994	0	626	982	178
1923	796	0	0	0	1959	32	1,467	0	0	1995	0	564	1,189	139
1924	1,356	0	0	0	1960	15	2,206	0	0	1996	0	711	1,265	114
1925	1,969	0	0	0	1961	9	1,974	0	0	1997	0	1,023	1,542	175
1926	2,167	0	0	0	1962	0	1,742	0	0	1998	0	905	1,700	186
1927	2,735	0	0	0	1963	0	3,745	0	0	1999	0	1,873	1,520	248
1928	3,277	0	0	0	1964	0	3,707	0	0	2000	0	1,286	2,006	203
1929	3,768	102	0	0	1965	0	3,322	0	0	2001	0	1,261	1,602	114
1930	3,329	330	0	0	1966	0	2,769	0	0	2002	0	1,299	1,722	235
1931	2,932	4	0	0	1967	0	2,912	0	0	2003	0	1,447	1,954	270
1932	2,642	385	0	0	1968	0	2,355	0	0	2004	0	1,417	1,654	521
1933	2,456	44	0	0	1969	0	3,289	0	0	2005	0	1,307	1,515	476
1934	2,278	276	0	0	1970	0	2,667	0	0	2006	0	1,133	1,526	359
1935	2,514	270	0	0	1971	0	1,793	286	0	2007	0	1,476	1,357	221
1936	2,712	872	0	0	1972	0	1,981	491	0	2008	0	1,487	1,705	255
1937	2,912	637	0	0	1973	0	2,397	490	0	2009	0	1,356	1,406	163
1938	2,924	725	0	0	1974	0	1,493	369	0	2010	0	1,359	1,456	175
1939	2,185	1,035	0	0	1975	0	1,367	827	0	2011	0	1,300	1,433	214
1940	815	1,108	0	0	1976	0	900	712	0	2012	0	1,562	1,515	217
1941	403	1,255	0	0	1977	0	977	522	0	2,013	0	1,103	995	287
1942	167	225	0	0	1978	0	836	446	0	2,014	0	1,354	1,244	239
1943	223	317	0	0	1979	0	928	520	0	2,015	0	1,479	1,245	349
1944	315	2,624	0	0	1980	0	851	609	0	2016*	0	1,479	1,245	349
1945	953	2,168	0	0	1981	0	418	877	0					
1946	1,088	1,425	0	0	1982	0	615	930	0					
1947	884	1,193	0	0	1983	0	889	950	0					
1948	735	1,767	0	0	1984	0	890	978	0					
1949	330	804	0	0	1985	0	890	978	30					
1950	310	1,095	0	0	1986	0	892	1,005	26					

[^4]Table 14.2. Total allowable catch (t) from 1992 to 2016/17.

Year	TAC Agreed
1992	3000
1993	3000
1994	3500
1995	3500
1996	3500
1997	3500
1998	3500
1999	3500
2000	3500
2001	3500
2002	3500
2003	3500
2004	3500
2005	3150
2006	3000
2007	3015
$2008-09$	2850
$2009-10$	2850
$2010-11$	2750
$2011-12$	2750
$2012-13$	2750
$2013-14$	2750
$2014-15$	2878
$2015-16$	2860
$2016-17$	2882

14.3.1.4 Discard Rates

Information on the discarding rate of tiger flathead was available from the PIRVic-run Integrated Scientific Monitoring Program (ISMP) for 1992-2006. From 2007 the ISMP was run by AFMA. The discard data are summarised in Table 14.3. Generally, discards of tiger flathead were in the order of 8% for Danish seine, 10% for eastern trawl and 1% for Tasmanian trawl.

There is limited information on discarding for the early steam trawl fleet (1915-61) and the early Danish seine fleet (1929-67). However, it is known that total discards for all species from steam trawl in the 1920s was in the order of 20% of the retained catch (Klaer, 2001). As there is no way to determine the species catch composition of the discards, Shelf RAG made the decision to apply this ratio to tiger flathead, which translates to a discard fraction of 17%. For the base-case, all steam trawl (1915-1961) and early Danish seine (1929-1960) were assigned a constant discard fraction of 17% to apply equally to all selected fish (Figure 14.3). The discard fraction for Danish seine from 1961 to present was set using recent observed discard ratios since 1994. Recent observations were used to estimate discard fractions for the east coast and Tasmanian diesel trawl fleets.

Figure 14.3. Model estimates of discard fractions per fleet.

Table 14.3. Proportion of catch discarded by fleet, with sample sizes.

	Fleet	n	E Trawl	n	Tas Trawl	n
1992			0.087868	11		
1993			0.101798	195		
1994	0.040297	79	0.129968	267	0.081380	18
1995	0.123334	44	0.127717	129		
1996			0.122627	240		
1997			0.031345	383	0.000956	10
1998	0.053599	23	0.118566	246	0.000245	27
1999	0.015437	34	0.199701	382	0.002363	48
2000	0.071560	27	0.114977	395		
2001	0.006871	41	0.075192	457		
2002	0.112531	30	0.067438	385	0.006729	8
2003	0.014414	113	0.072940	470	0.005699	10
2004	0.001241	39	0.099207	387		
2005	0.049008	61	0.105351	461	0.001489	16
2006	0.023315	125	0.132521	369	0.000582	59
2007	0.106470	47	0.030259	106		
2008	0.030943	37	0.020926	214		
2009	0.136644	32	0.113514	200	0.052681	8
2010	0.151653	75	0.117542	171	0.029486	20
2011	0.255459	124	0.141128	140	0.002131	22
2012	0.069183	70	0.095674	127	0.009509	27
2013	0.041523	102	0.118683	128	0.016985	22
2014	0.170019	109	0.106842	128	0.006047	36
2015	0.045976	72	0.148704	231	0.003959	49

14.3.1.5 Catch Rate Indices

A standardised catch rate (CPUE) index is available for the historical steam trawl fleet for the years 1919-23, 1937-42, and 1952-57 (Klaer, 2006b; Table 14.4). An unstandardised catch rate index for early Danish seine has been used in tiger flathead assessments since Cui et al. (2004) (Table 14.5).

Catch and effort information from the SEF1 logbook database from the period 1986-2015 were standardised using GLM analysis to obtain indices of relative abundance for recent Danish seine, eastern and Tasmanian trawl fleets (Sporcic and Haddon, 2016; Table 14.6).

Abundance indices from the Fishery Independent Survey from 2008-2014 were also used, with either zones 10,20 and 30 combined, or separated into zones 10 and 20, to match the eastern trawl fleet, and zone 30 , to match the Tasmanian trawl fleet (Table 14.7).

Table 14.4. Standardised catch rates for the steam trawl fleet (Klaer 2006b).

Year	Value	CV
1919	1.618	0.31
1920	1.732	0.31
1921	1.806	0.31
1922	1.758	0.31
1923	1.646	0.31
1937	0.635	0.31
1938	0.749	0.31
1939	0.723	0.31
1940	0.611	0.31
1941	0.618	0.31
1942	0.401	0.31
1952	0.262	0.31
1953	0.208	0.31
1954	0.232	0.31
1955	0.219	0.31
1956	0.208	0.31
1957	0.169	0.31

Table 14.5. Unstandardised catch rates for the early Danish seine fleet.

Year	Value	CV
1950	38.7	0.33
1951	27.6	0.33
1952	31.8	0.33
1953	52.0	0.33
1954	34.4	0.33
1955	47.4	0.33
1956	46.5	0.33
1957	32.1	0.33
1958	22.5	0.33
1959	28.7	0.33
1960	43.6	0.33
1965	38.2	0.33
1966	41.5	0.33
1967	62.5	0.33
1968	61.2	0.33
1969	77.8	0.33
1970	67.1	0.33
1971	69.9	0.33
1972	114.0	0.33
1973	88.0	0.33
1974	58.1	0.33
1975	56.6	0.33
1976	41.9	0.33
1977	55.5	0.33
1978	51.9	0.33

Table 14.6. Standardised catch rates for the Danish seine, Eastern and Tasmanian diesel trawl fleets from 19862015.

| Year | Fleet
 D Seine | CV | E Trawl | CV | Trawl | CV |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1986^{*} | 1.0947 | 0.0226 | 0.7877 | 0.0166 | 0.9491 | 0.1587 |
| 1987 | 1.6044 | 0.0224 | 1.0463 | 0.0157 | 0.6198 | 0.1888 |
| 1988 | 1.7212 | 0.0222 | 1.1251 | 0.0155 | 0.9453 | 0.1693 |
| 1989 | 1.6220 | 0.0226 | 1.1337 | 0.0156 | 0.6935 | 0.1627 |
| 1990 | 1.0619 | 0.0240 | 1.3771 | 0.0164 | 0.7211 | 0.1648 |
| 1991 | 1.3400 | 0.0242 | 1.2851 | 0.0166 | 0.7154 | 0.1602 |
| 1992 | 1.3756 | 0.0222 | 1.0215 | 0.0173 | 0.6389 | 0.1648 |
| 1993 | 0.8305 | 0.0227 | 1.0317 | 0.0164 | 0.6095 | 0.1562 |
| 1994 | 0.7199 | 0.0218 | 0.7564 | 0.0158 | 0.6493 | 0.1573 |
| 1995 | 0.7671 | 0.0231 | 0.7945 | 0.0158 | 0.6922 | 0.1575 |
| 1996 | 0.7235 | 0.0217 | 0.7093 | 0.0156 | 0.6303 | 0.1573 |
| 1997 | 0.9375 | 0.0214 | 0.7080 | 0.0160 | 0.8179 | 0.1562 |
| 1998 | 0.7929 | 0.0209 | 0.7531 | 0.0160 | 0.9458 | 0.1567 |
| 1999 | 1.1942 | 0.0213 | 0.9077 | 0.0158 | 1.0199 | 0.1569 |
| 2000 | 0.8323 | 0.0222 | 0.9992 | 0.0153 | 0.8539 | 0.1581 |
| 2001 | 0.7881 | 0.0221 | 0.9655 | 0.0155 | 0.7411 | 0.1551 |
| 2002 | 0.8893 | 0.0219 | 1.0556 | 0.0155 | 1.3840 | 0.1542 |
| 2003 | 0.9534 | 0.0217 | 1.0394 | 0.0153 | 1.4364 | 0.1536 |
| 2004 | 0.9239 | 0.0222 | 0.9038 | 0.0155 | 1.8854 | 0.1532 |
| 2005 | 0.9777 | 0.0226 | 0.7814 | 0.0159 | 1.6647 | 0.1537 |
| 2006 | 0.9379 | 0.0239 | 0.9421 | 0.0164 | 1.3593 | 0.1546 |
| 2007 | 1.1678 | 0.0238 | 1.1485 | 0.0181 | 1.1231 | 0.1561 |
| 2008 | 1.0327 | 0.0234 | 1.2151 | 0.0175 | 1.0002 | 0.1559 |
| 2009 | 1.0518 | 0.0239 | 1.1181 | 0.0182 | 1.0080 | 0.1575 |
| 2010 | 0.9450 | 0.0235 | 1.0767 | 0.0178 | 1.0175 | 0.1584 |
| 2011 | 0.8876 | 0.0229 | 1.0592 | 0.0179 | 0.9416 | 0.1575 |
| 2012 | 0.8473 | 0.0228 | 1.1652 | 0.0178 | 1.1783 | 0.1567 |
| 2013 | 0.6376 | 0.0228 | 0.8862 | 0.0186 | 1.1522 | 0.1561 |
| 2014 | 0.6716 | 0.0225 | 1.0355 | 0.0180 | 1.3544 | 0.1566 |
| 2015 | 0.6704 | 0.0225 | 1.1716 | 0.0181 | 1.2521 | 0.1551 |
| | | | | | | |

* CV values for 1986 were set to the average of all other years

Table 14.7. Abundance indices for the fishery independent survey: combined (zones 10,20 and 30); with eastern trawl fleet (zones 10 and 20); and Tasmanian trawl fleet (zone 30).

Year	FIS	FIS East		FIST Tas		
	Z 10, 20, 30	CV	Z 10, 20	CV	Z 30	CV
2008	93.06	0.11	141.65	0.13	81.6400	0.1900
2010	91.06	0.12	104.18	0.13	112.7200	0.2000
2012	152.36	0.11	176.39	0.12	123.0900	0.2000
2014	97.22	0.10	114.39	0.12	102.06	0.18

14.3.1.6 Age Composition Data

An estimate of the standard deviation of age reading error was calculated by Andre Punt (pers. comm., 2016) from data supplied by Kyne Krusic-Golub of Fish Ageing Services (Table 14.8).

Age-at-length measurements, based on sectioned otoliths, provided by Fish Ageing Services, were available for the years 1998, 2000-2015 for the Danish seine fleet; 1998-2002, 2004-2015 for the eastern diesel trawl fleet; and 1999, 2000, 2002, 2005-2008, 2010 and 2012 for the Tasmanian diesel trawl fleet (Table 14.9). Years for which the total number of fish aged was less than 10 were not used. No age information was available for the earlier fleets.

Table 14.8. Standard deviation of age reading error (A Punt pers. comm. 2016).

Age	sd
0.5	0.245117
1.5	0.271087
2.5	0.296930
3.5	0.322645
4.5	0.348233
5.5	0.373695
6.5	0.399031
7.5	0.424243
8.5	0.449330
9.5	0.474293
10.5	0.499133
11.5	0.523850
12.5	0.548446
13.5	0.572920
14.5	0.597273
15.5	0.621507
16.5	0.645621
17.5	0.669615
18.5	0.693492
19.5	0.717251
20.5	0.740892

14.3.1.7 Length Composition Data

Length composition information for the onboard retained components of catches is available for: the Danish seine fleet 1993-1994, 1998-2007 and 2009-2015; the eastern trawl fleet from 1977, 1993, 1996-2015; and the Tasmanian trawl fleet for 1998-2006, 2008, 2010-2015 along with the numbers of fish measured and numbers of shots in each year (Table 14.10). Length composition information from port data is available for: the steam trawl fleet from 1945-1958; the Danish seine fleet from 1945-1967, 1992 and 1994-2015; the eastern trawl fleet from 1965-1967, 1969-2015; and the Tasmanian trawl fleet for 1999-2000, 2002-2006, 2009-2013 and 2015, along with the numbers of fish measured and numbers of trips in each year (Table 14.11 and Table 14.12). Length composition information from the ISMP for the discarded components of catches is available for: the Danish seine fleet 1998-2003, 2006-2007 and 2011-2015; and the eastern trawl fleet from 1992-2006 and 2008-2015; along with the numbers of fish measured and numbers of shots in each year (Table 14.13). In line with current standard practice in the SESSF, both port and onboard length frequencies are used when they are available.

Table 14.9. Number of age-length otolith samples included in the base case assessment by fleet 1998-2015.

Year	Fleet			
D Seine	E Trawl	Tas Trawl	Total	
1998	101	211		312
1999		169	46	215
2000	192	521	56	769
2001	30	180		210
2002	558	588	149	1,295
2003	102			102
2004	174	152		326
2005	603	268	11	882
2006	312	64	141	517
2007	159	302	8	469
2008	363	277	66	706
2009	596	698		1,294
2010	259	444	88	791
2011	715	410		1,125
2012	336	813	131	1,280
2013	299	434	65	798
2014	573	461	162	1,196
2015	394	735	23	1,152

Table 14.10. Number of onboard retained lengths and number of shots for length frequencies included in the base case assessment by fleet 1977-2015.

Year	Fleet D Seine	\# fish E Trawl	$\begin{array}{r} \text { Tas } \\ \text { Trawl } \end{array}$	Fleet	\# shots	Tas Trawl
				D Seine		
1977		2,136			200	
1993	356	1,347		4	17	
1994	1,950			20		
1996		494			7	
1997		6,797			191	
1998	1,706	9,364	959	30	139	8
1999	1,765	18,771	3,066	26	259	26
2000	707	21,686	492	15	235	5
2001	238	21,952	383	3	213	4
2002	332	17,229	477	8	181	4
2003	4,158	18,187	399	72	201	3
2004	3,595	11,836	562	26	122	5
2005	5,353	18,745	1,692	38	176	10
2006	13,202	12,137	4,588	103	107	34
2007	1,593	1,243		9	35	
2008		1,482	101		45	6
2009	672	1,374		11	32	
2010	678	1,909	239	28	68	9
2011	1,303	1,881	334	52	74	11
2012	1,821	2,226	348	49	72	8
2013	2,479	1,880	410	66	45	10
2014	2,064	1,999	972	73	44	21
2015	1,925	4,393	741	40	110	20

Table 14.11. Number of port retained lengths and number of trips used for length frequencies included in the base case assessment by fleet 1945-1991.

Year	Fleet St Trawl	\# fish D Seine	E Trawl	Fleet St Trawl	\# trips D Seine	E Trawl
1945	5,076	21,735		200	200	
1946	10,916	26,475		200	200	
1947	15,488	20,287		200	200	
1948	11,973	20,721		200	200	
1949	10,863	23,316		200	200	
1950	18,057	16,640		200	200	
1951	25,843	21,423		200	200	
1952	32,188	28,941		200	200	
1953	14,880	16,264		200	200	
1954	13,167	26,263		200	200	
1955	2,313	9,966		200	200	
1956	343	14,878		34	200	
1957	150	15,283		15	200	
1958	149	17,291		15	200	
1959		20,354			200	
1960		25,334			200	
1961		18,623			200	
1962		20,255			200	
1963		15,988			200	
1964		17,882			200	
1965		17,861	14,310		200	200
1966		19,101	23,222		200	200
1967		7,233	11,798		200	200
1969			96			10
1970			187			19
1971			610			61
1972			1,223			122
1973			435			44
1974			5,590			200
1975			11,684			200
1976			14,881			200
1977			18,017			200
1978			16,335			200
1979			12,189			200
1980			8,757			200
1981			6,184			200
1982			5,893			200
1983			5,140			200
1984			6,702			200
1985			2,633			200
1986			12,513			200
1987			8,154			200
1988			6,274			200
1989			3,999			200
1990			1,398			140
1991			4,040			200

Table 14.12. Number of port retained lengths and number of trips used for length frequencies included in the base case assessment by fleet 1992-2015.

Year	Fleet D Seine	\# fish E Trawl	Tas Trawl	Fleet D Seine	\# trips E Trawl	Tas Trawl

Table 14.13. Number of discarded lengths and number of shots included in the base case assessment by fleet 1992-2015.

Year	Fleet D Seine	\# fish E Trawl	Fleet D Seine	\# shots E Trawl
1992		131		7
1993		896		45
1997		139		55
1998	126	2,155	21	94
1999	104	3,988	7	151
2000	110	2,890	5	93
2002	235	2,834	11	89
2003	102	2,622	7	89
2004		3,098		56
2005		1,478		31
2006	119	2,116	10	30
2007	218		1	
2008		99		12
2009		376		19
2010		175		24
2011	132	546	4	48
2012	212	388	15	35
2013	125	477	10	23
2014	254	700	29	18
2015	175	1,504	14	60

14.3.1.8 Fishery Independent Survey (FIS) Estimates

Abundance indices for tiger flathead for the FIS surveys conducted in 2008, 2010, 2012 and 2014 are provided in Knuckey et al. (2015). As well as the standard tiger flathead FIS abundance indices (covering SESSF zones 10, 20 and 30 only), indices from the FIS were re-estimated for the eastern fleet (SESSF zones 10 and 20) and the Tasmanian fleet (SESSF zone 30) with coefficients of variation calculated for each fleet (Table 14.14). The length composition data from the FIS are included in this assessment and this allows the selectivity of the various partitions of the FIS fleet to be estimated within the assessment. Small numbers of tiger flathead are caught in the FIS from zones 40 and 50, but this data is excluded from the calculation of the FIS abundance indices and is excluded from the assessment.

Table 14.14. FIS derived abundance indices for tiger flathead with corresponding coefficient of variation (cv) for a single FIS fleet, and for split FIS fleets.

Year	FIS	FIS East			FIST Tas		
	Z 10, 20, 30	CV	Z 10, 20	CV	Z 30	CV	
2008	93.06	0.11	141.65	0.13	81.6400	0.19	
2010	91.06	0.12	104.18	0.13	112.7200	0.20	
2012	152.36	0.11	176.39	0.12	123.0900	0.20	
2014	97.22	0.10	114.39	0.12	102.0600	0.18	

The number of length measurements and the number of shots with tiger flathead from each year of the FIS are listed in Table 14.15. These are also separated into a single FIS fleet (zones 10, 20 and 30) and into two FIS fleets: eastern FIS (zones 10 and 20) and Tasmanian FIS (zone 30 only).

Table 14.15. Number of FIS length measurements and number of shots containing tiger flathead by fleet and year.

Year	FIS \# fish	$(10,20,30)$ \# shots	FIS East \# fish	$(10,20)$ \# shots	FIST Tas \# fish	(30) \# shots
2008	5222	65	3952	47	1270	18
2010	8298	101	6426	75	1872	26
2012	6494	88	5397	71	1097	17
2014	3991	44	3403	39	588	5

14.3.1.9 Input Data Summary

The data used in this assessment is summarised in Figure 14.4, indicating which years the various data types were available.

Data by type and year, circle area is relative to precision within data type

Figure 14.4. Summary of input data used for the tiger flathead assessment.

14.3.2 Stock Assessment Method

14.3.2.1 Population Dynamics Model and Parameter Estimation

A two-sex stock assessment for tiger flathead was conducted using the software package Stock Synthesis version SS-V3.24Z, (Methot, 2015). Stock Synthesis is a statistical age- and lengthstructured model which allows multiple fishing fleets and can be fitted simultaneously to the range of data available for tiger flathead. The population dynamics model, and the statistical approach used in the fitting of the model to the various types of data, are given fully in the SS technical description (Methot, 2005) and are not reproduced here. Some key features of the population dynamics model underlying Stock Synthesis which are pertinent to this assessment are discussed below.

A single stock of tiger flathead is assumed to occur from zone 10 off Sydney, through zone 20 (eastern Bass Strait), zone 60 (Bass Strait) and zone 30 (eastern Tasmania). The stock is assumed to be unexploited at the start of 1915 when the steam trawl fishery commenced. Catches prior to this are thought to have been minimal. The assessment models the impact of four fishing fleets on the tiger flathead population. The input CVs of the catch rate indices for the pre-1986 fleets were set to fixed values which are largely arbitrary due to the process of iterative reweighting. For the post-1986 fleets, the standard errors calculated from the catch-rate standardisation are used in the model (Haddon,
2013). Iterative reweighting is used to adjust the standard errors so their average equals those estimated by the model.

Selectivity is assumed to vary among fleets, but the selectivity pattern for each fleet is modelled as time-invariant except for two changes. The selectivity for Danish seine is allowed to change in 1978, and eastern diesel trawl in 1985. Selectivity is modelled as a function of length. Separate logistic functions are used for the selectivity ogives for each fleet. The two parameters of the selectivity function for each fleet are estimated within the assessment. Retention is also defined as a logistic function of length, and the inflection and slope of this function are estimated for those fleets where discard information is available (Danish seine, eastern trawl and Tasmanian trawl).

The rate of natural mortality, M, is assumed to be constant with age, and also time-invariant. The natural mortality for the base-case analysis is fixed to $0.27 \mathrm{yr}^{-1}$ as in the previous assessment (Day and Klaer, 2013).

Recruitment is assumed to follow a Beverton-Holt type stock-recruitment relationship, parameterised by the average recruitment at unexploited spawning biomass, R_{0}, and the steepness parameter, h. Steepness for the base-case analysis is estimated at 0.62 . Deviations from the average recruitment at a given spawning biomass (recruitment deviations) are estimated for 1915 to 2012. The value of the parameter determining the magnitude of the process error in annual recruitment, σ_{R}, was set equal to 0.4 , which is greater than the amount of error estimated by the model.

A plus-group is modelled at age 20. Growth of tiger flathead is assumed to be time-invariant, that is there has been no change over time in the mean size-at-age, with the distribution of size-at-age determined from fitting the growth curve within the assessment using the age-at-length data. Differences in growth by gender are modelled.

14.3.2.2 Relative Data Weighting

Iterative reweighting of input and output CVs or input and effective sample sizes is an imperfect but objective method for ensuring that the expected variation is comparable to the input. This makes the model internally consistent, although some argue against this approach, particularly if it is believed that the input variance is well measured and potentially accurate. It is not necessarily good to down weight a data series just because the model does not fit it, if in fact, that series is reliably measured. On the other hand, most of the indices we deal with in fisheries underestimate the true variance by only reporting measurement and not process error.

Data series with a large number of individual measurements such as length or weight frequencies tend to swamp the combined likelihood value with poor fits to noisy data when fitting is highly partitioned by area, time or fishing method. These misfits to small samples mean that simple series such as a single CPUE might be almost completely ignored in the fitting process. This model behaviour is not optimal, because we know, for example, that the CPUE values are in fact derived from a very large number of observations. If there is reason to believe that the length and age data are noisy at the level fitted, it has been recommended in similar circumstances (e.g. see sablefish: Schirripa 2007, pacific sardine: Hill et. al 2005) that the length and age data be down weighted to allow the model to better fit other data sources.

Previous tiger flathead assessments dealt with this issue by capping length frequency sample sizes at 200 and reducing both the age and length components of the total likelihood by a factor of 10 for the base case. This procedure was modified in this assessment to avoid making arbitrary changes to
particular likelihood components, through using trip and shot numbers, where available, instead of numbers of fish measured and by adopting the Francis weighting method for age and length composition data.

Shot or trip number is not available for all data, especially for some of the early length frequency data, which often had very large sample sizes (numbers of fish measured). To balance sample sizes for numbers of fish measured, these cases were divided by 10 and capped at 200. The number of trips were also capped at 120 and the number of shots capped at 200. Samples with less than 100 fish measured per year were excluded.

The sample sizes for the recent fleets are also individually tuned so that the input sample size is equal to the effective sample size calculated by the model.

14.3.2.3 Tuning Procedure

The tuning procedure used (Andre Punt pers comm.) was to:

1. Set the coefficients of variation to 0.1 for all CPUE and index fleets. This encourages an initial good fit to the abundance indices.
2. Simultaneously tune the sample size multipliers for the length frequencies using Francis weights and the age-at-length frequencies using Francis B. Iterate to convergence.
3. Adjust the recruitment bias ramp.
4. Tune to σ_{R} with a lower bound of 0.4 - replace with the RMSE and iterate to convergence (and adjust the bias ramp if required).
5. Tune the CPUE and FIS abundance indices using the variance adjustment factors and iterate to convergence, checking bias ramp and length frequencies.
6. Perform a single tuning to the Francis A method on age-at-length data (no iteration).
7. Re-tune CPUE and check recruitment bias ramp.

14.3.2.4 Calculating the RBC

The SESSF Harvest Strategy Framework (HSF) was developed during 2005 (Smith et al.2008) and has been used as a basis for providing advice on TACs in the SESSF quota management system for fishing years 2006-2016. The HSF uses harvest control rules to determine a recommended biological catch (RBC) for each stock in the SESSF quota management system. Each stock is assigned to one of four Tier levels depending on the basis used for assessing stock status or exploitation level for that stock. Tiger flathead is classified as a Tier 1 stock as it has an agreed quantitative stock assessment.

The Tier 1 harvest control rule specifies a target and a limit biomass reference point, as well as a target fishing mortality rate. Since 2005 various values have been used for the target and the breakpoint in the rule. In 2009, AFMA directed that the 20:40:40 ($B_{\text {lim }}$: $B_{M S Y}$: $F_{\text {targ }}$) form of the rule is used up to where fishing mortality reaches F_{48}. Once this point is reached, the fishing mortality is set at F_{48}. Day (2008) determined that for most SESSF stocks where the proxy values of B_{40} and B_{48} are used for $B_{M S Y}$ and $B_{M E Y}$ respectively, this form of the rule is equivalent to a 20:35:48 ($B_{\text {lim }}$: Inflection point: $F_{\text {targ }}$) strategy.

Previously, a preliminary economic analysis was used as a basis for using a 20:35:41 rule for tiger flathead (Klaer 2010). As steepness is an estimated parameter in the tiger flathead assessment, it is one of the few SESSF stocks where an MSY estimate may be taken from the base-case stock assessment. SESSFRAG in 2010 determined that a tiger flathead RBC may be calculated using a rule that incorporates application of the default 1.2 multiplier to the MSY depletion level to determine a minimum value for an MEY depletion level. It was also agreed at SESSFRAG that if this level was below 40% of B_{0}, that the 40% level be used to generate an RBC to maintain the biological precaution implicit in the 40% level. As with the 2013 assessment, SERAG agreed that the default RBC for tiger flathead is calculated under the 20:35:40 strategy.

