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1 Background

This paper details the structure of the proposed revised stock assessment model for Macquarie
Island toothfish, the results of fitting the model to the available data. The first reason for moving
the modelling framework from Stock Synthesis (SS) to a custom-designed model was future-
proofing: the version of SS we currently use is itself an unsupported modification of a previous
version of SS, adapted to accommodate time-varying reporting rates in the tagging data. The
second reason was to systematically overhaul how the tagging data are included in the as-
sessment itself. They are the major information contributor to historical and current abundance,
migration, and fishing mortality. Tagging design work [1] has shown that a reformulation of
the likelihood of the tagging model into the so-called spatial Brownie model would consistently
improve estimates of migration rates while attaining the same precision in spatial abundance.
Indeed, the only major change in the revised assessment is how the tagging data are modelled -
the population model and spatial/fishery structure is the same, as are the length and conditional
age-at-length data being used. The minor changes to the likelihood model for these latter data
sets is also outlined below. The structural similarity for this first version of a proposed revised
stock assessment model was deliberate, so as to make sure that the new model was as close
as possible to the previous one. This way any differences between them will be - in principle -
easier to diagnose. We do, however, outline later on some potential new directions to explore
with the revised model, if it is agreed to be used going forward.

2 Data sets

A detailed summary of the three primary data sets can be found in [2].The four primary data
inputs to the model are:

1. Catch biomass: in tonnes, per fishery

2. Length frequency: for each fishery, and using the number of hauls (not fish sampled) as
the initial sample size

3. Conditional age-at-length: for each fishery and sex, we have the number of fish of a
given age conditional on the length class samples came from

4. Tagging data: release events are now characterised by a length class and area of release,
with repcature data being subsequent total recaptures (across all recapture lengths) in
each of the spatial regions of the model.

The structure of the tagging data is the major difference between the previous assessment, and
the proposed revised assessment. Before, as SS cannot deal with tag data releases-at-size,
an approximation was used where releases are binned into a fixed number of release “age-
classes” given the expected age-given-length, and subsequent recaptures treated as always
belonging to those release cohorts. Realistically, given individual variability in age-given-length
and recruitment variations, there are always likely to be more age classes present in the tag
releases-at-size than assumed. Additionally, this requires the assumption of a single combined
growth curve used to prepare the data for input into the assessment, yet in the assessment
the growth function is sexually dimorphic and some parameters thereof are estimated within the
assessment. These are the primary reasons for moving to a model for the tagging data where
length-at-release, not approximate cohort-of-release, is a primary release covariate. Additionally,
sex-at-release is not known and, given we assume selectivity that is driven by size, the recapture
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probabilities of the tags will be different depending on their sex-at-release. The current structure
cannot deal with this additional uncertainty, but the proposed revised assessment deals with it
directly.

3 Methods

The revised assessment framework uses the Template Model Builder (TMB) package in R [3].
This is, at present, the most efficient and flexible statistical modelling package available. It allows
for highly complex statistical models (including the use of random effects) to be efficiently and
robustly estimated. For the MCMC runs used generate the key probabilistic summaries of the
assessment variables we use the tmbstan R package [4]. This links models written in TMB to
the currently accepted most efficient MCMC sampler (the No U-turns or NUTS algorithm) and,
for the models explored, runs in just over an hour as opposed to at least several days required
for the SS MCMC algorithm.

3.1 Population and fishery models

The population model is essentially the same as that used in the current SS assessment. It is
spatially structured, sex-structured, age and size based and with an assumed annual time-step.
The initial population is assumed to be in an unfished equilibrium state. Movement is annual
and considered at this stage to be independent of age or size, and is characterised via a time-
independent matrix, ®;;: the probability that an animal in region 7 will migrate to region j from
one year to the next (and we assume a closed population where Zj ®,; = 1). Recruitment is
assumed at age 1 and the mean value of total recruitment (across all areas) is governed by the
following:

]:2 _ aSQ,y—l
4 1+ 559711_1

where Sgyyfl is the biomass of mature females (across all regions) in year y — 1 (calculated
assuming 50% and 95% lengths-at-maturity of 139.6cm and 185.8cm, respectively). The param-
eters a and (3 are defined in terms of the steepness, h, unfished total female mature biomass,
By, and the unfished total recruitment, Rg:

 4hR,

T By h)
5h— 1

= Bo(L —h)’

The spatially and sexually disaggregated recruitment, R, , ., is defined using the time-invariant
spatial recruitment faction , (> 1, = 1), and the sex-ratio at birth, s (>_, (s = 1):

Ry,s,r = RyanSa

and if annual recruitment deviations, ef, are being estimated then there is an additional multiplier
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to Ry s

Ry,s,r = RyT/TCS CXp (65 - 012%/2) )
65‘ ~ N (0, 0%2) .