14.3.2.5 Sensitivity Tests and Alternative Models

1. $M=0.22 \mathrm{yr}^{-1}$.
2. $M=0.32 \mathrm{yr}^{-1}$.
3. 50% maturity at 27 cm .
4. 50% maturity at 33 cm .
5. σ_{R} set to 0.35 .
6. σ_{R} set to 0.45 .
7. Double the weighting on the length composition data.
8. Halve the weighting on the length composition data.
9. Double the weighting on the age-at-length data.
10. Halve the weighting on the age-at-length data.
11. Double the weighting on the survey (CPUE) data.
12. Halve the weighting on the survey (CPUE) data.
13. Fix steepness (h) at 0.75 and estimate natural mortality (M).
14. Estimate recruitment only until 2009 (exclude the 2010, 2011 and 2012 recruitment estimates). This assumes average recruitment from 2010-2012, lower recruitment than estimated in these years in the base case.
15. Split the fishery independent survey (FIS) data into two fleets, to match the eastern and Tasmanian trawl fleets (one in SESSF zones 10 and 20 and another in SESSF zone 30 only). This included splitting both the FIS abundance index and the FIS length frequency data.

The results of the sensitivity tests are summarized by the following quantities (Table 14.19):

1. $S S B_{0}$: the average unexploited female spawning biomass.
2. $S S B_{2017}$: the female spawning biomass at the start of 2017.
3. $S S B_{2017} / S S B_{0}$: the female spawning biomass depletion level at the start of 2017.
4. Steepness: the estimated steepness of the stock-recruitment relationship.
5. $S S B_{\mathrm{MSY}} / S S B_{0}$: the female spawning biomass depletion level at maximum sustainable yield (MSY).
6. RBC_{2017} : the recommended biological catch (RBC) for 2017.
7. RBC_{2017-9} : the mean RBC over the three years from 2017-2019.
8. $\mathrm{RBC}_{2017-21}$: the mean RBC over the five years from 2017-2021.
9. $\mathrm{RBC}_{\text {longterm: }}$: the longterm RBC .

The RBC values are calculated for tuned models only, which are the base case and the final sensitivity where the FIS is split into two fleets (sensitivity 15). While SERAG requested a single FIS fleet, when the length frequencies were separated between Zone 30 and Zones 10 and 20, it was clear that larger fish are being caught off Eastern Tasmania (Zone 30). This same reason is used to separate the commercial fleets. As this seems a plausible alternative model, this sensitivity was also fully tuned with RBCs reported.

It is possible that the Eastern Tasmanian part of the stock could have different growth to the rest of the stock, and this option could be explored in future assessments. The current assessment assumes a single growth curve for the whole stock, an assumption also made in previous assessments.

14.4 Results and Discussion

14.4.1 The Base-Case Analysis

14.4.1. 1 Parameter Estimates

Figure 14.5 shows the estimated growth curve for female and male tiger flathead. All growth parameters are estimated by the model except for $l_{\max }$ (parameter values are listed in Table 14.16).

Ending year expected growth (with 95\% intervals)

Figure 14.5. The model-estimated growth curves.

Table 14.16. Summary of parameters of the base case model.

Feature	Details	
Fleets	Steam trawl	Fixed discard rate of 17%
	Danish seine	Fixed discard rate of 17% to 1960, fitted thereafter
		Selectivity change in 1978 from early to modern Danish seine
	East coast trawl	Selectivity change in 1985 from early to modern diesel trawl
	Tasmanian trawl	Diesel trawl in Zone 30
Natural mortality M	fixed	0.27
Steepness h	estimated	0.62
σ_{R} in	fixed	0.40
Recruitment devs	estimated	$1915-2012$, bias adjustment ramps 1928-1943 and 2015
CV growth	estimated	0.106
Growth K	estimated	Female 0.168
Growth $l_{\text {min }}$	estimated	Female age 29.73
Growth $l_{\text {max }}$	fixed	Female 55.9

Selectivity is assumed to be logistic for all fleets. The parameters that define the selectivity function are the length at 50% selection and the spread (the difference between length at 50% and length at 95% selection). Figure 14.6 shows the selectivity and retention functions for each of the commercial fleets. Figure 14.7 shows the selectivity for the combined FIS fleet (zones 10, 20 and 30) and Figure 14.8 shows the selectivity for the two FIS fleets when they are split into an eastern fleet (zones 10 and 20) and a Tasmanian fleet (Zone 30). The difference in the selectivity patterns when the FIS fleet is split suggests different characteristics in the fish caught by the FIS in Zone 30 from fish caught by the FIS in zones 10 and 20, reflecting similar pattern as is seen in the commercial trawl data in these regions.

Figure 14.6. Selectivity (blue/green) and retention (red) functions for the four commercial fleets.

Figure 14.7. Selectivity for the single FIS fleet.

Figure 14.8. Selectivity for the eastern (left) and Tasmanian (right) FIS fleets when the FIS length frequencies are separated into zones.

Figure 14.9. Time variation in selectivity for Danish seine and eastern diesel trawl.

Figure 14.10. Time variation in retention for Danish seine.

14.4.1.2 Fits to the Data

The fits to the catch rate indices (Figure 14.11) are variable in quality. The catch rate indices for the steam trawl fleet shows a considerable decline from 1915 to 1950, consistent with overexploitation during that time (see Fairbridge 1948, Klaer 2006b). The early Danish seine index from 1950 to 1978 was relatively flat or increasing over that period. Recent abundance indices from 1986 to present also show reasonably flat trends. The Tasmanian trawl fleet index is the worst fit for the recent indices, but the catch contribution by that fleet is also the smallest. The fit to the single FIS fleet is adequate, but the relatively high 2012 abundance estimate relative to the others makes it difficult to achieve a better fit to these data points.

Figure 14.11. Observed (circles) and model-estimated (lines) catch rates vs year, with approx 95\% asymptotic intervals.

The fits to the FIS abundance indices when this index is separated into and eastern (zones 10 and 20) and Tasmanian (zone 30) fleet are shown in Figure 14.12. As with the fits to the single FIS abundance index, variability between years and inconsistent patterns between the two regions makes it difficult
to achieve any better fit to these data points, and the fits do not appear to be much better than for the single FIS fleet (Figure 14.11).

Figure 14.12. Observed (circles) and model-estimated (lines) catch rates vs year, with approx 95\% asymptotic intervals for the FIS abundance index separated into Eastern (zones 10 and 20) and Tasmanian (zone 30) fleets.

The fits to the discard fractions (Figure 14.13) are reasonable given the variability in the data, with some very low data points (less than 1\%) and others up to 20% for Danish seine and eastern trawl and up to 8% for Tasmanian trawl. The fits to the discard fractions for the Eastern trawl and Danish seine fleets are considerably better than in the 2013 assessment.

Figure 14.13. Observed (circles) and model-estimated (blue lines) discard estimates versus year, with approximate 95% asymptotic intervals.

The base-case model is able to mimic the retained length-frequency distributions adequately (Figure 14.14 and Appendix A), with the exception of the Tasmanian trawl fleet, for which the actual sample sizes are relatively small. The fits to the historical steam trawl and early Danish seine fleets are better than those for the more recent data (except for steam trawl in 1957 and 1958). The number of fish measured for the historical data is generally very high, which leads to smoother observed distributions. The fits to the discarded length compositions are variable (Figure 14.15 and Appendix A). This is not surprising, as the observed discard length frequencies are quite variable from year to year, and actual sample sizes are small in comparison to the retained length frequencies.

Figure 14.14. Fits to retained length compositions by fleet, separated by port and onboard samples, aggregated across all years. Observed data are grey and the fitted value is the green line.

Figure 14.15. Fits to discarded length compositions by fleet, aggregated across all years. Observed data are grey and the fitted value is the green line.

The implied fits to the age composition data are shown in Appendix B. The age compositions were not fitted to directly, as age-at-length data were used. However, the model is capable of outputting the implied fits to these data for years where length frequency data are also available, even though they are not included directly in the assessment. The model mimics the observed age data reasonably well for all three recent fleets.

Figure 14.16. Time-trajectory of spawning biomass depletion (with approximate 95% asymptotic intervals) corresponding to the MPD estimates for the base-case analysis for tiger flathead (single FIS fleet).

14.4.1.3 Assessment Outcomes

Figure 14.16 shows the trajectory of spawning stock depletion. The stock declines substantially from the beginning of the fishery in 1915 to 1950 , fluctuates near the minimum threshold of $20 \% S S B_{0}$ during the $1950 \mathrm{~s}, 1960 \mathrm{~s}$ and 1970 s , before an increase to near $40 \% S S B_{0}$ by the 1990 This increase in the 1980s was driven by a combination of favourable recruitments (Figure 14.17) and total landings of less than 2,000t in the late 1970s and early 1980s. The stock has fluctuated near $40 \% S S B_{0}$ since around 1990 with a slight increase in the last few years.

Figure 14.17. Recruitment estimation for the base case analysis. Top left: Time-trajectories of estimated recruitment numbers; top right : time trajectory of estimated recruitment deviations; bottom left : timetrajectories of estimated recruitment numbers with approximate 95% asymptotic intervals; bottom right: the standard errors of recruitment deviation estimates.

Figure 14.18. Time-trajectory of spawning biomass depletion (with approximate 95% asymptotic intervals) corresponding to the MPD estimates for sensitivity 15 with two FIS fleets for tiger flathead.

Figure 14.18 shows the trajectory of spawning stock depletion for sensitivity 15 with two FIS fleets. The differences between the trajectories in Figure 14.16 and Figure 14.18 are very small, illustrating the very minor impact on the spawning biomass from modelling two FIS fleets, rather than just one.

Figure 14.19. Kobe plot for sensitivity 15 with two FIS fleets, showing the trajectory of spawning biomass (relative to B0) plotted against $1-\mathrm{SPR}$, which is a proxy for fishing mortality, essentially integrating fishing mortality across fleets in the fishery.

Figure 14.19 shows a Kobe plot for sensitivity 15, with two FIS fleets. This plot shows a time series of spawning biomass plotted against spawning potential ratio, which provides a measure of overall fishing mortality, and shows the stepwise movement in this space from the start of the fishery, in the bottom right corner, when there was low fishing mortality and high biomass to the present day (the red dot) where the biomass is just above the target (to the right of the vertical red dashed line) and the fishing mortality is below the target fishing level (below the horizontal red dashed line). This trajectory shows an increase in overall fishing mortality and a decrease in biomass from 1915 to about 1950, with movement from the bottom right corner to the top left corner, when the biomass was well below the target and the fishing mortality was above the target rate. The years 1942 and 1943 stand out in this trajectory when fishing effort dropped notably, with the biomass at around 75% of the target (or 30% of B_{0}). Apart from this short period of reduced fishing effort during World War II, fishing mortality stayed above the target rate until 1978, when fishing mortality reduced considerably, and stayed around or below the target until the late 1990s. This allowed the spawning biomass to recover to near the target $\left(40 \%\right.$ of $\left.B_{0}\right)$ in the late 1990s. Since the late 1990s, fishing mortality has increased again, with a slight drop in the last 3 years. This period has been supported by relatively strong recruitment.

Figure 14.20. Recruitment estimation for the base case analysis. Left: the stock-recruit curve and estimated recruitments; right: bias adjustment.

The time-trajectories of recruitment and recruitment deviation are shown in Figure 14.17. Estimates of recruitments since about 1940 are generally variable, but periods of above and below average recruitment levels appear for periods of up to 12 years. Long-term regular cycles are not evident however. Recruitment in the past 15 years has been highly variable, with both average or above average recruitment for the last 6 estimated years of recruitment. The variability in estimated recent recruitment is likely to be a result of the model attempting to fit the increased quantity of data in recent years, particularly the age data.

The base-case assessment estimates that current spawning stock biomass is 43% of unexploited stock biomass $\left(S S B_{0}\right)$. The 2017 recommended biological catch (RBC) under the 20:35:40 harvest control rule is $2,971 \mathrm{t}$ (Table 14.17) and the long term yield (assuming average recruitment in the future) is $2,765 \mathrm{t}$ (Table 14.19). Averaging the RBC over the three year period 2017-2019, the average RBC is $2,936 \mathrm{t}$ (Table 14.17) and over the five year period 2017-2021, the average RBC is 2,909 t (Table 14.19). The RBCs for each individual year from 2017-2021 are listed in Table 14.17 for both the base case and for the sensitivity with two FIS fleets.

Table 14.17. Yearly projected RBCs (tonnes) across all fleets under the 20:35:40 harvest control rules: assuming average recruitment from 2013 (base case, column 2); and for the sensitivity when the FIS has two fleets (sensitivity 15, column 3), assuming average recruitment from 2013.

RBCs	Base	Sens 15
Year	1FIS	2 FIS
2017	2,971	2,929
2018	2,934	2,900
2019	2,903	2,876
2020	2,879	2,857
2021	2,860	2,841

14.4.1.4 Discard Estimates

Model estimates for discards for the period 2017-21 with the 20:35:40 Harvest Control Rule are listed in Table 14.18 for the base case, with a range of 163 to 167 t , and for the sensitivity with two FIS fleets, with a range of 159 to 163 t .

Table 14.18. Yearly projected discards (tonnes) across all fleets under the 20:35:40 harvest control rules with catches set to the calculated RBC for each year from 2017 to 2021: assuming average recruitment from 2013 (base case, column 2); and for the sensitivity when the FIS has two fleets (sensitivity 15 , column 3), assuming average recruitment from 2013.

Discards	Base	Sens 15
Year	1 FIS	2 FIS
2017	163	159
2018	164	160
2019	166	162
2020	167	163
2021	167	163

14.4.2 Sensitivity Tests and Alternative Models

Results of the sensitivity tests are shown in Table 14.19. The results are very sensitive to the assumed value for natural mortality (M). Much of this variability is due to the estimated current depletion level, which can be as low as $26 \% S S B_{0}$ when M is 0.22 . For all other standard sensitivities, there is much less variability in current depletion. The one exception to this result for a non-standard sensitivity is when recruitment is only estimated to 2009, and not estimated in 2010, 2011 and 2012.

Unweighted likelihood components for the base case and differences for the sensitivities reveal several points (Table 14.20). The overall likelihood is not improved for a smaller value of M, in contrast to the results from Day and Klaer (2013), but in line with earlier results in Klaer (2010). Steepness and M are highly correlated, and it is normally not possible to estimate both of these parameters. The basecase is essentially uninformative about the value of M, which needs to be sourced independently of the stock assessment if steepness is estimated, but these results suggests that M should not be reduced.

In contrast to the 2013 assessment, none of the sensitivities show an overall improvement to the fit, which suggests the model is remarkably stable and well balanced.

In addition to the standard sensitivities, (cases 1-13 in Table 14.19), two additional sensitivities were investigated.

The last three estimated recruitment events (2010-2012) were all above average. Recruitment events at the end of the tie series can often be modified with the addition of future data, which may be more informative, so it is useful to explore the possible effect of lower recruitment over this time period. If these recruitment events are assumed to be average, which reduces all three of these recruitment events, the depletion in 2017 would be 31%, and the fits to the discards and age compositions would be worse (Table 14.20). This suggests that the age and discard data support these good recent recruitment events.

Splitting the FIS into two fleets, made very little difference to the depletion estimate, improved the fit to the surveys slightly and resulted in poorer fits to the length frequency data. None of these results
are surprising. The influence of the FIS data is relatively small given the quantity of other data in the assessment, so structural changes to this fleet are unlikely to have much impact. Separating the length frequencies allowed the larger fish caught in zone 30 to have a little more influence, and not surprisingly, these were subsequently harder to fit.

Exploration of model sensitivity showed a variation in spawning biomass from 26% to 51% of $S S B_{0}$ when natural mortality was fixed at values of 0.22 and 0.32 respectively. When recruitment is only estimated to 2009, excluding the above average recruitment estimates in 2010, 2011 and 2012, the spawning biomass was estimated to be 31% of $S S B_{0}$. For all other sensitivities explored, the variation in spawning biomass was much narrower, ranging between 39% and 45%.

For the base-case (20:35:40 Harvest Control Rule with recruitment estimated to 2012), $S S B_{\text {MSY }}$ is estimated to be 31% of $S S B_{0}$. If the standard MEY proxy multiplier of 1.2 is applied to this MSY estimate, the $S S B_{\text {MEY }}$ estimate for the base case is 37% of $S S B_{0}$. This proxy for $S S B_{\text {MEY }}$ is rounded up to 40% of $S S B_{0}$ by agreement at SESSFRAG, with a 20:35:40 Harvest Control Rule used for tiger flathead.

14.4.3 Future Work

14.4.3. 1 Danish Seine Mesh Size

The Danish seine fleet has made changes to the mesh size used for the flathead gear in recent years, with a transition to a slightly larger mesh size possibly starting sometime between 2010 and 2013, with the full transition taking around three years. While there is little evidence in the length frequency data to suggest a large change to selectivity as a result, it would be possible to use a time block with a transitional period and examine the resulting selectivity. The impact of such a change on both the selectivity and the spawning biomass could be explored in a future assessment. Given that the Danish seine length frequency distributions do not seem to have changed in this period, it would be surprising if this produced very different results.

14.4.3.2 Summer FIS Length Frequencies

All length frequency distributions included in this assessment from the FIS from 2008, 2010 and 2012 included measurements from both the winter and the summer surveys. In 2014 there was only a winter survey, so this length frequency distribution does not include fish caught in summer. These summer and winter FIS length frequencies could be separated in a future assessment, initially to check if there are any differences. Decisions could then be made as to whether to simply exclude the summer FIS length frequencies from the assessment or whether to include these in the assessment as yet another fleet, albeit a fairly short-lived fleet.

14.4.3.3 Tasmanian Trawl Growth Parameters

In 2006, Shelf RAG selected the model that treated Tasmanian trawl as a separate fishing fleet fishing the same east coast stock as the most appropriate base case. It appears that growth may differ for the fish caught by the Tasmanian trawl and the Tasmanian FIS fleets, so the assumption for this model of the stock could be revisited in future. Options to consider include modelling the Tasmanian stock as a separate stock, estimating growth independently for the Tasmanian stock and excluding the Tasmanian data from the assessment.

14.4.3.4 Historical Length Frequencies

Some historical length frequencies from the 2013 assessment appear to have been lost from the automatic processing. These distributions were included in this assessment, by using the dame data used in 2013. This issue need to be investigated to make sure the original data is not lost for future assessments.

14.4.3.5 Steam Trawl Length Frequencies

Length frequency data from the steam trawl fleet in the 1950s includes two sources of data which overlap for the period 1953-1955. Fits to the Sydney Fish Market data (1953-1958) are not as good as the fits to the Blackburn data (1945-1955), but there is some conflict between the data from these two sources. These data sources could potentially be treated differently to improve these fits to the steam trawl fleet.

Table 14.19. Summary of results for the base-case and sensitivity tests. Recommended biological catches (RBCs) are only shown for tuned models (cases 0 \& 17).

Case		SSB_{0}	SSB_{2017}	$\mathrm{SSB}_{2017} / \mathrm{SSB}_{0}$	Steepness	$\mathrm{SSB}_{\mathrm{MSY}} / \mathrm{SSB}_{0}$	RBC_{2017}	RBC_{2017-9}	$\mathrm{RBC}_{2017-21}$	$\mathrm{RBC}_{\text {longterm }}$
0	base case 20:35:40 M 0.27	22,987	9,972	0.43	0.62	0.31	2,971	2,936	2,909	2,765
1	M 0.22	22,041	5,728	0.26	0.75	0.27				
2	M 0.32	25,095	12,898	0.51	0.50	0.35				
3	50% maturity at 27 cm	24,182	10,661	0.44	0.60	0.32				
4	50% maturity at 33 cm	21,333	9,032	0.42	0.64	0.30				
5	$\sigma_{R}=0.35$	22,795	9,799	0.43	0.61	0.31				
6	$\sigma_{R}=0.45$	23,151	10,092	0.44	0.62	0.31				
7	wt x 2 length comp	23,271	9,815	0.42	0.61	0.31				
8	wt x 0.5 length comp	22,619	9,993	0.44	0.63	0.30				
9	wt $\times 2$ age comp	23,126	9,717	0.42	0.61	0.31				
10	wt $\times 0.5$ age comp	22,838	10,187	0.45	0.63	0.31				
11	wt x 2 CPUE	22,653	10,067	0.44	0.63	0.31				
12	wt x 0.5 CPUE	22,803	9,531	0.42	0.62	0.31				
13	estimate M (0.232), $h 0.75$	21,592	8,413	0.39	0.75	0.26				
14	recruitment est to 2009	22,705	7,032	0.31	0.61	0.31				
15	Two FIS fleets	23,100	9,877	0.43	0.61	0.31	2,929	2,901	2,880	2,766

Table 14.20. Summary of likelihood components for the base-case and sensitivity tests. Likelihood components are unweighted, and cases 1-17 are shown as differences from the base case. A negative value indicates a better fit, a positive value a worse fit.

Case		$\begin{array}{r} \text { Likelihood } \\ \text { TOTAL } \\ \hline \end{array}$	Survey	Discard	Length comp	Age comp	Recruitment	Parm priors
0	base case 20:35:40 M 0.27	2834.33	-129.41	187.76	404.01	2383.26	-14.30	2.94
1	M 0.22	9.85	11.72	-1.52	-1.43	1.68	-1.79	-0.07
2	M 0.32	0.57	-2.03	0.55	-0.09	0.04	1.56	0.43
3	50% maturity at 27 cm	6.80	-0.03	-0.01	-0.01	0.00	-0.21	7.07
4	50% maturity at 33 cm	7.35	0.04	0.01	0.02	0.00	0.29	6.99
5	$\sigma_{R}=0.35$	2.22	1.69	0.63	1.72	0.06	-1.89	0.00
6	$\sigma_{R}=0.45$	-1.00	-1.23	-0.46	-1.30	-0.01	2.00	0.00
7	wt x 2 length comp	4.55	1.08	5.08	-10.10	3.36	5.11	0.02
8	wt x 0.5 length comp	2.77	0.14	-2.77	9.90	-1.34	-3.13	-0.02
9	wt x 2 age comp	3.65	3.85	5.59	2.83	-9.10	0.45	0.02
10	wt x 0.5 age comp	4.20	-2.36	-6.63	-1.38	14.24	0.34	-0.02
11	wt x 2 CPUE	4.38	-10.22	4.50	0.95	4.32	4.84	-0.02
12	wt x 0.5 CPUE	3.70	12.78	-3.44	-0.10	-2.19	-3.34	0.00
13	estimate M (0.232), h 0.75	0.75	1.65	-0.53	0.36	-0.02	-0.60	-0.07
14	recruitment est to 2009	13.00	0.79	5.68	1.19	7.44	-2.20	0.01
15	Two FIS fleets	12.13	-4.43	1.34	13.48	-0.61	-0.14	0.17

14.5 Acknowledgements

Age data was provided by Kyne Krusic-Golub (Fish Ageing Services), ISMP and AFMA logbook and CDR data were provided by John Garvey (AFMA). Mike Fuller, Roy Deng, Franzis Althaus and Robin Thomson (CSIRO) pre-processed the data. Athol Whitten provided very useful R code for organising plots. Robin Thomson, Geoff Tuck, Rich Little, Miriana Sporcic, Malcolm Haddon and Judy Upston are thanked for helpful discussions on this work.

14.6 References

Allen KR 1989. Stock assessments for four species in the Southeastern trawl fishery. SET Report held by BRS, Canberra.

Cui G, Pun, AE, Cope JM, Knuckey IA, Klaer NL, Fuller ME and Smith ADM 2004. Quantitative stock assessment for tiger flathead (Neoplatycephalus richardsoni) 2004. In: Stock assessment for the south east and southern shark fishery. Tuck, G.N. and Smith, A.D.M. (Eds.). FRDC report 2001/005. Chapter 11, pp 373-410.
Day J and Klaer N 2013. Tiger flathead (Neoplatycephalus richardsoni) stock assessment based on data up to 2012. Unpublished report to Shelf RAG. 70 pp.
Fairbridge WS 1948. The effect of the war on the East Australian Trawl Fishery. Journal for the Council for Scientific and Industrial Research 21: 75-98.

Haddon M 2013. Catch rate standardizations for selected species from the SESSF (data 1986 - 2012). Document prepared for SESSF RAGs 2013. CSIRO Wealth from Oceans Flagship, Hobart. 221 p.

Hill KT, Lo NCH, Macewicz BJ and Felix-Uraga R 2005. Assessment of the Pacific Sardine (Sardinops sagax caerulea) Population for U.S. Management in 2006. NOAA Fisheries Report.
Klaer NL 2004. Abundance indices for main commercial fish species caught by trawl from the south eastern Australian continental shelf from 1918 to 1957. Marine and Freshwater Research 55:561571.

Klaer N 2005. Towards an agreed catch history for tiger flathead in the South East Fishery. Document presented to the 9 September 2005 meeting of SESSF Shelf RAG.
Klaer N 2006a. Updated stock assessment of tiger flathead (Neoplatycephalus richardsoni) based on data up to 2005. Report to SESSF Shelf RAG, August 2006.
Klaer NL 2006b. Changes in the species composition of fish communities on the SE Australian continental shelf from 1915 to 1960. PhD Thesis, University of Canberra.
Klaer N 2009. Tiger flathead (Neoplatycephalus richardsoni) stock assessment based on data up to 2008 - development of a preliminary base case. Document presented to the 5-6 October 2009 meeting of SESSF ShelfRAG.
Klaer N 2010. Tiger flathead (Neoplatycephalus richardsoni) stock assessment based on data up to 2009. Document presented to the October meeting of SESSF Shelf RAG. 41 pp.

Knuckey I, Koopman M, Boag S, Upston J, Klaer N, Day J, Peel D and Hudson R 2013. Continuation of a fishery independent survey for the Southern and Eastern Scalefish and Shark Fishery -2012. AFMA Project 2010/817. Fishwell Consulting 77 pp.

Knuckey I, Koopman M, Boag S, Day J and Peel D 2015. Continuation of a fishery independent survey for the Southern and Eastern Scalefish and Shark Fishery - 2014. AFMA Project 2014/0816. Fishwell Consulting 50 pp .
Methot RD 2005. Technical Description of the Stock Synthesis II Assessment Program Version 1.17 - March 2005. NOAA Fisheries Internal Report.

Methot RD 2010. User manual for Stock Synthesis. Model Version 3.11a. NOAA Fisheries Service, Seattle. 159 pp.
Methot RD 2012. User manual for Stock Synthesis. Model Version 3.24f. NOAA Fisheries Service, Seattle. 150 pp .
Methot RD (2015) User manual for Stock Synthesis. Model Version 3.24s. NOAA Fisheries Service, Seattle. 152 pp.
Punt AE 2005a. Updated stock assessment of tiger flathead (Neoplatycephalus richardsoni) based on data up to 2005. Report to SESSF Shelf RAG, 2005.

Punt AE 2005b. Including catch and length-frequency data for Tasmania in the stock assessment for tiger flathead. Report to SESSF Shelf RAG, 2005.
Schirripa MJ 2007. Status of the Sablefish Resource off the Continental U.S. Pacific Coasts in 2007. NOAA Fisheries Report.
Sporcic M and Haddon M 2016. Statistical CPUE standardizations for selected SESSF species (data to 2015). CSIRO Oceans and Atmosphere Flagship, Hobart. 214 p.
Thomson RB 2002. South East Fishery data for stock assessment purposes. Draft CSIRO Report.

14.7 Appendix

A1 Data source summary and fits to length composition data

Data by type and year

Figure A 14.1. Summary of data sources for tiger flathead stock assessment.