Forages 2to A™ — 1 (where AT is the plus group) the abundance dynamics are

E —-M
Ny,(lﬁﬂ' - q)r’,rNy—l,a—l,s,r’e (1 - hy,%sy"")
T,/

where M is the age-independent natural mortality rate, and h, , ., is the fishery-aggregated
harvest rate by sex and region. For the plus group we have that

—-M
Ny,A*,s,r = E Cbr’,rNy—l,A+—1,s,r’e (1 - hy,AJr—l,s,r’)
TJ

§ : —-M
+ ¢7‘/7TNy717A+7s7r/6 (1 - hy7A+7S’7J)
!

r

The harvest rates are calculated on a fishery-specific basis as follows:

_ —Ty M
Xy = § :E :Ny7a7877“fe W S5, f Wass

S a
C
hy7azsyf = Xy"; X Sa,s,f
Y,

where:

e s, r is the selectivity-at-age by sex and fishery (calculated from an estimated sexually
aggregated selectivity-at-size and integrated across the distribution of size-at-age by sex)

* w, s is the weight-at-age by sex (calculated from an estimated sexually aggregated length-
weight relationship and integrated across the distribution of size-at-age by sex)

e T, ¢ is the fraction of the year at which the median fishing operations occurred

e 74 is the region in which fishery f occurs, and the regionally aggregated harvest rates,
hy.a.s- are just the sum (within year, age and sex) of all the individual fishery-specific
harvest rates

3.1.1 Length related variables

All the key data series usesd in the assessment involve size-specific predicted quantities: length
distributions in the catch, age-given-length, and length-specific recapture probabilities. The cur-
rency of the population and fishery model is primarily age-based, so we need to translate a
number of age-based quantities into length:

e Predicted length frequency (aggregated across sexes) for each fishery

e Predicted distribution of age-given-length, accounting for ageing error, in each of the fish-
eries and for both sexes

e Predicted sex ratio-at-length for each region
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e Predicted spatial recapture probability-at-length, derived from length-based harvest rates
and the growth transition matrices for each sex

The predicted length frequency is actually derived from the “true” age-given-length distribution,
so we begin with that first. The distribution of length-at-age is simply defined from the growth
relationship. The mean length-at-age is defined via the Schnute parameterisation of the von
Bertalanffy growth curve:

1 —exp(—k(a—a))

1 —exp(—k(ay—ay))’

where [;(a;) and lx(ay) are the lengths at reference ages a; and ay (a2 > «;), and k is the
growth rate. To generate the distribution of length-at-age we assume a lognormal distribution

(with a given standard deviation ;) around this mean length-at-age. This gives us a sex-specific
distribution of length-at-age, 7| 4,s-

E(l(a)) = li(a1) + (I2(az) — l1(a1))

To get to the “true” distribution of age-given-length we use Bayes’ rule:

il _ 7Tl |a,s7ra|y,s,f
Ta ‘ yslys,f — ’
Tily,s.f

where 7,4, s is the prior age distribution, and m; |,  ; is the length distribution in the fishery:
ﬂ-l ‘ y757f - Z ﬂ-l | a787Ta‘ I y787f7
a

and the prior age distribution is defined as follows:

Nyvaﬁs:rf S(Z,S,f
Ta | N = :
ZT, Ny,ivsva 57"737.]‘.

For a given ageing error matrix, A, ., where > A, = 1 and d’ is the “true” age in this sense,
the adjusted distribution of age-given-length (that we use to compare to the observations) is

defined as
ﬂ-a | y7l757f = : : ﬁa/ | y7l7s7an’7a/, N
CLI

With fleet and sex-specific true and observed age-given-length distributions we can then derive
the length-based harvest rates we will need later on for the tagging likelihood. The length-based
harvest rate for each fleet is define to be

hyisr= E Nyass i Talyd,s.fr
a

and the cumulative harvest rate in each area, h,; ., is then just summed across the fisheries
operating in a given area. The final required variable, required for calculating sex-aggregated
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length frequencies and the tagging likelihood, is the true sex-ratio by length and area, §,; s,

T _ Nyvaysv"'
aly,s,r — y
Zi Ny7i7s7r

* _ TjaTaly,s,r

a ‘ y7l7577n - ?

D Ui |y
Ny7l7s77‘ = : : Ny1a7S7T7Ta ‘ y7l,S7T’
a
Ny,l,s,r

éy,l,s,r = :
Z] N?JJ,J',T

For the tagging likelihood we need to calculate a sex-specific growth transition matrix given the
length-based nature of this part of the model. This is done following the method outlined in [5]
that deals with both the differing size of the length bins, and the stochastic uncertainty in the
expected growth increments of the fish, given the growth curve. The transition matrix, G,y , is
the probability that a fish in length bin [ after a given time 7 (taken to be one year here) will be in
length bin I’ (and >, G, s = 1).