Figure A 14.2. Tiger flathead length composition fits: steam trawl retained.
length comps, retained, DSeine

Figure A 14.3. Tiger flathead length composition fits: Danish seine retained onboard.
length comps, retained, DSeinePort

Figure A 14.4. Tiger flathead length composition fits: Danish seine retained port.
length comps, discard, DSeine

Length (cm)

Figure A 14.5. Tiger flathead length composition fits: Danish seine discarded.
length comps, retained, ETrawl

Figure A 14.6. Tiger flathead length composition fits: eastern trawl retained onboard.
length comps, retained, ETrawIPort

Figure A 14.7. Tiger flathead length composition fits: eastern trawl retained port .
length comps, discard, ETrawl

Figure A 14.8. Tiger flathead length composition fits: eastern trawl discarded.
length comps, retained, TasTrawl

Length (cm)

Figure A 14.9. Tiger flathead length composition fits: Tasmanian trawl retained onboard.

length comps, retained, TasTrawIPort

Length (cm)

Figure A 14.10. Tiger flathead length composition fits: Tasmanian trawl retained port.
length comps, retained, FIS

Figure A 14.11. Tiger flathead length composition fits: FIS (zones 10, 20 and 30).

Figure A 14.12. Tiger flathead length composition fits: Eastern FIS (zones 10 and 20).
length comps, retained, FISTas

Figure A 14.13. Tiger flathead length composition fits: Tasmanian FIS (zone 30 only).

Pearson residuals, retained, FISEast (max $=0.82$)

Figure A 14.14. Tiger flathead length composition fits: Eastern FIS (zones 10 and 20).

Pearson residuals, retained, FISTas (max=1.51)

Figure A 14.15. Tiger flathead length composition fits: Tasmanian FIS (zone 30 ony).

Pearson residuals, sexes combined, retained, comparing across fleets

Year
Figure A 14.16. Residuals from the annual length compositions (retained) for tiger flathead displayed by year and fleet.

Pearson residuals, sexes combined, discard, comparing across fleets

Figure A 14.17. Residuals from the annual length compositions (discarded) for tiger flathead displayed by year and fleet.

Figure A 14.18. Implied fits to age compositions for tiger flathead Danish seine (retained).
age comps, discard, DSeine

Age (yr)

Figure A 14.19. Implied fits to age compositions for tiger flathead Danish seine (discarded).

Figure A 14.20. Implied fits to age compositions for tiger flathead eastern trawl (retained).
age comps, discard, ETrawl

Figure A 14.21. Implied fits to age compositions for tiger flathead eastern trawl (discarded).
age comps, retained, TasTrawl

Age (yr)

Figure A 14.22. Implied fits to age compositions for tiger flathead Tasmanian trawl (retained).
age comps, discard, TasTrawl

Age (yr)

Figure A 14.23. Implied fits to age compositions for tiger flathead Tasmanian trawl (discarded).
age comps, retained, aggregated across time by fleet

Figure A 14.24. Implied fits to age compositions for tiger flathead aggregated across time by fleet (retained).
age comps, discard, aggregated across time by fleet

Figure A 14.25. Implied fits to age compositions for tiger flathead aggregated across time by fleet (discarded).

15. Updated RBC calculations for Tiger flathead (Neoplatycephalus richardsoni) stock assessment based on data up to 2015

Jemery Day
CSIRO Oceans and Atmosphere, Castray Esplanade, Hobart 7000, Australia

15.12017 updates to tiger flathead RBCs

15.1.1 Updated RBCs from 2016 tiger flathead assessment

RBC calculations were made for the 2016 tiger flathead assessment (Day 2016), with the usual assumption that the 2016 catch data was identical to the 2015 catch data, in the absence of actual catch data for 2016. The projected 2016 catch data allows the spawning biomass and RBC to be calculated at the start of 2017 year, allowing an updated TAC to be implemented in 2017. Stock Synthesis (Methot 2015) was largely developed in the USA, using a different set of harvest control rules to those used in Australia. The code has been modified to incorporate the Australian harvest control rules, and there are some clear differences between these sets of rules. For example, in SESSF assessments, the projected 2016 catch figures are included as a "forecast" quantity in the forecast.sso file, as they fall outside the range of data input to the assessment, which ends in 2015.

In 2016, advice was received to modify one of the parameters in the forecast file, so that forecast catches comply more closely with the Australian rules rather than the American rules. Unfortunately, this resulted in some unintended side effects where the catch that was used in the projections was not that which was specified in the forecast file. Instead, it was calculated by the harvest control rule, assuming that those results were known in advance. This resulted in a lower projected catch for 2016 than was expected (with a total retained catch of 2769 t in 2016 when it should have been 3074 t). This would affect the forecast spawning biomass trajectory and calculation of the RBC for 2017. If the correct 2016 catch is considered, a different spawning biomass level at the start of 2017 would result, and consequently a different series of RBC values from 2017.

To ensure that the appropriate catch is taken in 2016, we have reverted to the process used in previous assessments. However, this ensures that the correct 2016 catch is applied, and is consistent with procedures used in SESSF assessments prior to 2016.

When this correction is made, the estimated depletion at the start of 2017 changes from the 43% reported in Day (2016) to 42%. The RBCs calculated from 2017 to 2021, listed in Table 17 in Day (2016), are updated below (Table 15.1), along with the incorrect RBCs reported at the November 2016 SERAG meeting for the base case for tiger flathead adopted at the November SERAG meeting (with two FIS fleets). The correct RBC for 2017 is 43t less than that reported previously, 35 t less in 2018 and 28 t less in 2019. The updated spawning depletion trajectory is plotted against the incorrect version in Figure 15.1.

Table 15.1. Yearly projected RBCs (tonnes) across all fleets under the 20:35:40 harvest control rules: assuming average recruitment from 2013. The updated RBCs appear in column 2, with the superseded values (as reported at the November 2016 SERAG meeting) in column 3 for comparison. These RBCs include the sum of retained catches and discard estimates.

RBCs	Updated	Nov 2016
Year	RBC	RBC
2017	2,886	2,929
2018	2,865	2,900
2019	2,848	2,876
2020	2,834	2,857
2021	2,823	2,841

Figure 15.1. Corrected (red) and November 2016 (blue) relative spawning biomass trajectories. These trajectories are identical up to 2016 and there is a very small difference from 2016 onwards, with the corrected trajectory marginally lower than the November 2016 trajectory.

15.1.2 RBCs from variations to the standard harvest control rule used for the 2016 updated base case

Alternative scenarios are also considered where total catches (including discards) between 2017 and 2019 are fixed at particular values, reflecting either a 50% reduction in the TAC cut phased over one or two years and a 33% reduction per year phased over 3 years (Table 15.2).

Scenario 1

- A 50% cut in the proposed reduction in TAC for 2017

Scenario 2

- A 50% cut in the proposed reduction in TAC for 2017 , with the remaining 50% to be deducted in 2018

Scenario 3

- A 33.33 \% cut in the proposed reduction in TAC each year over three years from 2017-2019.

Spawning biomass trajectories comparing the updated base case with scenario 1 is shown in Figure 15.2 and the updated base case compared to scenario 3 in Figure 15.3. The spawning biomass trajectory approaches the target faster than the base case in both scenarios, as expected, but the difference is hard to discern on this scale.

Table 15.2 shows the fixed total catches (retained plus discards) used for scenarios 1-3 and the resulting depletion level and the RBC calculated for the years after the catch is fixed. Depletion is listed to 3 significant figures so that the differences can be seen. RBCs used in Table 15.2 for years 2017-2019 are individual yearly RBCs rather than the three year mean of the RBC for that period.

Table 15.2. New projections comparing the updated RBCs and depletions for the base case with the fixed catches and resulting depletions from the three different scenarios. All catches and RBCs in this table are total catches (retained plus discard estimates).

Year	Base			50\%			50\%			33\%		
				1			2			3		
		Case			year			years			years	
	Dep	Catch	RBC									
2016	0.428	3259		0.428	3259		0.428	3259		0.428	3259	
2017	0.421		2886	0.421	3089		0.421	3089		0.421	3157	
2018	0.416		2865	0.412		2837	0.412	2868		0.410	3004	
2019	0.412		2848	0.409		2826	0.408		2821	0.404	2854	
2020	0.410		2834	0.407		2817	0.406		2812	0.402		2783
2021	0.408		2823	0.406		2809	0.405		2805	0.401		2781

Figure 15.2. Corrected (blue) and Scenariol (blue) relative spawning biomass trajectories. These trajectories are identical up to 2016 and there is a very small difference from 2016 onwards.

Figure 15.3. Corrected (blue) and Scenario 3 (blue) relative spawning biomass trajectories. These trajectories are identical up to 2016. Scenario 3 approaches the management target faster than the base case

15.2 References

Day J 2016. Tiger flathead (Neoplatycephalus richardsoni) stock assessment based on data up to 2015. Unpublished report to SERAG. 80 pp .
Methot RD (2015) User manual for Stock Synthesis. Model Version 3.24s. NOAA Fisheries Service, Seattle. 152 pp.

16. Deepwater Flathead (Neoplatycephalus conatus) stock assessment using data to 2015/2016

Malcolm Haddon
CSIRO Oceans and Atmosphere, Castray Esplanade, Hobart 7000, Australia

16.1 Summary

This document updates the 2013 assessment of Deepwater Flathead (Platycephalus conatus) by including new data from 2012/2013 - 2014/2015) to provide estimates of stock status in the Great Australian Bight at the start of 2016/17 (end of 2015/2016). This assessment was performed using the stock assessment package Stock Synthesis (v3.24z) and included data from AFMA log-books, the ISMP sampling program, the ageing facility, and from Industry sampling programs and the GAB Fishery Independent Trawl Survey. For the first time the ISMP data was divided into the on-board and Port based samples, the length and age composition data from the FIS was used for the first time, and the Industry collected length composition data was also used for the first time.

The base-case assessment estimates that the female spawning stock biomass at the start of 2016/2017 was 45.0% of unexploited female spawning stock biomass (SSB_{0}). The 2017/2018 recommended biological catch (RBC) under the agreed 20:35:43 harvest control rule is 1155 t and the long-term yield (assuming average recruitment in the future) is 1093 t . Averaging the RBC over the three year period 2017/2018 - 2019/2020, generates a three year RBC of $1128 t$ and over the five year period 2016/2017 $-2020 / 2021$, the average RBC would be 1115 t . The reduction reflects the gradually declining RBC predicted when projecting the assessment model forward to a depletion level of $43 \% B_{0}$. As expected lower RBCs are generated using a 20:35:48 harvest control rule.

The unexploited female spawning biomass in 2016/2017 was estimated as $11,046 \mathrm{t}$. While this is an increase of 1719 t over the estimate made in 2012 there has been little change in the stock status with the stock still estimated to be at 45% unfished biomass (2% above the estimate MEY value).

The Forecast RBCs for Deepwater Flathead based on the 20:35:43 Harvest Control Rule Forecast	
2017/2018 RBC	1155
$17 / 18-19 / 20$ RBC	1128
$17 / 18-19 / 20$ RBC	1115
Long Term Yield	1093

16.2 Introduction

16.2.1 The Fishery

The trawl fishery in the GAB primarily targets two species, Bight Redfish (Centroberyx gerrardi) and Deepwater Flathead (Neoplatycephalus conatus), and these have been fished sporadically in the Great

Australian Bight (GAB) since the early 1900s (Kailola et al., 1993). The GAB trawl fishery (GABTF) was set up and managed as a developmental fishery in 1988, and since then a permanent fishery has been established with increasing catches of both species, although catches of Bight Redfish have declined recently. Deepwater Flathead are endemic to Australia and inhabit waters from NW Tasmania, west to north of Geraldton in WA in depths from 70 m to more than 510 m (Kailola et al., 1993; Gomon et al., 2008; www.fishbase.org). Bight Redfish are also endemic to southern Australia, occurring from off Lancelin in WA to Bass Strait in depths from 10 m to 500 m . The two species are often caught in the same trawl tows although Bight Redfish is most commonly taken in the east of the GAB. This document focusses on the stock assessment for Deepwater Flathead.

16.2.2 Previous Assessments

An initial stock assessment workshop for the GABTF held in 1992 focused on the status of Deepwater Flathead and Bight Redfish. Sources of information for the workshop included historical data, logbook catch data, observer data and biological information. With so few years of data available at that time catch-per-unit-area $\left(\mathrm{kg} / \mathrm{km}^{2}\right)$ was calculated for quarter-degree squares and then scaled to the total area in which the species had been recorded. The approximate exploitable biomass estimates for Deepwater Flathead and Bight Redfish obtained by this relatively informal method were 32,000t and 12,000t respectively (Tilzey and Wise 1999). Error bounds on these estimates could not be calculated.

Wise and Tilzey (2000) summarised the data for the GABTF focusing on Deepwater Flathead and Bight Redfish, the two principle commercial species in shelf waters. They produced the first attempt to assess the status of these Deepwater Flathead and Bight Redfish populations using age- and sexstructured stock assessment models. The virgin total biomass estimates for the Deepwater Flathead base case model were 53,760 t (95% confidence interval is $2,488-105,032 \mathrm{t}$). In 2002 an updated assessment was carried out including data up to 2001. The unexploited biomass estimates for the Deepwater Flathead base case model was then 12,876t ($95 \% \mathrm{CI}=11,928-13,824$).

GABTF assessments in 2005 (Wise and Klaer, 2006; Klaer, 2007) used a custom-designed integrated assessment model developed using the AD Model Builder software (Fournier et al., 2012). A series of fishery-independent resource surveys was also commenced in 2005, providing a single annual biomass estimate for Bight Redfish and Deepwater Flathead (Knuckey et al., 2015), plus extra samples of length and age composition data. Initially, attempts were made to make absolute abundance estimates using classical swept area methods from the survey data. The unexploited biomass levels estimated for the base case models from the assessment models were 20,418t and 13,932t for Deepwater Flathead and Bight Redfish, respectively. The absolute biomass estimate from the survey at that time was consistent with other fishery data for deepwater flathead, but was much greater than the biomass modelled without the survey for Bight redfish. Survey estimates are now treated as indices of relative abundance separate from that obtained from the standardized Commercial catch-per-unit-effort data.

The 2006 assessment (Klaer and Day, 2007) duplicated as far as possible the assessment results from 2005 using the Stock Synthesis (SS) framework. Although it was possible to replicate 2005 results reasonably well, there were a few differences in the model structure implemented in SS2 most importantly the calculation of recruitment residuals independently and allowing recruitment residuals to occur prior to the commencement of the fishery.

An attempt was made to incorporate as much previously unused data as possible into the 2007 assessment - particularly length-frequencies (Klaer, 2007). Age-frequencies were no longer used explicitly but conditional age-at-length distributions were obtained from age-length keys. In addition,
the model used original age-at-length measurements to fit growth curves within the model, to better allow for the interaction between selectivity and the growth parameters. The depletion of Deepwater Flathead in 2007 was estimated at 56%, and the unexploited female spawning biomass was estimated at $8,836 \mathrm{t}$ (Klaer, 2007).

The 2010 assessment (Klaer 2011a, b) included all available port and on-board collected length data combined. Following agreement by the RAG, the 2010 assessment included the FIS as a relative index for the first time. Unexploited female spawning biomass was estimated as 10,366 t and current depletion at 62% of B 0 . The long-term RBC estimate was $1,137 \mathrm{t}$. This assessment indicated that the stock had been more depleted than previously predicted in 2005/06, being down near the $20 \% \mathrm{~B} 0$ limit. Previous assessments had all indicated a stock in fish-down, but always above the target biomass.

The Deepwater Flathead assessment was repeated again in 2012 (Klaer 2013a, b) with the base case estimating an unexploited spawning stock biomass of 8,921 t and a depletion at that time of 39% of SSB_{0}. The 2013/14 recommended biological catch (RBC) under the 20:35:43 harvest control rule was 979 t and the long-term yield (assuming average recruitment in the future) was $1,051 \mathrm{t}$.

Finally, the latest Deepwater Flathead assessment was conducted using data to the end of 2012/2013 (Klaer, 2014a, b). This estimated the unexploited spawning stock biomass of 9,320t and a depletion at the start of 2014/2015 of 45% of SSB_{0}. The 2014/15 recommended biological catch (RBC) under the 20:35:43 harvest control rule is 1,146t and the long-term yield (assuming average recruitment in the future) is $1,105 \mathrm{t}$ (Table 16.1).

Table 16.1. A summary of previous stock assessment outcomes for Deepwater Flathead. The year of assessment usually relates to the final year of data collection, which is the fishing year involved (thus, 2011 is for the year 2010/2011). B0 is the unfished female spawning biomass. The yield is the RBC for the following year with the long term estimated sustainable yield in brackets for some years (prior to 2009 these are MSY estimates). The 1999 biomass estimate is of exploitable biomass while the rest reflect female spawning biomass.

Year	Authors	B0 (t)	Depletion	RBC (LTY) (t)
1999	Tilzey and Wise(1999)	$\sim 32,000$	-	
2000	Wise and Tilzey(2000)	53,760		
2002	Wise and Tilzey	12,876		
2005	Wise and Klaer (2006)	20,418	$>79 \%$	(670)
2006	Klaer and Day (2007)	10,084	50	1,070
2007	Klaer (2007)	8,841	56	1,524
2010	Klaer (2011b)	10,366	62	$1,463(1,137)$
2012	Klaer (2013b)	9,320	45	$1,146(1,105)$

16.2.3 Modifications to the previous assessment

An initial base case was developed and presented to the GAB RAB on $3^{\text {rd }}$ November 2016; this was used to describe the changes wrought on the previous assessment by the sequential addition of the new data now available (known as a bridging analysis) along with other structural changes.
The latest version of the SS3 software was applied (SS3.24z; Methot and Wetzel, 2013; Methot, 2015) and then an array of data updates were made, including some data streams that had not been used previously. Importantly, there has been a change in general advice with regard the emphasis to be placed on the indices of relative abundance (standardized commercial CPUE and the Trawl Survey indices; Francis, 2011) relative to that placed on the age and length composition data. This relates to
the proportional emphasis given to the different data streams available when fitting the model and, in this case, different arrangements can lead to different assessment outcomes in terms of estimates of female spawning biomass and depletion levels. There was also discussion in earlier GAB RAGs concerning the validity of the $2015 / 2016$ trawl survey indices of relative abundance so especial attention was paid to the influence of including that single new data point into that time series. The bridging analysis therefore included the usual incremental addition of new data to the earlier assessment but included two extra final analyses where either all FIS related data was removed or only the final year's survey index was removed.

The changes are described in a set different manipulations and changes to the old assessment (Table 16.2).

Table 16.2. The 11 different analyses conducted as part of the bridging analysis that revised the assessment conducted in 2013 to the current assessment that includes all new available data. An alternative basecase analyses in which the data stream variances have been fully rebalanced except the FIS survey data for 2014/2015 was removed.

Title	Description
origbase24f origbas24z	Repeat the assessment from 2013 using the original software version SS3.24f newCatCE
Use the newer version of SS3 (SS3.24z) to test the effect of using new software.	
newsurvCE	Add catch and commercial CPUE to 2015/16.
newRecs	Extend estimation of recruitment deviates from 2009 to 2012, and accept the recruitment bias adjustments suggested by SS3. Include new length composition data - separate data from ISMP Port and on-board
newLenComp	samples, and from Industry length composition data.
newAAL	Include new conditional age-at-length data for 2013 - 2015
ageingerror	Include a newly revised ageing error matrix
Lnclude FIS length composition data and age-at-length data and estimate the FIS	

As adding significant amounts of new data can disturb the balance between different data sets and thus disturb the apparent mode outcomes (depletion estimation, etc) some rebalancing of the variances of the different data streams was conducted at each stage. At the final stage the variance of the different length and age composition data and the CPUE data were balanced until they all reached equilibrium to generate the initial base case. The balancing procedure this year attempts to apply more emphasis to the CPUE time series. The model balancing also involved temporarily increasing the maximum recruitment variation from 0.5 to 0.55 for the four steps 'newLenComp', 'newAAL', 'ageingerror', and 'LenAgeFIS' as further bias adjustments were required after adjusting the variance estimates on different data streams. However, for the final 'balancedCE' basecase the SigmaR (recruitment variation) was returned to the assumed 0.5 .

16.2.3.1 Estimation of RBC and Long Term RBC

Once the base case was completed its dynamics were projected forwards for 40 years to estimate the long term RBC that would, at equilibrium, keep the stock to the MEY proxy target of $43 \% B_{0}$ (Kompas et al., 2011).

Following the projections, 16 sensitivity analyses were conducted to provide a test of the structural assumptions made in the formulation of the assessment model.

16.3 Methods

16.3.1 The Data and Model Inputs

16.3.1.1 Biological Parameters

Male and female Deepwater Flathead are assumed to have the same biological parameters except for their growth and the length-weight relationship (Table 16.3).

Three of the four parameters relating to the Von Bertalanffy growth equation are estimated within the model-fitting procedure from the observed age-at-length data; all male growth parameters are fitted as offsets to the female parameters. Fitting growth within the assessment model attempts to account for the impact of gear selectivity on the age-at-length data collected from the fishery and any impacts of ageing error.

The rate of natural mortality per year, M, is estimated in the base-case model, with the estimated value being close to 0.235 ; the model outcomes are sensitive to this parameter and a likelihood profile, where M is given a series of fixed values and all other parameters are re-fitted to determine the effect on the total likelihood and other model outputs was conducted. Maturity is modelled as a logistic function, with 50% maturity at about 40 cm . Changing the size at maturity has almost no effect on the quality of the model fit but has an effect on the estimates of stock biomass and status so a likelihood profile of size-at-maturity was also conducted. Fecundity-at-length is assumed to be proportional to weight-at-length.

The assessment data for Deepwater Flathead comes from a single trawl fleet; although there is now a Danish seine vessel operating and some pair-trawling occurring in the GAB (Table 16.4).

Table 16.3. Summary of selected parameters from the base case model for Deepwater Flathead. Sources: (1) Analyses of biological samples collected during the 2004 GAB reproductive study (Brown and Sivakumaran, 2007), (2) length and age samples collected between 2000-2003 and (3) length samples collected during the 2001 FRDC project. Years represent the first year of each financial year i.e. $2015=2015 / 2016$.

Description	Source	Parameter	Combined Male/Female	
Years		y	1988-2015	
Recruitment Deviates		r	estimated 1980-2012	
Fleets			1 trawl only	
Discards			none significant, not Fitted	
Age classes		a	$0-29$ years	
Sex ratio		$p_{\text {s }}$	0.5 (1:1)	
Natural mortality		M	estimated (0.235) per year	
Steepness		h	0.75	
Recruitment variation		σ_{r}	0.55	
Female maturity	1		40 cm (TL)	
Growth	2	$L_{\text {max }}$	65.0258 cm (TL)	fitted
		K	fitted	fitted
		$L_{\text {min }}$	fitted	fitted
		CV	Fitted (M \& F assumed equal)	
			Female	Male
Length-weight (based	3	f_{1}	0.002 cm (TL)/gm	0.002
on standard length)		f_{2}	3.332	3.339

16.3.1.2 Available Data

An array of different data sources are available for the Deepwater Flathead assessment including catch (landings plus discards), standardized commercial CPUE, an index of relative abundance from the Fishery Independent Survey (FIS), age composition data from the Integrated Scientific Monitoring Program (ISMP) and from the FIS, and length composition data from four sources: the ISMP (keeping port sampling separate from the on-board sampling), from the FIS, and from on-board crew sampling (Figure 16.1). Age-at-length composition data for the fleet designated Trawl and the FIS were calculated from the available length compositions and conditional age-at-length data (age-length keys). These do not comprise additional data and are not included in the fitting of the model but are shown for information.

Figure 16.1. Data availability by type and year. The year axis denotes the first year of the financial year, thus $1995=1995 / 1996$. This illustrates the full data set as used in the balancedCE basecase scenario.

A landed catch history for Deepwater Flathead is available for the years from 1988/1989 to 2015/2016 (Figure 16.2; Table 16.4). Landed catches were derived from GAB logbook records for the years to about 2000, and catch disposal records have been the source of total landings since then. All landings were aggregated by financial year. In all figures, where single years are illustrated these represent the first year of the financial year.

In 2007 the quota year was changed from calendar year to the year extending from 1 May to 30 April. As the assessment is conducted according to financial year, the recent quota year change has resulted in closer alignment of the assessment and quota years. In the intervening year the quota year was extended to 16 months to allow for this change, which is one reason catches were elevated in the 2006/2007 year (Table 16.4).

Figure 16.2. Total reported landed catch of Deepwater Flathead 1988/1989 - 2015/2016 (the final year's data is incomplete; see Table 16.4).

Table 16.4. Financial year values and estimates of catch by method, total catch, the geometric mean CPUE, the standardized Trawl CPUE, and the number of trawl vessels reporting Deepwater Flathead in the GAB from 1988/1989 - 2015/2016. Discards are assumed to be trivial. Standardized CPUE is from Sporcic and Haddon (2016), scaled to 88/89-15/16.

Season	DS	PTB	TDO	TW	Total	GeoMetric	Stand	Vessels	Records
88/89				316.559	316.559	56.081	0.9390	9	815
89/90				400.852	400.852	53.036	0.9633	7	1126
90/91				429.221	429.221	49.078	1.0404	11	1501
91/92				618.749	618.749	54.539	0.9522	13	1781
92/93				523.312	523.312	76.925	1.2104	4	984
93/94				591.010	591.010	91.500	1.5531	7	900
94/95				1266.045	1266.045	106.306	1.9671	6	1745
95/96				1574.134	1574.134	125.214	1.9094	5	1862
96/97				1475.916	1475.916	79.393	1.2654	8	2784
97/98				1017.668	1017.668	50.970	0.8971	10	2908
98/99				684.414	684.414	34.670	0.6678	7	2558
99/00				555.256	555.256	39.132	0.8121	7	2102
00/01				782.697	782.697	43.041	0.8781	6	2413
01/02				917.556	917.556	51.543	1.0460	6	2448
02/03				1657.349	1657.349	73.410	1.5175	8	3144
03/04				2235.568	2235.568	68.417	1.4288	10	4536
04/05				2111.130	2111.130	55.052	1.1513	10	5551
05/06				1378.191	1378.191	37.523	0.7493	11	5349
06/07				983.135	983.135	32.929	0.6430	11	4254
07/08				980.210	980.210	35.905	0.7236	7	4003
08/09				783.241	783.241	40.697	0.8516	5	3118
09/10				834.012	834.012	39.135	0.8012	4	3205
10/11	5.303		24.529	910.447	940.279	50.886	1.0292	4	2805
11/12	136.677		621.692	172.010	930.379	38.545	0.7888	4	3270
12/13	103.493		514.951	368.480	986.924	37.941	0.7753	5	3611
13/14	83.771	11.090	456.954	220.269	772.084	31.993	0.6695	7	3304
14/15	61.376		478.565	23.594	563.535	29.335	0.6183	4	2572
15/16	79.353		380.044	14.040	473.437	34.376	0.6832	3	996

16.3.1.3 Catch Rate Indices

In earlier assessments, commercial catch rates have been standardised using Generalised Additive Models (GAMs) (Hobsbawn et al. 2002a, 2002b) and a log-linear model (Klaer, 2007). Standardisations for a range of SESSF species are carried out each year (see Haddon, 2014a,b; Sporcic, 2015; Sporcic and Haddon, 2016) and Deepwater Flathead is now included in the list of species routinely analysed each year.
"Data from the GAB fishery used in the analysis was based on depths between $0-1000 \mathrm{~m}$, taken by Trawl. Also, analyses were restricted to vessels present for more than two years and which caught an average annual catch $>4 \mathrm{t}$, and that trawled for more than one hour but less than 10 hours. Instead of

5 degree zones across the GAB, 2.5 degree zones were employed to allow better resolution of location based differences in CPUE. An examination of the depth distribution of catches suggests that this could be modified to become $100-250 \mathrm{~m}$ with essentially no loss of information and the outcomes do not differ from the base case adopted here; All vessels and $0-1000 \mathrm{~m}$). Catches in 1986/1987 were relatively low and only taken by a single vessel and so were omitted from analysis." (Sporcic, 2015, p209). In 1987/1988 over 95% of catches were taken in zone 82 and there were only 453 records so that year was also omitted.

The point about the depth categories used is important, as the inclusion of relatively empty depth categories introduces more noise than information into an analysis (Table 16.5). It is recommended that the depth range used in the standardization should be reduced at least to $0-500 \mathrm{~m}$ in future analyses.

Table 16.5. The number of records and catch reported by different depth categories. Approximately 8.315 t of catch has ever been reported from below 1000 m across the duration of the fishery, and 20.433 t has ever been reported from depths greater than 500 m .

Depth	Records	Catch	Cum $\%$	Depth	Records	Catch
0	21	6.559	0.025	0	33	9.23
25	12	2.671	0.035	50	208	52.171
50	53	7.134	0.062	100	55515	18741.84
75	155	45.037	0.234	150	17973	6147.604
100	9815	2907.111	11.324	200	2672	922.5073
125	45700	15834.724	71.730	250	1091	270.145
150	14805	5253.466	91.771	300	377	34.8415
175	3168	894.139	95.182	350	179	8.0765
200	1764	585.957	97.417	400	93	5.20965
225	908	336.551	98.701	450	27	1.315
250	712	188.916	99.422	500	15	1.11775
275	379	81.230	99.731	550	8	0.432
300	279	29.089	99.842	600	9	1.35525
325	98	5.753	99.864	650	3	0.496
350	140	6.725	99.890	700	6	2.47
375	39	1.352	99.895	750	3	0.276
400	83	3.945	99.910	800	2	3.66
425	10	1.265	99.915	850	2	2.24
450	23	1.226	99.920	900	3	0.2985
475	4	0.090	99.920	950	1	0.18
500	13	0.538	99.922	1000	1	0.13

Figure 16.3. The standardized CPUE for Deepwater Flathead from the trawl fishery in the GAB (data from Sporcic and Haddon, 2016, p 183) with the index of relative abundance from the Fishery Independent Survey. Both time-series have been scaled so that over the years of the survey indices the mean of both series is 1.0 to make them directly comparable (see Error! Reference source not found. and Error! Reference source not und.). Note the most recent survey index is exceptionally low.

16.3.1.4 Fishery Independent Survey Abundance Estimates

There are now seven estimates of relative abundance from the Fishery Independent trawl Survey (Table 16.6; Knuckey, et al., 2015). The CV estimates for the individual abundance estimates are used initially, but in the process of balancing the output variability with that input, these values were greatly expanded. The last estimate for the season conducted in 2015 is the lowest estimate ever and only uses the samples taken in the second trip (Knuckey et al, (2015). The sampling on the first trip may have been compromised by a large scale acoustic survey that occurred at the same time. It is unknown whether the sampling for relative abundance during second trip was also compromised. The effect of including this single new point is explored in two runs of the bridging analysis, which focussed attention solely on the effect of this single survey (Table 16.2; see newsurvCE and balnoFIS1415).

Table 16.6. FIS relative abundance estimates for Deepwater Flathead, with each survey estimate's coefficient of variation (taken from Knuckey et al., (2015). The 2014/2015 estimate only uses the results from trip two so as to avoid the potential for interference from a proximate seismic acoustic survey.

Year	$2004 / 2005$	$2005 / 2006$	$2006 / 2007$	$2007 / 2008$	$2008 / 2009$	$2010 / 2011$	$2014 / 2015$
Estimate	12,152	8,415	8,540	7,725	9,942	9,227	5,065
CV	0.05	0.06	0.05	0.06	0.05	0.05	0.09

16.3.1.5 Age Composition Data

Previously (Klaer, 2012), age composition data from the ISMP sampling was mixed up with three years of FIS age data. In this current assessment the ISMP age composition data is included as previously but now the ageing data from three years of the FIS are included separately (2008/2009, 2010/2011, and 2014/2015).

Since about 2000/2001 the proportion of older fish in the ISMP samples has declined (Figure 16.4) although they appear to be noticeably returning since about 2012/2013. A comparison of the age composition seen in the FIS years and the ISMP samples from the same financial year (Figure 16.5) suggests similarities although it is clear that the FIS samples have a lower mean age than those from the ISMP. The difference inmean age reflects the different selectivity of the gear used to collect the FIS samples relative to that of the whole fleet from which the ISMP samples were collected (Figure 16.4, Figure 16.5; Table 16.7).

Figure 16.4. All ISMP Deepwater Flathead ageing data used by year, illustrating the relative sample size and the relatively recent contraction in the older age classes. (see Table 16.7).

Figure 16.5. All ISMP Deepwater Flathead ageing data used by year, illustrating the relative sample size and the relatively recent contraction in the older age classes. (see Table 16.7).

Table 16.7. The mean age and number of observations of each season's ageing data from the ISMP sampling and the sampling during the FIS, as used in the Deepwater Flathead assessment.

| Season | ISMP
 Mean Age | ISMP
 Nobs | ISMP
 Season | ISMP
 Mean Age | FIS
 Nobs Age | FIS
 Nobs | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $1987 / 1988$ | 10.34 | 61 | $2004 / 2005$ | 6.67 | 563 | | |
| $1988 / 1989$ | 10.42 | 290 | $2005 / 2006$ | 6.73 | 555 | | |
| $1989 / 1990$ | 11.28 | 214 | $2006 / 2007$ | 6.28 | 484 | | |
| $1990 / 1991$ | 8.03 | 97 | $2007 / 2008$ | 5.87 | 650 | | |
| $1992 / 1993$ | 7.74 | 50 | $2008 / 2009$ | 6.16 | 329 | 5.25 | 225 |
| $1993 / 1994$ | 8.30 | 407 | $2009 / 2010$ | 6.16 | 465 | | |
| $1994 / 1995$ | 10.24 | 178 | $2010 / 2011$ | 7.67 | 290 | 5.87 | 262 |
| $1995 / 1996$ | 9.66 | 430 | $2011 / 2012$ | 6.26 | 367 | | |
| $1996 / 1997$ | 10.07 | 287 | $2012 / 2013$ | 7.61 | 787 | | |
| $1997 / 1998$ | 8.77 | 972 | $2013 / 2014$ | 7.36 | 528 | | |
| $1998 / 1999$ | 8.06 | 1163 | $2014 / 2015$ | 8.03 | 519 | 6.78 | 225 |
| $2000 / 2001$ | 6.88 | 600 | $2015 / 2016$ | 7.63 | 478 | | |
| $2002 / 2003$ | 7.48 | 640 | | | | | |

16.3.1.6 Length Composition Data

Previously (Klaer, 2012), only used length composition data from the ISMP, and port and on-board samples were considered together, which was standard practice at the time. In this current assessment the port and on-board ISMP length samples are kept separate, and there are further length composition data available from the FIS and from crew-member collected data (Figure 16.1). Separating the onboard and ISMP samples makes explicit the fact that port based samples are often of sorted (or graded)
samples. In Deepwater Flathead there are only two grades 'All' and 'Unk', with 'All' dominating in numbers. Mostly the sample weights were between $30-32 \mathrm{~kg}$ (the expected weight of a single fish bin full of fish). Currently the options for whether or not to apply catch weighting modified by grade data and or location data, to generate a combined length composition for each year in the context of changes in the sampling regime of the ISMP through time remains under investigation. This is not such an issue for Deepwater Flathead, which, by using 'All', appears to assume there has been no grading for landed fish. However, in some species, such as Western Gemfish there are numerous grades landed and how best to weight these data requires further exploration.

The crew collected length composition data exhibited consistent length composition data spread from across the fishery, however, an unusual and atypical distribution was exhibited by the sample from 2014/2015 and this was therefore omitted from consideration while the source of this deviation from the more typical composition was explored (Figure 16.6), however, the data from 2009/20110 to 2015/2016 were included using the same selectivity as for the ISMP data. The anomalous data may be a result of sampling is shallower water than normal, or may be due to a measurement error.

Figure 16.6. Length composition data for Deepwater Flathead obtained from crew sampling on-board. The data for $2014 / 2015$ was exceptional and constituted a sample size only $3 / 5^{\text {th }}$ the usual samples size. It unusual form led to it being omitted from consideration prior to discussion in the November 2016 GAB RAG meeting, and further analyses attempting to explain its anomalous shape.

The length composition data from the FIS also exhibits variation through time (Figure 16.7) with some large changes between 2010/2011 and 2014/2015.

Figure 16.7. The length composition data of Deepwater Flathead from the seven FIS that have occurred in the GAB. The plot at bottom right illustrates the contrast between years, with the legend showing only the first year of the season.

The length composition data from the ISMP also varies considerably from year to year in both the onboard and port data (Figure 16.8, Figure 16.9).

Figure 16.8. The proportional distribution of on-board length composition data for Deepwater Flathead from the ISMP. The vertical grey line at 45 cm is to ease visual comparisons. The plot at bottom right is a combination of all the plots to illustrate the variation between years.

Figure 16.9. The proportional distribution of Port sampled length composition data for Deepwater Flathead from the ISMP. The vertical grey line at 45 cm is to ease visual comparisons. The plot at bottom right is a combination of all the plots to illustrate the variation between years.

Table 16.8. Original sample sizes for the length and age composition data for Deepwater Flathead. There were thus four length composition data streams and two age composition data streams. Note the very large sample sizes from the Industry sampling.

Season	$\begin{gathered} \text { ISMP } \\ \text { Ages } \end{gathered}$	Season	ISMP Ages	$\begin{array}{r} \text { FIS } \\ \text { Ages } \end{array}$	$\begin{array}{r} \text { ISMP } \\ \text { On-Board } \end{array}$	ISMP Port	FIS LF	Industry LF
1987/1988	61	2000/2001	600		1867			
1988/1989	290	2001/2002			1467			
1989/1990	214	2002/2003	640		496			
1990/1991	97	2003/2004			715			
1991/1992		2004/2005	563		1009	854	1495	
1992/1993	50	2005/2006	555		1125	851	897	
1993/1994	407	2006/2007	484		191		1046	
1994/1995	178	2007/2008	650		238	203	1635	
1995/1996	430	2008/2009	329	225	750		1140	
1996/1997	287	2009/2010	465		676	2507		5957
1997/1998	972	2010/2011	290	262	378	3339	915	5931
1998/1999	1163	2011/2012	367		471	4647		5376
1999/2000		2012/2013	787		522			5645
		2013/2014	528		846			5047
		2014/2015	519	225	1269		1074	3336
		2015/2016	478					8361

16.3.1.7 Age-Reading Error

The age estimates are assumed to be unbiased but subject to random age-reading errors (Punt et al., 2008). Standard deviations for aging error by reader have been estimated, producing the age-reading error matrix (A.E. Punt, pers. comm.). Selectivity is low for ages below 4.

Table 16.9. The estimated standard deviation of normal variation (age-reading error) around age-estimates for the different age classes of Deepwater Flathead.

Age	StDev.	Age	StDev.	Age	StDev.
0	0.2017	10	0.5495	20	0.6594
1	0.2570	11	0.5669	21	0.6650
2	0.3063	12	0.5825	22	0.6699
3	0.3502	13	0.5964	23	0.6743
4	0.3894	14	0.6088	24	0.6782
5	0.4243	15	0.6198	25	0.6817
6	0.4554	16	0.6297	26	0.6817
7	0.4831	17	0.6385	27	0.6817
8	0.5078	18	0.6463	28	0.6817
9	0.5298	19	0.6532	29	0.6817

16.3.2 Stock Assessment

16.3.2.1 Population Dynamics Model and Parameter Estimation

A two-sex stock assessment for Deepwater Flathead has been implemented using the software package Stock Synthesis (SS, version 3.24z; Methot and Wetzel, 2013). However, differences by gender are restricted to growth and weight at length. SS is a statistical age- and length-structured model that can be used to fit the various data streams now available for Deepwater Flathead, simultaneously. The population dynamics model, and the statistical approach used in the fitting of the model to the various types of data, are described in the SS operating manual (Methot, 2015) and technical description (Methot and Wetzel, 2013) and are not reproduced here.

A single stock of Deepwater Flathead was assumed to occur across the GAB. The stock was assumed to have been unexploited prior to 1988/1989, although minor catches have been recorded back to 1986/1987. The input CVs of the catch rate index and the biomass survey were initially set to fixed values which are effectively arbitrary in the final phase of the model fitting. These values are revised using an iterative process to reweight the variances of the different data streams once parameter estimates have been obtained. Within each abundance index, the variation of all of the annual estimates is assumed to be equal.

The selectivity pattern for the trawl fleet was modelled as not changing through time; although this might be questioned as more spatially explicit data is collected. The two parameters of the selectivity function were estimated within the assessment. Now that FIS length and age composition data are included as data streams a separate selectivity was able to be estimated for the FIS, and this selectivity was found to differ from the rest of the trawl fishery.

The rate of natural mortality, M, was assumed to be constant with age, and also constant through time. The natural mortality rate is estimated in the base-case analysis.

Recruitment was assumed to follow a Beverton-Holt type stock-recruitment relationship, parameterised by the average recruitment at unexploited spawning biomass, R_{0}, and the steepness parameter, h. Steepness for the base-case analysis was assumed to be 0.75 . Deviations from the average recruitment at a given spawning biomass (recruitment deviations) were estimated from 1980/1981 to 2011/2012. The value of the parameter determining the magnitude of the potential variation in annual recruitment, $\sigma_{R}(S i g m a R)$ was set equal to 0.5 to begin with, it required to be extended to 0.55 during the addition of extra composition data, however, after complete balancing and recruitment deviate bias adjustment (Methot and Taylor, 2011) it again ended at 0.5. During the rebalancing of variances the model continued to suggest reducing the SigmaR value so it could have been reduced to 0.45 and well below, however, this would have constrained the recruitment variability implausibly and so the value was fixed at 0.5 . The recruitment deviates for more recent years cannot be estimated well because it can take $3-4$ years for larval fish to grow and then enter the fishery. Hence, it can take 4 years before information about relative recruitment levels becomes available to the model.

Age 29 is treated as a plus group into which all animals predicted to survive to ages greater than 29 are accumulated. Growth of Deepwater Flathead was also assumed to be time-invariant, that is there has been no change over time in the expected mean size-at-age, with the distribution of size-at-age being determined from the fitting of the growth curve within the assessment using the age-at-length data. The potential for age-reading errors (Punt et al., 2008) is accounted for within the model by the inclusion of an age-reading error matrix (Table 16.9). Differences in growth by sex were in terms of both the L_{∞} and the K parameters of the von Bertalanffy curve and the length-weight relationship.

16.3.2.2 Relative Data Weighting

Iterative rescaling (reweighting) of input and output CVs or input and effective sample sizes is a repeatable method for ensuring that the expected variation of the different data streams is comparable to what is input. Most of the indices (CPUE, composition data) used in fisheries underestimate their true variance by only reporting measurement or estimation error and not including process error.

In iterative reweighting, the effective annual sample sizes are tuned/adjusted so that the input sample size was equal to the effective sample size calculated by the model.
An automated tuning procedure was used0:

1. Set the CV for the commercial CPUE values and the FIS values to 0.1 for all years (this relatively low value is used to encourage a good fit to the abundance data).

Then iterate through the following:
2. Adjust the recruitment variance $\left(\sigma_{R}\right)$ by replacing it with the RMSE or a defnied set minimum (in this case 0.5) and iterating to convergence (keep altering the recruitment bias adjustment ramps appropriately at the same time).
3. Simultaneously tune the sample size multipliers for the length frequencies and age at length using Francis weights for the LFs and Francis B (the larger of the Francis A and B factors, Francis 2011).
4. Weight the commercial CPUE and FIS abundance indices by replacing these with the relevant variance adjustment factors derived from SS3.
5. Repeat steps 2 to 4 , until all are converged and stable.

This procedure may change in the future.

16.3.2.3 Calculating the $R B C$

The SESSF Harvest Strategy Framework (HSF) was developed during 2005 (Smith et al.2008) and has been used as a basis for providing advice on TACs in the SESSF quota management system for fishing years 2006-2015. The HSF uses harvest control rules to determine a recommended biological catch (RBC) for each stock in the SESSF quota management system. Within the SESSF tier system (Smith et al., 2014) Deepwater Flathead is classified as a Tier 1 stock as it has an agreed quantitative stock assessment.

The Tier 1 harvest control rule specifies a target and a limit biomass reference point, as well as a target fishing mortality rate. Since 2005 various values have been used for the target and the breakpoint in the rule. In 2009, AFMA directed that the 20:40:40 ($B_{\text {lim: }} B_{M S Y}$: $F_{\text {targ }}$) form of the rule be used up to where fishing mortality reaches F_{48}. Once this point is reached, the fishing mortality is set at F_{48}. Day (2009) determined that for most SESSF stocks where the proxy values of B_{40} and B_{48} are used for $B_{M S Y}$ and $B_{M E Y}$ respectively, this form of the rule is equivalent to a 20:35:48 ($B_{\text {lim }}: B_{\text {Inflection point }}: F_{\text {targ }}$) strategy. An economic analysis was used as a basis for using a 20:35:43 rule for Deepwater Flathead (Kompas et al., 2012).

Estimating the following year's RBC entails calculating the catch that would be equivalent to a fishing mortality that would, at equilibrium, give rise to a spawning biomass depletion level of $43 \% B_{0}$. Estimating the long term RBC entails projecting the stock assessment forward imposing catches calculated using the Tier 1 harvest control rule (Day, 2009) until the target of $43 \% B_{0}$ is achieved and citing that final catch level.

16.3.2.4 The Development of the Base-Case Assessment

Eleven sequential changes were made to the 2013 assessment (Table 16.2). It was possible to closely match the original assessment spawning biomass time-series (Klaer, 2014a, b) using the SS3.24f version and there was almost no difference to the outcome when the latest version of SS3 (SS3.24z) was used.

Table 16.10. The 11 sequential changes made to the 2013 assessment model. The final base-case is either the balancedCE or balnoFIS1415 models (see Table 16.2).

N	Name	Description
1	origbase24f	Repeat the assessment from 2013 using the original software version SS3.24f
2	origbas 24 z	Use the newer version of SS3 (SS3.24z) to test the effect of using new software.
3	newCatCE	Add catch and commercial CPUE to 2015/16.
4	newsurvCE	Add the latest 2015/16 survey CPUE (a single new data point)
5 6	newRecs newLenComp	Extend estimation of recruitment deviates from 2009 to 2012, and accept the recruitment bias adjustments suggested by SS3. Include new length composition data - separate data from ISMP Port and onboard samples, and from Industry length composition data.
7	newAAL	Include new conditional age-at-length data for 2013-2015
8	ageingerror	Include a newly revised ageing error matrix
9	LenAgeFIS	Include FIS length composition data and age-at-length data and estimate the FIS selectivity
10	balancedCE	Re-balanced variances, with emphasis placed on CPUE and Survey
11	balnoFIS1415	Re-balanced variances, removing only the 2014/2015 survey index.

16.3.2.5 Sensitivity Tests

A number of tests were used to examine the sensitivity of the results of the model to some of the assumptions and data inputs (Table 16.11). In addition, the assessment outcomes were sensitive to the value of natural mortality, so a further likelihood profile (Venzon and Moolgavkar, 1988) was made for that parameter.

Table 16.11. Changes used to test the model's sensitivity to modified assumptions and data inputs.

1. $\mathrm{M}=0.141 \mathrm{yr}^{-1}$. (relative to the base-case model estimate of 0.191)
2. $\mathrm{M}=0.241 \mathrm{yr}^{-1}$
3. 50% maturity at 35 cm . (relative to that assumed in the model of 40 cm)
4. 50% maturity at 45 cm .
5. $\quad \sigma_{\mathrm{R}}$ set to 0.4 (relative to that assumed in the model of 0.5)
6. $\quad \sigma_{\mathrm{R}}$ set to 0.6
7. Double the weighting on the length composition data.
8. Halve the weighting on the length composition data.
9. Double the weighting on the age-at-length data.
10. Halve the weighting on the age-at-length data.
11. Double the weighting on the abundance (CPUE) data.
12. Halve the weighting on the abundance (CPUE) data.

Derive the RBC using the 20:35:48 harvest control rule, rather than the 20:35:43. This is not
13. a sensitivity on the assessment but on the forecast $R B C$ values.
14. Fix steepness (h) at 0.65 (relative to model assumed 0.75)
15. Fix steepness (h) at 0.85
16. No Survey Data (remove all FIS index, age- and length-composition data)

The results of the sensitivity tests are summarized by the effects on the absolute likelihoods associated with each data stream, the total likelihoods, which includes the effect of changes to the Lambdas or weights applied, and the following quantities (see Table 16.16):

1. SSB0: the average unexploited female spawning biomass.
2. $\quad \mathrm{SSB}_{2015}$: the female spawning biomass at the start of 2015/2016.
3. $\mathrm{SSB}_{2015} / \mathrm{SSB}_{0}$: female spawning biomass depletion at the start of 2015/2016
4. M: natural mortality
5. $\mathrm{RBC}_{2016 / 2017}$

16.4 Results and Discussion

16.4.1 The Base-Case Analysis

Stepping sequentially through the different scenarios leading from the 2013 assessment to the current base-case the general result was that most scenarios, that had an observable influence on the outcome, led to declines in the estimated unfished spawning biomass. Generally this occurred because the addition of new data meant the balance between variances and effective sample sizes as well as the recruitment bias adjustments became badly out of balance. BY conducting a limited variance rebalance then the effect of adding the extra data could become more clear. The trend of reducing biomass
reversed with the final balancing of variances between the data streams and adjustment of the recruitment bias adjustment and variation of recruitment deviates (balancedCE). While the final estimated female unfished spawning biomass was $11,046 \mathrm{t}$ relative to $9,320 \mathrm{t}$ in 2013, the spawning biomass depletion level was essentially the same at 0.45 which was nearly identical with the 0.45 in 2013 (Table 16.1 and Table 16.12). With the addition of large numbers of new samples (the Industry LF samples alone contribute more than 35,000 extra records; Table 16.8) and the sub-division of both the length and ageing data into their component parts the imbalance with the relative weights attributed to the different data streams became extreme. For this reason some limited rebalancing started with the newLenComp scenario so as to obtain more sensible and more comparable results (Table 16.12).

Table 16.12. The spawning biomass (B0), at the end of 2015/2016, with the spawning biomass depletion (Depl), and the natural mortality estimate (M) obtained during the development of the 2015/2016 variance balanced base-case assessment for Deepwater Flathead. The four right-hand columns relate to the likelihood contributions from the Indices (both the commercial CPUE and the FIS abundance index), AgeComp relates to the conditional Age at Length data for the ISMP onboard, the Port, the Industry sampling, and the FIS, the LenComp includes the ISMP onboard, ISMP Port, Industry LF samples, and the FIS LF samples, finally Recruit is the contribution from the recruitment residuals. The final year of estimating recruitment residuals increased from 2008 to 2011 in the newRecs scenario. SigmaR needed to increase from 0.5 to 0.55 with the newAAL scenario and then returned to 0.5 for the balancedCE The inclusion of the FIS ageing and length composition data began with LenAgeFIS.

Scenario	B0	Depl	M	Indices	AgeComp	LenComp	Recruit
origbase24f	9201	0.474	0.236	-17.43	333.71	214.87	-10.18
origbase 24 z	9067	0.471	0.236	-17.44	333.73	214.88	-10.14
newCatCE	8921	0.432	0.234	-19.02	334.11	215.37	-10.01
newsurvCE	8502	0.348	0.228	-15.96	334.88	217.05	-9.98
newRecs	8330	0.313	0.228	-17.35	334.50	216.96	-10.02
newLenComp	9390	0.240	0.165	-21.80	246.45	76.82	-7.11
newAAL	11534	0.489	0.191	-29.30	178.05	45.77	-4.15
ageingerror	11534	0.489	0.191	-29.30	178.05	45.77	-4.15
LenAgeFIS	11439	0.456	0.198	-27.89	231.49	71.05	-9.77
balancedCE	11046	0.450	0.191	-27.52	290.23	84.68	-10.46
balnoFIS1415	11069	0.451	0.187	-29.66	289.05	86.01	-10.72

The addition of new composition data and the rebalancing led to improvements (likelihoods getting smaller) in the fitting to all data streams. Importantly, the estimate of natural mortality declined once the new composition data was added, which in turn led to the increase in unfished biomass (Table 16.12).

Figure 16.10. The predicted female spawning biomass and relative depletion level for the main scenarios describing the inclusion of different data and alternative assessment software. Some lines sit almost exactly on top of each other (for example the origbase24f and origbase24z), the thicker red line with the black dots is the balanced outcome from the base-case (see Table 16.10 for an explanation of each scenario).

Despite catches being relatively low recently (Table 16.4; Figure 16.3) the estimated spawning biomass trajectory suggests a very gradual decline since 2012/2013. It remains, however, just (2\%) above the target reference point for spawning biomass depletion.

An alternative base-case was considered which removed the final index of abundance from the FIS data series. This retained the length and age composition data from the FIS plus the first six FIS indices of abundance while only removing the final, possibly compromised index from the 2014/2015 survey (Figure 16.11). Given that only a single data point has been removed the impact of that single point altered the likelihood for the indices and the length composition data but had little effect on the final biomass depletion level (Table 16.12). The predicted trajectory followed by the stock is very similar to that of the balancedCE scenario that includes the final FIS data point.

Figure 16.11. The predicted female spawning biomass depletion level for Deepwater Flathead comparing the final two balanced base-case candidates with the original assessment outcome from 2013. The optimum here is the thicker green line.

The November 2016 RAG considered the two alternative basecase scenarios and accepted that even though the final FIS relative abundance index was the lowest ever, and possibly biased, it was within the range of previous variation and had very little effect against the weight of other data included in the assessment. The expectation is that if there is another survey then the outcome would help correct the trend of the FIS index. The conclusion was to accept the balencedCE as the basecase scenario and proceed with the sensitivities based on that.

16.4.2 Model Fits

The estimated growth curve for female and male Deepwater Flathead is assumed to be the same (Figure 16.12). All growth parameters are estimated by the model except for $L_{\max }$ (Table 16.13). With only a trawl fleet and Trawl run FIS, selectivity is assumed to be logistic. The parameters that define the selectivity function are the length at 50% selection and the spread (the difference between length at 50% and length at 95% selection). A different selectivity was found to be required to appropriately describe the FIS length and age data (Figure 16.12; Table 16.13). In addition to these results the different contributions to the total likelihood also provides insights into the relative fit (Table 16.12), although, not all scenarios are directly comparable because their different structures mean there are different numbers of parameters and the re-balancing also makes comparisons invalid.

Table 16.13. Estimates for parameters other than recruitment deviates, with some fixed parameters for clarity. St.Dev is the approximate standard deviation for each estimate.

Parameter/Feature	Value	St.Dev.	C.V.	Comment
Natural mortality M	0.191	0.0247	10.6	estimated
Recruitment				
σ_{R}	0.5			Fixed
deviates	$1980-2011$			estimated
Ln(R0)	8.9413	0.313	3.5	estimated
First bias adjustment	$1962-2005$			estimated
Final bias adjustment	$2007-2017$			estimated
maximum bias adjustment	0.8764			estimated
\quad Growth			2.4	estimated
CV	0.1414	0.0034	0.1	estimated
K	0.2354	0.0003	8.4	estimated
L $_{\text {min }}$	18.016	0.7364		fixed
L $_{\text {max }}$	65.0258			
			1.7	estimated
Trawl L50				
Trawl inter-quartile	39.716	0.6823		
FIS L50	8.595	0.7076	estimated	
FIS inter-quartile	29.093	0.6931	2.4	estimated

Figure 16.12. The selectivity curves for the trawl fishery and related length frequency data and of the FIS, and the predicted expected growth curves for females and males. The predicted mean weight at length, and derived age-based, length-based selectivity, the predicted depletion level of the balanced model with the 95% asymptotic confidence intervals, and the Age-0 recruit levels, again with the 95% asymptotic confidence intervals.

16.4.3 Fits to the Data

16.4.3.1 CPUE Data

At first consideration the fits to the catch rate indices (Figure 16.13) appear reasonable with the predicted commercial CPUE trajectory reflecting the ups and downs of the full time series although with less dramatic changes in the predicted mean than observed in the fishery. The FIS relative abundance index essentially follows the same trend as the commercial CPUE until the very latest survey (Figure 16.3). Even with an expanded Coefficient of Variation during the rebalancing process it was not possible to fit the last data point in the FIS index without disrupting the relative fit of the FIS length and age composition data and the other composition data.

Figure 16.13. The balanced model fit to the commercial CPUE index of relative abundance and to the FIS index of relative abundance. Each year in the figures relates to the first year of each financial year combinations; e.g. $2001=2001 / 2002$. The plots are of the natural Log Index because log-normal residual errors were used to fit the model to the abundance index data.