3.1.2 Candidate selectivity functions

Selectivity is assumed to be inherently length-based and not sexually dimorphic, even though
selectivity-at-age is given possibly different growth curves for males and females. We explored
three potential selectivity functions:

1. Double-logistic: essentially a fully smooth function that encompasses the features of the
double-normal and double-normal plateau functions

2. Generalised gamma: uses a modified gamma distribution-type kernel that is a reduced
parameter dome-shaped distribution to avoid over-parameterisation and convergence is-
sues of the double-logistic function when the plateau-type dynamics are absent

3. Logistic: usual logistic function that has no potential for dome-shaped dynamics

The main reason for not using the double-normal (or the plateau extension) is because of mem-
ory issues around taping for the AD part of the algorithm. True AD cannot deal with if/else type
statements for parameters or variables derived from parameters. The two double-normal vari-
ables have exactly this structure and it can significantly increase the amount of memory used by
AD algorithms, as they have to create exceptions in the taping procedure (doubling up of sorts
every time you have an if/else condition). To maximise efficiency we therfore explored only truly
smooth selectivity functions - noting that the ones we used have essentially the same flexibility
as the piecewise smooth ones we have decided not to use.

The double-logistic function we use is defined as follows:
S;ﬂog _ (1 + 19—(1—1#1,50)/51,95)71 > <1 _ (1 + 19—(l—w2,50)/62595)*1) ’

and interpretation of parameters is as follows: 1), 5 is the length at which the selectivity first
increases to 0.5; 0 95 the additional “distance” to reaching 0.95; 1, 5 is the length at which
selectivity has decreased to 0.5; and d2,95 is the distance backwards from 1), 59 at which the
selectivity is decreasing but at 0.95.
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The generalised gamma selectivity is define as follows:

geamm _ 1% exp (—byl)

l g )
a ag/cg
G (—) exp (—ay/cy))

bgcy

and the function has a pre-defined maximum of 1 atl = a,/(b,c,), and the additional parameter
cg assists in the ability of the curve to reproduce strongly asymmetric dome-shaped dynamics.

The logistic function is just the standard robustly parameterised version:

8}0g — (1 + 19*(171#50)/595)_1

Y

where 15 is the length at 50% selection, and v5q + dg5 is the length at 95% selection.

3.2 Likelihood functions

We have now defined all the key population and fishery variables so we now move on to the
likelihood functions of the three main observations used within the assessment.

3.2.1 Length frequency data

At this stage, we use sex-aggregated length frequency data (as is done in the current assess-
ment) and the predicted length distribution is calculated as follows:

ﬂ-l | y,s,f€y7l,57rf
Ty,f = .
Z] 7Tl ‘ y7j7f§y7l7j77"f

In the SS assessment model the data are currently modelled using the multinomial distribution,
with the associated effective sample sizes “tuned” so that input variance assumptions match
those coming out post-fitting. For the revised assessment model we propose an extension of the
multinomial distribution called the Dirichlet-multinomial (D-M) distribution. The reason for doing
this is so we have a flexible distribution where the correct weighting (effective sample size) for
each fishery can be calculated on a robust statistical footing, as opposed to more ad hoc tuning
algorithms. The D-M distribution has, at its core, the underlying multinomial distribution. The
secondary part of this distribution assumes that the underlying probabilities that define the multi-
nomial vary according to the Dirichlet distribution. This permits us to model additional variability
(over-dispersion) in the length data in a coherent and statistically well-defined manner.

Let n,, r be the number of observations for which we have length data in bin [, in year y, for a
given fishery f. The joint density of both the observations and the predicted length frequencies
can be defined as follows:

p(m|p,a)=pm|p)p(p|a),
where n is the vector of length data, p their underlying predicted multinomial probability, and
« the Dirichlet parameters. The first density is the multinomial, the second the Dirichlet in the
above equation. What we really need though is the marginal distribution of n given «:

p<n|a>—/p<n|p>p<p|a>dp.
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This integral has a closed-form solution and leads to the following marginal distribution for the
length frequency data:

Al = 0wy p) 7 Dlwas + wysmiys)
! [(ny.r 4 wy.z) . Ny, 1T (wy, 7. 1)

where n, r = >, ny. 7, I'() is the gamma function, and the over-dispersion parameter, w, r, is
defined as follows:

Ny f — Pr
wyzf - )

pr—1

and ¢ > 1is the over-dispersion factor: the degree to which the multinomial variance is inflated
due to correlation between the length classes. The point of going to the trouble of using the D-M
formulation is that o is an estimable parameter (as opposed to tuning to get the right value of
ny f). The overall length frequency likelihood, A' is obtained by multiplying over all years y and
fisheries f.

3.2.2 Conditional age-at-length data

The data are the actual number of fish-at-age for a given fishery, length-class, sex and year:
Nyalsf- We assume a multinomial distribution for this likelihood as the default, primarily be-
cause we assume size dictates selectivity, so we would then expect that the distribution of age
within a given length class would be random (i.e. multinomial in this case). So, the likelihood of
the age-given-length data is as follows:

all o Ny,al,s,f
Ay,l,s,f - H (7Ta|y,l,s,f)

a

3.2.3 Tagging data

So far the likelihoods are either slight modifications (such as the D-M for the length frequency
data) or essentially the same (for the age-given-length data) as in the current SS assessment.
For the tagging data we use a fundamentally different tag recapture model and associated like-
lihood. To set the scene for why we include the elements we do we first outline the processes
that we have to account for:

e The sex-at-release is (almost always) not recorded, and the sexes will almost certainly
have differing mortality rates and, therefore, different recapture probabilities

e The length-at-release is the key covariate, not age, and the fish grow probabilistically (via
the size-transition matrix G) over time

e It is more natural to follow the correlated recapture history of a given recapture event
(pooled via year, length and region of release), not to have a kind of pooled tagged popu-
lation and calculate the likelihood of recapture (both in total numbers and in terms of the
spatial distribution) of these pooled tags year after year

The tag recapture model we derive fits within what would be considered a multi-state mark-
recapture model. By this we mean there are a number of probabilistic states a tagged fish can
inhabit over the recapture period of a given release event: which length class it is within, what
spatial region it is in, what sex it is, and whether it has been recaptured or not. The release
covariates are year, length class and region; the recapture covariates are year and region of
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recapture. So we will integrate across size at recapture and sex-at-release (we don’t use the
sexed tag recapture information) within the tagging model.

The number of tag releases is denoted by 7 ; -, and the number of associated recaptures 12y,
fort =9+ 1,..., 4 4+ tmax, and t,.x is either the maximum number of possible recapture events
(and we have a pre-specified absolute maximum). As with the SS assessment, we do not use
any within-season recapture events in the recapture data. To construct the overall tag recapture
probability, we will first construct the sex-specific tag survival probabilities, and in the following
z = {y, l, 7} i.e. the vector of release covariates. To construct the tag survival probabilities
we first need to track the size and spatial distribution of tag releases, 7;, s, over the recapture
period. Consider a single tag in given release event: m;; . = 70t and zero elsewhere (and

Mot is the tag mortality probability). The dynamics of this single tag are as follows: for ¢ > :

_ _tag —M
Myl sr = Ty € E E mtfl,l’,s,r’Gs,l’,l(I)r’,r (1 - htfl,l’,s,r’) )

,’,,l l/

and wfag is the probability of a double-tagged fish retaining at least one tag from time t — 1 to time
t. The equation itself is complex, but it combines tag loss/mortality, growth (via G), migration
(via @), natural mortality (via M) and fishing (via the harvest rates i s .,).

The relative distribution of tags from a given release event (across both size and space) is defined

as follows:
Myl sr

Vtlsr = le Zr’ mgy s '

The next variable we need is tag survival, 77, marginalised across length and region. Obviously
75 =", and fort > g

s __ _s tag —M
Ty =T 1Ty € E E ’thl,l,s,r(l - htfl,l,s,r%
r l

which finally leads to the tag recapture probability (marginalised across length):
T =TT Yssrhylsr
!

rep

where 7, is the reporting rate at time ¢. While mathematically daunting, in plain words this is
basically the product of three things:

1. The probability that the tagged fish survives with at least one tag attached to time ¢
2. The probability that the tag would be reported if recaptured at time ¢
3. The (length-averaged) probability of being caught at time ¢

We could go even more complex and condition on the length-at-recapture as well as time and
region. In the positive column, this has far more direct information on growth (if estimating growth
parameters within the model); in the negative column it massively increases the complexity of
the tagging likelihood and the memory use required for the AD part of the optimisation algorithm.
We are not - at this stage - exploring size-specific movement estimation, so the information on
abundance and migration is not really going to benefit from having size as an additional recapture
covariate. It is, however, something to consider for future possible configurations. The final step
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is to average out over the sex of the tagged animals (given we don’t know this at release time) to
get the overall recapture probability:

rec __ rec B
7Tt7“ - Z ﬂ—t75,7‘ 7,l,s,7

s

The base likelihood for the tagging data in this format is essentially the multinomial distribution,
which is known loosely as the Brownie (size and spatially structured in this case) model [6]. This
follows the recapture history of a given release event and, as we outlined in the background
section, has been shown to be more informative on both abundance and migration, relative to
the current SS two-stage likelihood. Tagging data are, however, well known to be often over-
dispersed (i.e. more variable than the underlying base distribution would predict). To accommo-
date this process we again use the Dirichlet multinomial (D-M) distribution to model the likelihood
of a given tagging event’s recapture history. The D-M likelihood for the tagging data is

Al — T (0:) <HH Rtr+ﬁ”rec>>((T R+ 351 — 7)) (3.1)

T + 19 R ) T(Wsmie) | (T — R (W3(1 — 7ree))’
where
19~ B Ti _ SOtag
z — gatag 1 )

and "¢ is the tagging over-dispersion factor, and
R-Y R
t r

and

~rec _ rec
=22

is the overall probability of recapturing a single tag from that release event. The probability of
never recapturing a tag is the final term in Eq. (3.1) and is required to ensure that our recapture
history probabilities sum to 1. The likelihood of all the tag data is just the product of the likelihoods
of all the unique release events. As with the length frequency likelihood, the over-dispersion
factor can now be estimated directly without needing to be tuned in some ad hoc manner.

3.2.4 Overall likelihood and objective function

The overall log-likelihood of the data is simply the sum of all three log-likelihoods of the data

sources.:
In A% = In AL 4+ In A%+ In Ate8

The full objective function to be maximised includes the recruitment prior and some additional
penalties to stop harvest rates and tag recapture probabilities exceeding pre-specified maximum
levels.