Such model fits are only relative to other possible fits. To illustrate this the model fit to CPUE and the FIS index for the current base-case (balancedCE) is compared with the equivalent model fits to the 2013 assessment and to the alternative base-case (balnoFIS1415). To make such a comparison valid each time-series of the observed and expected CPUE needed to be scaled to 1.0 over the years they had in common. Given that the 2013 assessment used commercial CPUE data from 1988/1989 2010/2011 and the FIS shared the years 2004/2005-2010/2011 in common, each of the three timeseries were scaled to a mean of 1.0 over those years. Comparisons of the sum of their absolute residuals from the similarly scaled observed values were also calculated only for the years of overlap. In this way their relative fit could be ascertained both visually and quantitatively.

Figure 16.14. A comparison of the Index trends from the commercial CPUE and the FIS for the 2013 base-case (origbase24f) and the two alternative base-cases considered here (balancedCE and balnoFIS1415). Each time series is scaled to a mean of 1.0 over the years of overlap in each case. The numbers associated with each name in each legend are the mean log-normal residual between the expected and observed over the period of common overlap (closest to 1.0 is best). In the top panel balancedCE is closest to 1.0 while with the FIS index the 2013 mode was best over the $04 / 05-10 / 11$ period but all are close and balanceCE follows the early trend better. The exceptional nature of the most recent estimate is clear.

The current approach used when fitting assessment models is to attempt to place emphasis on the relative index of abundance data (Francis, 2011). This is a major reason the quality of model fit to the
different indices of relative abundance is better in the 2016 assessment than that in the 2013 assessment. The effect of omitting the final FIS index is only minor on the commercial CPUE (including it flattened the time-series slightly), but its effect on the fit to the FIS data is marked. It is also clear just how exceptional the last data point in the FIS is relative to all the other data in the assessment.

The commercial catch rates exhibit some relatively extreme variation through time. This reflects the changing conditions in the fishery, which has seen catches vary from about 500 t a year up to 1500 t down again to 500 t , then up to nearly 2500 t , and then down to 1000 t or less (Figure 16.2). Such changes are also reflected in the catch per vessel and in the number of vessels operating in the fishery (which has also been affected by the licence buyout associated with the structural adjustment during November 2005 to November 2006 (Figure 16.15).

Such changes may have contributed to the commercial CPUE exhibiting residual differences between the observed and expected CPUE with a distinct pattern of first being above the center line and then being below it (Figure 16.14). Such serial correlation demonstrates that some important factor has been missed in the standardization. The sequence of residuals lying either side of the expected in a pattern of up and down. In this case the pronounced negative residuals reflect the periods of greatly elevated catches (Figure 16.2), which suggests that fishing behaviour was considerably altered during these periods. Such behavioural changes are difficult to capture within a CPUE standardization.

Figure 16.15. The relative catch (square root of catch) of Deepwater Flathead per trawl vessel in the GAB fishery, with the vertical line depicting the advent of the structural adjustment. The lowest of the top three lines lists the number of vessels reporting $>1 \mathrm{t}$ across all years, and the other two lines are the reported catches, staggered to improve readability.

16.4.3.2 Length Composition Data

The length composition data from the FIS shows that those fish were slightly larger on average than those from the commercial fishery (Figure 16.17) and this is reflected in their respective selectivity curves (Figure 16.12). Deepwater Flathead tend to be selected at about 25 cm and above implying that they can be 10 years or older before they are strongly selected by the fishery. This is about the same size and age at which they mature, which implies there is a proportion of the mature population not selected by the fishery and this should give the population an extra degree of resilience (Figure 16.12). There are some years of ISMP sampling, both on-board and port samples, that appear to be inconsistent with previous and following years (on-board 2004/2005 - 2006/2007, and port 1992/1993 and 2005/2006; Figure 16.17), however the data from the FIS and the crew-member samples are more sequentially consistent, although they sometimes fail to meet the same peak levels of relative frequency. Despite these internal inconsistencies the relative fit to the length composition data, when considered across all years is close in all data streams (Figure 16.17). Further illustrations of the relative fit to the length-composition data are provided in the Appendix.

Figure 16.16. The base-case (balancedCE) fit to the ISMP collected length composition data from on-board. Numbers of observations in each case are listed in Table 16.8. The listed year relates to the first of the financial year pair. The samples from 2006/2007 and 2007/2008 were especially small, hence their spikiness.

Figure 16.17. The base-case model fit to the different time-series of length-frequency composition data for the FIS data, the industry on-board data (industLF), the ISMP Port data, and the summary across years for each data set. Each year in the figures relates to the first of the financial year combinations; e.g. $2001=2001 / 2002$.

16.4.4 Base-Case Assessment Outcomes

The stock depletion level at the end of 2015/2016 is estimated to be approximately $4,993 \mathrm{t}$ or $45 \% B_{0}$, (Figure 16.18), while the estimated, approximate MEY biomass level is $43 \% B_{0}$ (Kompas et al., 2011). The asymptotic confidence intervals, and the standard deviation and CVs around the biomass estimates, are likely to under-estimate the true uncertainty about the estimated biomass levels (Figure 16.18). This is why the confidence bounds are relatively tight about the median estimated spawning biomass levels. The upturn in spawning biomass following the reduction in catches from 2009/2010 is driven by reduced fishing pressure and not by greater recruitment as recruitment during this period is lower than average predicted by the stock recruitment curve in the years 2007/2008-2011/2012 (Figure 16.19), although fish spawned in those years would only just have entered the fishery. In addition, recruitment levels are not particularly variable (Figure 16.19).

Figure 16.18 . The trajectory of spawning stock depletion, including 40 years of projection used to estimate the current RBC and the long-term RBC. The stock only begins to decline slowly when fishing first begins and then accelerates downwards once catches reach about $800-1000$ t per year. With the more recent drop in catches from about $2009 / 2010$, the stock is predicted to have increased to the present day until it ended at about $45 \% B_{0}$ at the end of $2015 / 2016$. If catches adhere to the predicted RBCs then it will take approximately 40 years for the stock to decline to the estimate MEY at $43 \% B_{0}$.

The predicted trajectory in the 40 projections depends upon the estimated RBC being caught each year, which, given recent catches and reports of difficulty in catching the fish, seems unlikely.

Figure 16.19. Estimation of recruitment and recruitment deviates for the base-case assessment with time trajectories given in both nominal and log-space. The final nine deviates in the middle left are not estimated but are estimated by the implied Beverton-Holt stock recruitment curve. The asymptotic standard errors of the recruitment deviates (middle right) are sufficiently low to indicate that all estimated deviates have sufficient data to allow for an adequate estimate. The bias-adjustment graph illustrates the degree to which the estimates of recruitment deviates require correction for their level of variation (Methot and Taylor, 2011). The implied stock recruitment curve (bottom right) illustrates that the stock depletion level has not been sufficient to alter the average recruitment levels significantly.

The predicted recruitment dynamics differ from those previously estimated, which appears to be related to the advent of more ageing data from the FIS and additional length-composition data streams.

The inclusion of recruitment estimates for more recent years also, not surprisingly, indicates some relatively low and some relatively high values. There are now no prolonged periods of high or low recruitment apparent in the time series (Figure 16.20).

Figure 16.20. The sequence of expected recruitment levels through time for five different scenarios (more becomes uninterpretable). The difference between the 'newRecs' series and he base-case 'balancedCE' illustrates the differences that the rebalancing can bring about.

The recruitment levels and recruitment deviates through the period of the fishery have not varied to any extreme extent (Figure 16.20). There have been no extensive periods of below or above average recruitment levels predicted throughout the fishery. The effect of increasing and decreasing this variation is examined in the sensitivities (Table 16.16).

16.4.4.1 Recommended Biological Catches

The 2017/2018 recommended biological catch (RBC) under the 20:35:43 harvest control rule is 1155 t and the long term yield (assuming average recruitment in the future) is 1093 t (Table 16.14). Averaging the RBC over the three year period 2017/2018-2019/2020, the average RBC is 1128 t and over the five year period 2017/2018 - 2021/2022, the average RBC is 1115 t (Table 16.14).

The forecast estimates of future RBCs are dependent upon first predicting the catch in the incomplete season $2016 / 2017$ so that the predicted catch that is equivalent to $F_{43 \%}$ can be generated for the 2017/2018 onwards. The basecase projection is based upon the assumption that the catch in 2016/2107 will be the same as happened in 2015/2016. In the December RAG this was questioned and alternative possible catches were suggested so that projections were made assuming 600 t and 1000 t (Table 16.15). As expected these led to small reductions in the 1,3 , and 5 year RBCs although, again as expected, the Long Term Yield remained at 1093 t .

Table 16.14. The predicted total exploitable biomass, the Female Spawning Biomass, and the observed and predicted catches from the forecast projections. The bolded rows represent the predicted RBCs for the $2017 / 2018$ fishing year and the long-term RBC that should maintain the stock at the target of $43 \% B_{0}$. See Table 16.18 for the projection outcomes for all years.

Year	Total Exploitable Biomass	Spawning Biomass	Catch	Depletion
Unfished	21058	11046	0	1
1979	21058	11046	0	1
1980	21057	11046	0	1
1981	21050	11046	0	1
1982	21018	11046	0	1
2014	10260	4992	567	0.452
2015	10379	4951	523	0.448
2016	10611	4993	523	0.450
$\mathbf{2 0 1 7}$	10910	5123	1155	0.464
$\mathbf{2 0 1 8}$	10668	4966	1125	0.450
$\mathbf{2 0 1 9}$	10514	4859	1106	0.440
$\mathbf{2 0 2 0}$	10427	4790	1096	0.434
$\mathbf{2 0 2 1}$	10384	4752	1092	0.430
2051	10398	4745	1093	0.430
2052	10398	4745	1093	0.430
2053	10399	4746	1093	0.430
2054	10399	4746	1093	0.430
$\mathbf{2 0 5 5}$	10400	4746	1093	0.430

Table 16.15. The forecast one year, three year, and five year RBCs are listed for the 20:35:43 harvest control rule and the original 20:35:48 harvest control rule to illustrate the difference between the proxy for MEY being $48 \% B_{0}$ relative to the estimate of $43 \% B_{0}$. These are based on a predicted catch in 2016/2017 assumed equal to that in 2015/2016. To test the sensitivity of the outcome to this assumption alternative assumed catches of 600 t and 1000t in 2016/2017.

Forecast	$20: 43$	$20: 48$	$16 / 17=600 \mathrm{t}$	$16 / 17=1000 \mathrm{t}$
$2017 / 2018$ RBC	1155	939	1146	1102
$17 / 18-19 / 20 \mathrm{RBC}$	1128	938	1121	1085
$17 / 18-19 / 20$ RBC	1115	945	1109	1078
Long Term Yield	1093	1029	1093	1093

16.4.5 Sensitivity Tests

The sensitivity tests demonstrate that the assessment outcomes are very sensitive to the assumed value for M, the natural mortality (Figure 16.21; Table 16.16). In addition, although not as extreme as the effects of the natural mortality altering the size at median maturity and doubling the weight on CPUE were also influential on the absolute estimates of B_{0} and hence of the final depletion.

The other sensitivities considered remained grouped relatively closely around the balanced base-case outcomes (Figure 16.21; Table 16.16). This is also a reflection of the limited rebalancing of variances conducted once large amounts of new data began to be added to the model. Without such rebalancing the advent of the new age data, for example, appeared to drop the spawning stock biomass down to just above $20 \% B_{0}$, which was merely an artefact of enormous weight being given to the ageing data through the addition of hundred of new observations.

Figure 16.21 . The effect on the predicted spawning biomass trajectory of the sensitivity tests on different assumptions and data weightings. The sensitivity to different assumed values of natural mortality is apparent.

In the sensitivities altering the weights on the different data streams had some effects on the model outcomes especially the halving and doubling the weights on the age composition data, (Table 16.16). However, by changing the weight given to each data stream it is no longer valid to compare the likelihoods from such sensitivity tests. The overall fit of the model improved with greater weight on the length and age composition data and declined with a lower weight.

With the different weights on the CPUE indices (log-books and FIS) the reverse was true in that the model fit improved when less weight was placed on the CPUE. Care is needed with such statements however. A consideration of the different weights applied to the age-composition data illustrate the reasons why total likelihood comparisons can be misleading (and are invalid). Because the age-related likelihoods are large to start with including a multiplier alters their values enormously even though they have only a small effect on the biomass related model outcomes (Table 16.16).

The sensitivity tests on the particular parameters in the model (steepness, natural mortality, size at 50% maturity, and the permissible variation of the recruitment deviates (SigmaR) are directly comparable, although it needs to be remembered that the sensitivities are not rebalanced and so the comparisons remain only approximate.

The effect of varying steepness was relatively minor on both the likelihoods and the stock status, while the effect of varying the size at 50% maturity was also very minor.

The effect of changing the SigmaR value alters how variable the recruitment deviates can be from year to year. However, once again the effect on the stock depletion status is minor varying the estimate from $44.1 \%-45.9 \%$.

Far more influential is the effect of varying the natural mortality. As one of the major factors affecting productivity this influenced the likelihoods for all data streams although it did so in different directions. A higher M value improved the fit to the two CPUE series and to the age-composition data but decreased the quality of fit to the length-composition data, and visa-versa when M was reduced. More importantly, the higher the M the greater the degree of depletion so increasing M by 0.05 led to the depletion changing from 45% down to 32% while decreasing it by 0.05 changed depletion from 45% to 58%. The influence of the natural mortality estimate is clear.

When all data from the FIS was removed this alters the model structure, which means it is no longer directly comparable with the full basecase. Nevertheless, the effect is to alter depletion from 45% to 51%, so the FIS is clearly generating information about the stock, particularly about the smaller fish.

All other sensitivities had only small effects on the outcome of the assessment with the final depletion ranging only $1-2 \%$ from the basecase depletion. This may be a reflection of the strong contrast in the fishery where it was fished hard in the mid-1990s and the early 2000s with far reduced catches in between. Such fishing behaviour may provide difficult marketing conditions but it does provide information on how a stock responds to widely different fishing mortality levels and provides insight into its potential productivity.

16.4.5.1 Likelihood Profile on Natural Mortality

By fixing the value of natural mortality over an array of different values and re-fitting the assessment model so that all other parameters (except natural mortality) are re-estimated, it is possible to both determine the relative precision of the natural mortality estimate as well as the consequences for the stock and its status if different natural mortality values were used (Table 16.17 and Figure 16.22).

The profile likelihood enables approximate 95% confidence intervals to be generated (Venzon and Moolgavkar (1988). By searching for the natural mortality values that match the minimum obtained from the balancedCE scenario +1.92 this provides approximate 95% intervals on natural mortality: $0.1628-0.1914-0.2285$. This implies a range of depletion from $38-54 \%$ (Table 16.17; Figure 16.22), which is rather a wide range. Clearly, like most species, the natural mortality is a highly influential factor in the biology of Deepwater Flathead.

Table 16.16. Summary of the outcomes for the base-case and sensitivity tests. Recommended biological catches (RBCs) are only shown for tuned models (base-case and RBC48). The likelihoods in the italicized cases should not be compared with the other sensitivities.

Case		SSB_{0}	SSB_{2016}	$\mathrm{SSB}_{2016} / \mathrm{SSB}_{0}$	M	TotalLL	Index	AgeComp	LenComp	Recruit
Base-Case	base case 20:35:43	11046	4974	0.450	0.191	336.92	-27.52	290.23	84.68	-10.46
MHigh	$M=0.241$	10757	3461	0.322	0.141	-7.78	-4.41	-2.95	0.87	-1.29
MLow	$M=0.141$	13509	7854	0.581	0.241	-3.58	1.76	-3.19	-1.80	-0.35
MatHigh	50% maturity at 45 cm	11512	5282	0.459	0.191	0.00	-0.02	0.00	0.01	0.00
MatLow	50% maturity at 35 cm	10332	4537	0.439	0.192	0.01	0.03	0.00	-0.02	0.01
SigRHigh	$\sigma_{R}=0.6$	10796	4954	0.459	0.189	2.94	-0.23	-0.73	-0.04	3.95
SigRLow	$\sigma_{R}=0.4$	11459	5050	0.441	0.194	-2.70	0.08	0.38	-0.03	-3.14
LFwtx2	wt x 2 length comp	10773	4617	0.429	0.186	-82.63	-2.11	-2.94	-77.18	-0.40
LFwtx0.5	wt x 0.5 length comp	11040	5060	0.458	0.196	43.34	1.44	1.99	40.08	-0.16
agewtx2	wt x 2 age comp	10954	4982	0.455	0.189	-288.08	-1.13	-282.64	-3.27	-1.05
agewtx0.5	wt x 0.5 age comp	11074	4990	0.451	0.195	146.07	0.85	142.88	1.80	0.54
cpuewtx 2	wt x 2 CPUE	11033	5113	0.463	0.202	29.55	34.40	-1.52	-2.30	-1.04
cpuewtx0.5	wt x 0.5 CPUE	10953	4747	0.433	0.184	-13.13	-15.29	0.56	1.31	0.29
hHigh	Fix steepness $h=0.85$	11364	5009	0.441	0.194	-0.11	0.11	-0.02	-0.16	-0.04
hLow	Fix steepness $h=0.65$	10839	4962	0.458	0.189	0.05	-0.08	0.01	0.11	0.01
noSurvey	No Survey data	11825	6042	0.511	0.202	202.53	-4.48	188.74	22.81	-4.54

Table 16.17. The outcome from the profile likelihood conducted on natural mortality including the influence on the different likelihood components and on the Unfished spawning biomass $\left(\mathrm{B}_{0}\right)$, the current biomass, and the depletion.

M	TotalLike	TotalCE	TotalLF	TotalAge	CPUE	FISCE	TrawlLF	FISLF	IndustLF	PortLF	TrawlAge	FISAge	B0	Bcurr Depletion	
0.14	354.184	-22.989	83.814	293.359	-15.983	-7.006	24.009	20.376	10.267	29.161	2527.530	406.065	10765.500	3438.060	319
0.145	352.747	-23.616	83.809	292.554	-16.689	-6.927	24.316	20.205	10.211	29.077	2518.790	406.752	10727.100	3555.420	0.331
0.15	351.525	-24.195	83.831	291.889	-17.342	-6.853	24.616	20.048	10.159	29.008	2511.470	407.417	10701.400	3677.930	0.344
0.155	350.497	-24.730	83.877	291.349	-17.946	-6.784	24.909	19.903	10.112	28.953	2505.430	408.061	10689.000	3806.170	356
0.16	349.642	-25.223	83.943	290.922	-18.504	-6.719	25.196	19.770	10.068	28.909	2500.540	408.684	10690.400	3940.730	0.369
0.165	348.948	-25.677	84.027	290.598	-19.019	-6.658	25.475	19.648	10.028	28.877	2496.690	409.289	10706.200	4082.280	0.381
0.17	348.396	-26.095	84.125	290.366	-19.494	-6.601	25.747	19.535	9.990	28.854	2493.790	409.874	10737.100	4231.530	0.394
0.175	347.976	-26.479	84.237	290.218	-19.931	-6.548	26.012	19.430	9.955	28.839	2491.740	410.442	10783.800	4389.250	0.407
0.18	347.676	-26.831	84.360	290.147	-20.333	-6.499	26.271	19.334	9.922	28.833	2490.480	410.993	10847.200	4556.320	0.420
0.185	347.485	-27.154	84.494	290.145	-20.702	-6.453	26.524	19.244	9.892	28.834	2489.920	411.530	10928.100	4733.670	0.433
0.19	347.393	-27.450	84.637	290.206	-21.039	-6.411	26.771	19.161	9.863	28.841	2490.010	412.051	11027.800	4922.360	0.446
0.1913	347.384	-27.523	84.676	290.232	-21.123	-6.400	26.835	19.141	9.856	28.845	2490.130	412.187	11057.300	4974.120	0.450
0.195	347.393	-27.720	84.788	290.325	-21.348	-6.372	27.012	19.084	9.836	28.855	2490.690	412.560	11147.300	5123.540	460
0.2	347.478	-27.966	84.947	290.497	-21.630	-6.337	27.249	19.013	9.811	28.875	2491.910	413.057	11288.100	5338.530	0.473
0.205	347.640	-28.190	85.113	290.717	-21.886	-6.305	27.480	18.946	9.788	28.900	2493.620	413.544	11451.700	5568.770	0.486
0.21	347.872	-28.394	85.285	290.981	-22.118	-6.276	27.707	18.883	9.765	28.930	2495.790	414.021	11640.100	5815.890	0.500
0.215	348.172	-28.579	85.464	291.287	-22.328	-6.250	27.931	18.824	9.744	28.965	2498.380	414.490	11855.100	6081.710	0.513
0.22	348.531	-28.746	85.648	291.629	-22.518	-6.228	28.150	18.768	9.724	29.005	2501.340	414.953	12099.300	6368.250	0.526
0.225	348.948	-28.897	85.838	292.007	-22.688	-6.209	28.367	18.715	9.705	29.050	2504.660	415.412	12375.300	6677.800	0.540
0.23	349.416	-29.033	86.033	292.416	-22.840	-6.193	28.581	18.665	9.687	29.100	2508.300	415.867	12686.000	7012.880	0.553
0.235	349.934	-29.155	86.233	292.856	-22.975	-6.180	28.792	18.617	9.670	29.154	2512.240	416.322	13034.900	7376.290	0.566
0.24	350.497	-29.264	86.438	293.323	-23.095	-6.170	29.001	18.570	9.654	29.214	2516.450	416.777	13425.800	7771.120	0.579
0.245	351.103	-29.362	86.649	293.816	-23.200	-6.163	29.208	18.525	9.638	29.278	2520.920	417.236	13862.700	8200.710	0.592
0.25	351.749	-29.450	86.865	294.334	-23.291	-6.159	29.414	18.481	9.623	29.348	2525.640	417.702	14350.200	8668.670	0.604
0.255	352.433	-29.529	87.087	294.875	-23.371	-6.158	29.619	18.436	9.608	29.423	2530.570	418.177	14893.000	9178.720	0.616
0.26	353.154	-29.599	87.314	295.439	-23.440	-6.159	29.824	18.392	9.594	29.504	2535.720	418.667	15496.100	9734.640	0.628

Figure 16.22. The likelihood profile for natural mortality (top right) with its implications for the unfished spawning biomass $\left(B_{0}\right)$, the Current biomass and the state of depletion. The green line depicts the optimum estimate of natural mortality in all cases. In the likelihood profile the red lines bound the approximate likelihood profile 95% confidence bounds.

Table 16.18. Tabulated deterministic output from the projections. The filled dots in Figure 16.18 are the year and Depletion column values (as proportions not percentages).

Year	Total Biomass	Spawning Biomass	Recruitment	Depletion	TAC
2016	11164	5318	6612	0.475	1171
2017	10783	5019	6549	0.448	1120
2018	10572	4858	6513	0.434	1093
2019	10475	4780	6495	0.427	1082
2020	10445	4754	6488	0.424	1079
2021	10448	4755	6489	0.424	1081
2022	10462	4766	6491	0.425	1084
2023	10479	4777	6494	0.426	1086
2024	10494	4785	6496	0.427	1088
2025	10506	4792	6497	0.428	1090
2026	10516	4796	6498	0.428	1091
2027	10524	4800	6499	0.428	1092
2028	10530	4803	6500	0.429	1092
2029	10535	4805	6501	0.429	1093
2030	10540	4807	6501	0.429	1093
2031	10543	4809	6502	0.429	1094
2032	10546	4810	6502	0.429	1094
2033	10549	4812	6502	0.429	1095
2034	10551	4813	6502	0.429	1095
2035	10553	4814	6503	0.430	1095
2036	10554	4814	6503	0.430	1095
2037	10555	4815	6503	0.430	1095
2038	10556	4816	6503	0.430	1095
2039	10557	4816	6503	0.430	1095
2040	10558	4816	6503	0.430	1096
2041	10559	4817	6503	0.430	1096
2042	10559	4817	6503	0.430	1096
2043	10560	4817	6503	0.430	1096
2044	10560	4818	6504	0.430	1096
2045	10560	4818	6504	0.430	1096
2046	10561	4818	6504	0.430	1096
2047	10561	4818	6504	0.430	1096
2048	10561	4818	6504	0.430	1096
2049	10561	4818	6504	0.430	1096
2050	10562	4818	6504	0.430	1096
2051	10562	4818	6504	0.430	1096
2052	10562	4818	6504	0.430	1096
2053	10562	4818	6504	0.430	1096
2054	10562	4818	6504	0.430	1096
2055	10562	4818	6504	0.430	1096

16.5 References

Brown, L.P. and K.P. Sivakumaran (2007) Spawning and reproductive characteristics of Bight Redfish and Deepwater Flathead in the Great Australian Bight Trawl Fishery. Victoria Department of Primary Industries and Fisheries Research and development Corporation Project No. 2003/003 49p.
Day, J. (2009) Modified breakpoint for the 2008 Tier 1 harvest control rule. pp 198 - 202 In Tuck, G.N . (ed) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2008. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 645 p.

Day, J., Thomson, R. and G. Tuck (2015) Silver Warehou (Seriolella punctata) stock assessment based on data up to 2014 paper to Slope RAG 29 October 2015. Australian Fisheries Management Authority and CSIRO Oceans and Atmosphere, Hobart. 62 p.

Fournier, D.A., H.J. Skaug, J. Ancheta, J. Ianelli, A. Magnusson, M.N. Maunder, A. Nielsen, and J. Sibert. (2012) AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optimization Methods and Software 27:233249.

Francis, R.I.C.C. (2011) Data weighting in statistical fisheries stock assessment models. Canadian Journal of Fisheries and Aquatic Sciences 68: 1124-1138.
Gomon, M., Bray, D. and K. Kuiter (2008) Fishes of Australia's Southern Coast. Museum Victoria. New Holland Publishers, Sydney. 928 p.
Haddon, M. (2014a) Catch Rate Standardizations for Selected Species from the SESSF (data 1986 2012) pp 57-275 in Tuck, G.N. (ed.) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2013. Part 2. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 487 p.
Haddon, M. (2014b) Standardization of Bight Redfish in the GAB 2000/2001 - Feb 2012/2013. Catch rate Update. pp 276 - 283 in Tuck, G.N. (ed.) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2013. Part 2. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 487 p.

Hobsbawn, P., Wise, B., and R. Tilzey (2002a) Analysis of logbook catch and effort data (1988-2001) for the Great Australian Bight Trawl Fishery (GABTF). (Background paper, GABFAG Canberra, 18 October 2002). BRS, Canberra.

Hobsbawn, P., Wise, B., and R. Tilzey (2002b) Standardisation of Deepwater Flathead and Bight Redfish catch rates in the Great Australian Bight Trawl Fishery (GABTF). (Background paper, GABFAG Canberra, 18 October 2002). BRS, Canberra.
Kailola, P.J., Williams, M.J., Stewart, P.C., Reichelt, R.E., McNee, A and C. Grieve (1993) Australian Fisheries Resources. Bureau of Resource Sciences, Canberra.

Klaer, N. and J. Day (2007) Updated stock assessment for Deepwater Flathead (Neoplatycephalus conatus) and Bight Redfish (Centroberyx gerrardi) in the Great Australian Bight trawl fishery using data to June 2006. Pp 448 - 473 In Tuck, G.N . (ed) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery. 2006-2007: Volume 1. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 570 p.

Klaer, N. (2007) Updated stock assessment for Deepwater Flathead (Neoplatycephalus conatus) and Bight Redfish (Centroberyx gerrardi) in the Great Australian Bight trawl fishery using data to June 2007. Pp 415-438 In Tuck, G.N . (ed) Stock Assessment for the Southern and Eastern

Scalefish and Shark Fishery. 2006-2007: Volume 2. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 584 p.

Klaer, N. (2010) Stock assessment for Bight Redfish (Centroberyx gerrardi) and projection for Deepwater Flathead (Neoplatycephalus conatus) in the Great Australian Bight trawl fishery using data to June 2009. Pp 312-333 In Tuck, G.N . (ed) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery. 2009: Part 1. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 334 p.

Klaer, N. (2011a) Deepwater flathead (Neoplatycephalus conatus) stock assessment based on data up to 2009/10 - Development of a preliminary base case. Pp 329 - 341 in Tuck, G.N. (ed.) (2011) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2010. Part 1. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 374 p.