3.3 Estimated parameter options
The core set of estimated parameters are:

e Unfished total recruitment, R,
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Selectivity parameters for each fishery

Recruiment deviations for a pre-specified subset of years

Spatial recruitment parameters, 7,
e Parameters of the migration matrix, ®
e Over-dispersion parameters ¢ and '8

The optionally estimable parameters are either all or some subset of the growth parameters, k,
ll, lg and gy.

4 Data & dimensions

This section deals with some high-level summaries of the input data, as well as the relevant
dimensions of the model (years, ages, size classes etc.) and what specific choices are made
about the different parameterisations for the various model processes.

4.1 Dimensions

The model runs from 1985 to 2018 (i.e. 10 years before fishing began), ages are from 1 to 52.
Size-classes range from 0 to 190cm: 0 to 30 in 10cm bins, 30 to 140cm in 5¢cm bins, and from
140 to 190cm in 10cm bins. The model is run, as is the current assessment, as a two region
model with a Northern and Southern region (with the same latitudinal separator for these regions
as used in the current assessment). There are five fisheries:

1. Aurora trough trawl (ATT): assumed in region 2 (Southern region) and with an assumed
time-invariant double-logistic selectivity

2. Northern valleys trawl (NVT): assumed in region 1 (Northern region) and with an assumed
time-invariant generalised gamma selectivity

3. Auroratrough long-line (ATL): assumed in region 2 (Southern region) and with two possible
selectivity options: generalised gamma or logistic

4. North Macquarie ridge longline (NMRL): assumed in region 1 (Northern region) and with
two possible selectivity options: generalised gamma or logistic

5. South Macquarie ridge longline (SMRL): assumed in region 2 (Southern region) and with
two possible selectivity options: generalised gamma or logistic

4.2 Data summaries

The major, more detailed summaries on the key date sets can be found in [2], in this paper we
focus specifically on the summaries that relate directly to what we assume in the revised assess-
ment model. For the length frequency data, we do not use the number of actually measured fish
as the base sample size starting point. These often number in the thousands, and would imply
a precision in the size data that is simply not either a priori credible, or born out by the fits to
these data and what kind of effective sample sizes we actually estimate post-fitting. As the base
unit of sample size, we actually employ the number of hauls, which range from less than 10 in
some years to over 200 in the years where most catch is taken. This variable reflects relative
changes in sampling effort fairly well - given the observer coverage more hauls clearly leads to
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more sampling effort - and is in the plausible range of values for what effective sample size might
be. Given we estimate over-dispersion factors we can see a posteriori how well the number of
hauls links to the overall effective sample size.

For the tagging data, we stipulate that only unique tagging events with at least five releases can
be used. Not only does this minimise potentially uninformative tagging data simply adding to
the memory required to run the model, but it ensures that the number of tag releases never falls
below the over-dispersion factor - this is effectively an implicit zero sample size issue and causes
the tagging likelihood to be undefined. We also stipulate there to be a user-defined maximum
number of recapture events allowed for each tagging event. The reference value is set at 7: so
after the year of release we allow a maximum of 7 recapture events. This includes over 90%
of the actual recapture data. We do this to avoid recaptures at times-at-liberty for which we are
unsure as to whether our assumptions about tag loss etc. are still holding true. We do, however,
run a sensitivity with a maximum of 9 recapture events (including over 97% of the tag recaptures)
to see what difference, if any, this assumption makes. For the tagging data we also explore a
sensitivity test using the estimates of tag shedding from the actual tagging data themselves.

5 Results

This section summarises:
e Reference model configuration and fits to the various data sets
e Population dynamic summaries from the MCMC runs for the reference model

e Impact of the outlined sensitivity runs

5.1 Reference assessment model

The reference assessment model has the dimensions outlined in Section 4.1, and uses the data
as outlined in Section 4.2. For the reference assessment model, we assume that the reference
ages for the Schnute parameterisation of the von Bertalanffy growth function to be a; = 5 and
as = 20. This ensures that they are (a) are within the observed data range, and (b) are not
too close or too far apart, relative to the data range. For the reference model we keep the
growth parameters fixed, estimating them using the conditional age-at-length method outlined
previously [7]. So, we are using these data to inform the model on population size and age
structure (including recruitment), not growth - a sensitivity is explored estimating the growth
parameters.

Variable | 2 I Ly Lo to oy

|

Male | 0.071(0.004) 0.48 (0.003) 1.01 (0.008) 1.29 (0.04) -1.63(0.21) 0.15(0.02)

Female | 0.055 (0.003) 0.49 (0.004) 1.15(0.005) 1.67 (0.04) -1.29 (0.18) 0.15 (0.015)

Table 5.1: Maximum likelihood estimates (and approximate standard errors in brackets) of the
growth parameters used in the reference model.

A detailed summary of the estimation of the growth parameters can be found in [8] but Table 5.1
shows the estimate used as model inputs in the reference case. As seen in previous analyses,
males seem to grow faster initially, but to a smaller asymptotic length; as a result, size-at-age
(and weight) of females is greater than males from about age 5 onwards. The key mean length
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parameters (k, 1, and l5) are all very accurately estimated. Variability in mean length-at-age
is very well estimated in both cases and the same for both sexes. The standard errors are
informative in that it makes it fairly clear that uncertainty in growth is arguably the least of all the
parameters used as inputs to the model, or estimated therein (see later).

5.2 Fitting summary for reference model

The fits to the length frequency data for the two trawl fleets are in Figure 5.1, and for the three
longline fleets in Figure 5.2.

h 6
o- B i
o 2 3 3
o s 00 1% 0 o 100 1 so 10 1% s 100 1o 50 16

50 0 50 J 160 150
length length

Figure 5.1: Fits to the ATT (left) and NVT (right) trawl fisheries length data. Magenta circles are
the observed data, and the blue lines the predictions.

Figure 5.3 shows the fits to the female length-conditional age data for the two trawl fleets. and
Figure 5.4 shows the same for the males. Figure 5.5 shows the fits to the female length-
conditional age data for the three longline fisheries, and Figure 5.6 shows the same for the
males.

The fits to the tagging data are summarised in four key ways:
1. Successive recaptures for each year of releases
2. Total recaptures for each year of release
3. Total recaptures for each year of recapture
4. Total recaptures for each year and region of recapture

All of these summaries aggregate across the size spectrum of releases and recaptures for visual
brevity, and also because size-at-recapture is not an explicit part of the tagging likelihood.

5.2.1 Relative data “weighting” estimates

The main difference with a tuning-type approach to data-weighting employed in the current SS
assessment, and the one proposed in the revised assessment, is to move to actively estimating
the key weighting parameters (so-called “right weighting” or, more accurately, empirical Bayesian
inference for hierarchical models). Focussing on the trawl length data first: for the ATT and NVT
fleets there is clear down-weighting of the haul data - more so for the NVT fleet. For the longline
fleets, ATL and SMRL are down-weighted very little, but the NMRL fleet is clearly down-weighted.
For the ATT data this looks like genuinely random variation; for the NVT data more some kind
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Figure 5.2: Fits to the ATL (top left), NMRL (top right), and SMRL (bottom) longline fisheries
length data. Magenta circles are the observed data, and the blue lines the predictions.

of systemic lack of fit given the clear decrease in mean length over time (and the assumption of
time-invariant selectivity). For the NMRL data by convention we assume logistic selectivity for
this and the SMRL fleet to avoid the appearance of cryptic spawner biomass in the population.
While logistic selectivity is actually the mode of choice for the ATL, and would be for SMRL
if permitted the choice, it seems that we consistently over-estimate the right-hand limb of the
length frequency curve in the last five years of data for the NMRL fleet.

]Variable ‘SOATT PNVT  PATL PNMRL PSMRL @tag‘
| Estimate | 1.86 274 12  1.84 1.1 184

Table 5.2: Estimates of the over-dispersion factors for the size data for each fleet, o, and the
tagging data, ©"?8.

For the tagging data we see that the estimate of '8 = 1.84 clearly suggests that the tagging
data are over-dispersed, relative to the assumption of a straight multinomial recapture likelihood.
Interestingly, it is close to the value of around 1.9 assumed (but not tuned) for the tagging data
likelihood (for total recaptures) in the current SS assessment.

For the conditional age-at-length data we assumed a multinomial distribution, given the theory
about size-selectivity versus age would suggest that age data from within a given length class
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Figure 5.3: Fits to the ATT (left) and NVT (right) trawl! fisheries female age-given-length data.
Magenta circles are the observed mean age, and the blue lines the predicted median and 95%ile.
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Figure 5.4: Fits to the ATT (left) and NVT (right) trawl fisheries male age-given-length data.
Magenta circles are the observed mean age, and the blue lines the predicted median and 95%ile.
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would be random (hence, the multinomial would be the right choice). The reality of whether
this is true can only be gleaned once the model has been fitted to the data. When looking
at all the fits to the data for each sex and fishery (Figs. 5.3-5.6) we see that, barring a few
isolated examples, the observed mean length-at-age sits within the predicted 95% interval and
doesn’t systematically appear above or below the predicted mean. When one analyses the
standardised residuals for over-dispersion (do they systematically appear greater than 1) there
is no evidence that a move to the over-dispersion model (Dirichlet-multinomial) is required. This
seems to suggest that:

e The multinomial distribution assumed for these data appears valid

e The model’s predictions of age-given-length are clearly statistically consistent with the data
and the assumed growth model

e At least for these data, the model has enough freedom to adequately explain the observa-
tions

e |t would sort of back up the underlying assumption that size (not age) is the right underlying
variable with which to parameterise selectivity

5.3 Population dynamic summaries from MCMC runs

For the reference assessment case, we used the tmbstan R-based MCMC package [4] to
sample from the posterior distribution. The package uses the Hamiltonian MCMC algorithm,
designed to solve a lot of the problems with the more traditional MCMC algorithms, when it
comes to sampling from complex high-dimensional posterior surfaces. As a result, it is able to
obtain a convergent MCMC sample from the posterior (1,000 iterations) in an about 80 mins (as
opposed to days for the SS ADMB-driven MCMC algorithm). The key female SSB summaries
can be found in Figure 5.8; total recruitment and the key spatial parameters (recruitment fraction
to North, n;, and migration rates between regions) can be found in Figure 5.9.