Klaer, N. (2011b) Deepwater flathead (Neoplatycephalus conatus) stock assessment based on data up to 2009/10. Pp 342 - 373 in Tuck, G.N. (ed.) (2011) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2010. Part 1. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 374 p.
Klaer, N. (2013a) Deepwater Flathead (Neoplatycephalus conatus) stock assessment based on data up to 2011/12 - Development of a Base Case. Pp 156-171 in Tuck, G.N. (ed.) (2013) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2012. Part 1. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 199p.
Klaer, N. (2013b) Deepwater Flathead (Neoplatycephalus conatus) stock assessment based on data up to 2011/12. Pp 172 - 198 in Tuck, G.N. (ed.) (2013) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2012. Part 1. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 199p.

Klaer, N. (2014a) Deepwater Flathead (Neoplatycephalus conatus) stock assessment based on data up to 2012/13 - Development of a Base Case. Pp 174 - 248 in Tuck, G.N. (ed.) (2014) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2013. Part 1. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 313p.
Klaer, N. (2014b) Deepwater Flathead (Neoplatycephalus conatus) stock assessment based on data up to 2012/13. Pp 249 - 276 in Tuck, G.N. (ed.) (2014) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2013. Part 1. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 313p.
Knuckey, I., Koopman, M. and R. Hudson (2015) Resource Survey of the Great Australian Bight Trawl Survey. AFMA Project 2014/0809. Fishwell Consulting. 35p.

Kompas, T., Che, N., Chu, L., N. Klaer (2011) Transition to MEY Goals for the Great Australian Bight Trawl Fishery, Report to Fisheries Research and Development Corporation, Australian Centre for Biosecurity and Environmental Economics, Crawford School of Economics and Government, Australian National University, Canberra. 35 p.

Methot, R.D. Jr. (2015) User Manual for Stock Synthesis. Model Version 3.24s. Updated February 11, 2015. NOAA Fisheries, Seattle, WA. USA. http://nft.nefsc.noaa.gov/

Methot, R.D., and I.G. Taylor. (2011) Adjusting for bias due to variability of estimated recruitments in fishery assessment models. Canadian Journal of Fisheries and Aquatic Sciences 68: 17441760.

Methot, R.D. Jr. and C. R. Wetzel (2013) Stock synthesis: A biological and statistical framework for fish stock assessment and fishery management. Fisheries Research 142: 86-99.

Punt, A.E., Smith, D.C., KrusicGolub, K. and S. Robertson (2008) Quantifying age-reading error for use in fisheries stock assessments, with application to species in Australia's southern and eastern scalefish and shark fishery. Canadian Journal of Fisheries and Aquatic Sciences 65: 1991 2005.

Smith, A.D.M., Smith, D.C., Tuck, G.N., Klaer, N., Punt, A.E., Knuckey, I., Prince, J., Morison, A., Kloser, R., Haddon, M., Wayte, S., Day, J., Fay, G., Pribac, F., Fuller, M., Taylor, B., Little., R (2008) Experience in implementing harvest strategies in Australia's south-eastern fisheries. Fisheries Research 94: 373-379.

Smith, A.D.M., Smith, D.C., Haddon, M., Knuckey, I.A., Sainsbury, K.J. and S. Sloan (2014) Implementing harvest strategies in Australia: 5 years on. ICES Journal of Marine Science 71: 195-203.

Sporcic, M (2015) Catch rate standardizations for selected SESSF species (data to 2014). CSIRO Oceans and Atmosphere Flagship, Hobart. 278p.

Tilzey, R. and B.S.Wise (1999) Great Australian Bight Trawl Fishery. 1998 Fisheries Assessment Report. Australian Fisheries Management Authority, Canberra.

Tuck, G.N., Thomson, R. and J. Day (2015) Development of a base-case Tier 1 assessment for the western stock of Jackass Morwong (Nemadactylus macropterus) based on data up to 2014. Paper to Shelf Assessment Group, 22 September 2015. CSIRO Oceans and Atmosphere. 24 p.

Venzon, D.J. and S.H. Moolgavkar (1988) A method for computing profile-likelihood based confidence intervals. Applied Statistics 37: 87-94.
Wise, B. and Klaer, N. (2006) Updated Stock assessment of Deepwater Flathead (Neoplatycephalus conatus) and Bight Redfish (Centroberyx gerrardi) in the Great Australian Bight Trawl Fishery (GABTF) September 2005. Pp 247-263. In Tuck, G.N. (ed) Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery: 2006-2007. Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, Hobart. 292 p.

Wise, B. and R. Tilzey (2000) Age structured modelling of Deepwater Flathead (Neoplatycephalus conatus) and Bight Redfish (Centroberyx gerrardi) in the Great Australian Bight Trawl Fishery (GABTF). Bureau of Rural Sciences, Canberra.

16.6 Appendix

Figure 16.23. Residuals from the annual length composition data (retained) for Deepwater Flathead displayed by year and fleet (TRAWL - ISMP_onboard).

Figure 16.24. Conditional age-at-length plots illustrating the ages expected each year from the sampled length composition data and the age-length key for the year.

17. Gummy shark assessment update for 2016, using data to the end of 2015

André E. Punt ${ }^{\text {a,b }}$, Robin Thomson ${ }^{\text {a }}$ and Miriana Sporcic ${ }^{\text {a }}$
a: CSIRO Oceans and Atmosphere, Castray Esplanade, Hobart 7000, Australia
${ }^{\text {b }}$: School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195-5020, USA

17.1 Executive Summary

The assessment of gummy shark (Mustelus antarcticus) is updated based on available information to 2015. The model on which the assessment is based is modified in three ways: (a) the dynamics are now based on a population dynamics equation that assumes that the catches by the various gear-types occur simultaneously rather than sequentially, (b) the "hook fleet" included in previous assessments is now separated into shark longline, trawl, and scalefish longline gear-types, with size-specific selectivity estimated for each gear-type, and (c) allowance is now made for age-reading error. The assessment includes revised catch and length-composition data based on the most recent extractions from the AFMA database, new age composition data, and updated catch-rate indices. The catch-rate indices for 1997 onwards are based on the method commonly applied for SESSF species, with the pre1997 catch-rates appended to those for 1997 onwards by calibrating the catch-rates for the period of overlap. The assessment includes catch-rate indices for the trawl and shark longline for the first time.

A reference case model is presented that fits to all available data. The fits are all reasonable and the assessment outputs indicate that gummy shark in Bass Strait, and off South Australia and Tasmania are above the management target of 48% of unfished pup production. The Recommended Biological Catches for 2016, 2017 and 2018 from the reference case model are 2080t, 1878t, and 1807t.

17.2 Introduction

Gummy shark are considered to be relatively sedentary and not to undertake spawning or feeding migrations. Any management region could therefore be thought of as a separate stock. However, management regions should be chosen so there is sufficient length and catch-rate information to allow the values for the parameters of the population dynamics model to be estimated with reasonable precision ${ }^{1}$. Stock boundaries have been chosen to allow sufficient data for assessment, and to encompass possible spatial differences in fishery and stock characteristics. The analyses of this report treat gummy shark as three separate stocks: South Australia (SA), Victoria (Vic) and Tasmania (Tas) (Figure 17.1).

Several assessments of gummy shark have been conducted, with the assessments conducted since 2004 (Punt et al. 2004) having been based on the approach of Pribac et al. (2005), modified inter alia by Punt and Thomson (2010). The most recent assessment update for gummy shark used data to 2012 (Thomson and Sporcic, 2014). The code implementing the gummy shark assessment was one of the

[^5]earliest developed using AD Model Builder (Fournier et al., 2012), and was consequently set up to be as simple (and fast) as possible. One of the key simplifications that had to be made was that the catches by each of the five gear types ("hooks" and four gillnet mesh gears) are instantaneous (i.e., half of natural mortality occurs then all the fisheries, and then the remainder of natural mortality), and that the fisheries are sequential (i.e., within each year, catches by hooks occur first, then those by 6.0 -inch gill nets, 6.5 -inch gillnets, etc). These assumptions would be inconsequential if fishing morality was always low, but if fishing mortality was highish (roughly $0.4 \mathrm{yr}^{-1}$ and higher on fully-selected animals, as was likely the case in Bass Strait in the 1970s and 1980s), they could have a major impact on estimates of population age-structure.

The population dynamics model on which this assessment was based was therefore reformulated as a continuous model (i.e., fishing mortality occurs throughout the year and all fisheries occur at the same time), making it consistent with stock assessments for sharks conducted elsewhere in the world (e.g., for spiny dogfish, Squalus suckleyi, Gertseva and Taylor, 2012), as well as the assessments for other fish species in the SESSF. The original model assumed that tags were released just before the fishery operated (mid-year). The revised model assumes that tags are released at the start of the year (so there is some (instantaneous) tag-loss before the fishery can catch the tags). Section 3 of this report therefore illustrates the consequences of changing the population dynamics model on which the assessment is based, along with other changes to the assessment methodology resulting from changes to the data that have become available since the time of the 2013 assessment. The outcome of Section 3 is a model (denoted Model 4A), that uses essentially the same data as the 2013 assessment, but is based on updated methodology.

Section 4 of the report updates Model 4A to include data subsequent to 2012, specifically:

- landings information for the seven gear-types included in the assessment (6-inch gillnets, 6.5inch gillnets, 7 -inch gillnets, 8 -inch gillnets, shark longline, trawl, and scalefish longline although the catches by 7 -inch gillnets and 8 -inch gillnets are negligible and are likely data recording errors);
- length-composition information for the seven gear-types;
- age-composition data for $1995,1997,2002$ and 2003 (these data were previously unavailable); and
- updated catch-rate data.

Section 5 of the report summaries the Recommended Biological Catches for the next few years, along with the results of projections based on various assumptions about future catches, in particular the split of the RBC by region to gear-type.

17.3 Overview of the Data Types and Pre-Processing

17.3.1 Landings Data

The fishery for gummy shark started in Bass Strait, as a bycatch of the hook fishery for school shark. The fishery moved to South Australia and Tasmania, with the first catches off South Australia recorded in 1938 and off Tasmania in 1942. The fishery moved to gillnets in the 1960s. Catches were initially taken using 7 -inch and 8 -inch gillnets, but over time smaller mesh sizes predominated. Catches in Bass Strait have been taken predominantly using 6-inch gillnets from 1973. Catches off South Australia were dominated by those taken using 7-inch gillnets until 1997 when the predominant gear-type
changed to 6.5 -inch gillnets. Since 2012, the bulk of the catches off South Australia have been taken using line gear. Catches off Tasmania were taken using a range of gear-types, but 6 -inch mesh has been the predominant gear since 1996.

The landings data on which this assessment is based for the years before 2000 are identical to those on which the 2013 assessment was based. The catches from 2001 to 2015 were recalculated based on updated information and all landed catches were converted to total catches by accounting for estimated discard rates (Appendix A). The time-series of catches used in the final assessment are shown in Figure 17.2.

17.3.2 Catch-Rate Indices

Catch-rates, along with tagging data, provide the key measures of relative abundance in the assessment for gummy shark. Two approaches for developing catch-rate indices have been applied to data for gummy shark. The catch-rates used in previous assessments were derived using the method of CPUE standardization for gummy shark that was developed by SharkRAG, and first outlined by Punt et al. (2000) and that evolved during a subsequent application (Punt, 2004). The method used for the last assessment is summarised by Punt and Gason (2006) and Thomson and Sporcic (2016). This method analyses the catch and effort data using the spatial cells identified by SharkRAG, modelling the probability of a non-zero catch-rate using a binomial distribution and the catch rate, given there is some catch, using a negative binomial distribution. The resulting model estimates are then combined, weighting the catch-rate indices by cell using a measure of the habitat area of the cell. There are cells for which catch-rate indices are missing, and an algorithm was developed by SharkRAG to specify these missing catch-rate indices. However, the software on which this method is based is no longer supported within R, and the SESSF has moved to a common approach to constructing standardized catch-rate indices for the use in stock assessments.

An alternative approach for standardizing catch and effort (Haddon, 2013) involves analysing all of the catch and effort data using standard methodology. Sporcic (2016) provides the most recent application of this method to sharks, which involves analysing records for 1997 onwards for which both catch and effort are non-zero. The best model, based on a log-normal GLM, is selected using AIC based on factors for year, vessel, month, Shark Zone (e.g. western and eastern Bass Strait), SharkArea (the blocks developed for previous catch-rate standardizations), gear, 25 m depth category and DayNight (whether the record occurred during day, at night or was mixed between these - trawl only), as well as interactions between DayNight and Day, between Depth and Month, and between DayNight and Month. Sporcic (2016) conducted analyses separately for gillnets, trawl and bottom line.

17.3.3 Length-Composition Data

Gummy shark length-composition data from commercial catches were collected by MAFRI until 2006 and used in the 2006 assessment (Punt et al., 2006), as well as in the current update. Responsibility for the collection of commercial length-composition data has now moved to the AFMA Observer Program, which has yielded length-composition information from 2008 to 2015.

Until June 2015, the Observer Program collected length information onboard gillnet and line vessels (mostly as total length (TOT), but also significant amounts as fork length (LCF) or in port (all partial length (PAR)). Sample sizes are greatest for the onboard data, but the validity of the historical conversion formula for PAR to TOT is in doubt (i.e., TOT $(\mathrm{cm})=2.65+1.61$ PAR (cm)), Walker and Gason 2009). This doubt arises from converting partial lengths to total length and then comparing the
converted length frequencies with the whole length frequencies (Thomson and Sporcic, 2014). Consequently, the Observer Program collected dual TOT and PAR measurements as well as LCF and TOT measurements from gummy, school shark, sawshark and elephantfish, and new conversion factors were calculated (most recently by Thomson 2015). Cameras have now replaced observers onboard shark fishing vessels so these measurements are no longer being collected, although trials are underway to collect length information from camera footage. Port data are not used in the assessment for the reasons outlined in Thomson and Sporcic (2014).

Length frequencies were catch-weighted before they were summed: first to the total weight for the shot, and then to year by gear and shark zone. Criteria for including length measurements made on board vessels were: (a) length code must be TOT, PAR or LCF (converted to TOT using the newly available conversion formulae; Thomson, 2015); and (c) measurements that were tagged as "discarded" were ignored. The size of gillnet was not recorded for these data so the mesh size was assumed to be that which led to the largest catch in the region from which the data were collected (i.e., 6 -inch in Bass Strait and Tasmania and 6.5 -inch in South Australia). The length-composition data for gillnets were restricted to those for which the annual sample size was at least 400 (for consistency with the 2013 assessment). Sample sizes for shark and scalefish longline and trawl are small (Table 17.1) so no minimum was imposed on these data, but these data were down-weighted prior to their inclusion in the assessment.

17.3.4 Age-Composition Data

Age data used by Punt and Thomson (2010) were included in this assessment and the previous assessment, even though they were derived from 2007 and 2008 surveys, not from commercial fishing. These data were supplemented with new age-readings from vertebrae collected during 1995, 1997, 2002, and 2003. Some of the new age data had to be ignored for this assessment. In particular, age data for which the gear used to catch the animals was missing, the age estimate was -99 , or the animal was caught using bottom longline. In principle, age data from bottom longline could be used in the assessment, but the sample size (9) was too small for this to be the case this year. Data were aggregated to ages $1-10+$ for consistency with the previous assessment. Table 17.2 lists the sample sizes for the age-composition data.

17.3.5 Tagging Data

It is not known whether any new tag-recaptures have been reported since 2008. Reporting rates have probably decreased in recent years and have probably been effectively close to zero from 2005 onwards.

17.4 Modifications to the Assessment

Most of the specifications of the assessment match those of Thomson and Sporcic (2014). In particular:

- allowance is made for gear saturation when calculating the catchability coefficient that relates exploitable biomass to catch-rates;
- account is taken of availability as well as selectivity;
- discards are ignored;
- the likelihood for the tagging data is truncated at 2005;
- catch-rates for South Australia are truncated in 2009; and
- the last five recruitment deviations are not estimated.

As in the assessment of Thomson and Sporcic (2014), the reference case of this assessment assumes that (i) density-dependence is a function of total (1+) biomass, (ii) density-dependence impacts the rate of natural mortality for animals aged 0-30 years, and (iii) gear competition is modelled using Equation 1a of Punt and Thomson (2010):

$$
U_{y}^{a}=q^{a} B_{y}^{e, a} \frac{1}{1+\gamma^{a} E_{y}^{a}}{ }^{\varepsilon_{y}^{a}}
$$

where U_{y}^{a} is the catch-rate for region a (Bass Strait, South Australia, or Tasmania) and year y, q^{a} is the catchability coefficient for region $a, B_{y}^{e, a}$ is the exploitable biomass for region a and year y, E_{y}^{a} is the nominal effort for region a and year y, γ^{a} is the parameter that determines the extent of effort saturation / gear competition for region a (no gear competition if $\gamma^{a}=0$, with increasing amounts of gear competition as γ^{a} is increased), and ε_{y}^{a} is the observation error for region a and year y (assumed for consistency with past assessments to be normal with mean 0 and standard deviation 0.15). 'Gear competition' has been postulated for the fishery for gummy shark off southern Australia based on the observation that catches have been relatively insensitive to large changes in fishing effort (Pribac et al., 2015).

The population dynamics model includes both length-specific gear-selectivity and age-specific availability. The values for the parameters of the selectivity functions are based on experimental results (Kirkwood and Walker, 1986). Differentiating availability from selectivity allows animals to be vulnerable to the gear (i.e., the selectivity of the gear allows them to be captured), but not to be available to the fishery (e.g., because they are not where the fishery operates) and hence not to be caught. Empirical evidence for non-uniform availability arises from analyses of length-composition data collected during fishery-independent surveys (A. E. Punt, unpubl. data, cited by Pribac et al., 2005). Non-uniform availability may be a consequence of behavioral changes associated with ontogenetic changes in prey preference (Pribac et al., 2005).

Table 17.3 lists the full set of models considered in the assessment, including the 'bridging' models used to modify the assessment specifications and data from the reference case model from that of the 2013 assessment to the reference case model for this assessment.

17.4.1 Moving to a Continuous Model Formulation

Figure 17.3 compares the time-trajectories of pup production in absolute terms and pup production relative to that in 1927 for Bass Strait, South Australia, and Tasmania, along with the fits to the catchrate indices used in the 2013 assessment (Model 0) as well as for a variant of Model 0 in which the population dynamics model is continuous rather than discrete (Model 1A). The numbers of pups are consistently lower when the assessment is based on the continuous model. The relative pup production (pup production relative to the unfished level) is also lower (particularly for Bass Strait) when the assessment is based on the continuous model (Figure 17.3, center panels). Given the theoretical support for continuous dynamics, the remaining analyses are based on the Model 1A and variants thereof.

The estimate of natural mortality in the 2013 assessment (Model 0) was $0.177 \mathrm{yr}^{-1}$ (SD 0.013), which resulted in a MSY rate ${ }^{2}$ of 0.22 to 0.24 depending on region, and given a value for the densitydependence parameter of 0.893 (Table 17.4). The estimate of natural mortality in Model 1A is almost the same as that for Model $0\left(0.176 \mathrm{yr}^{-1}\right.$, SD 0.013$)$ as is the estimate of the density-dependence parameter (0.973).

17.4.2 Inclusion of Additional Fleets to the Model

The 2013 assessment (and Model 1A) is based on five gear-types (four gillnet fleets; 6 -inch, 6.5 -inch, 7 -inch and 8 -inch, and shark longline). The shark longline gear (denoted "the hook fleet" in previous assessments) combines catches by shark longline and other gears (including trawl). Shark and scalefish longline are defined as being shallow and deeper than 183 m , respectively. The legislative distinction between these gear types was removed during 2015, but will be preserved for the gummy shark stock assessment because the size composition of sharks landed by these gears differ. Using a combined line and trawl gear fleet was a defensible approach in past assessments given there were no catch-rate indices nor length and age data for catches by longlines and trawl. However, Sporcic (2016) provided catch-rate indices for trawl gear, and for bottom longlines (for which catches shallower then 183m predominate). In addition, length-composition data for gummy shark from onboard sampling are now available for trawl catches, catches by longlines targeted towards sharks and by longlines targeted towards scalefish (see Table 17.1 for sample sizes). The current "hook fleet" was consequently split into three fleets: trawl, shark longline, and scalefish longline (Figure A 17.1; Figure 17.2). Given there were no length, age and catch-rate data for the "hook fleet" in the 2013 assessment, the results of the assessment are unchanged from those from the 2013 assessment when the catches of the "hook fleet" are simply split into those for the three gear-types. Similarly, the results of Model 1A are insensitive to splitting the catches by the "hook fleet".

Appendix A shows that updated information changed the catches from 2007 onwards. Model 1B (Figure 17.3) shows that updating the catches in Model 1A to the revised catches does not have a large impact on the estimates of pup production, and the fits to the catch-rate data. The remaining analyses in this section are based on the catches used in Model 1B.

17.4.3 Splitting the Catch-Rate Series for the Gillnet Fishery

Figure 17.4 compares the catch-rate indices for 1997-2012 based on the SharkRAG approach and those developed by Sporcic (2016) by region (Bass Strait, South Australia and Tasmania). The indices for Bass Strait are very similar and those for Tasmania exhibit quite similar trends (the results for Tasmania would not be expected to be identical, owing to low catches, and hence likely sensitivity to changes to methodology). The trends in catch-rate for South Australia are qualitatively similar (no trend between 1999 and 2012), but there are some notable differences for particular years, most noticeably for 2001. The exact reasons for the differences are not clear (and given the major differences in approach, cannot be resolved by changing each step of the Punt et al. (2000) approach until it matches that of Sporcic (2016)), but the reasons probably relate to how the spatial distribution of catches off South Australia has changed over time.

[^6]One way to move from the previous approach to one based on the standard methodology for constructing standardized catch-rate indices is as follows: (a) develop 'legacy' catch-rate series for Bass Strait (1976-1996), South Australia (1984-1996), and Tasmania (1990-1996) based on the original method for constructing catch rate indices (Punt et al., 2000; Punt 2004) by truncating the series used by Thomson and Sporcic (2014) in 1996; and (b) base the catch-rate indices for 1997 onwards on the standard methodology.

The potential implications of this change in methodology are evaluated using three new model variants:

- Model 1B: which uses the catch-rate indices on which the 2013 assessment was based.
- Model 2A: Model 1B, except the catch-rate series developed by Sporcic (2016) are used for the 1997-2012, and the catch-rate indices for the years prior to 1997 are based on those used by Thomson and Sporcic (2014), with the extent to which catchability changes with effort assumed to be constant over time (i.e. no effort saturation).
- Model 2B: Model 1B, except the catch-rates for 1997 onwards are replaced by those from Sporcic (2016), with the mean catch-rate for the Sporcic (2016) series set to equal to those for the original series to create a "spliced" series (Figure 17.4; dashed lines).
- Model 2C: Model 2B, but with the catch-rate series for the trawl and longline ${ }^{3}$ gear-types included in the assessment.

The catch-rate series for trawl and shark longline gear are not disaggregated to region so are assumed to relate to all regions combined (with the possibility of gear saturation consequently ignored). The estimates of pup production from Model 2A are more pessimistic than those for Models 1B, 2B and 2C (Figure 17.5; Table 17.4). There is little difference in results between models 2B and 2C, including in terms of the fits to the gillnet catch-rate data. The fits to the catch-rate series for trawl and shark longline (Figure 17.6) are not very good, but it is hard to draw definitive conclusions given the short duration of these series.

17.4.4 Length-Composition Data

The length-composition data from 2007 onwards have been updated since the last assessment. Gillnet mesh size is not available for the post-2007 length-composition data. Therefore, the lengthcomposition data for Bass Strait and Tasmania were assumed to relate to catch by 6 -inch mesh, and those for South Australia to 6.5 -inch mesh, reflecting an assumption also made for the 2013 assessment that the length-composition data pertain to the gear-type that took the bulk of the catch. Figure 17.7 compares the length-composition data used in the 2013 assessment with the updated data. There is generally good agreement between the two sources of data, but this is not always the case (e.g. the length-composition data for 2008 off South Australia). In the absence of information to justify using the earlier data, the remaining analyses of this report are based on the revised data.

Figure 17.8 compares the estimates of the pup production and the fits to the catch-rate series for Model 2C and three model variants that modify the length-composition data used in the assessment.

[^7]- Model 3A: As for Model 2C, except that the gill-net length-composition data are updated.
- Model 3B: As for Model 3A, except that the assessment includes the length-composition data for shark longline, trawl and scalefish longline. Longline and trawl selectivity is knife-edged.
- Model 3C: As for Model 3B, except that selectivity for shark longline, trawl and scalefish longline is assumed to be a logistic function of length (resulting in six additional estimable parameters).
- Model 3D: As for Model 3C, except that availability is assumed to be constant.

The results of the models 2 C , and 3A-3C are all qualitatively similar. However, model 3D leads to markedly lower estimates of pup production in absolute terms and when expressed relative the 1927 level (Figure 17.8). The lower estimates of pup production for Model 3D are not surprising because this model assumes that the entire population is vulnerable to the gillnet sector, unlike the remaining models that allow for a "refuge" due to declining availability with size. Figure 17.9 shows the fits to the length-composition data when these data are aggregated over time. The improvement in fit by Models 3C and 3D over Model 3B is clearly evident in Figure 17.9. Models 3B, 3C and 3D are fitted to the same data, which means that the values for the negative log-likelihood function (including penalties) are comparable. These values are 1506, 1271, and 1337. Model 3C has six more parameters than Model 3B (the addition of these parameters is highly significant, $p=1 \mathrm{e}^{-98}$), while Model 3D has one fewer parameter than Model 3C (the retention of this parameter is also highly significant, $p=8 \mathrm{e}^{-}$ ${ }^{31}$). Comparisons among the models need to be conducted with care, but there is strong evidence against models 3B and 3D and in favour of Model 3C. Figure 17.10 contrasts the estimated selectivity patterns for models 3B, 3C and 3D.

17.4.5 Age-Reading Error

Previous assessments of gummy shark have assumed that the age-estimates are exact, i.e. the differences between the observed and model-predicted age distributions are due only to sampling error. Appendix B analyses data from a double-read experiment to estimate the coefficient of variation of age-reading error, which is estimated to be 0.092 (SD 0.00468). Model 4A extends Model 3C by including age-reading error. Including age-reading error (but not the new age data), leads to slightly lower estimates of pup production in absolute terms, but negligible differences in pup production relative to the 1927 level (Figure 17.11).

17.5 Reference Case Model and Sensitivity Tests

17.5.1 Reference Case Analysis and Further Bridging Analyses

Table 17.5 lists the number of parameters on which the reference case analysis is based. Compared to the 2013 assessment, there are 9 additional pup survival deviations (one for each of 2011, 2012 and 2013 for Bass Strait, South Australia, and Tasmania), and 6 additional selectivity parameters, with the total number of estimable parameters equal to 267 . Table 17.6 lists the weights assigned to the lengthand age-composition data. The weights (the average effective sample sizes) are set to 10 for those combinations of sex, region, gear-type for which the sample sizes are very low (i.e., below 50) sufficiently low to allow selectivity to be estimated but not too large to influence final outcomes. A value of 25 was used for larger length frequency sample sizes, and a value of 50 for the combinations of sex, region and gear-type with the largest sample sizes.

The revised catch-rate indices (Sporcic, pers. commn) are shown in the upper panels of Figure 17.12. The overall catch-rate indices in this assessment are constructed using the "splicing" approach on which the catch-rate data used for Model 2B were based. The assessment also requires data on the total gillnet effort in a region to compute the extent of gear saturation, as well as the breakdown of the records used for catch-rate standardization by mesh size.

Figure 17.13 provides the results of the bridging analyses in which the updated catch (Model 5A), new length-composition (Model 5B), new age-composition (Model 5C) and new / updated catch-rates (Model 5D) are included in the assessment in turn. The analysis with all the new data (Model 5D) is the reference case analysis. The analyses that use the new age data (Model 5C) and the revised catchrate indices (Model 5D) are more optimistic that Models 4A, 5A and 5B in absolute terms, as well as in a relative sense. Figure 17.13 shows asymptotic 90% confidence intervals for pup production (in absolute terms and relative to the 1927 level), as well as recruitment for the reference case analysis. As expected, the estimates of pup production in absolute terms are less precise than pup production in relative terms, which can be attributed in large part to uncertainty about historical recruitment (Figure 17.13, lower panels). It is noteworthy that the estimates are more precise for the regions (Bass Strait and South Australia) with more size- and age-composition data.