The current (ca. 2018) median estimate (and 95% credible interval) of female SSB depletion
is 0.7 (0.65—-0.76). As with previous assessments, the estimated overall level of female SSB
(and depletion thereof) is consistently higher in the North, relative to the Southern region. Total
recruitment has generally varied randomly around the mean level, with short periods of higher
or lower recruitment, but not sustained periods of either (showing low levels of temporal auto-
correlation).

The spatial recruitment fraction to the Northern region has a median (and 95% credible interval)
of 0.15 (0.09-0.23) - this is quite different to previous estimates that have this value around the
0.45 level. Migration point estimates are similar (around 1% per annum from North to South,
and 6% from South to North) albeit very slightly higher from South to North and with a marginal
posterior less skewed to lower transfer rates in this direction. The reality is that one can obtain
the same effective spatial distribution of animals by either depositing more or less recruits into a
region, or having more or less fish move between regions. Additionally, a (comparatively) large
change in the spatial recruitment parameter, can be offset by a much smaller proportional shift
in a migration parameter. The spatial recruitment dynamic is a “one off” event; migration is the
consistent movement of every age-class year upon year. It does not take much change in the
latter to offset a change in the former (as is the case here).

Differences between the relative sizes of the Northern and Southern regions largely depend on
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Figure 5.8: Posterior median and 95% credible intervals for total female SSB (top left), female
SSB relative depletion (top right), spatial female SSB (bottom left), and spatial female SSB rela-
tive depletion (bottom right).
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Figure 5.9: Posterior median and 95% credible intervals for total recruitment (left), and the
marginal posteriors for the three spatial parameters: 1., ®1 2, and ®, ; (right).
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the metric chosen. In terms of current female spawning biomass, clearly the model estimates
more (almost six times more) in the North than in the South. If it is total numbers, there are in fact
50% more animals estimated to be in the Southern region - more recruits go here initially and
these younger age-classes dominate the numbers. If our metric is, say, exploitable abundance
currently accessible by the longline fleets then the estimated abundance in the North is around
twice that in the South. If that metric is exploitable biomass there is around three times as much
in the North, relative to the South. The point being the estimate of around 6—7 times predicted in
the female SSB metric doesn’t really reflect the estimated ratio for the more fishery or abundance
focussed metrics.

5.4 Key sensitivity runs

Given this is the first time this assessment has been undertaken, we do not have a bridging-type
analysis to show. We also don’t - this time around at least - replicate a number of the year-
on-year sensitivity tests done for the SS assessment (alternate values of M and steepness,
dome-shaped selectivity for the long-line fleets). The reason is that the effect those tests have
on the SS assessment will be qualitatively (and often quantitatively) very similar to the effect they
have on the revised assessment.

Instead we focus on two key sensitivity tests:
1. Estimating growth within the assessment itself

2. Using the estimates of tag shedding rates instead of the previous assumption of effectively
zero tag loss over time

For the growth estimation sensitivity test, we actually don’t try and estimate all the growth pa-
rameters - only k, [, and 0;. The reason for this is that the assessment in previous years has
shown a propensity to try and estimate very high L., parameters, or very low k parameters,
when given full freedom. So we fix the [, parameters at the values estimated in [8], and estimate
the remaining parameters (while still assuming that a; = 20). For [; the assessment estimates
(and approximate SDs) are 0.52 (0.004) and 0.51m (0.005) for females and males, respectively;
for k they are 0.021 (0.003) and 0.08 (0.004); and for o; they are 0.14 (0.02) and 0.13 (0.02).
Estimates of unfished female spawning biomass are higher (ca. 3,500t) but current estimates of
depletion are slightly lower (0.66 with a CV of 0.1 as before). For the growth estimates, basically
everything is the same as estimated in [8] apart from female k - estimated to be a little less
than half of the reference case estimates. This is basically the previous effect (pushing for a low
k-high L., female combination) already outlined. Note, we fixed [ not L., - that would require
essentially defining as = oo - so we did not further explore nuanced growth estimation within the
assessment. What is clear is that, as with the SS assessment, it is the other data (the tags in
fact) pushing this effect not the age-length data. These data give well-estimated parameters that
do not have this effect [8] when considered in isolation. What is important, for the assessment, is
that we have consistent estimates of the distribution of size-at-age for the exploited age-classes
(which it appears we do). Where it does become a problem though is for estimating SSBj -
the effect is clear here in that it has to push it up given the slower growth rates of females when
growth is estimated. All the other key parameters (selectivity, recruitment, and migration) are
essentially the same as for the fixed growth reference case.