Figure 17.14, Figure 17.15, Figure 17.16 and Figure 17.17 show the fits to the catch-rate, lengthcomposition, age-composition and tagging data for Model 5D. The fits to the gillnet catch-rate indices are generally satisfactory (Figure 17.14). The residual standard deviations for the gillnet catch-rate indices for Bass Strait and Tasmania (0.16 and 0.12) are close to the assumed value (0.15), as are the residual standard deviations for the trawl and shark longline indices (0.17 and 0.19), even though these indices are not very informative. However, the residual standard deviation for South Australia is larger than assumed (0.35 compared to 0.15). This due to several periods of poor fits (e.g. 1995-2001) and to some outliers (e.g. for 2001).

The model is able to mimic the size-composition data well, particularly for the combinations of sex, gear-type, and region with large sample sizes (Figure 17.15). However, the fits to the shark longline and particularly trawl length-compositions are fairly poor. The model is able to mimic the general pattern of the age-composition data, but given small sample sizes the fits are not very good in some cases. Appendix C shows the fits to the length- and age-composition data by year, sex, gear-type and region for Model 5D. As in previous assessments, the fits to the tagging data (Figure 17.17) are good.

All three stocks are assessed (according to the reference model, Model 5D) to have been above the management target of $0.48 B_{0}$ (in terms of pup production) at the start of 2016: 0.59 B_{0} (Bass Strait), $0.69 B_{0}$ (South Australia), $0.83 B_{0}$ (Tasmania), with no evidence (in point estimate terms) that the stocks were ever below the management target. The base-case estimate for the effort saturation parameter for South Australia is 50 (the upper limit for this parameter). A value for " 50 " implies high effort saturation, but values from approximately 10 and above all imply this - the specific value of " 50 " is the best estimate, but is fairly imprecise. Sensitivity results (Model 6B; Section 4.2) suggest that the results in terms of pup production are not very sensitive to allowing for effort saturation, but doing so leads to quite markedly better fits to the data (-LnL value of 1673 for sensitivity Model 6B compared to 1610 for the reference case model).

Appendix D provides the variance co-variance matrix for the leading parameters (i.e. ignoring the annual recruitment deviations) and suggests fairly low correlation among the parameters (no correlations of 0.7 and higher in absolute terms). Figure 17.18 compares the estimates of pup production to those of female spawning biomass. As expected, there is a close to linear relationship between the model outputs.

17.5.2 Sensitivity Analyses

Table 17.3 lists the sensitivity analyses used to examine the sensitivity of the results to key uncertainties. Table 17.7 lists the values for some key model outputs. The sensitivity tests explore the sensitivity of the results to some key assumptions (Models 6B-6Q) and to inclusion and weighting of data (Models 6A, and 6R-6V). Models 6D and 6E were introduced to attempt to fit the lengthfrequency data better and to test the support for the availability function. The aggregated summaries in Figure 17.15 are suggestive of systematic lack of fit to some combinations of region and gear-type. Models 6D and 6E involve estimating the values for the two parameters that determine the gill-net selectivity patterns (assumed to be the same spatially).

In general, the results are insensitive to varying the assumptions of the model. The sensitivity tests that lead to notable ($>10 \%$ change in estimated 2016 depletion) changes to the results involve (a) ignoring the availability functions [Models 6 C and 6E] (but this leads to poor fits to the data), (b) assuming density dependence impacts only younger ages ($0-2$ and $0-4$; Models $6 \mathrm{~J}, 6 \mathrm{M}, 6 \mathrm{~N}$, and 6 O), and (c) assuming that density-dependence impacts fecundity (tests 6 P , and 6Q). Models $6 \mathrm{~J}, 6 \mathrm{M}, 6 \mathrm{~N} 6 \mathrm{O}, 6 \mathrm{P}$, and 6 Q all fit the data better than the reference case model, primarily owing to better fits to the catchrate series (Table 17.7). The model fits to the length-composition data were slightly better when selectivity was estimated, but the effect was fairly minor (Models 6D and 6E).

17.6 Projections and Management Quantities

17.6.1 Recommended Biological Catches

The Recommended Biological Catches (RBCs) are calculated for each projection year by first computing the fully-selected fishing mortality corresponding to reducing (or rebuilding) the pup production to 48% of unfished pup production when the relative split of fully-selected fishing mortality among gear-types matches that for 2015 (the last year with catches). This fishing mortality is then reduced if pup production is less than 35% of the unfished level and used to compute the catch for each future year. The projections are based on the assumption that pup production equals the value from the stock-recruitment relationship.

Table 17.8 lists the RBCs for 2016-2025, along with the catches for 2014 and 2015 by region, while Table 17.9 lists the RBCs for 2016-2025 by region and gear-type. Figure 17.19 shows the timetrajectories of RBC for a 30-year projection period. The values in Table 17.8 and Table 17.9 are total RBCs (i.e. included the impact of discards). The long-term RBCs (i.e., the total catch when the pup production by region are 48% of unfished pup production) by region are 1098t (Bass Strait), 650t (South Australia), and 213 t (Tasmania) (Figure 17.19).

17.6.2 Alternative Projections

10 -year projections are undertaken for the reference case model for the following the scenarios:

1. Status quo (project using the parameter values of the base case assessment, and the RBC catch levels in Table 17.8 and Table 17.9).
2. All future catches are taken by shark longline (with the total annual catches by region set to those for the status-quo).
3. The longline catch in South Australia increases so the total catch off South Australia equals maximum historical catch; the catches by region for the remaining regions are set to the reference case values.
4. All catch is by 6.5 " gillnets (with the total annual catches by region set to those for the statusquo).
5. All catch is shark longline (with the total annual catches by region set to those for the status-quo).
6. All catch is by scalefish longline (with the total annual catches by region set to those for the status-quo).
7. The total catch for each future year is set to $2052 t$ (the current TAC, 1836t, plus recent average State catches, 120t, and discards 96 t), with the split to region and gear-type based on the data for 2015.
8. The total catch for each future year is set to 1961 (the long-term RBC), with the split to region and gear-type based on the data for 2015.
9. The total catch for each future year is set to 1922 t (the average of the RBCs over the first three years, 2016, 2017, 2018), with the split to region and gear-type based on the data for 2015.

Table 17.10 lists the catches by year and region for the nine projection scenarios. Note that the catches by region are the same for some of the cases (e.g. 4, 5 and 6) because these cases change the split of the catch by region to gear-type and not the total catch by region. The results of the projections are summarized by pup production relative to unfished pup production in 2017, 2019, 2012 and 2016 (i.e. after $1,3,5$ and 10 years; Table 17.11). These sensitivities examine the relative impact of each gear type on the stock.

17.7 General Discussion

17.7.1 Future Work

- Selectivity: Sensitivity tests 6D and 6E are more general than the reference case model.

However, the estimated selectivity patterns are not very general. Future work should consider more general functional forms (e.g. double logistic), and with parameters that vary among regions.

- The model pre-specifies growth and its variation. The model should be extended to include the data on which the growth curves are based and hence to estimate growth within the model.
- The values for the effective sample sizes (length- and age-composition data) are pre-specified and the assumed standard deviations for the catch-rate indices are based on auxiliary analyses conducted many years ago. Approaches (e.g., Francis, 2011) now exist for providing a more objective way to set effective sample sizes and residual standard deviations, and these warrant further exploration in future assessments.
- The models in which density-dependence acts on a narrower range of ages lead to better fits. Future assessments should consider whether these models provide a better basis for a reference case analysis. The current assumptions regarding density-dependence are based on earlier decisions by SharkRAG.
- A fishery independent trawl survey has been conducted in the Great Australian Bight (GAB FIS) since 2005 (Knuckey et al. 2015). Gummy shark are caught in this survey in relatively small
numbers that are nevertheless sufficient to provide an index of abundance in the GAB with a relatively low annual CV. This offers an alternative to the gillnet CPUE series, which is no longer providing a consistent index of abundance due to sea lion closures. To use the GAB FIS index in the stock assessment, a selectivity curve would need to be estimated or assumed. Fewer than 100 gummy shark are caught in the survey each year, and although all are measured, there is little information from which to estimate a selectivity curve. The assumption cannot be made that the selectivity of the survey matches that of the commercial trawl fishery because the survey is operationally too different (Ian Knuckey, Fishwell Consulting, pers comm). An abundance index based on fewer than 100 animals per year is questionable. Together with the lack of a selectivity curve, SharkRAG concluded that the GAB FIS index could not be used in the gummy shark stock assessment model.
- Another trawl fishery-independent survey, in the region of the SESSF not conducted in the GAB (SET FIS) is also available. CVs of below 0.3 are available for gummy shark for some regions and years, along with length frequency data. However, the inter-annual variation in the SET FIS estimates is higher than is biologically reasonable. The survey does not operate in the core area of shark fishing. SharkRAG decided against using these data in the gummy assessment.

17.7.2 Utility of Collecting Vertebrae

SharkRAG requested that simulations be conducted to evaluate the utility of collecting vertebrae for ages, including the evaluation of alternative sample sizes and sampling frequencies (annual, biennual, triennial). Such an investigation is outside the scope of a stock assessment. More details of the procedure that would be involved, and information requirements for such a procedure, are shown in Appendix E.

17.7.3 Final Note

The Australian sea lion (ASL) closures in South Australia led to greatly reduced catches by gillnets. However, that trend showed a slight reversal in 2015. Members of the shark fishing industry suggest that this is due to greater confidence by skippers in their ability to fish closer to ASL closures without triggering bycatch limits that would shut the fishery.

17.8 Acknowledgements

Simon Robertson and Kyne Krusic-Golub (FAS) are thanked for providing the ageing data and the data used to estimate age-reading error. Mike Fuller, Roy Deng and Franzis Althaus are thanks for processing and extracting the data on which this preliminary assessment update is based, and John Garvey (AFMA) is thanked for patient explanations regarding data interpretation. Geoff Tuck (CSIRO) is thanked for his comments on a draft of this report.

17.9 References

Francis, R.I.C.C. 2011. Data weighting in statistical fisheries stock assessment models. Canadian Journal of Fisheries and Aquatic Sciences 68: 1124-1138.
Fournier, D.A., Skaug, H.G., Ancheta, J., Ianelli, J., Magnusson, A., Maunder, M.N., Nielsen, A. and J. Sibert, 2012. AD Model Builder: using automatic differentiation for statistical inference of
highly parameterized complex nonlinear models. Optimization Methods and Software 27: 233249.

Gertseva V. and I.G. Taylor. 2012. Status of the spiny dogfish shark resource off the continental U.S. Pacific Coast in 2011. Pacific Fishery Management Council. 7700 NE Ambassador Place, Suite 101 Portland, Oregon 97220-1384, USA. 259pp.
Haddon, M. 2013. Standardized Catch Rates for the SESSF Gummy Shark Fishery. Data from 1976 2012. CSIRO. Hobart.

Kirkwood, G.P. and T.I. Walker. 1986. Gill net mesh selectivities for gummy shark, Mustelus antarcticus Günther, taken in south-eastern Australian waters. Australian Journal of Marine and Freshwater Research 37: 689-697.

Knuckey, I., Koopman, M. and R. Hudson. 2015. Resource Survey of the Great Australian Bight Trawl Survey. AFMA Project 2014/0809. Fishwell Consulting. 35p.

Pribac, F., Punt, A.E., Taylor, B.L., and T.I. Walker. 2005. Using length, age and tagging data in a stock assessment of a length selective fishery for gummy shark (Mustelus antarcticus). Journal of Northwest Atlantic Fishery Science 35: 267-290.

Punt, A.E. 2004. Analyses pertinent to the development of catch and effort-based indices for gummy shark, school shark, elephanfish, and sawshark. Tech. rept. Presented to SharkRAG.
Punt, A.E. and A. Gason 2006. Revised Standardized Catch-Rate Series for School and Gummy Shark based on Data up to 2005. CSIRO Martine and Atmospheric Research, Hobart.
Punt, A.E. and R.B. Thomson. 2010. Gummy Shark assessment for 2010, using data to the end of 2009. SharkRAG/2010/10. 39pp.

Punt, A.E., Pribac, F., Walker, T.I., Gason, A.S. and G. Fay. 2004. Stock assessment of gummy shark, (Mustelus antarcticus) based on data up to 2003. pp. 121-198. In: Tuck, G.N. and Smith, A.D.M. (eds), Stock assessment for the South East and Southern Shark Fishery. FRDC report 2001/005.
Punt, A.E., Pribac, F., Walker, T.I. and A.S. Gason. 2006. Updated stock assessment of gummy shark (Mustelus antarcticus) based on data up to 2005. Tech. rept. Presented to the Shark Resource Assessment Group, August 2006.

Punt, A.E., Smith, D.C., Krusic-Golub, K. and S. Robertson. 2008. Quantifying age-reading error for use in fisheries stock assessments, with application to species in Australia's Southern and Eastern Scalefish and Shark Fishery. Canadian Journal of Fisheries and Aquatic Sciences 65: 19912005.

Punt, A.E., Walker, T.I., Taylor, B.L., and F. Pribac, F. 2000. Standardization of catch and effort data in a spatially structured shark fishery. Fisheries Research. 45: 129-145.

Sporcic. M. 2016. Catch-per-unit effort standardizations for selected shark SESSF species (data to 2014). pp. 350-408. In: Tuck, G.N. (ed.). Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2015. Part 2. Australian Fisheries Management Authority and CSIRO Oceans and Atmosphere Flagship, Hobart.
Thomson R.B. 2015. Estimated conversion coefficients for LCF-TOT and PAR-TOT length measurements for gummy shark, school shark, elephant fish and sawshark: a 2015 update. Presented to SharkRAG, Oct 2015. 9pp.
Thomson, R. and M. Sporcic. 2014. Gummy shark assessment update for 2013, using data to the end of 2012. pp. 277-312 In: Tuck, G.N. (ed.). Stock Assessment for the Southern and Eastern Scalefish and Shark Fishery 2013. Part 1. Australian Fisheries Management Authority and CSIRO Oceans and Atmosphere Flagship, Hobart.

Walker, T.I., and A.S. Gason 2009. SESSF monitoring data management, reporting and Documentation 2006/07. Final report to Australian Fisheries Management Authority Project No. R2006/812. (June 2009). vii +177 pp. (Marine and Freshwater Fisheries Research Institute, Fisheries Victoria, Department of Primary Industries: Queenscliff, Victoria, Australia).

Table 17.1. Sample sizes for new (shark longline, trawl, scalefish longline, gillnet since 2013) and revised (2007-2012; gillnet) length-composition data. Entries indicated by asterisks are combinations of region, gillnet mesh size and year not included in the assessment because the sample size is less than 400 .

	Bass Strait		South Australia		Tasmania	
	Female	Male	Female	Male	Female	Male
Shark longline						
2004	158	64	0	0	0	0
2012	0	0	397	189	209	136
2013	303	206	507	62	97	56
2014	0	0	1368	772	513	174
2015	0	0	35	14	0	0
2016	0	0	49	16	0	0
Gillnet						
2007	0	0	136*	132*	0	0
2008	803	1828	412	581	0	0
2009	2193	1464	1063	562	0	0
2010	1535	2746	1304	391*	146*	436
2011	5052	8739	1978	955	293*	271*
2012	5693	11808	1082	443	564	996
2013	5739	10362	400	1127	442	905
2014	4811	5761	1093	354*	274*	558
2015	1834	2229	147*	606	30*	243*
Trawl						
1995	7	0	0	0	0	0
2003	10	11	0	0	0	0
2014	7	0	0	0	0	0
Scalefish longline						
2003	0	0	0	0	28	13
2004	0	0	0	0	16	11
2009	0	0	77	17	6	0
2010	45	42	0	0	28	8
2011	0	0	19	7	0	0
2012	0	17	0	0	9	7
2013	49	80	0	0	144	117
2014	0	0	13	9	0	0

Table 17.2. Summary of the available age-composition data. Asterisks indicate samples that are new to this assessment.

	Bass Strait		South Australia	
	Female	Male	Female	Male
6-inch mesh				
1986	72	76	0	0
1987	39	27	0	0
1990	43	83	0	0
1991	179	141	0	0
1992	68	70	0	0
1993	190	184	0	0
1995^{*}	77	50	0	0
1997^{*}	0	0	69	108
202^{*}	0	0	7	47
2003^{*}	96	98	0	0
2007	0	0	70	54
2008	41	35	10	44
6.5-inch mesh				
1995^{*}	32	66	26	34
$199 *$	0	0	10	10
2002^{*}	0	0	13	54
7-inch mesh				
1986	0	0	56	23
1990	0	0	54	10
1992	0	0	79	81
1993	0	0	76	69
1995^{*}	0	0	37	56

Table 17.3. Alternative models (including sensitivity tests - models 6A-6V).

Model No	Description
0	2013 base model
1A	Replace discrete model with continuous model
1B	Model 1A with updated catches (Appendix A)
2A	Model 1B, but including the Sporcic (2016) CPUE
2B	Model 1B, but including the spliced CPUE approach
2 C	Model 2B, but with trawl and line CPUE
3A	Model 2C with updated gill-net length-composition data
3B	Model 3A with trawl and line length-composition data
3C	Model 3B with trawl and line selectivity estimated
3D	Model 3C with constant availability
4A	Model 3C with ageing error matrices
5A	Model 4A with updated catches for 2001-12 and the 2013-15 catches
5B	Model 5A with the length-composition data for 2013-15
5C	Model 5B with new catch-rate indices for 2007-15
5D	Model 5C with new age-composition data (Table 4) [the reference case model]
6A	Model 5D with CPUE data for South Australia to 2015
6B	Model 5D with effort saturation eliminated
6 C	Model 5D with constant availability
6D	Model 5D with gillnet selectivity estimated
6 E	Model 5D with gillnet selectivity estimated and constant availability
6F	Model 5D, but with M fixed at $0.14 \mathrm{yr}^{-1}$
6H	Model 5D, but with M fixed at $0.16 \mathrm{yr}^{-1}$
6I	Model 5D with density-dependence on M for ages 0-15 based on 1+ biomass
6 J	Model 5D with density-dependence on M for ages 0-4 based on 1+ biomass
6K	Model 5D with density-dependence on M for ages 0-30 based on mature biomass
6L	Model 5D with density-dependence on M for ages 0-15 based on mature biomass
6M	Model 5D with density-dependence on M for ages 0-4 based on mature biomass
6 N	Model 5D with density-dependence on M for ages 0-2 based on 1+ biomass
6 O	Model 5D with density-dependence on M for ages 0-2 based on mature biomass
6 P	Model 5D with density-dependence on fecundity based on 1+ biomass
6Q	Model 5D with density-dependence on fecundity based on mature biomass
6R	Half weight on CPUE data
6S	Half weight on length-composition data
6T	Half weight on age-composition data
6 U	Half weight on tagging data
6 V	Double weight on CPUE data

Table 17.4. Estimates of various quantities of importance from the bridging models, showing adult natural mortality rate " M_{a} ", pup production in year ' X ' compared with pristine "PembryoX" (\%), the effort saturation parameter value for each population "effort sat'n", and the negative log likelihood "-LnL" and its constituent components. A brief description of each sensitivity test is provided in the last column.

\#	Ma_{a}	B_{0}			MSYR			Pembryo 73			Pembryol3			Effort sat'n			-LnL	-LnL components					Brief description of sensitivity test
		BS	SA	TS		CPUE	Len	Age	Tag	Prior													
0	0.18	9864	5492	2253	0.22	0.24	0.22	65	71	91	59	69	83	25.5	8.6	0	1028	85	457	151	297	37	2013 base case
1A	0.18	8299	4862	1876	0.25	0.27	0.25	60	67	89	49	64	79	18.8	8.9	0	1033	89	452	151	303	38	With continuous dynamics
1B	0.17	8941	5377	2005	0.24	0.27	0.24	60	68	88	45	54	76	14.6	8.1	0	1039	92	450	155	302	40	With revised catches
2A	0.19	9004	5145	2040	0.21	0.23	0.21	58	65	88	35	44	76	0	0	0	1012	83	443	162	292	32	With Sporcic CPUE
2B	0.18	9196	5416	2049	0.23	0.25	0.23	60	68	89	44	54	77	5.80	1.51	0	1062	106	452	157	304	43	With spliced Sporcic CPUE
2 C	0.18	9016	5310	2004	0.24	0.26	0.24	61	68	89	45	54	77	4.75	2.21	0	1089	123	451	165	305	44	With trawl and line CPUE
3A	0.18	9139	5415	2032	0.23	0.25	0.23	59	67	88	49	54	76	1.06	1.62	0	1110	119	481	161	302	46	Updated length gillnet data
3B	0.18	9185	5440	1975	0.23	0.25	0.23	60	67	88	50	55	76	1.13	1.71	0	$1506^{\text {a }}$	118	874	165	302	48	With trawl and line length data
3C	0.18	9129	5388	1877	0.23	0.25	0.23	60	67	87	50	54	75	1.09	1.84	0	$1271{ }^{\text {a }}$	120	640	165	300	47	Estimated trawl and line selectivity
3D	0.3	6825	4368	1314	0.24	0.26	0.24	46	63	81	32	40	62	2.00	1.86	0	$1337{ }^{\text {a }}$	132	683	168	290	65	With constant availability
4A	0.18	8994	5240	1844	0.23	0.25	0.23	59	67	87	50	53	75	1.03	1.88	0	1269	117	639	166	298	49	With updated age data

[^8]Table 17.5. Estimable parameters of the reference case model. The values in parenthesis indicate the bounds on the parameters.

Parameter	Number of parameters			
	Bass Strait	South Australia	Tasmania	Total
Unfished pup numbers	1	1	1	
	$(-15,25)$	$(-15,25)$	$(-15,25)$	3
		1 (shared)		
Adult natural mortality		$(0.1,0.3)$		1
		1 (shared)		
Density-dependence parameter		$(0,1)$		1
	1	1	1	
Gear saturation parameters	$(0,50)$	$(0,50)$	$(0,50)$	3
	84	84	84	
Pup survival deviations	$(-5,5)$	(-5.5)	(-5.5)	252
		6 (shared)		
Gear selectivity		600, 2000; Slope:		6
Total				267

Table 17.6. The weights assigned to the length- and age-composition data. " N / A " denotes that there are no data of the type concerned.

	Bass Strait	South Australia	Tasmania
(a) Length data			
Shark Longline	10	10	10
6" gillnet	50	$\mathrm{~N} / \mathrm{A}$	10
6.5" gillnet	N / A	25	$\mathrm{~N} / \mathrm{A}$
7" gillnet	50	25	10
8" gillnet	N / A	N / A	N / A
Trawl	10	10	$\mathrm{~N} / \mathrm{A}$
Scalefish longline	10	10	10
(b) Age data			
Shark Longline	N / A	N / A	N / A
6" gillnet	25	25	$\mathrm{~N} / \mathrm{A}$
6.5" gillnet	25	25	$\mathrm{~N} / \mathrm{A}$
$7 "$ gillnet	N / A	N / A	
8" gillnet	N / A	N	N / A
Trawl	N / A	N / A	N / A
Scalefish longline	N / A	N / A	N / A

Table 17.7. Estimates of various quantities of importance, showing adult natural mortality rate " M_{a} ", pup production in year ' X ' compared with pristine "PembryoX" (\%), the effort saturation parameter value for each population "effort sat'n", and the negative log likelihood "-LnL" and its constituent components. A brief description of each sensitivity test is provided in the last column. Numbers (italics) under "Pembryo 16" refer to depletion in 2013 not 2016.

\#	$\mathrm{Ma}_{\text {a }}$	B_{0}			MSYR			Pembryo 73			Pembryol6			Effort sat'n			-LnL	-LnL components					Brief description of sensitivity est
		BS	SA	TS		CPUE	Len	Age	Tag	Prior													
0	0.18	9864	5492	2253	0.22	0.24	0.22	65	71	91	59	69	83	25.5	8.56	0	1028	85	457	151	297	37	2013 base case
4A	0.18	8994	5240	1844	0.23	0.25	0.23	59	67	87	50	53	75	1.03	1.88	0	1269	117	639	166	298	49	2013 base case with model updates
5A	0.19	9010	5255	1837	0.23	0.25	0.23	59	67	87	47	52	73	1.10	1.89	0	1265	117	634	166	298	50	With the addition of catch data
5B	0.19	8796	5243	1820	0.23	0.25	0.23	58	67	87	45	55	72	1.18	1.81	0	1370	113	743	166	299	50	With the addition of length data
5C	0.16	9171	6023	2054	0.25	0.27	0.25	60	71	89	51	63	77	1.64	2.25	0	1638	146	747	378	319	46	With the addition of age data
5D	0.16	9406	6104	1949	0.25	0.27	0.25	61	71	88	53	63	75	4.38	50	0	1610	129	751	366	315	$48^{\text {a }}$	With the addition of catch-rate data
6A	0.16	9630	6199	1987	0.24	0.26	0.24	61	71	88	53	64	75	4.81	50	0	1621	137	751	369	316	49	SA CPUE to 2015
6B	0.16	9794	6509	2011	0.22	0.25	0.22	60	72	88	52	64	74	0	0	0	1673	164	759	380	310	$61^{\text {a }}$	No effort saturation
6 C	0.27	7117	4891	1321	0.25	0.27	0.25	47	66	81	35	51	59	4.3	50	0	1676	138	808	373	290	$67^{\text {a }}$	Constant availability
6 D	0.15	9550	6245	2148	0.24	0.27	0.24	62	73	90	53	65	78	5.02	50	0	1604	129	742	361	324	$48^{\text {a }}$	Estimate gillnet selectivity
6 E	0.21	8065	5351	1481	0.25	0.28	0.25	54	67	82	46	54	64	3.83	50	0	1641	133	783	375	297	$54^{\text {a }}$	Estimate gillnet selectivity; const availability
6F	0.14	10104	6483	2225	0.25	0.27	0.25	63	72	89	55	65	78	4.54	50	0	1612	128	748	362	327	$47^{\text {a }}$	$M=0.14 \mathrm{y}^{-1}$
6H	0.18	8953	5863	1777	0.25	0.27	0.25	59	71	87	52	62	73	4.26	50	0	1611	131	753	371	307	$49^{\text {a }}$	$M=0.18 \mathrm{y}^{-1}$
6 I	0.16	9495	6131	1973	0.26	0.28	0.26	57	67	86	46	59	70	4.04	50	0	1609	129	754	364	314	$49^{\text {a }}$	Dens dep M; ages 0-15 on 1+ biomass
6J	0.12	10968	6988	2365	0.23	0.25	0.23	51	61	84	34	53	64	5.5	50	0	1604	126	746	357	332	$44^{\text {a }}$	Dens dep M; ages 0-4 on $1+$ biomass
6K	0.17	8149	5473	1788	0.2	0.22	0.2	54	91	88	57	88	74	6.93	50	0	1583	104	743	368	320	$47^{\text {a }}$	Dens dep M; ages 0-30 on mature biomass
6L	0.18	8039	5369	1744	0.19	0.21	0.19	50	92	87	52	87	70	6.48	47.92	0	1580	103	747	366	317	$47^{\text {a }}$	Dens dep M; ages 0-15 on mature biomass
6 M	0.14	7882	5133	1917	0.18	0.2	0.18	37	92	85	41	89	70	10.09	50	0	1576	104	735	359	331	$46^{\text {a }}$	Dens dep M; ages 0-4 on mature biomass
6 N	0.12	11329	7097	2286	0.22	0.24	0.22	48	60	82	31	52	59	6.57	50	0	1597	125	739	357	330	$46^{\text {a }}$	Dens dep M; ages 0-2 on 1+ biomass
6 O	0.15	6483	4316	1545	0.19	0.21	0.19	25	90	82	39	90	66	19.4	50	0	1562	106	724	363	325	$45^{\text {a }}$	Dens dep M; ages 0-2 on mature biomass
6 P	0.14	7664	5217	1371	0.16	0.15	0.16	49	67	77	38	54	60	7.41	50	0.02	1602	128	750	359	319	$46^{\text {a }}$	Dens dep fecundity on $1+$ biomass
6Q	0.13	7812	4579	1413	0.13	0.13	0.13	31	99	90	40	100	79	7.97	50	0	1562	100	740	359	327	$36^{\text {a }}$	Dens dep fecundity on mature biomass
6R	0.17	9095	5957	1905	0.26	0.28	0.26	60	72	88	53	62	75	3.72	50	0	1537	168	753	350	306	44	Half weight on CPUE data
6 S	0.17	10070	5925	1873	0.23	0.26	0.23	63	69	87	55	59	72	4.54	50	0	1223	130	806	347	299	45	Half weight on length-comp data
6 T	0.18	8973	5464	1804	0.24	0.27	0.24	60	69	87	51	59	73	2.69	50	0	1411	112	739	435	298	46	Half weight on age-comp data
6U	0.12	9561	7037	2309	0.26	0.29	0.26	60	73	89	51	69	80	10.54	50	0	1436	123	728	347	388	44	Half weight on tagging data
6 V	0.16	9893	6331	1968	0.23	0.25	0.23	61	70	87	51	64	73	5.42	50	0	1718	92	753	394	327	60	Double weight on CPUE data

Table 17.8. Catches by region (2014 and 2015), and projected recommended biological catches (2016-2015) based on Model 5D.

Year	Bass Strait	South Australia	Tasmania	Total
2014	1077.1	528.7	121.7	1727.5
2015	1280.8	533.7	93.7	1908.3
2016	1080.3	743.8	255.6	2079.6
2017	1002.3	648.2	227.5	1878.1
2018	995.2	600.8	211.6	1807.6
2019	1028.1	585.9	202.9	1816.9
2020	1070.1	598.5	203.1	1871.7
2021	1100.4	625.7	208.5	1934.7
2022	1113.9	653.5	215.0	1982.4
2023	1115.2	672.6	219.6	2007.4
2024	1111.1	680.3	221.8	2013.2
2025	1107.1	678.7	221.9	2007.6

Table 17.9. Projected recommended biological catches (2016-2025) by region and gear-type based on Model 5D. 'Depletion' refers to pup production relative to unfished pup production.

						Shark		
Year	Depletion	Total	Geare Longline	$6.5 "$ gillnet	gillnet		Trawl	Scalefish
:---:								
longline								

Table 17.10. Catch by region for the nine projection cases.

Year	Base-case				Case 2				Case 3				Case 4				Case 5			
	BS	SA	TAS	Total																
2016	1080	744	256	2080	1080	744	256	2080	1080	744	256	2080	1080	744	256	2080	1080	744	256	2080
2017	1002	648	228	1878	1002	648	228	1878	1002	744	228	1974	1002	648	228	1878	1002	648	228	1878
2018	995	601	212	1808	995	601	212	1808	995	744	212	1951	995	601	212	1808	995	601	212	1808
2019	1028	586	203	1817	1028	586	203	1817	1028	744	203	1975	1028	586	203	1817	1028	586	203	1817
2020	1070	598	203	1872	1070	598	203	1872	1070	744	203	2017	1070	598	203	1872	1070	598	203	1872
2021	1100	626	209	1935	1100	626	209	1935	1100	744	209	2053	1100	626	209	1935	1100	626	209	1935
2022	1114	653	215	1982	1114	653	215	1982	1114	744	215	2073	1114	653	215	1982	1114	653	215	1982
2023	1115	673	220	2007	1115	673	220	2007	1115	744	220	2079	1115	673	220	2007	1115	673	220	2007
2024	1111	680	222	2013	1111	680	222	2013	1111	744	222	2077	1111	680	222	2013	1111	680	222	2013
2025	1107	679	222	2008	1107	679	222	2008	1107	744	222	2073	1107	679	222	2008	1107	679	222	2008
2026	1105	672	221	1998	1105	672	221	1998	1105	744	221	2070	1105	672	221	1998	1105	672	221	1998
2027	1105	664	220	1989	1105	664	220	1989	1105	744	220	2069	1105	664	220	1989	1105	664	220	1989
2028	1107	657	218	1982	1107	657	218	1982	1107	744	218	2069	1107	657	218	1982	1107	657	218	1982
2029	1108	653	218	1978	1108	653	218	1978	1108	744	218	2069	1108	653	218	1978	1108	653	218	1978
2030	1108	652	217	1977	1108	652	217	1977	1108	744	217	2069	1108	652	217	1977	1108	652	217	1977
2031	1108	652	217	1976	1108	652	217	1976	1108	744	217	2068	1108	652	217	1976	1108	652	217	1976
2032	1107	653	216	1976	1107	653	216	1976	1107	744	216	2067	1107	653	216	1976	1107	653	216	1976
2033	1106	654	216	1975	1106	654	216	1975	1106	744	216	2066	1106	654	216	1975	1106	654	216	1975
2034	1105	654	215	1974	1105	654	215	1974	1105	744	215	2064	1105	654	215	1974	1105	654	215	1974
2035	1104	654	215	1973	1104	654	215	1973	1104	744	215	2063	1104	654	215	1973	1104	654	215	1973

Table 17.10. Continued.

Year	Case 6				Case 7				Case 8				Case 9			
	BS	SA	TAS	Total												
2016	1080	744	256	2080	1377	574	101	2052	1316	548	96	1961	1290	538	94	1922
2017	1002	648	228	1878	1377	574	101	2052	1316	548	96	1961	1290	538	94	1922
2018	995	601	212	1808	1377	574	101	2052	1316	548	96	1961	1290	538	94	1922
2019	1028	586	203	1817	1377	574	101	2052	1316	548	96	1961	1290	538	94	1922
2020	1070	598	203	1872	1377	574	101	2052	1316	548	96	1961	1290	538	94	1922
2021	1100	626	209	1935	1377	574	101	2052	1316	548	96	1961	1290	538	94	1922
2022	1114	653	215	1982	1377	574	101	2052	1316	548	96	1961	1290	538	94	1922
2023	1115	673	220	2007	1377	574	101	2052	1316	548	96	1961	1290	538	94	1922
2024	1111	680	222	2013	1377	574	101	2052	1316	548	96	1961	1290	538	94	1922
2025	1107	679	222	2008	1377	574	101	2052	1316	548	96	1961	1290	538	94	1922
2026	1105	672	221	1998	1377	574	101	2052	1316	548	96	1961	1290	538	94	1922
2027	1105	664	220	1989	1377	574	101	2052	1316	548	96	1961	1290	538	94	1922
2028	1107	657	218	1982	1377	574	101	2052	1316	548	96	1961	1290	538	94	1922
2029	1108	653	218	1978	1377	574	101	2052	1316	548	96	1961	1290	538	94	1922
2030	1108	652	217	1977	1377	574	101	2052	1316	548	96	1961	1290	538	94	1922
2031	1108	652	217	1976	1377	574	101	2052	1316	548	96	1961	1290	538	94	1922
2032	1107	653	216	1976	1377	574	101	2052	1316	548	96	1961	1290	538	94	1922
2033	1106	654	216	1975	1377	574	101	2052	1316	548	96	1961	1290	538	94	1922
2034	1105	654	215	1974	1377	574	101	2052	1316	548	96	1961	1290	538	94	1922
2035	1104	654	215	1973	1377	574	101	2052	1316	548	96	1961	1290	538	94	1922

Table 17.11. Results of 10 -year projections (pup production as a percentage of unfished pup production) under various scenarios regarding future catches.

Region	2017	2019	2021	2026
Base case: catches equal RBCs				
Bass Strait	53.2	53.0	52.4	50.9
South Australia	62.5	61.2	58.5	51.8
Tasmania	71.7	66.7	62.5	54.7
Case 2: All catch by shark longline in South Australia				
Bass Strait	53.2	53.0	52.4	50.9
South Australia	61.5	59.1	55.8	48.1
Tasmania	71.7	66.7	62.5	54.7

Case 3: Longline catch in South Australia increases so total catch equals maximum historical catch

Bass Strait	53.2	53.0	52.4	50.9
South Australia	62.5	58.5	52.3	42.8
Tasmania	71.7	66.7	62.5	54.7
Case 4: All catch by 6.5" gillnets				
Bass Strait	53.2	53.1	52.4	50.9
South Australia	62.9	62.4	60.3	53.4
Tasmania	71.9	67.2	63.1	55.1

Case 5: All catch by shark longline

Bass Strait	51.9	50.0	48.9	48.0
South Australia	63.4	63.2	61.3	56.8
Tasmania	71.3	66.2	62.4	56.0
Case 6: All catch by scalefish longline				
Bass Strait	50.3	46.6	44.2	40.1
South Australia	61.5	59.1	55.8	48.1
Tasmania	69.0	61.4	56.4	47.7

Case 7: Total catch $=2052$ t; split by region and gear according to 2015 catch

Bass Strait	51.8	47.1	41.9	34.2
South Australia	63.9	63.9	61.8	57.2
Tasmania	75.3	76.9	79.3	82.3

Case 8: Total catch $=1961 \mathrm{t}$; split by region and gear according to 2015 catch

Bass Strait	52.1	48.2	43.9	37.6
South Australia	64.1	64.6	63.1	59.2
Tasmania	75.4	77.2	79.9	83.3

Case 9: Total catch $=1922$ t; split by region and gear according to 2015 catch

Bass Strait	52.2	48.7	44.7	39.0
South Australia	64.2	64.9	63.6	60.1
Tasmania	75.5	77.4	80.1	83.8

Figure 17.1. The three gummy shark management regions, each assigned to a separate stock (from Punt and Thomson, 2010).

Figure 17.2. Catch time-series by region used in the assessment.

Figure 17.3. Estimates of pup production and pup production relative to the 1927 levels (upper and center panels), and fits to the catch-rate indices on which the 2013 assessment was based (lower panels). Results are shown for three model variants.

Figure 17.4. Catch-rate indices on which the 2013 assessment was based (solid lines) and the catch-rate indices of abundance developed by Sporcic (2016) scaled so that the means for the two series since 1997 are the same (dashed lines). For Bass Strait (top left), South Australia (top right), and Tasmania (bottom).

Figure 17.5. Estimates of pup production and pup production relative to the 1927 level (upper and centre panels), and fits of models 2B and 2C to the catch-rate indices based on attaching the Sporcic (2016) indices to the earlier catch-rate indices (lower panels). Results are shown for four model variants.

Figure 17.6. Fit of Model 2C to the catch-rate series for trawl and shark longline.

Figure 17.7. Comparison of the length-composition data used in the 2013 assessment (bars) with the updated length-composition data for the same years (lines). The notation for each panel is (region - 1: Bass Strait; 2:South Australia; 3:Tasmania, sex -1:female; 2: male, gear-type - 2: 6-inch mesh; 3: 6.5-inch mesh; 4: 7-inch mesh, year).

Figure 17.7. Continued.

Figure 17.8. Estimates of pup production and pup production relative to the 1927 level (upper and centre panels), and fits to the catch-rate indices based on attaching the Sporcic (2016) indices to the earlier catch-rate indices (lower panels). Results are shown for five model variants.

Figure 17.9. Observed and the model-predicted length-frequencies for females (black: Model 3B, blue: Model 3C, and red: Model 3D). The observations and predictions are summed over years to ease presentation.

Figure 17.9. Continued: males.

Figure 17.10. Estimated length-specific selectivity patterns based on three model variants (solid: Model 3B, dashed: Model 3C, and dotted: Model 3D). Note that selectivity for gill-nets is pre-specified so is the same for the three model variants.

Figure 17.11. Estimates of pup production and pup production relative to the 1927 level (upper and centre panels), and fits to the catch-rate indices based on attaching the Sporcic (2016) indices to the earlier catch-rate indices (lower panels). Results are shown for two model variants.

Figure 17.12. The revised catch rate indices (Sporcic pers commn) (upper panels) and total gillnet effort (lower plot) in each region. Time series were combined using the "splicing" approach using the catch rate data for Model 2B.

Figure 17.13. Estimates of pup production and pup production relative to the 1927 level (upper and centre panels), and recruitment (lower panels). Results are shown for five model variants. The yellow shading indicates asymptotic 90% confidence intervals about the results from Model 5D.

Figure 17.14. Model 5D fits to the catch-rate indices.

Figure 17.15. Observed and Model 5D-predicted length-frequencies for females. The observations and predictions are summed over years to ease presentation.

Figure 17.15. Continued: males.

Bass Strait
South Australia
Tasmania

Ages (yr)

Figure 17.16. Observed and Model 5D-predicted age-frequencies for females. The observations and predictions are summed over years to ease presentation.

Bass Strait

Tasmania

Ages (yr)

Figure 17.16. Continues: males.

Figure 17.17. Observed and the Model 5D-predicted tag-recoveries.

Tasmania

Figure 17.18. Female spawning biomass vs pup production for the reference case model (Model 5D).

Figure 17.19. Time-trajectories of depletion (pup production relative to unfished pup production) (left panels), Recommended Biological Catch (center panels), and Recommended Biological Catch by gear-type (right panels) for projections based on Model 5D (the reference case model).

17.10 Appendix A: Catch data for 2001-2015

Previous (before 2010) assessments of gummy shark were based on catches that were extracted by AFMA for the "hook" gear-type (where the "hook" gear-type included shark longline, trawl and scalefish longline). This assessment is based on revised data for the years 2001 onwards where the catches by gear-type are based on an extraction from a version of the AFMA database that is stored at CSIRO, with state catches added. The algorithm for constructing the catches by gear-type, region (Bass Strait, South Australia and Tasmania), and year was as follows:

- The data were extracted to form catch time-series by gear-type and region, with additional categories for unknown mesh gear, unknown gear, and unknown region.
- The catches for unknown mesh gear by year and region (including the "unknown" region catches) were allocated to the four mesh gears (6 -inch, 6.5 -inch, 7 -inch and 8 -inch) proportional to the recorded catches by mesh gear by year and region.
- The catches for unknown gear-type by year and region were allocated to the seven gear-types (the four mesh gear-types, "shark longline", "trawl", and "scalefish longline") in proportion to the recorded catches by gear-type by year and region.
- The catches for unknown region by year and gear-type were allocated to the seven gear-types (the four mesh gear-types, "shark longline", "trawl", and "scalefish longline") in proportion to the inferred catches by region by year and gear-type.
- The state catches by year were allocated to gear-type in proportion of the catch by gear-type.
- The resulting landed catches are scaled upwards to account for the estimated discard rates:

Year	2011	2012	2013	2014	2015	Others
Discard rate	0.063561	0.032478	0.032924	0.051360	0.059462	0.047957

The AFMA database does not store mesh size in integer numbers of inches (or half inches). Instead, the mesh size is given in (a wide range) of millimetres (mm). These were converted to 6-, 6.5-, 7- or 8 -inches by converting the sizes in mm to inches, and then rounding to the nearest half inch and then using only those data that emerged as one of the known gear-types.

Figure A 17.1 compares the catches for 2001-2015 based on the 2013 assessment (results for 20012012 only) as well as those based on the algorithm outlined above. The catches by mesh gear for Bass Strait and Tasmania are about 5% larger than those used in the previous assessments (owing to the accounting for discard), but the catches by mesh gear off South Australia are larger (inter alia because of the inclusion of state catch data). The catches by shark longline, trawl and scalefish longline combined in this assessment exceed the "hook" catches used in previous assessments, particularly for Bass Strait, but also for Tasmania.

Figure A 17.1. Catches used in the 2013 assessment by region and gear-type (dots), with the catches for shark longline, trawl and scalefish longline combined, and the revised catches based on the algorithm outlined above (lines). The upper panels show the breakdown of the "hook" catch into its constituent gear-types.

17.11 Appendix B: Age-reading Error for Gummy Shark

Vertebrae for 256 gummy sharks were read twice to allow age-reading error to be evaluated. Given there is no way to validate the age-readings, the analysis was based on the assumption that age-readings are unbiased (i.e., on average the estimate of age is correct, although there may be random error about age estimates). The method of analysis (see Punt et al., 2008 for details) also assumes that errors when assigning ages are random. Two models were fitted to the data, one in which the CV of error reading error is independent of age and another in which it is governed by the Michaelis-Menton equation. Given the small sample size, the data do not support the more complex Michaelis-Menton equation. Consequently, the estimates of age-reading error are based on the constant CV model (Figure B 17.1(a)). Figure B 17.1(b)-(g) illustrate the observed ages by the second read as a function of that for the first read (e.g. Figure B 17.1(b) plots the ages assigned during the second read against those vertebrae that were assigned to be age 5 on the first read). The model fit to the ages with the largest sample sizes (ages 5, 6 and 7) are very good. The estimate of overdispersion is 0.798 , which is good for analyses of data from double-read experiments.

Figure B 17.1. Diagnostics for the fit to the age-reading error model.

17.12 Appendix C: Fits of the reference case model to the year-specific lengthand age-composition data

The numbers in the headers for each panel are the number of animals sized/aged scaled to the assumed effective sample sizes (Table 17.1 and Table 17.2).

Females (South Australia)

Length (cm)

Females (Tasmania)

Proportion

Length (cm)

Males (South Australia)

Length (cm)

Males (Tasmania)

uo!nododd

Length (cm)

Females (Bass Strait)

Ages (yr)

Females (South Australia)

Ages (yr)

Males (Bass Strait)

Ages (yr)

Males (South Australia)

Ages (yr)

17.13 Appendix D: Correlation matrix for the leading parameters of reference case model

	Estimate	SE	Correlation													
			2	3	4	5	6	7	8	9	10	11	12	13	14	15
$1 \log \left(\mathrm{R}_{0}\right)$ (Bass Strait)	9.156	0.066														
2. $\log \left(\mathrm{R}_{0}\right)$ (South Australia)	8.724	0.062	0.6512													
3. $\log \left(\mathrm{R}_{0}\right)$ (Tasmania)	7.582	0.099	0.5127	0.4361												
4. $\mathrm{M}_{\text {adut }}$	0.161	0.011	-0.4978	-0.4365	-0.6126											
5. Length-at-50\%-availability	123.5	5.861	-0.6580	-0.5355	-0.4980	0.5961										
6. Length-at-50\% selectivity (shark longline)	870.7	28.409	-0.0030	-0.0246	-0.1928	0.0985	-0.1124									
7. Length-at-50\% selectivity (trawl longline)	719.1	19.022	0.0106	0.0220	0.0151	-0.0212	-0.0456	0.0222								
8. Length-at-50\% selectivity (scalefish longline)	711.0	12.131	0.0366	0.0216	-0.0272	0.0217	-0.0920	0.0431	-0.0005							
9. \log (selectivity slope) (shark longline)	-3.976	0.200	0.0342	0.0434	0.1605	-0.0940	0.0391	-0.8047	-0.0146	-0.0218						
10. Log(selectivity slope) (trawl)	-3.029	0.326	0.0013	0.0012	-0.0004	0.0021	0.0021	0.0029	-0.2928	0.0017	-0.0009					
11. Log(selectivity slope) (scalefish longline)	-2.990	0.274	-0.0182	-0.0100	0.0163	-0.0089	0.0499	-0.0258	0.0010	-0.7052	0.0137	-0.0011				
12. γ (Bass Strait)	4.376	4.290	0.0361	0.0144	0.0145	-0.0176	-0.0044	0.0034	-0.0374	-0.0017	-0.0041	-0.0005	-0.0014			
13. γ (South Australia)	50.000	0.028	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
14. γ (Tasmania)	0.000	0.000	0.0000	0.0000	-0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
15. Density-dependence parameter	0.964	0.077	-0.6871	-0.5577	-0.2852	0.0799	0.1684	-0.0073	-0.0126	-0.0071	-0.0069	-0.0023	0.0039	-0.0461	0.0000	0.0000

17.14 Appendix E: Evaluating sampling strategies for collecting future vertebrate

SharkRAG requested an evaluation of alternative sampling strategies for the collection (and reading) of vertebrae. Such an evaluation cannot be conducted within the context of an assessment, but needs to be conducted using a simulation-estimation analysis. This would involve projecting the assessment model forward under a range of future catches, generating future deviations in pup numbers, generating future data (catch-rates, length-composition and [in particular] age-composition), applying the assessment method to the generated data and summarizing the results using various metrics of estimation performance. This process would be repeated for various alternative sampling schemes for collecting age-composition data (such as every second year, only from gillnet catches, from a variety of gears etc). Unfortunately conducting these calculations is beyond the scope of an assessment. Moreover, before it could be conducted, the following additional information would be needed:

- the specific alternative schemes to evaluate (including sample sizes);
- the metrics to evaluate estimation success (e.g. the bias and precision of incoming recruitment, how well RBCs are estimated, etc.); and
- information on the proportion of vertebrae that are collected, but cannot be aged.

Finally, the value of ageing data depends on the extent of ageing error. Appendix B provides a preliminary analysis in this regard, but there would be value in having additional data to better quantify ageing error.

18. Benefits

The results of this project have had a direct bearing on the management of the Southern and Eastern Scalefish and Shark Fishery. Direct benefits to the commercial fishing industry in the SESSF have arisen from improvements to, or the development of, assessments under the various Tier Rules of the Commonwealth Harvest Strategy Policy for selected quota and non-quota species. Information from the stock assessments has fed directly into the TAC setting process for SESSF quota species. As specific and agreed harvest strategies are being developed for SESSF species (a process required by and agreed to under EPBC approval for the fishery), improvements in the assessments developed under this project have had direct and immediate impacts on quota levels or other fishery management measures (in the case of non-quota species).

Participation by the project's staff on the SESSF Resource Assessment Groups has enabled the production of critical assessment reports and clear communication of the reports' results to a wide audience (including managers, industry). Project staff's scientific advice on quantitative and qualitative matters is also clearly valued.

The stock assessments presented in this report have provided managers and industry greater confidence when making key commercial and sustainability decisions for species in the SESSF. These assessments have provided the most up-to-date information, in terms of data and methods, to facilitate the management of the Southern and Eastern Scalefish and Shark Fishery.

19. Conclusion

- Provide quantitative and qualitative species assessments in support of the four SESSFRAG assessment groups, including RBC calculations within the SESSF harvest strategy framework.

The 2016 assessment of the stock status of key Southern and Eastern Scalefish and Shark fishery species is based on the methods presented in this report. Documented are the latest quantitative assessments (Tier 1) for key quota species (gummy shark, deepwater flathead, tiger flathead and an update of eastern gemfish), as well as cpue standardisations for shelf, slope, deepwater and shark species and Tier 4 analyses. Typical assessment outputs provided indications of current stock status and an application of the Commonwealth Harvest Strategy framework. This framework is based on a set of assessment methods and associated harvest control rules, with the decision to apply a particular combination dependent on the type and quality of information available to determine stock status (Tiers 1 to 4).

The assessment outputs from this project are a critical component of the management and TAC setting process for these fisheries. The results from these studies are being used by SESSFRAG, industry and management to help manage the fishery in accordance with agreed sustainability objectives.

Stock status and Recommended Biological Catch (RBC) conclusions:

The 2016 assessment for tiger flathead was updated by the inclusion of data to the end of 2015. This assessment also included Fishery Independent Survey (FIS) data and length frequencies from all four years of the FIS. The base-case assessment estimates that current spawning stock biomass is 43% of unexploited stock biomass (SSB0). Under the agreed 20:35:40 harvest control rule, the 2017 recommended biological catch (RBC) is $2,971 \mathrm{t}$, and remains above the long term yield (assuming average recruitment in the future) of $2,765 \mathrm{t}$. The average RBC over the three year period 2017-2019 is $2,936 \mathrm{t}$ and over the five year period 2017-2021, the average RBC is $2,909 \mathrm{t}$.

The 2016 assessment of deepwater flathead included ISMP data that were divided into the on-board and port based samples, the length and age composition data from the FIS were used for the first time, and the industry collected length composition data were also used for the first time. The base-case assessment estimates that the female spawning stock biomass at the start of 2016/2017 was 45.0% of unexploited female spawning stock biomass (SSB_{0}). The 2017/2018 RBC under the agreed 20:35:43 harvest control rule is 1155 t and the long-term yield (assuming average recruitment in the future) is 1093 t. Averaging the RBC over the three year period 2017/2018 - 2019/2020, generates a three year RBC of 1128 t and over the five year period 2016/2017-2020/2021, the average RBC would be 1115 t.

The assessment for gummy shark (Mustelus antarcticus) was updated based on available information to 2015. The model on which the assessment is based was modified in three ways: (a) the dynamics are now based on a population dynamics equation that assumes that the catches by the various geartypes occur simultaneously rather than sequentially, (b) the "hook fleet" included in previous assessments is now separated into shark longline, trawl, and scalefish longline gear-types, with sizespecific selectivity estimated for each gear-type, and (c) allowance is now made for age-reading error. A reference case model was presented with fits that are all reasonable and the assessment outputs indicate that gummy shark in Bass Strait, and off South Australia and Tasmania are above the
management target of 48% of unfished pup production. The RBC for 2016, 2017 and 2018 from the reference case model are 2080t, 1878t, and 1807t.

An update of the eastern gemfish assessment was conducted in 2016. Catch data were incorporated from 1968, state catches were included, and length-frequency data dating back to 1975 were used. This update included (a) the estimation of the growth parameters within the assessment, (b) the use of conditional age-at-length data, (c) the addition of updated length-frequencies, catches and catch-rates to 2015, (d) the inclusion of discards and (e) allowance for ageing error. With the latest data to the end of 2015, the spawning stock biomass is 8.3% of the average unfished level. Similar to the previous assessment, a large spawning event was estimated to have occurred in 2002, which has led to slight recovery of biomass. A relatively high recruitment event is apparent in 2013, although this event simply returns to the long-term average rather than the depressed level of recruitment that has been experienced in recent times.

The Tier 4 harvest control rule is applied to species for which there is no reliable information on either current biomass levels or current exploitation rates. Mirror Dory East, Mirror Dory East including discards into the CPUE, Mirror Dory West, Western Gemfish and Blue-eye Trevalla have been assessed using the Tier 4 methodology in 2016. The Mirror Dory analyses treat the west and east as separate stocks, and also include the high levels of discards that occur in the east. Mirror dory RBCs for the east were either 222 t or 173 t (without or with discards) and for the west was 104t. For western gemfish, the RBCs were 423t or 139t (with or without discards). The Tier 4 analysis for blue-eye is based on the CPUE, as catch-per-hook, from SESSF zones $20-50$ but the catches that go towards generating the target catch include all areas and methods except the GAB. This is a reflection of the hypothesis that the blue-eye in the GAB constitute a separate stock. The RBC from the analysis based on catch-per-hook catch rates is now 526t. This is a relatively large change in the RBC from last year, which is a reflection of the potential behaviour of the Tier 4 when CPUE is recovering from a relatively low period.

20. Appendix: Intellectual Property

No intellectual property has arisen from the project that is likely to lead to significant commercial benefits, patents or licenses.
21. Appendix: Project Staff

Franzis Althaus	CSIRO Oceans and Atmosphere, Hobart, Tasmania
Claudio Castillo-Jordan	CSIRO Oceans and Atmosphere, Hobart, Tasmania
Mike Fuller	CSIRO Oceans and Atmosphere, Hobart, Tasmania
Malcolm Haddon	CSIRO Oceans and Atmosphere, Hobart, Tasmania
André Punt	CSIRO Oceans and Atmosphere, Hobart, Tasmania
Miriana Sporcic	CSIRO Oceans and Atmosphere, Atmosphere, Hobart, Tasmania
Robin Thomson	CSIRO Oceans and Atmosphere, Hobart, Tasmania
Geoff Tuck	CSIRO Oceans and Atmosphere, Hobart, Tasmania

[^0]: ${ }^{\wedge}$ not plotted in Figs. 2 \& 3.

[^1]: ${ }^{\wedge}$ subject to change, incomplete financial year

[^2]: ${ }^{\wedge}$ subject to change; incomplete financial year

[^3]: ${ }^{\wedge}$ subject to change

[^4]: *2016 catches are estimated

[^5]: ${ }^{1}$ Unlike other SESSF assessments (e.g. for western and eastern gemfish), multiple management regions are assessed simultaneously for gummy shark, with the values for some parameters (e.g., the rate of natural mortality and the parameter determining density-dependence) assumed to be the same for multiple regions.

[^6]: ${ }^{2}$ MSYR - the ratio of MSY to the biomass at which MSY is achieved when exploitation is uniform on mature animals.

[^7]: ${ }^{3}$ The longline catch-rate series was assumed to pertain to shark longline as the bulk of the catches by longline gear are from shark longline.

[^8]: a: comparable negative log-likelihoods