For the tag shedding sensitivity test, we assumed what is effectively the worst-case scenario:

where the tag shedding is defined as in [9] and this defines 7,*¢; as a result, we are basically
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then at the expected lower-bound of tag retention (for the purposes of detection post-capture).
The estimate of current depletion is 0.69 for this case - as opposed to 0.7 for the reference case
- and with basically the same CV. Any level of tag shedding will act so as to push down the
estimates of abundance from the tagging data. What we see here is that what we might call a
worst-case scenario makes the depletion just over 1% lower than the reference case.

6 Discussion

In this paper we detail a proposed new assessment model for the Patagonian tootfish fishery
around Macquarie Island. The underlying population model is basically the same as used in the
current Stock Synthesis assessment [2] - spatially, sexually and age-based with underlying size
structure for all the key variables. The model uses the same data as the current assessment:
catch biomass, size frequency data, length-conditional age data, and the tagging data. The size
data (sexually aggregated as before) are now modelled using the flexible Dirichlet-multinomial
likelihood with the over-dispersion factor now estimated (not tuned). The age-given-length data,
by fishery and sex, are modelled using a multinomial distribution as before. The major difference
between the two models is how they model the tagging data.

In the current SS assessment model, the tagging data are grouped into a number of representa-
tive “age” classes; they are then modelled in a two-stage likelihood for first total tag recaptures,
then spatial distribution of recaptures second. In the proposed assessment model we develop
a sex and length structured spatial Brownie [6] tagging model that contains the abundance and
migratory information in one likelihood function. The key covariates of release are sex (assumed
unknown), size and spatial region; the key recapture covariates are year of recapture and spatial
region. The Dirichlet-multinomial distribution is used for the likelihood with the tagging over-
dispersion factor also estimated (as it is for the size data for each fishery).

Another key difference is how the data weighting is done within the revised assessment. Instead
of a tuning-type approach we use a more flexible likelihood function (for the length and tagging
data) - specifically the Dirichlet-multinomial distribution - where the “weighting” is done via an
estimated parameter (the over-dispersion factor), not manual tuning of sample sizes or control
parameters. There are over-dispersion factors for each fishery’s length data likelihood, and for
the tagging data likelihood. For the age-length data we assumed a multinomial likelihood (as in
the current assessment) and, in the post-fitting diagnostic analyses, we explored the appropri-
ateness of the assumed likelihood for these data.

The estimation framework utilised is primarily the Template Model Builder (TMB) R-based pack-
age [3], with the MCMC analyses done in the extension package tmbstan [4]. Using this
statistical estimation package both significantly extends the capabilities of ADMB (which under-
pins Stock Synthesis) in terms of random-effect models and distributional possibilities, but also
drastically reduces estimation time and MCMC runtime. For the revised TMB-based assess-
ment, MCMC runs (required for RBC scenarios) take just over 1 hour to achieve a convergent
Markov chain of 1,000 iterations. For the current SS model this can take several days. One of
the main aims of replacing the current assessment was to make the most of the near 20 years
worth of software and statistical development that has occurred since ADMBs features were es-
tablished and embedded within Stock Synthesis. It is now possible to do far more, in terms of
model flexibility and statistical development, and do it more efficiently as this document outlines.

The results are, in terms of the key management variable depletion, essentially the same as the
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current updated SS assessment [2]: around 0.7 relative to the current unfished state with an
95% credible interval of 0.65-0.76. They do differ in the absolute, with the revised assessment’s
estimate of female S'S B, of around 2,500t being lower than the level the current assessment has
varied around. That being said, we do use a different growth relationship (for both females and
males) that is fixed using the analysis in [8] - any changes in the mean length-at-age will alter the
absolute estimates, even when the relative levels stay the same. The other clear difference is
spatial recruitment fraction: the revised assessment estimates more recruitment (just over 80%)
going to the Southern region than the current assessment does (around 55%). To some degree
this is offset by marginally higher rates of South-to-North migration as they both still estimate
far more female mature biomass in the North, relative to the South. This has a knock on effect
to recruitment trends also, with the current SS assessment still showing a smoother lower-then-
higher dynamic, relative to the more variable up-and-down recruitment estimated in the revised
model.

In summary, the revised assessment still maintains a significant portion of the structure - both in
terms of population model and likelihood functions - already well established in the current SS
assessment model. We have altered the treatment of the length frequency data to effectively re-
move the need for tuning the effective sample sizes and directly estimate over-dispersion factors.
The age-given-length data are modelled in the same way, and diagnostic analyses confirmed
that the assumed multinomial likelihood was clearly able to explain the data and the variability
therein. The tagging data model and associated likelihood was the largest change: sex struc-
tured (at release), length-based in terms of dynamics and a fully spatial Brownie model (no two-
stage likelihood in terms of total recaptures and spatial recapture distribution). The weighting
for these data is, like the length frequency data, done statistically via the estimation of a tagging
over-dispersion factor, as opposed to fixing this as before. That being said, the estimate from this
revised model was actually close to the assumed level in [2]. The tag data clearly represent a
consistent and informative data set irrespective of the analysis method. The move to the spatial
Brownie model appears to give more accurate estimates of spatial recruitment and movement
parameters as we hoped it would [1], and we feel it more accurately reflects the realities of the
tagging program (and the dynamics of the tags), so was worth the development.
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